LA-13744-T
Thesis

Approved for public release;
distribution is unlimited.

Development and Implementation of
Photonuclear Cross-Section Data for
Mutually Coupled Neutron-Photon
Transport Calculations in the

Monte Carlo N-Particle (MCNP)
Radiation Transport Code

L os Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory is operated by the University of California
for the United States Department of Energy under contract W-7405-ENG-36.




This thesis was accepted by the Graduate Faculty of the College of
Engineering, and the Graduate School of the University of Florida,
Gainesville, Florida, in partial fulfillment of the requirements for the
degree of Doctor of Philosophy. The text and illustrations are the inde-
pendent work of the author and only the front matter has been edited by
the CIC-1 Writing and Editing Staff to conform with Department of
Energy and Los Alamos National Laboratory publication policies.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither The Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
of the University of California, the United States Government, or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of

The Regents of the University of California, the United States Government, or any agency
thereof. Los Alamos National Laboratory strongly supports academic freedom and a
researcher’s right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



LA-13744-T
Thesis

Issued: July 2000

Development and Implementation of
Photonuclear Cross-Section Data for
Mutually Coupled Neutron-Photon
Transport Calculations in the
Monte Carlo N-Particle (MCNP)
Radiation Transport Code

Morgan C. White

| os Alamos

NATIONAL LABORATORY
Los Alamos, New Mexico 87545




ACKNOWLEDGMENTS

As with any large research project, there are a myriad of people who deserve
thanks for their contributions to this work. I would like to try to thank as many of you by
name as possible and sincerely apologize if I miss anyone who should have been
included. This has been a long hard stretch of my life, but it was time well spent thanks
to your support and care.

The first words of thanks must go to my mentor and friend, Samim Anghaie. As
chairman of both my masters and doctoral research committees, he has guided me
through my opening steps into a new world. Personally, he has been an inspiration. I
know few people of as fine character and spirit.

To my committee members, my sincerest appreciation for your time and patience
as we have progressed down this path. Without your encouragement and support, this
work would never have been possible. I would like to thank Jatindar Palta, Frank Bova
and Wolfgang Tome for their patience with an engineer trying to understand the medical
physics world; Paul Fishwick for his guidance in the world of computer simulations; and
Robert Hanrahan for his unique perspective. A special thanks is due Bob Little,
Stephanie Frankle and Mark Chadwick. Their contributions in helping me understand the
use of nuclear data for Monte Carlo simulations turned this work into a fulfilling project
of which I am truly proud.

The list of people with whom I have had useful discussions is quite long and I

would like to thank all of them. I would like to acknowledge by name Grady Hughes,


Morgan C White
This is the final text of the thesis presented to the Graduate School at the University of Florida in partial fulfullment of the requirements for the degree Doctor of Philosophy.  It has been edited slightly to conform more to the LA-Series report style but no content has been changed.  It is suitable for online viewing or double-sided printing.  If you choose to print a hard copy, think about skipping Appendices B & C (~300 pages) as these are code listings.  (Be kind to the trees.)

All questions should be refered to the author.  Morgan C White is currently (July 2000) working at the Los Alamos National Laboratory and can be reached via the internet at morgan@lanl.gov.


Larry Cox, Ken Adams, Chris Werner, Tom Booth, Dick Prael, Jack Comly, Joann
Campbell, Judy Briesmeister, Jeff Favorite, Art Forster, Henry Lichtenstein, John
Hendricks, and Gregg McKinney for the many discussions and insights on the Monte
Carlo method. Thanks to Indrin Chetty, John Demarco, Tim Solberg, Jim Smathers, Paul
Deluca and Dave Rogers for the discussions on medical physics and simulating medical
electron accelerators. Thanks to Sam Iverstin and Bill Vernetson for their assistance and
the use of the NAA facility at UF. Thanks to Joon Park, Texin Lee and Seyong Kim for
their assistance in performing the irradiation experiments around the Phillips MEA.

I would also like to acknowledge the support of those people who have been there
for the day to day grind at both the University of Florida and the Los Alamos National
Laboratory. Thanks to Beth Bruce, Joan Morehouse, Christine Jolly and Ann Nagy for
their assistance in making life easier. Thanks to Ed Dugan, Don Shirk, Alexandra Heath
and Tom Seed for their encouragement and support.

I would also like to acknowledge several sources of monetary support. First,
thanks to the U.S. Department of Energy. In one way or another, the DOE has paid for
my time at graduate school. First, through a four-year Nuclear Engineering fellowship as
administered by the Oak Ridge Institute for Science and Education and more recently as a
graduate research assistant at LANL. I also need to thank two other resources. The
project for the Accelerator Production of Tritium sponsored the creation of photonuclear
data here at LANL. This was in part due to the diligent and farsighted efforts of Laurie
Waters. Many thanks. Also, thanks to the Advance Computing Laboratory at LANL.
Many of the calculations presented here were performed using spare CPU cycles from the

Blue Mountain supercomputer.

vi



Finally, I want to thank my family. To my mother and father, you have been the
most wonderful parents a son could have. You taught me the power of imagination and
persistence. To my brother, many thanks for reminding me to always look at things from
a different perspective. And at last, thanks to my wife Sarah for her patience,

encouragement and love. I love you all.

vil






TABLE OF CONTENTS

page
ACKNOWLEDGMENTS ..ottt sttt st A%
LIST OF FIGURES ..ottt sttt st Xiii
LIST OF TABLES ... ettt sttt st XVvii
ABSTRACT ..ottt ettt ettt s e et essbeebeesabeenbeessseenseennsaens XXiii
CHAPTERS

I INTRODUCTION oottt sttt st 1
2 BACKGROUND oottt sttt st s 7
INEOAUCLION ..ottt 7
Physics of Photonuclear INnteractions ..........ccccceeeevieeiiieeiiieeeieeciee e 9
Experimental Photonuclear Data ...........cccccooiiiiiiiiiiieiieiecceeecee e 13
Previous Photonuclear Studies ...........coooeoiiiiiiiiiiiiiieieeeee e 14
Current DevelOPMENLS .......c.ceviieiiieniieiiieiie ettt et e eeee e e 17

3 IMPLEMENTATION: COUPLING PHOTONUCLEAR
PHYSICS INTO MCONP(X) ittt 19
Introduction to Tabular Monte Carlo Radiation Transport ..........cccccccveevevveencneens 19
Data STOTAZE ..vvvieiiiiieeiieeeee ettt ettt ettt st eenabee e e 20
Photoatomic Versus Photonuclear Data ...........c.cccoooiiiiiiiiiiiiniiiieee, 20
Standard ACE Tables ......cccieiiiiiiiiieeiicee et 21
Photonuclear Class ‘U’ ACE Table ........ccocooiiiiiiiiiiiiiiieeeeeeee, 24
Data PrOCESSING ..eoevieeiiiiiieeiieeiieeie et ettt stte et e stteeite et e enbeesseessbeeseesnseenseesnsaens 31
Coupling Photonuclear Physics into MCNP .........cccooviiiiiiiiiiiececeeee 36
INEOAUCLION ...ttt 36
Setup and STOTAZE  .....eiieiiieeiie et s 39
Material SPeCIfICAtION ........ccceeeiiieriiiiieiie ettt 39
Photonuclear isotope override card (MPN) ......ccccoeeiiiiiiiieeieeceeeeee 41
Table ID SPecifiCation ..........cccceeeviieriieiiieiieeiieeie et 42
Default LIB SPECITIET ....ccccuiiiiiiieciie ettt 43
Table selection and StOTAZE ........ccceeveeeiiierieeiiiecieeiiee e 45

X



3

IMPLEMENTATION: COUPLING PHOTONUCLEAR
PHYSICS INTO MCNP(X) CONTINUED

Physics Implementation ...........cccccceeeiiieiiieeiiie e e 54
Tallies, Summaries and Other Capabilities ...........cccoeeuieviiniiienieniieieeieeee. 61
FUture WOtk ..o 72
4  VERIFICATION AND VALIDATION ....ooiiiiiiieieeeeeee et 74
Introduction to Verification and Validation ..............ccccooiiiiiiiiiiniiiniiniiiienee 74
VEITHICAtION .ottt ettt ettt e sbe e 77
Comparison to Theoretical Yields ......cccoieeiiieiiiieiiie e 80
Calculating Theoretical Yields ........ccccoeriiiiiiiiiiieieeiieece e 80
SIMUIAION SETUP .eeeeiviieeiiieeiee ettt e e e et e e eaaeeeeree s 82
Comparison to Current Calculations ..........ccccevcieeriieniienienieeeeee e 84
Comparison to Measured Yields .......ccccocviieiiiiiiiiieiiiecee e 92
Experimental SEtUP ......ooovieiiiiiiieiii e 92
SIMUIAION SETUP .eeeeeviieiieeeiie ettt et e e e eeeree s 99
Comparison to Current Calculations ...........ccceeveieeiiieniienienieeeeee e 103
Conclusions from Verification and Validation .............ccccooiiiiiiiiiiiiniiinienen, 116
5 APPLICATION: SIMULATION OF A MEDICAL
ELECTRON ACCELERATOR .....ooiiiiiiiiiiinieneeeeetee et 118
INEFOAUCTION ..ttt ettt ettt et aeesaaeeseeeaaaens 118
Validating the SIMulation ..........ccccviiiiiiiiiie e 119
Back@round ..........ooooiiiiie e 119
Physical SEOMEIIY ....cccuvieeiiieeiie et 119
Transport data ........c.occuieviieiiieie e 121
Radiation SOUICE .......cceiiiiiiiiiiiieiie ettt 123
Transport algOrithms ..........ccoooiieiiiiiiieiee e 124
ODbaINING OULPUL  ..oeeeiiieeiiie ettt e et e e eraeeenreeeenns 125
Experimental SEtUP ......oooviiiiiiiiieie s 125
SIMUIAION SETUP .eeeeeviieeiieeciee ettt e e e e eeeree s 133
Physical GEOMELIY ......ccooiiiiiiiiieiieeieeee e 134
Transport data .......oeeeiiieiiie e e 140
RAdIation SOUICE ......ccciieiiiiiieeiieciie ettt ettt e 142
Transport algOTIthMS ......ccoiieiiiieieeceee e 143
ODbtaiNINgG OULPUL  c.evveeiiieiieeiiesiie et eeite ettt ettt et seeebeesereebeesebeenaeenene 144
Discussion of the ReSults ..........coooiiiiiiiiiiiiee e, 151
Depth dOSE ...eeieeiieiieee e e 151
ACHIVALION ..ttt ettt ettt st 160
IMPLICALIONS .evieeiieiiieiie ettt ettt ettt et e et e e b e et e et e e beessseeseeennaens 184
6 SUMMARY AND CONCLUSIONS ..ottt 193



APPENDICES

A PHOTONUCLEAR ACE TABLE FORMAT ..o 200
B MKPNT PROCESSING CODE ...ccciiiiiiiieeeeceeeeee e 237
C PHOTONUCLEAR PATCH FILE ...ccciiiiiiiiieeeeeeeeeeeee e 403
D MISCELLANEOUS DATA FROM VALIDATION STUDIES .......cccccoeieneenn 458
E MISCELLANEOUS DATA FROM APPLICATION STUDIES ........ccccceeeee 480
REFERENCES ...t s 528
SIGNATURE SHEET ..ot 539

X1






Figure

2-1

4-1

4-3

4-4

4-5

4-6

4-7

4-9

LIST OF FIGURES

page
lustrated representation of the giant dipole resonance and ......................... 10
quasi-deuteron absorption mechanisms.

Calculated versus theoretical neutron yield for electrons of ...........c..c........... 86
various incident energy on a thick aluminum target.

(Reported values from Swanson, 1979.)

Calculated versus theoretical neutron yield for electrons of ...........c...c........ 87
various incident energy on a thick iron target. (Reported

values from Swanson, 1979.)

Calculated versus theoretical neutron yield for electrons of ...........c.cc...c...... 89
various incident energy on a thick copper target.

(Reported values from Swanson, 1979.)

Calculated versus theoretical neutron yield for electrons of ...........c...c........... 91
various incident energy on a thick tantalum target.

(Reported values from Swanson, 1979.)

Calculated versus theoretical neutron yield for electrons of ...........c...c........... 93
various incident energy on a thick tungsten target.

(Reported values from Swanson, 1979.)

Calculated versus theoretical neutron yield for electrons of ...........c...c.......... 94
various incident energy on a thick lead target. (Reported

values from Swanson, 1979.)

Experimental setup for the Barber and George experiments. ...........cccceeuveeeee 96
Setup used for simulation of the Barber and George experiments. ................ 100
Percentage variation in absolute yield as a function of the ...........cccceveeneenne. 102

percent change in various beam parameters.

Xiii



4-11

4-12

4-13

4-14

4-15

4-17

4-18

Calculated versus experimental neutron yield for electrons
of various incident energy on a one radiation length thick
aluminum target. (Reported values from Barber and
George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a one radiation length thick
copper target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a two radiation length thick
copper target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a three radiation length thick
copper target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a four radiation length thick
copper target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a one radiation length thick
tantalum target. (Reported values from Barber and
George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a one radiation length thick
lead target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a two radiation length thick
lead target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons
of various incident energy on a three radiation length thick
lead target. (Reported values from Barber and

George, 1959.)

X1V



4-19

4-20

5-1

5-2

5-3

5-4

5-6

5-8

5-9

5-10

Calculated versus experimental neutron yield for electrons ............ccccceeeeeee. 114
of various incident energy on a four radiation length thick

lead target. (Reported values from Barber and

George, 1959.)

Calculated versus experimental neutron yield for electrons ...........ccccceueeeeee. 115
of various incident energy on a six radiation length thick

lead target. (Reported values from Barber and

George, 1959.)

Diagram of Room 5 at the Shands Cancer Center at the ........c..cccceveviennennee. 127
University of Florida.

Simple schematic of the known geometry in the medical .............c.cccceeeee. 137
accelerator treatment head.

Ion chamber trace plots from a standard calibration of the ...........ccccceceeieeee. 153
Phillips SL25 in Room 5 of Shands Cancer Center.

Comparison of ion chamber trace with calculated heating ............cccceuveeenee. 154
tally for a) a 30x30 field; b) a 10x10 field; and
c) a 5x5 field.

Percent differences between ion chamber trace and ...........ccccceeveveevcieennenn, 155
calculated heating tally for a) a 30x30 field; b) a 10x10

field; and c) a 5x5 field. (Percent difference is computed

as (trace — calculation)/trace.)

Comparison of ion chamber trace with calculated energy ............cccoocveeeenneee. 157
deposition for a) a 30x30 field; b) a 10x10 field; and
c) a 5x5 field.

Percent differences between ion chamber trace and ............ccccccveeeiienieniennen. 159
calculated energy deposition for a) a 30x30 field; b) a

10x10 field; and c) a 5x5 field. (Percent difference is

computed as (trace — calculation)/trace.)

Estimate of electrons incident on target per MU (1 cGy) for .......cccccvveeeneenne 161
the energy range of interest.

Calculated production rate of '**Au in the ingot located ............cccooorvvcvrnenn. 167
at isocenter.

Calculated production rate of "*®Au in the ingot located at ...........occeveeeee.... 168
isocenter using MCNP4BPN.

XV



5-11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

5-24

Calculated production rate of '*°Au in the ingot located at
isocenter using MCNP4BNU.

Calculated production rate of "**Au in the ingot located at
isocenter surrounded by A-150 plastic.

Calculated production rate of '*°Au in the ingot located at
isocenter surrounded by A-150 plastic using MCNP4BPN.

Calculated production rate of "*®Au in the ingot located at
isocenter surrounded by A-150 plastic using MCNP4BNU.

Calculated production rate of '**Au in the foils distributed
radially outward in the cross-plane direction from isocenter

surrounded by the A-150 plastic.

Calculated production rate of '**Au in the ingot located ...
in the maze.

Calculated production rate of '*®Au in the ingot located in
the maze using MCNP4BPN.

Calculated production rate of '*°Au in the ingot located in
the maze using MCNP4BNU.

Theoretical photon dose per monitor unit at isocenter. .......

Theoretical neutron and photon dose per monitor unit one
meter above the target.

Theoretical neutron and photon dose per monitor unit one
meter from the target in the cross-plane.

Theoretical neutron and photon dose per monitor unit one
meter from the target in the in-plane.

Theoretical neutron and photon dose per monitor unit one
meter just inside of the maze.

Theoretical neutron and photon dose per monitor unit one
meter at the door to the maze.

Xvi

............................ 186



Table

3-1

3-2

3-3

3-4

3-5

3-6

3-8

3-9

3-10

3-11

3-12

4-1

LIST OF TABLES

page
Standard ACE table description. .........cccoccevcieeiieiiiieiieeieeeeeie et 23
Description of the NXS Array elements in a photonuclear ...........cccoceeeeeee. 25
class ‘u” ACE format.

Description of the JXS Array elements in a photonuclear ............ccccveeeeneennne 26
class ‘v’ ACE format.

Description of the IXS Array elements in a photonuclear ..........c.ccoceveeneeee. 29
class ‘u” ACE format.

Association of particles with their symbol and IPT index .........ccccoeevvveenenne 30
number as defined in MCNP(X).

Example problem summary table for neutrons. ...........ccceceeeenienenninienennne. 63
Example problem summary table for photons. ........cccccceveriiniiinennenieneenne. 64
Example page from the neutron weight balance table (Print ............cccceceeee. 66
Table 130).

Example page from the photon weight balance table (Print .............cc.c....... 67
Table 130).

Example page from the neutron activity by nuclide table ..........c..cccceceeneenne. 69
(Print Table 140).

Example page from the photoatomic activity by nuclide ..........cccceeevreenenns 70
table (Print Table 140).

Example page from the photonuclear activity by nuclide ..........ccccccveeeneens 71
table (Print Table 140).

Materials and properties used by Swanson to calculate ..........c.cccoceeveeveennenne. 82

theoretical neutron yields.

Xvii



42

4-4

4-5

5-1

5-3

A-1

A-2

A-3

A4

A-5

A-6

A-7

A-8

A-10

Natural isotopic abundance for elemental target materials ..........c.cccoceeuenene 83
and their isotopic representation due to lack of available
tabular data.

Integrated photoneutron yield cross-sections for copper. .......c.ccoceevevvenuenne. 88
Integrated photoneutron yield cross-sections for tantalum. ...........ccccceeeeeee. 90
Targets and essential experimental parameters are given .........c..cocceveeeveernnene 99
as used to simulate the experiments of Barber and

George (1959).

ID, mass, position, start time and length of irradiation ...........ccccecvevveenennen. 133
of the gold samples.

Experimental and simulated production rates of "*Au .........ccoovvvvveereerennne 178

for four configurations.

Experimental and simulated production rates of '®Au ...........cccoocovvevievinnn. 183
for four configurations.

Standard table description for the photonuclear class ‘U ......ccccoeeveeeiieennenn. 201
ACE format.
Description of the NXS Array elements in a photonuclear ...........cccoceeeeeee. 202

class ‘u” ACE format.

Description of the JXS Array elements in a photonuclear ............cccccveeeenennn. 204
class ‘u” ACE format.

Description of the IXS Array elements in a photonuclear ..........c.cccceveeneenee. 210
class ‘v’ ACE format.

Association of particles with their symbol and IPT index .........ccccceeuveeenennns 211
number as defined in MCNP(X).

Reaction yield data in the form of a production cross-section. ..........c..cc.c..... 214
Reaction yield data in the form of reaction multiplicity. ..........cccccoveviienennen. 215
Interpolation schemes as defined for the ENDF-6 format. ............cccccoceeneeee. 217
Angular distribution header information. .........c.ccocevivviiniininiineee, 218
Description of Angular Law 1 32 equi-probable bin angular ......................... 219

distribution table.

Xviii



A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

A-21

A-22

A-23

A-24

A-25

A-26

Description of Angular Law 2 tabulated angular ...........ccccoevviiiiiiiniieennnn, 220
distribution table.

Emission parameter law header information. ............cccooceevviiiieniienienieenen. 221

Law dependent format for Energy Law 1 (Tabular ..........ccccccoovvvviiiiniiniennen. 223
Equi-probable Energy Bins).

Law dependent format for Energy Law 2 (Discrete ........cccceeveveeevieeecieenneens 224
Emission Energy).

Law dependent format for Energy Law 3/33 .....cccooiiiiiiiiiiiceeeeeeeee, 224
(Level Scattering).

Law dependent format for Energy Laws 4, 44 and 61 ........ccceeveviienveennennns 225
(Tabular Energy Distributions).

Tabular distribution format for Energy Law 4 .......ccoccviiiiiniiiiiiieeeeeee, 226
(Tabular energy distribution).

Tabular distribution format for Energy Law 44 ..........ccovviiiiieiiieeieeeeeee 226
(Kalbach correlated energy/angle distribution).

Tabular distribution format for Energy Law 61 ........ccccoooviiviiiiiiiniiiieieee, 228
(Correlated tabular energy/angle distribution).

Tabular angular distribution format for Energy Law 61. ..........cccoeeevvvennnnne. 228

Law dependent format for Energy Law 5 ....ccoooieiiiiiiiiiiiieeeeeeeee e 229
(General Spectrum).

Law dependent format for Energy Law 7 ......cccccoviiiiiiiniieiiiiiiecieeceeeeee. 230
(Simple Maxwell Fission Spectrum).

Law dependent format for Energy Law 9 ....cccoeeiiieiiiiiieeeeeeeeee 230
(Evaporation Spectrum).

Law dependent format for Energy Law 11 ......ccccooiiiiiiiiiiiiiiiieieeeeeee, 232
(Energy Dependent Watt Spectrum).

Law dependent format for Energy Law 22 ......cccoovvieiiiiiiiiieeeceeeeeeeeee 233
(Tabular Linear Functions).

Tabular distribution format for Energy Law 22. ......ccccooviiiiiiiiiiniieieieeee, 233

X1X



A-27

A-28

A-29

A-30

A-31

D-1

D-2

D-3

D-4

D-5

D-6

D-7

D-8

D-9

D-10

D-11

Law dependent format for Energy Law 24 ........cccoooieiiieiiiiiieieceeeeeeeee, 234
(Tabular Energy Multiplier).

Law dependent format for Energy Law 66 ........ccccoeeeiieeiiiiiiiiecieeeeeeceeene 235
(N-body Phase Space Distribution).

Law dependent format for Energy Law 67 ......ccccooviiviiieniieiiiiieciieeeeeenee, 235
(Tabulated Angle/Energy).

Tabular distribution format for Energy Law 67. ......ccccoovvviviieeciiiieieeeeeee 236
Tabular energy distribution format for Energy Law 67. ......c.ccccovvveivvennnnnne. 236
Reported and calculated yields for a “semi-infinite” ..........cccceevevvercieenennens 460

aluminum target.

Reported and calculated yields for a “semi-infinite” ..........cccooevervineenennne. 461
iron target.

Reported and calculated yields for a “semi-infinite” ..........cccceevevvercieencnennns 462
copper target.
Reported and calculated yields for a “semi-infinite” ..........cccovevirvenienennne. 463

tantalum target.

Reported and calculated yields for a “semi-infinite” ..........cccceevvvveeriirencnnnnns 464
tungsten target.

Reported and calculated yields for a “semi-infinite” ..........cccooevenveneencnnne. 465
lead target.
Reported and calculated yields for an approximately ..........cccceevvveveirernnnns 466

one radiation-length thick aluminum target.

Reported and calculated yields for an approximately............ccccocverciieniennennen. 467
one radiation-length thick copper target.

Reported and calculated yields for an approximately ..........ccccceevvvevciiennnnns 468
two radiation-length thick copper target.

Reported and calculated yields for an approximately ...........ccccccoeeverveeiennnen. 469
three radiation-length thick copper target.

Reported and calculated yields for an approximately ..........cccceevvvevcvrercnnnns 470
four radiation-length thick copper target.

XX



D-12

D-13

D-14

D-15

D-16

D-18

D-19

D-20

Reported and calculated yields for an approximately ............ccccceeeververiennnen. 471
one radiation-length thick tantalum target.

Reported and calculated yields for an approximately ..........ccccceevvveveieennnnns 472
one radiation-length thick lead target.

Reported and calculated yields for an approximately ............ccccceeeverienieennen. 473
two radiation-length thick lead target.

Reported and calculated yields for an approximately ..........cccceevveeveirencnnnns 474
three radiation-length thick lead target.

Reported and calculated yields for an approximately ............ccccceeeveriereennen. 475
four radiation-length thick lead target.

Reported and calculated yields for an approximately ..........cccccoevveevciiennnnns 476
six radiation-length thick lead target.

Effect of changes in beam energy over a ten ..........ccecceeveeecieenieeieeneeeieennen. 477
percent variation.

Effect of changes in target thickness over aten ...........ccecceeveveeeeiiieecieenciieens 478
percent variation.

Effect of changes in beam radius over a ten ...........ccoecvevieeiieenienciienieeieenen. 479
percent variation.

xx1






DEVELOPMENT AND IMPLEMENTATION OF PHOTONUCLEAR
CROSS-SECTION DATA FOR MUTUALLY COUPLED
NEUTRON-PHOTON TRANSPORT CALCULATIONS IN THE
MONTE CARLO N-PARTICLE (MCNP) RADIATION TRANSPORT CODE
by
Morgan C. White

ABSTRACT

The fundamental motivation for the research presented in this dissertation was the
need to development a more accurate prediction method for characterization of mixed
radiation fields around medical electron accelerators (MEAs). Specifically, a model is
developed for simulation of neutron and other particle production from photonuclear
reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport
code. This extension of the capability within the MCNP code provides for the more
accurate assessment of the mixed radiation fields.

The Nuclear Theory and Applications group of the Los Alamos National
Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select
group of isotopes. These data provide the reaction probabilities as functions of incident
photon energy with angular and energy distribution information for all reaction products.
The availability of these data is the cornerstone of the new methodology for state-of-the-
art mutually coupled photon-neutron transport simulations.

The dissertation includes details of the model development and implementation

necessary to use the new photonuclear data within MCNP simulations. A new data

XX1ii



format has been developed to include tabular photonuclear data. Data are processed from
the Evaluated Nuclear Data Format (ENDF) to the new class ‘u” A Compact ENDF
(ACE) format using a standalone processing code. MCNP modifications have been
completed to enable Monte Carlo sampling of photonuclear reactions. Note that both
neutron and gamma production are included in the present model.

The new capability has been subjected to extensive verification and validation
(V&V) testing. Verification testing has established the expected basic functionality.
Two validation projects were undertaken. First, comparisons were made to benchmark
data from literature. These calculations demonstrate the accuracy of the new data and
transport routines to better than 25 percent. Second, the ability to calculate radiation dose
due to the neutron environment around a MEA is shown. An uncertainty of a factor of
three in the MEA calculations is shown to be due to uncertainties in the geometry
modeling. It is believed that the methodology is sound and that good agreement between

simulation and experiment has been demonstrated.
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CHAPTER 1
INTRODUCTION

At the beginning of this work, several of the graduate students and faculty from
both the Nuclear and Radiological Engineering Department and the Department of
Radiation Oncology at the University of Florida had begun an intensive exploration of
the radiation environment around typical radiotherapy equipment. The goals in mind
were more accurate measurement and simulation of these radiation environments.
During the course of these early studies, it was observed that the simulation of
photonuclear interactions had not received the systematic treatment that electron,
photoatomic and neutron interactions receive in the generally available radiation transport
codes. This presented a ripe opportunity for a doctoral project and the work you read
today is the final result.

The initial course of action was to determine what tools were available for the
task of simulating photonuclear interactions. It was quickly determined that the single
greatest obstacle to performing photonuclear simulations was the lack of complete
double-differential cross sections describing the reaction cross sections as well as the
secondary particle emission spectra from the reactions. Complete, evaluated tabular
cross-section data are the fundamental keys to performing high-accuracy Monte Carlo
radiation transport simulations. As a result of the lack of such data, the concept proposed
at the beginning of this work was to make the best of what was available by developing a

method for using experimental photoneutron data to assess interaction probabilities and



nuclear modeling to estimate emission spectra. Then, using this data, a working
simulation would be implemented for use in making general predictions of the neutron
flux in the vicinity of high-energy medical electron accelerators (MEAs).

The importance of the assessment of the neutron field around MEAs is a long-
standing subject of debate. It has been known since early in the development of high-
energy electron accelerators that they create neutrons as a by-product. The term by-
product is used because neutrons are typically viewed as a contaminant, not an asset.
Since MEAs have become the workhorse of the radiotherapy community, the production
of neutrons from these machines is a significant concern. In the use of MEAs for
radiotherapy, the desire is to minimize the harm caused by the neutron dose to the patient
and workers during the necessary delivery of electron-photon dose to treat cancerous
growths.

The most intense investigation of the neutron production and transport around
MEAs was during the 1970’s and early 1980’s when the electron energies used in routine
treatments began to climb above the threshold for significant photoneutron production.
The two most noteworthy publications on this subject date from that time. In 1979, the
National Bureau of Standards held a conference devoted to examining the production of
neutrons from MEAs [1]. Several years later, in 1984, the National Council on Radiation
Protection and Measurements (NCRP) released a report [2] documenting their
recommendations for assessing risks associated with the production and transport of
neutrons within a MEA treatment room. However, despite a wealth of studies produced

before, during and since those seminal works, the systematic treatment of the simulation



of photoneutron production has not been addressed, hence the defining motivation for the
current work.

It should be noted that this work has been approached from the perspective of
nuclear and radiological engineering, not necessarily that of medical physics. To
reinforce the difference, the goal of this work is clearly stated here. This work seeks to
provide a systematic treatment of photoneutron production as a part of the simulation of
electron accelerators. It is an applied objective in the sense that the end product is a tool
capable of simulating the production and transport of neutrons around a MEA and
quantifying the uncertainty. The final product may then be used by future researchers to
continue efforts in this field aimed at understanding, evaluating and reducing neutron
contamination around electron accelerators.

Early in this work, it was decided that the Monte Carlo N-Particle (MCNP)
radiation transport code [3] would be used as the base for the development of a
simulation code including photoneutron production. This choice was made for a number
of reasons. First and foremost, it was desired to build upon an well-established code in
order to take advantage of existing validated algorithms. In addition, the author was
already familiar with the use of MCNP for transport simulations.

MCNP provided the desired base for starting an effort to integrate photonuclear
physics into a radiation transport code. It already included the algorithms and data
necessary for modeling electron, photoatomic and neutron transport. More than that, it
has been the product of hundreds of man-years of development dating back to the very
originators of the Monte Carlo radiation transport method [4]. This development work

has been verified and validated through the efforts of thousands of users for a wide range



of problems. Specifically, MCNP includes both an electron-photon and a neutron
transport package, each of which have a well-established history of use. In fact, as will
be discussed in the following chapter, MCNP had already been used for simple
uncoupled simulation of photoneutron production and subsequent neutron transport.
Therefore, all that remained was to formalize the coupling between the two transport
packages and provide verification and validation of the new functionality.

However, the modification of a large code is a daunting task. MCNP is 40,000
lines of highly interdependent, extremely terse Fortran77 code. When it was first
developed, the formal idea of software management had not yet been conceived.
Therefore, after floundering among the bits, the author approached the X-5 group at the
Los Alamos National Laboratory (LANL), who maintain the MCNP code and its tabular
data, about the possibility of a collaboration to pursue this work. The reception this idea
received was much more than expected.

For the author, this work embodies the saying about being in the right place at the
right time. As discussed above, the primary obstacle to accurate simulation of
photonuclear interactions has been the lack of complete, evaluated data necessary for
tabular Monte Carlo sampling. Not only were the staff at LANL interested in pursuing a
collaboration, they were willing to install the author onsite with access to the MCNP
development team and, more importantly, access to first-of-a-kind evaluated
photonuclear data. The full significance of this will be discussed in the following
chapter.

The remainder of this dissertation is composed of four main chapters and the

conclusions. The next chapter provides a basic understanding of the mechanics of



photonuclear physics and the data and models available to describe them. While there is
not an abundance of experimental data or validated nuclear models, it is important to
discuss what is available. In particular, the creation of the newly available evaluated
photonuclear data is discussed. As part of this chapter, previous photonuclear studies
will be mentioned to indicate how the available data have determined the fidelity of
simulation ability possible.

The third chapter begins the original work presented here for consideration. It
opens with a brief discussion on the data needed to perform a Monte Carlo simulation.
From there it progresses through the development of the necessary formats for storing the
data, how evaluated data are manipulated into those formats and, finally, how the data are
actually used within the transport code. This chapter is the core of the work presented.
The developments discussed meet and exceed the original goal of providing a systematic
treatment of photoneutron production.

With this new ability to perform fully coupled photonuclear simulations, the next
step was to estimate the uncertainty in the use of the simulation with the current
evaluated data. The fourth chapter presents the concepts of verification and validation as
methods to assess how well the newly developed simulation capability is able to calculate
neutron production from high-energy electrons incident on materials for which evaluated
data exist. It presents two sets of yield measurements found in the literature and shows
comparisons to the current calculated values. Conclusions about the uncertainty in the
new capability are drawn from these comparisons.

As the original motivation for this work was the more accurate simulation of

medical electron accelerators, the fifth chapter presents an initial assessment of one of the



accelerators currently in use at Shands Cancer Center at the University of Florida. The
difficulties in modeling such facilities are discussed and an estimate is made about the
uncertainties involved based on experimental measurements made around the MEA
during this work. The final chapter summarizes the developments and conclusions of this

work.



CHAPTER 2
BACKGROUND

Introduction

The single greatest obstacle to accurate simulation of photonuclear interactions
within the confines of Monte Carlo radiation transport has been the lack of evaluated,
complete data. The use of probabilities to sample interaction rates and resultant products
is the key defining feature of Monte Carlo transport. This can be done either through
nuclear models or by tabular data. Evaluated tabular data contain the most accurate
description of the data available as determined by an evaluator based on judgement of the
experimental measurements and nuclear modeling available. For tabular data, complete
indicates that in addition to reaction cross sections, all resultant products are given with
energy and angular emission spectra as a function of incident particle energy.

Evaluated data are based on the best judgement of a data evaluator. This small
field of researchers has in-depth knowledge of both the experimental data and the nuclear
models available to describe nuclear reactions for an incident particle on a given target
nucleus. Both experimental data and nuclear models are required for this process.
Experimental measurements are the best descriptions of physical reality as they
demonstrate measured fact. However, experimental measurements are difficult to obtain
and never cover the full regime of interest. Nuclear models are complete descriptions of

interactions based on theory. Both are subject to error. Therefore, the evaluator must use



experience and judgement to meld theory and experiment into the best available
description of the data.

For transport simulations, it is necessary to have complete descriptions of the
interactions. Cross sections describe the interaction probability for a particle traversing a
material as a function of the incident particle’s energy. Emission spectra describe the
energy and angle of the secondary particles resulting from an interaction once it has
occurred. It is in the estimation of this second set of information that nuclear models are
essential. They can provide self-consistent complete descriptions of the emission spectra.

Evaluated, complete tabular data are generally considered the most accurate
description of the interactions available. Until very recently such data have not existed
for photonuclear interactions. As will be discussed in the section of this chapter entitled
Current Developments, several groups of evaluators, both in the United States and
internationally, have recently provided such data. Before discussing the newly available
data, it is worth stepping back and taking a brief look at the physics of photonuclear
interactions and the history of the experimental data and simulation models describing
them.

First it is necessary to clarify the use of the term data. “Data” is a much abused
word and it must be placed in context for it to be truly meaningful. Within the body of
this work, the phrase “experimental data” refers to measurements made under laboratory
conditions. “Theoretical data” refers to values computed using some form of an
analytical model based strictly on theory or guided by, but not directly taken from,
experimental data. The term “evaluated data” has been described above. “Tabular data”

indicate values listed at discrete points in the phase space. “Benchmark data” are



theoretical, experimental or calculated data considered to be correct. To confuse the

issue, data often fall into more than one category.

Physics of Photonuclear Interactions

It is important to spend a few moments discussing the physics behind
photonuclear reactions in order to provide a context for describing the information
contained within the evaluated data. The description presented here is not intended to be
a comprehensive explanation of the nuclear physics underlying this phenomena. Rather
it is intended to be an illustrative description presenting the basic concepts and providing
useful references for further details.

A photonuclear interaction begins with the absorption of a photon by a nucleus.
There are many mechanisms by which this can occur. The data currently available focus
on the energy range up to 150 MeV incident photon energy. The value of 150 MeV was
chosen as this energy is just below the threshold for the production of pions and the
subsequent need for much more complicated nuclear modeling. Below 150 MeV, the
primary mechanisms for photoabsorption are the excitation of either the giant dipole
resonance or a quasi-deuteron nucleon pair. A conceptual illustration of these processes
is given in Figure 2-1.

The giant dipole resonance (GDR) absorption mechanism can be conceptualized
as the electro-magnetic wave, the photon, interacting with the dipole moment of the
nucleus as a whole. This results in a collective excitation of the nucleus. It is the most
intense process by which photons interact with the nucleus. It occurs with highest
probability when the wavelength of the photon is comparable to the size of the nucleus.

However, this resonance is peaked with a width of only a few MeV. For deformed



Collective excitation from the Excitation on a correlated
giant dipole moment quasi-deuteron pair

Figure 2-1. Illustrated representation of the giant dipole resonance and quasi-deuteron absorption mechanisms.



nuclei, a double peak is seen due to the variation of the nuclear radius. Outside of the
peak region, the GDR reactions are negligible. A more complete description of this
process, and of nuclear physics in general, can be found in the text by Bohr and
Mottelson [5].

The quasi-deuteron (QD) absorption mechanism can be conceptualized as the
electro-magnetic wave interacting with the dipole moment of a correlated neutron-proton
pair. In this case, the neutron-proton pair can be thought of as a quasi-deuteron having a
dipole moment with which the photon can interact. This mechanism is not as intense as
the GDR but it provides a significant background cross section over all incident photon
energies. The seminal work describing this process was published by Levinger [6,7].
Recent efforts to model this process includes the work of Chadwick et al. [8].

Once the photon has been absorbed by the nucleus, one or more secondary
particle emissions can occur. The secondary particles typically emitted for the energy
range below 150 MeV are neutrons, protons, deuterons, tritons, helium-3 or alphas, or a
combination thereof. Any emission process that does not leave the residual nucleus in
the ground state will also produce secondary gamma-ray emission. The photonuclear
threshold for the production of a given secondary particle is governed by the separation
energy of that particle. Pre-equilibrium and equilibrium emission are responsible for
most of the secondary particles emitted by photon interactions over the energy range
under discussion though direct particle emission is possible.

Pre-equilibrium emission can be conceptualized as a particle within the nucleus
that receives a large amount of energy from the absorption mechanism and escapes the

binding force of the nucleus after at least one but very few interactions with other nuclei.
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Typically this occurs from QD absorption of the photon where the incident energy is
initially split between the neutron-proton pair. Particles emitted by this process tend to
be characterized by higher emission energies and forward-peaked angular distributions.
Several references are available on the general emission process after photoabsorption [9-
11].

Equilibrium emission can be conceptualized as particle evaporation. Typically
this process occurs after the available energy has been generally distributed among the
nucleons. In the classical sense, particles boil out of the nucleus as they penetrate the
nuclear potential barrier. The barrier may contain contributions from coulomb potential
for charged particles and effects of angular momentum conservation. It should be noted
that for heavy elements, evaporation neutrons are emitted preferentially as they are not
subject to the coulomb barrier. Particles emitted by this process tend to be characterized
by isotropic angular emission and evaporation energy spectra. The same references [9-
11] apply as for pre-equilibrium emission.

For all of the emission reactions discussed thus far, the nucleus will most
probably be left in an excited state. It will subsequently relax to the ground state by the
emission of one or more gamma-rays. The gamma-ray energies follow the well known
patterns for relaxation. The only reactions which do not produce gamma-rays are direct
reactions where the photon is absorbed and all available energy is transferred to a single
emission particle leaving the nucleus in the ground state.

Reactions at higher energies, greater than 150 MeV, require more complete
descriptions of the underlying nuclear physics. The delta resonance and other absorption

mechanisms become significant and the amount of energy involved in the reaction
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presents the opportunity for the production of more fundamental particles, e.g. pions.
While beyond the scope of this current work, descriptions of the physics involved can be
found in the paper by Fasso et al. [12].

The study of photonuclear physics has been important for two communities,
nuclear physics and health physics. Obviously, the current work approaches this subject
from the viewpoint of the second community. As such, the descriptions above have tried
to convey a general picture of the mechanisms governing photonuclear interactions. To
bring this into the overall picture of photon transport, the probability that a photon will
undergo a photonuclear interaction is not more than, and typically much less than, seven
percent of the total photon interaction probability. However, this mechanism can provide
a source of nuclear particles, specifically neutrons, that constitute a significant health

physics risk.

Experimental Photonuclear Data

Experimental measurements provide the fundamental values describing
interaction probabilities, i.e. reaction cross sections, and the subsequent yield and spectra
of secondary particles. Unfortunately, there are relatively few accurate measurements of
the photonuclear reaction cross sections in comparison to the measurements that have
been made for neutron reactions. The vast majority of the available experimental data are
the result of unfolding measurements made by bremsstrahlung irradiation. These data
suffer from extremely large uncertainties due to the unfolding process and are not
generally accurate enough to be used on their own as a basis for evaluated data. The
cross section measurements using tagged bremsstrahlung or photon emission from in-

flight positron annihilation are generally considered to be highly accurate. However,
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relatively few measurements of this type have been made. Further, similar to neutron
data, these measurements typically do not include photonuclear secondary emission
spectra. For the experimental data that are available, several compilations similar to the
Neutron Barn Book [13] exist.

The first comprehensive listing of experimental data was produced by Fuller
working at the National Bureau of Standards (NBS) and is generally known as the
Photonuclear Data Sheets [14,15]. This compilation includes references to all known
publications of experimental data at that time. Dietrich and Berman published two
editions of the Photonuclear Atlas [16,17]. These compilations contain only
measurements made with photons produced from the in-flight annihilation of positrons or
tagged bremsstrahlung. The most recent compilation of photonuclear data has been
carried out by Varlamov et al. [18]. These are the primary references for locating the
available experimental photonuclear data.

As most of the references in these publications contain the measured data in the
form of plots, it is worth mentioning two further resources. Dietrich and Berman created
an electronic tabulation of the cross-section measurements. The tabulation is available
from the authors. The EXFOR database [19] maintained by the National Nuclear Data
Center contains tabular listings of many, but not all, of the reported measurements.
Varlamov et al. have tried to update the EXFOR database with the data from their

compilation but it still contains only a small percentage of the reported data.

Previous Photonuclear Studies

This section provides a brief description of some of the known studies that have

assessed photonuclear interactions for various reasons. It is not a comprehensive review
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of the available literature but rather provides examples of the type of work performed in
past. It is described here in order to provide a context by which to show how the current
work has advanced the previously available capabilities.

One of the first studies in this field was the work of Alsmiller et al. [20-22]
carried out at the Oak Ridge National Laboratory in the late 1960°s. These calculations
were performed using an intra-nuclear-cascade model to estimate the neutron yield and
spectra from 150 MeV electrons incident on selected materials. This work was carried
out in part to help select the target material for use as a photoneutron source in the Oak
Ridge Electron Linear Accelerator Facility (ORELA). Subsequent work by this group
included extending their code, known as PICA, to handle higher-energy incident photons
[23,24]. Similar studies have been performed by Hansen et al. [25] and Kase et al. [26].

The FLUKA [12], MARS [27] and CEM [28] codes provide Monte Carlo
sampling of photonuclear interactions in the medium- to high-energy regime. These
codes compute the interaction probabilities and secondary particle emission spectra on-
the-fly during the transport process from nuclear models. Recent work on the FLUKA
radiation transport code is particularly noteworthy in that it uses empirical fits to
experimental data to extend its applicability to the GDR (low-energy) region.

These codes are all alike in the sense that they suffer from inaccuracies inherent in
estimating the photoabsorption process. While there are systematic trends in the
photoabsorption data, there can be significant dissimilarities for some isotopes that
neither theoretical nuclear models nor empirical fits reproduce. These dissimilarities are
most noticeable at lower energies, especially around the GDR peak, and for lighter

isotopes. However, these codes are primary used for intermediate- to high-energy (100°s
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of MeV to TeV) particle-accelerator modeling and as such the inaccuracies inherent in
the models at low energies are not of great concern. It should be noted that transport
based primarily on nuclear models has the advantage that reactions can be computed on
any target material and emission descriptions are available for all secondary particles.

Many studies needing an accurate assessment of neutron production from photons
in the low-energy regime have used a different methodology. The photon flux in a given
geometry can be calculated either by analytical theory or by an electron-photon transport
code. This flux can then be folded with an experimental photoneutron cross section to
estimate the neutron production. Emission energy and angle spectra are assumed and the
neutron source “manufactured” in this manner may undergo further transport. Examples
of studies using this method include works by Swanson [29-33], McCall et al. [2],
Manfredotti et al. [34], Agosteo et al. [35,36], Gallmeier [37], Liu et al. [38] and
Chadwick et al. [39]. These studies have focused on estimating the health physics effects
of neutrons produced from low-energy electron accelerators. The use of this method for
that purpose is difficult due to the meticulous care necessary in coupling the procedures
and significant error is possible if done inappropriately.

The are many difficulties in using experimental data in an uncoupled simulation.
Experimental data must be found covering the relevant reactions, isotopes and energy
range of interest to the simulation. Where such data do not exist, interpolation should be
used but introduces an unknown source of error. Experimental data describing emission
spectra do not generally exist. Therefore, emission spectra must be estimated using
nuclear modeling or other techniques. The simple models that have been used in past to

estimate these distributions often do not fully represent the true emission spectra.
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Simulations using this methodology are typically run in a series of incremental
steps. First, the photon flux is used to estimate the neutron production. Error can be
introduced at this step by the inadequacies in the description of the photon flux, the
experimental photoneutron cross-section data and the folding method used to estimate the
neutron source. The neutron source is then given energy and angular distributions and
subsequent neutron transport is performed. Error can be introduced at this step by the
inadequacies in the spatial description of the sampled neutron source and in the energy
and angular distributions and their appropriate assignment to the source neutrons. Lastly,
the statistical correlation to estimate the uncertainty in the simulation are lost because the
transport is not fully coupled. The works referenced in the previous paragraph have
attempted to solve one or some of these problems. The current work seeks to address all

of these problems.

Current Developments

The greatest obstacle to Monte Carlo simulation of fully coupled photon-neutron
transport using tabular data has recently been overcome. Several projects at the Los
Alamos National Laboratory (LANL) have discovered the need to account for
photonuclear interactions in accelerator environments. Therefore, the Nuclear Theory
and Applications Group (T-2) of the Theoretical Division was commissioned by the
Accelerator Production of Tritium (APT) project to produce a number of photonuclear
evaluations as part of the LA150 data library [40]. These evaluations were created using
the GNASH nuclear model code [41] as guided by experimental data. The library
produced contain complete, evaluated data for incident neutrons, protons and photons

(for photonuclear reactions) for the energy range up to 150 MeV. For a limited set of
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isotopes, evaluated data were created in association with the MCNPX code to
significantly advance the state-of-the-art in Monte Carlo radiation transport.

To backtrack for a moment, the Monte Carlo N-Particle (MCNP) radiation
transport code [3] has the goal of being the most accurate simulation code for neutron-
photon-electron radiation transport available. It seeks to accomplish this goal by the use
of tabular evaluated data. Interestingly, these same data define the scope of MCNP’s
applicability. MCNPX [42] has the goal to extend the region of applicability of MCNP to
those particles and energies present around high-energy accelerators. It seeks to
accomplish this goal by incorporating tabular evaluated data where available and
supplementing the tabular data with nuclear models where necessary. Both of these
codes desire the incorporation of photonuclear interactions to enable the coupled
simulation of photon-neutron transport problems. This work presents the development
and implementation of the newly available evaluated photonuclear data for that purpose.

The research community at LANL is not the only group which has recognized the
need to provided evaluated photonuclear data. It is interesting to note that the
International Atomic Energy Agency (IAEA) has created a Coordinated Research Project
(CRP) entitled “Compilation and Evaluation of Photonuclear Data for Applications” [43].
A library containing photonuclear evaluations of 160 isotopes, including some of those
produced by T-2 at LANL, will be released in 2000 together with documentation in an
IAEA report [44]. This library should provide sufficient tabular data to perform most

simulations where photonuclear reactions are of interest.
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CHAPTER 3
IMPLEMENTATION: COUPLING PHOTONUCLEAR PHY SICS INTO MCNP(X)

Introduction to Tabular Monte Carlo Radiation Transport

Monte Carlo radiation transport as defined within the scope of the Monte Carlo
N-Particle (MCNP) code is the transport of radiation through a geometry by random
sampling of tabular interaction probabilities. MCNPX is built upon the same foundation
but includes the extension to use nuclear models to generate interaction probabilities if
tabular data do not exist. The focus of this chapter is to show the steps necessary to
provide and use evaluated tabular photonuclear data within MCNP(X). MCNP(X) is
used through-out this chapter in reference to both MCNP and MCNPX. A general
familiarity with either of these codes is assumed in the following discussion.

Many steps are necessary to implement photonuclear physics within the
MCNP(X) code. First the photonuclear data must be available in a format that can be
used in a transport code. Traditionally, that means raw evaluated data stored as
Evaluated Nuclear Data Files (ENDF) must be processed into A Compact ENDF (ACE)
table suitable for Monte Carlo sampling of interaction probabilities. This processing is
typically necessary to transform data structures into more easily sampled forms.

Once the data are available in an appropriate ACE format, they must be loaded
into the code at runtime and used by the collision routines. This involves defining a user
interface to specify which data tables are to be used, extending the i/o routines to store

the new data and integrating new algorithms to sample photonuclear collisions.
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Provisions must be made within these steps to ensure that existing capabilities,
particularly tallies, work correctly and that summary tables include relevant information
about the sampling of photonuclear interactions.

The sections of this chapter provide the detailed step-by-step account of the steps
taken by this work. Key concepts and algorithms are explained along with the intricate
details, e.g. the name of the internal MCNP variable containing the table index. The level
of information included is meant to be exhaustive. These are the details necessary such
that upon reading the actual coding, the intent of specific code is obvious. This will
facilitate the maintenance and extension of this code. It is necessary to document these
details here because the MCNP coding style (that was followed for this work) dictates
that terse code with minimal comments should be used. Between this philosophy and the
sheer complexity of the existing code base, it is often difficult to follow what ought to be

simple routines.

Data Storage

Photoatomic Versus Photonuclear Data

Data storage was the first major issue addressed by this work. The MCNP
radiation transport code name derives originally from the fact that it was capable of
neutron and photon transport. It later became N-Particle when electron transport was
added. MCNPX extends further the latter meaning behind the name. However, only
photoatomic interactions have been treated in past: photoelectric absorption, elastic
scattering, inelastic scattering and pair production. (Note that the cross section for triplet
production is included in pair production and treated identically.) The MCNP(X) ACE

files containing these data descriptions are tabulated as cross sections by element.
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Photonuclear interactions, indeed all nuclear interactions, are dependant on the specific
target nucleus. This creates the first problem. Similar to neutron data, photonuclear data
should be tabulated and used by isotope, not by element.

As the separate storage and use of photoatomic and photonuclear data is
considered counterintuitive by some, several additional arguments are made to enforce
why this should be. Photoatomic and photonuclear data evaluations are not typically
from the same source. Most experimentalists, theoreticians and evaluators concentrate on
providing data for one or the other, not both. Compilations of the data are generally
separate. Photoatomic data are usually updated as a complete, consistent library for all
elements. Photonuclear data are expected to follow the path of neutron data where
updates occur for individual isotopes as they become available. If they were stored by
element, it would be necessary to create a new ACE data set every time either was
updated.

For these reasons and more, photonuclear data is stored and accessed separately
from photoatomic data. This philosophy removes the necessity of determining how to
mix elemental and isotope data in the same storage table and generally provides for easier
maintenance and access of the different ACE data sets. However, it also necessitates the
creation of a new class of ACE table to contain the photonuclear data for use in

MCNP(X).

Standard ACE Tables

The tabular data tables used by MCNP(X) are known by the acronym ACE. This
acronym stands for 4 Compact ENDF. The Evaluated Nuclear Data File (ENDF) is a

collection of formats for storing data and procedures for creating and sampling that data

21



[45]. Itis the de facto international standard for storing nuclear data and is maintained
by the National Nuclear Data Center (http://www.nndc.bnl.gov/nndc/) at the Brookhaven
National Laboratory. The ACE table format contains this data in a form more suitable for
random sampling by a transport code.

There are currently eight classes of ACE data tables in use by MCNP: continuous-
energy neutron ‘c’, discrete-reaction neutron ‘d’, neutron dosimetry ‘y’, S(a,b) thermal
‘t’, continuous-energy photon ‘p’, continuous-energy electron ‘e’, multigroup neutron
‘m’ and multigroup photon ‘g’ tables. MCNPX extends this to nine classes with
continuous-energy proton ‘h’ tables. Photonuclear tables will now add a new class of
data to MCNP(X). As this new data describes characteristic nuclear interactions, the
photonuclear table format draws heavily on the continuous-energy neutron and proton
table formats. Therefore it is useful to examine how the continuous-energy format has
evolved for storing nuclear interaction data.

ACE tables use a system of parameters and locators to access data stored in a one-
dimensional array. Table 3-1 shows the standard structure for an ACE table. As
originally conceived, the NXS array stores all parameters, the JXS array stores all
locators and the XSS array contains the actual data. In a library file, each set of tabular
data has its own header with NXS and JXS entries and its own XSS array. In the
MCNP(X) executable code, a single XSS array contains all tabular data necessary for the
simulation and NXS/JXS are two-dimensional arrays (by array entry and table index).

For describing a single incident and emitted particle type, a fixed NXS/JXS array
size is a reasonable solution. The original neutron data tables used only five parameters

and twelve locators to do this. Photon production data were added later by duplicating
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Table 3-1. Standard ACE table description.

Line Address Contents Format
Relative Absolute (Fortran Standard)
1 IRN ZAID, Atomic Weight, A10,2E12.0,1X, A10
Temperature, Date Processed

2 IRN+1 Comment A80

3-6 IRN+2 — IRN+5 | Inherited fields currently unused | 4(I17, F11.0) per line
(Fill with zeros or leave blank)

7-8 IRN+6 — IRN+7 | (NXS(I):I1=1..16) 8(19) per line

9-12 IRN+8 — IRN+11 | (JXS(I):1=1..32) 8(19) per line

13- ... IRN+11 —... (XSS(I):I=1..LXYS) 4(E20.0) per line

key elements (parameters and locators for secondary emission data) to reference photon
production data. This required three new parameters and eight new locators. Two
additional locators for neutron data were also added to form the table which exists for use
by MCNP4B [3, Appendix F]. More recently, delayed neutron data added yet another
parameter and four new locators [46].

MCNPX expands the capabilities of MCNP to include tracking light-ions as well
as other particles of interest to high-energy particle accelerators [42]. Whereas MCNP
only expects to transport secondary photons and neutrons, MCNPX transports all light
particles. To do this, the data libraries needed to be expanded to include emission
information for an arbitrary number of new secondary particles. Currently, these new
neutron tables include, as appropriate, secondary emission data for proton, deuteron,
triton, helium-3 and alpha particles in addition to neutron and photon data. This placed a
burden on the neutron continuous-energy tables that could not be solved by using the
traditional NXS/JXS framework. It was solved by escaping the box and introducing the

IXS array.
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The IXS array was introduced into the neutron continuous-energy format to store
locators to secondary charged-particle emission information [47,48]. Unlike NXS and
JXS that are fixed in length, the IXS array is stored within the XSS array and can be
expanded to contain entries for as many sets of secondary-particle information as needed.
In the expanded neutron table, the JXS array is used to locate the neutron and photon
production data and the IXS array for all other secondary particles. Proton tables were
adapted in this format as well. The photonuclear data table takes the next logical step and

references all secondary-emission information through the IXS array.

Photonuclear Class ‘u’ ACE Table

Photonuclear interactions describe photon-induced nuclear processes. The
evaluated files used to store photonuclear data make use of the same ENDF formats and
procedures as neutron and proton data. This implies that the same concepts used in ACE
tables to store other nuclear data should be used for the photonuclear table such that the
existing storage and sampling algorithms can be used for all types of nuclear interaction.
However, the established neutron/proton table has become extremely convoluted.
Therefore, photonuclear tables have logically reorganized the data to significantly
simplify access.

The photonuclear format has been modified from the existing neutron/proton
format to treat all secondary-particle production in a self-consistent manner. However,
this table still draws heavily on the sub-formats established for neutron and proton data.
The remainder of this section focuses on presenting the key concepts for the photonuclear
class ‘u” ACE table format. This description is supplemented by Appendix A that

includes the full details of all appropriate data structures, how they are stored, what error
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checking can be performed and recommendations on use of specific sub-formats for

photonuclear data.

The NXS array now contains only those parameters that apply to the table as a

whole. The NXS parameters are presented in Table 3-2. The first entry is the length of

the XSS array. This entry is mandatory for all ACE tables such that they may be

manipulated in a generic fashion. The second entry contains a target identifier and is

standard for those ACE tables where it is applicable. The next three entries contain the

only three global parameters needed for transport: the number of energies in the main

energy grid, the number of cross sections included in the table and the number of

secondary particles for which emission data are included.

Secondary particle information consists of parameters and locators. The

parameter NEIXS (in conjunction with NTYPE) can now be used to determine the

memory requirement to store the IXS array elements. The IXS array has twelve entries in

this format version. The parameter NPIXS is the number of secondary-emission

Table 3-2. Description of the NXS Array elements in a photonuclear class ‘u” ACE

format.
Entry Parameter | Fixed numeric descriptive
NXS(1) LXS Length of the XSS data block
NXS(2) ZA Atomic and mass number of the target isotope
ZA=7%1000 + A
NXS(3) NES Number of energy entries in the main energy grid
NXS(4) NTR Number of reaction cross sections
NXS(5) NTYPE Number of secondary particle types with emission information
NXS(6) NPIXS Number of parameter entries in the IXS array
2 of 12 IXS entries in the current format are parameters
NXS(7) NEIXS Number of entries in IXS array per secondary particle
The current table format includes 12 IXS entries
NXS(8-15) Unused (Fill with value zero)
NXS(16) TVN Table Format Version

TVN=1 for the current table format
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parameters at the start of each IXS array. There are two parameters in this format
version. All other IXS array entries are assumed to be locators and are subject to updates
as data are moved within memory in the MCNP(X) executable at runtime.

The table format version parameter (TVN) is the first attempt at documenting
each table-type format as it is produced. This marks photonuclear format number one. If
it is changed later, e.g. expanded to hold a new sub-format, the table-format-version
would be updated at that time to indicate what information may be within the table. This
also introduces a mechanism whereby backwards compatibility can be maintained
without rigidly enforcing the exact table structures.

Similar to the NXS array, the JXS array has also been reduced to contain only
those locators that are general to the table. The JXS array entries are presented in Table
3-3. The first five entries for this table are locators for reaction data that traditionally has
been accessed through the overloaded ESZ entry. As the overall number of JXS entries

Table 3-3. Description of the JXS Array elements in a photonuclear class ‘u” ACE
format.

Entry Locator | Offset to array of...

JXS(1) ESZ Main energy grid

IJXS(2) TOT Total cross-section data

JXS(3) NON Total non-elastic cross-section data
JXS4) ELS Elastic cross-section data

JXS(5) THN Total heating number data

JXS(6) MTR MT reaction numbers

IJXS(7) LQR Q-value reaction energy data

JXS(8) LSIG Cross-section locators (relative to SIG)
JXS(9) SIG Primary locator for cross-section data
JXS(10) IXSA First word of IXS array

JXS(11) IXS First word of IXS block

JXS(12-32) Unused (Fill with zeros)
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has been reduced, it is felt that overloading the ESZ locator was unnecessary. Therefore,
each set of reaction data is accessed through its own locator.

By tradition the first locator, ESZ, is the index in the XSS array for the main
energy grid. The four other reaction data sets that have traditionally been accessed
through this entry now have individual locators. The total cross-section is now located
by second entry, TOT. The energy and total cross-section data are the fundamental
values necessary for computing the distance-to-collision during photon transport.

The elastic cross section is now located by the fourth entry, ELS. The elastic
cross section for photons interacting with the nucleus is negligible in comparison to other
photonuclear reactions. The evaluated data files are not required to include it. Therefore,
since this locator has isolated the elastic cross-section entries, if the elastic cross section
is not included in the original evaluation, its locator is set to zero, no entries are made in
the XSS block and the elastic scattering of photons on the nucleus is ignored during the
transport process.

The absorption cross section has typically been included for the purpose of
biasing. For shielding problems, it is sometimes useful to simulate capture implicitly. In
this type of simulation, only non-absorption reactions are considered at the collision site
and the particle weight is updated accordingly. This biasing technique ensures that a
neutron or photon always leaves the collision site. This is the default treatment for both
neutron and photoatomic interactions.

Photonuclear absorption almost always produces a secondary gamma ray. Only
photonuclear processes involving a transition directly to the ground state of the nucleus

do not. Additionally, the secondary particle of interest from the photonuclear interaction
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is rarely, if ever, a photon. Therefore, the implicit capture biasing technique is not useful
and the absorption cross section has been replaced by the non-elastic cross section.

The non-elastic cross section is located by the third entry, NON. This change has
the benefit that when the elastic cross section is not present, the non-elastic cross section
is identically the total cross section. Therefore, the locators can be set to index the same
data, thereby reducing storage needs.

The total heating numbers are located by the fifth entry, THN. Energy deposition
is often of interest and the F6 tally in MCNP(X) uses the heating numbers for this
purpose. The total heating number is an estimate of the average amount of energy the
incident particle deposits locally at the collision site. There are numerous assumptions
involved in calculating this value (see Appendix A for a more complete description). As
it is difficult to compute and not used by this work, this locator is given a zero value to
indicate that no data are currently available. When the ability to produce class ‘u” ACE
tables migrates into the NJOY nuclear data processing code, it will be possible to
compute the heating numbers.

The next four locators provide information about the reaction cross sections. The
MTR locator is the index to the reaction-type listing. These are the MT reaction-type
numbers as defined in the ENDF format manual [45]. The LQR locator is the index to an
array of Q-values corresponding to each reaction. The LSIG and SIG locators index the
location of the cross-section arrays.

The IXSA locator is an index to the IXS array. As described above, the IXS array
contains the parameters and locators for all secondary-emission information. The

meanings of the IXS array entries are described below. The IXS locator is a
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convenience. The data within an ACE table can be listed in any order desired, so long as
the locators are appropriately updated. However, for the sake of sanity, the data should
be listed in the order corresponding to their appearance in the table description. If this is
done, the IXS locator is the first word of the IXS block of secondary-particle information
located within the XSS array.

The IXS array should be thought of as a two-dimensional array containing a set of

parameters and locators for each secondary particle. There are NTYPE (1 ...17J ...

NTYPE) secondary particle emission descriptions in the IXS block. The IXS array

entries are listed for the Jth secondary particle in Table 3-4. Two parameters are

necessary for each set of emission data. The secondary particle type is identified by the

parameter IPT as described in Table 3-5. The number of reactions that produce this

secondary particle is given by parameter NTRP.

Table 3-4. Description of the IXS Array elements in a photonuclear class ‘v’ ACE

format.

Entry Parameter | Fixed number descriptive

IXS(1,)) IPT(J) Particle IPT number

I1XS(2,J) NTRP(J) Number of MT reactions producing this particle

Entry Locator Offset to array of...

I1XS(3,)) PXS(J) Total particle production cross-section data

1XS(4,)) PHN(J) Particle average heating number data

I1XS(5,)) MTRP(J) Particle production MT reaction numbers

I1XS(6,J) TYRP(J) Reaction coordinate system data

IXS(7,J) LSIGP(J) Reaction yield locators (relative to SIGP)

I1XS(8,)) SIGP(J) Primary locator for reaction yield data

1XS(9,)) LANDP(J) | Reaction angular distribution locators (relative to ANDP)
IXS(10,J) ANDP(J) Primary locator for angular distribution data

IXS(11,]) LDLWP(J) | Reaction energy distribution locators (relative to DLWP)
IXS(12,]) DLWP(J) Primary locator for energy distribution data
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Table 3-5. Association of particles with their symbol and IPT index number as defined in
MCNP(X).

Particle Name Symbol IPT
neutron n 1
photon p 2
electron e 3
proton h 9
deuteron d 31
triton t 32
helium 3 S 33
alpha a 34

There are ten locators that have been determined to be necessary for locating
secondary-emission data. The locators and parameters are kept separate, parameters first,
within the IXS array such that the locators can be updated as described within the Setup
and Storage section below. As mentioned above, a full description of the heating number
concept is found in Appendix A. Heating numbers are not used by this work and thus all
PHN locators have been set to zero and no further values are given.

The locators PXS, MTRP, LSIGP, SIGP and the parameter NTRP are used to
determine the secondary-particle production. The production cross section for the
secondary particle is located by the entry PXS. The reactions which contribute to the
production of this particle are located by the entry MTRP. The yield data for each
reaction are contained in the SIGP block as located by the LSIGP array entries. This is a
change from the neutron table format which overloaded the TYRP entries to contain yield
data as well as the reaction coordinate system. The TYRP array entries designate the
reaction coordinate system. The emission distributions are stored in the ANDP and

DLWP blocks as located by the offsets in the LAND and LDLWP arrays. The full details
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of the emission formats are complex. In order to avoid cluttering this chapter more than

is already the case, they have been included in Appendix A.

Data Processing

As discussed in the previous section, evaluated data are available in the ENDF
format. It is therefore necessary to have a data processing code capable of translating the
ENDF formatted data into the appropriate ACE format. This has traditionally been done
by the NJOY code [49]. However, as this was an iterative process to develop the new
table format, it was preferable to write a stand-alone processing code that was easily
changed in order to explore different formatting options.

The MKPNT data processing code was developed to process data stored in the
ENDF format into the ACE class ‘u” photonuclear format described above and in
Appendix A. As this was a developmental tool whose capability will be subsumed by the
NJOY code, it was not necessary to implement full functionality for all possible ENDF
formats. Instead, MKPNT is focused on the data that were currently available. This
section will discuss how the data were processed and what formats were used. The full
source code for MKPNT is given in Appendix B.

For the purposes of this work only data from the LA 150 library produced at the
Los Alamos National Laboratory have been used for simulations. Some preliminary data
have been made available from the other institutions involved in the International Atomic
Energy Agency (IAEA) Coordinated Research Program (CRP). However, the IAEA data
were provided on the condition that they were to be used for testing purposes only.
Therefore, some functionality has been implemented in the MKPNT processing code for

the IAEA data which was not necessary for this work but looked to long-term goals.
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MKPNT works by loading the ENDF data into memory and then creating the
corresponding sections in the ACE format. The ENDF format contains information
needed for the ACE table in six “files”. Each section of the ENDF format is known as a
file and given a file type index MF, e.g. file MF 6. MKPNT was implemented with a
limited understanding of the these six files as described below.

File MF 1 contains general information about the data set. The target identifier
ZA is the atomic number times 1000 plus the mass number. ZA, the atomic weight ratio
(AWR) and the temperature are taken directly from the corresponding entries. ZA is also
used to create the table identifier ZAID by adding an ID. The library number plus the
table identifier ‘u’, to indicate a photonuclear table, are collective the table ID. The
library number is a unique two digit number chosen at the processing time. All ACE
tables also include the date processed.

With preliminary data read, the first step in building the table is to form a unified
energy grid. The photonuclear data processed to date have contained relatively few, on
the order of tens to hundreds, energy grid points. The energy points are obtained as a
superset of the energy grids from each of the reaction cross sections. The units must be
adjusted from eV, in ENDF, to MeV, in ACE. All reaction cross sections are found in
ENDF File MF 3 and are given as energy/cross-section pairs. Reactions which involve
thresholds are checked to ensure that the cross-section values start at zero, if necessary
adding the new point. Because there are so few points in these files, as compared to
certain neutron data sets that can contain tens of thousands of energy points, thinning of

the energy grid is not required.
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There can be additional energy points contained within yield tables. Yields are
found in File MF 6 of the ENDF format. These energy points are added to the main
energy grid if present. The addition of these points allows the verification process to
exactly match emission spectra. With this done, the total number of energy points, global
NXS parameter NES, is now fixed as well as the data entries for array ESZ.

The locators ELS and THN are currently set to zero. None of the evaluated data
provided to date have included the elastic cross section. As discussed in the previous
section, THN is a complicated value which was not needed for this study. Algorithms
exist in NJOY to compute the total and partial heating numbers and it was felt
unnecessary to duplicate that capability within MKPNT.

The cross-section data are obtained next. Each reaction cross-section is taken
from its file MF 3 entries and stored in the SIG block as located by the LSIG offsets. The
corresponding MT number and Q-value are stored in the MTR and LQR arrays,
respectively. The number of reactions is stored in the parameter NTR. The total cross
section is computed from the appropriate partials and checked against the values from the
ENDF MT 1 total cross section. The verified computed totals are then stored in the TOT
array. As no elastic cross sections are present, the NON locator is set equal to the same
value as TOT.

Secondary-particle emission data can be specified by either of two methods in the
original ENDF evaluation. The first method described here is not recommended but still
allowed. For reactions which produce neutrons, files MF 4 and MF 5 give the angular
distributions and energy distributions, respectively, as a function of incident particle

energy. MF 5 energy distributions are useful for representing certain photonuclear
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interactions, e.g. fission reactions. Currently, MKPNT can process MF 5 laws 5, 7, 9 and
11. The corresponding MF 4 angular distribution must be isotropic. The neutron yields
for fission are taken from file MF 2. All other yield data for reactions specified by this
method are implicitly given by the reaction type, e.g. reaction MT 16 implies two
emission neutrons. The data from these three files are merged appropriately into the
neutron secondary-particle information. To date only IAEA data have used this format.
It is highly recommended that all photonuclear reactions be described by the following
method as all secondary particles, not just neutrons, can be included.

Secondary-particle emission spectra may also be described in the ENDF file MF 6
format. ENDF file MF 6 contains one section describing each reaction with appropriate
subsections for every product from that reaction. MKPNT loops over each file MF 6
section and extracts the appropriate secondary-particle emission data into the ACE table.
Currently MKPNT extracts emission data for secondary neutrons, photons, protons,
deuterons, tritons, helium-3 ions, and alphas. This set of particles represents was chosen
as an alpha particle is the heaviest ion that can be transported by MCNPX. Obviously,
MCNP is limited to the transport of secondary neutrons and photons. This processing
method uses the standard assumption that all other reaction products are stopped at the
collision site without producing any further secondary particles of interest.

MKPNT currently processes LAW 1 correlated energy-angle distributions from
file MF 6. The yield for each particle is taken directly from the energy/yield pairs given
and the data are stored in the SIGP block as located by the corresponding LSIGP offset.
Likewise, the MT number for the production reaction and the coordinate system for the

emission particle are stored in the MTRP and TYRP arrays, respectively.
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The LANG 1 angular option presents a tabular-energy distribution with Legendre
coefficients describing angular dependence. MKPNT only processes isotropic
distributions and they are stored as tabulated-energy distributions, ACE Energy Law 4, in
DLWP with the corresponding offset in LDLWP. The isotropic angular distribution is
indicated by a zero value in the LANDP array and no entries in the ANDP block.

The LANG 2 angular option specifies a tabular-energy distribution with
Kalbach88 angular systematics. This emission distribution is stored with the appropriate
LDLWP offset in the DLWP block as ACE Energy Law 44. The corresponding LANDP
entry is given the value negative one to indicate the presence of the correlated
energy/angle distribution and no entries are made in the ANDP block. The Kalbach slope
parameter, designated ‘a’, is computed according to Chadwick’s correction [11] of
Kalbach’s original formalism [50,51] to account for the reduced momentum of the
photon.

The LA150 photonuclear evaluations all use the ENDF format MF 6 LAW 1
LANG 2. Asthe LA150 evaluated data are used exclusively in this study, processing of
the LAW1 LANG 2 format has been exhaustively tested. This is a tedious procedure
done either by hand or by script to ensure that the ACE data match the original ENDF
data. The other options discussed were implemented to process data provided by the
IAEA CRP and their processing has not been checked with the same rigor. All ENDF
emission distribution formats not specifically mentioned are not supported.

At this stage the ACE table is almost complete. The photonuclear cross sections
and the associated yields for each secondary particle are used to compute the total

particle-production cross section that is stored in the PXS array. The number of reactions
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producing the particle is stored as the parameter NTRP. The particle heating-number
locator, PHN, is given a value of zero to indicate no heating numbers are included. The
final processing verifies the values for the locators, stores the total number of XSS entries
as the NXS parameter LXS and prints the final table to an ASCII file.

With the appropriate additions to the MCNP(X) cross-section directory file
XSDIR, the data are now ready for use in a simulation. At the time the simulations in
this study were performed, the LA150 library contained evaluated photonuclear data for
the following isotopes: 27A1, 40Ca, 56Fe, 63Cu, 181Ta, 184W, 206Pb, 207py and 2%*Pb. The
evaluated data were processed into the ACE photonuclear format using the MKPNT code
as described here. The collection was given the ID 03u as earlier testing had been done

using library numbers 01 and 02.

Coupling Photonuclear Physics into MCNP(X)

Introduction

The work presented here describes a prototype code based on MCNP4B2 [3].
MCNP was chosen as the base code for the reasons described earlier. This section
describes the modifications that were made to MCNP4B2 to produce the photonuclear-
capable prototype code designated MCNP4BPN. Once verification was complete, these
changes were frozen and the final version described here was used for all subsequent
calculations presented in this work. Where standard MCNP capabilities are discussed,
see the users guide [3] if further explanations are necessary.

The MCNP code package is maintained by the X-5 group of the Los Alamos
National Laboratory. A project homepage is maintained and can be accessed through the

X-division homepage (http://www-xdiv.lanl.gov/). The code package is distributed by to
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persons and companies within the U.S. by the Radiation Safety Information
Computational Center (http://www-rsicc.ornl.gov/rsic.html). Foreign distribution is
handled by the Nuclear Energy Agency (NEA) in Paris, France. Changes to this code are
to be made via patch files as documented in the users guide [3, p. C-4]. Appendix C of
this dissertation contains the patch file corresponding to the changes described here.

Before launching into the gory details of the changes, a few moments will be
spent providing an overview. There were four major tasks necessary to implement
photonuclear interactions into MCNP: (1) the user interface needed to be modified to
allow specification of photonuclear tables for a given material; (2) the nuclear data
sampling routines needed modification to appropriately handle particles other than
neutrons; (3) the photon collision routines needed to be updated to include sampling
photonuclear events; and (4) the file i/o routines needed to be updated to include reading
photonuclear tables and printing summary information about photonuclear interactions.

The specification of materials is done in a very standard manner within MCNP.
Several needs drove the final interface for photonuclear. First, the standard interface
must be kept. However, it was designed with the concept of one table type for each
particle type. Further, it assumes there is always a table available for each component of
the material.

The solution to the specification of photonuclear tables was to keep the standard
interface as is and augment it to work similarly for specification of the new tables. That
is, the components of the material are defined by the material card. Component ZAID

entries can be specified directly in the entry or indirectly through the ZA with a default or
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user specified library ID. Neutron, electron, photoatomic and photonuclear table ZAIDs
or library IDs are all acceptable.

However, the interface has also been augmented to include an isotope override for
photonuclear tables. Specifically, because more complete isotopic data will likely be
available for neutron transport, the best description of the material should be given on the
material card by neutron table. The new override card allows the isotope to be changed
for any or all of the material components. This promotes the use of the best neutron and
photonuclear tabular data for a material. It should be considered at some point in the
future to allow material specification by incident particle in MCNP(X).

The nuclear data sampling routines were originally written for incident neutron,
neutron emission interactions. They were later updated to include photon emission.
Recent interest, including the current work, needed to expand the tables to handle
incident photons, protons or neutrons and the subsequent emission of any particle type.
The set of updates this necessitated is described only briefly below. It is now commonly
known as the ACE modifications and has been implemented [52,53] in the current
versions of both MCNPX and MCNP [54].

The revision of the photon collision routines to include photonuclear interactions
is the key objective of this work. These routines have been updated to include use of the
photonuclear cross section, in addition to the photoatomic, for the sampling of distance-
to-next-collision. At a photon collision site, either natural or biased collisions can occur.
Biased photonuclear collisions indicate that a contribution from photonuclear interaction

to secondary-particle production is to be obtained at every photon collision. In either
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case, secondary particles are sampled from the evaluated tabular data and made available
for further transport.

There are no unexpected changes in the file input/output. A past MCNP user will
be able to fully utilize this new capability based on their previous experiences using the
code. As mentioned before, the standard material interface will work unchanged. All
tables are loaded from standardized ACE libraries specified through one XSDIR
directory file. The few new interface options available are simple to use when necessary
and are not required. All tallies and summary information include the effects of
photonuclear interactions as presented in standard MCNP output tables. Thus, the
average user can begin using this capability immediately and become an expert user

familiar with all the intricacies over time.

Setup and Storage

Material specification. The first task necessary to use the photonuclear data
within MCNP was to implement user options to specify which data to load and to store
that data appropriately. It was determined that the material specifications to load
photonuclear data should be as similar to what was currently done as possible. However,
some extensions have also been made.

At present each material has one list of isotopes and atomic fractions associated
with it. For example, the material description for an electron target might be given by the
MCNP input card “m1 71000 1”orby“ml 71180 0.00012 71181
0.99988”, both of which indicate that material one is natural tantalum. The first
specifies elemental tantalum directly and the second specifies the constituent isotopes by

their atomic fractions. Since photoatomic data is stored by element, either card could be
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used to specify which tables, or in this example table, should be used. However, neutron
data is stored by isotope, with a few exceptions, such that the second description is the
more accurately represents the material. Photonuclear tables are also stored by isotope
and therefore more accurately described by isotopic tables.

Unfortunately, very few photonuclear evaluations were available for this study.
Even after the IAEA library is made available, not all isotopes will have an evaluated
data file. Some prevision is necessary to allow the user to specify the best photonuclear
data available without compromising the fidelity of the representation by other tables, in
particular neutron tables. Therefore, a photonuclear isotope override card has been
implemented.

To illustrate this problem, consider a material input card describing natural
tungsten. The best description for neutron transport is given by the material card “m1
74182 0.263 74183 0.143 74184 0.3067 74186 0.286.” Notice
that this description is incomplete; isotopic '**W with a natural atomic fraction of 0.0013
is not included in the description because a neutron table is not available. MCNP will
compensate for this by re-normalizing the sum of the other atom fractions to one.

However, photonuclear data are currently available only for '**

W. Following the logic of
drop what is unavailable and re-normalize, the significant contributions by other isotopes
for neutron transport would be missed simply because of the lack of photonuclear tables
for the remaining isotopes. The desire for the best representation for both neutron and

photonuclear interactions in the material requires a new capability in material input

specification.

40



Photonuclear isotope override card (MPN). The photonuclear isotope override
card, designated MPN, has been implemented to allow substitution of photonuclear data.
Specifically, for the example above the photonuclear isotope override card “mpn1
74184 74184 74184 74184” used in conjunction with the material specification
card from the previous paragraph would provide the best data for all particles transported
through the material. MCNP4BPN would use photoatomic data for elemental tungsten,
the four available neutron tables for the major tungsten isotopes and the '**W data table
for all photonuclear collisions.

There are several restrictions on the use of the photonuclear isotope override card.
It must be used in conjunction with a material specification card, i.e. M1 with MPN1
describes material one. The override card must come after the corresponding material
specification card in the standard MCNP input deck. There must be one entry on the
MPN card corresponding to each ZAID entry on the M card. Entries on the MPN card
must correspond to a ZA for which a photonuclear table exists or be zero to indicate no
photonuclear interactions should be considered for that portion of the isotope.

The photonuclear isotope card has been implemented as a new input card. The
number of cards for use in the code was increased by one by incrementing the nkcd
parameter in the deck je. The new card, cnm(89), was initialized in the deck ibldat with
the option to allow only integer entries. (The use of boldface type in this chapter
indicates names of subroutines in the MCNP source code. Likewise, italic type signifies
the names of variables within those subroutines.)

This capability requires an array to store a different ZA for photonuclear

interactions than the default for the material. The M card stores ZA/atom-fraction pairs
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in the arrays iza and fme, respectively. The new izn array mirrors the iza array as a
storage location in the dynamically-allocated common-block dac. They are both set to
length mix, the number of isotope/fraction pairs for the specific problem, at runtime.

No processing was necessary for the MPN card during the first reading of the
input deck. Therefore the routines newed1, nxtitl and olded1 ignore this card. Several
processing options are necessary during the final reading of the input deck. When the
MPN card is first encountered, the routine newerd checks to ensure that photonuclear
physics is turned on in the simulation. If photonuclear physics is on, it then checks to
ensure that a material card has already been seen describing the material. If either of
these conditions is not met, the MPN card is ignored and a warning message is printed.

Each entry for the card is checked and stored individually. From the card
initialization set in deck ibldat, the entries are automatically checked to ensure that they
are integer numbers. The routine chekit refines this criteria to ensure that a valid ZA, in
the range 000001 to 999999, or zero has been entered. A fatal error is issued for invalid
ZA entries. The routine nextit then stores each entry in array izn to correspond to the
appropriate M card entry. Finally, the routine olderd checks to ensure that the number of
entries on the MPN card corresponds to the number of entries on the M card. If they do
not match, all isotopic values are reset to the material default and a warning message is
printed stating the card was ignored. If the isotope override has been successful, a
warning is printed for each isotope override. It is the responsibility of the user to ensure
that appropriate substitutions have been made.

Table ID specification. MCNP allows the user to specify the data table ID to be

used for each nuclide by several methods. The first method is to describe materials by
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complete ZAIDs. For example, natural copper can be described by the material
specification card “m1  29063.60c 0.6917 29065.60c 0.3083.” The
“.60c” is the table identifier, ID, indicating the neutron class ‘c’ tables should come from
the ENDF60 library, ENDF60 tables having the unique library number 60. Photonuclear
tables can be specified in an analogous manner. The table identifier “.00u” can be used
to specify the library, with 00 appropriately replaced, from which to load the
photonuclear tables.

The second method to specify a data table for an isotope is to use the defaults as
defined in the XSDIR directory file. The XSDIR file includes the lookup table used to
determine what data tables are available in each library. If no table identifier (ID) has
been specified, the first match to ZA for each class of table will be used. For example, if
the XSDIR file contains entries for 29063.22¢ and 29063.60c in that order and the M card
asks for ZA 29063 without an ID in a problem transporting neutrons, the 29063.22¢ table
will be used for neutron collisions in that material as it was seen first. Thus, the order of
the ZAID entries in the XSDIR file can be used to determine which tables are used in a
problem. This is the reason the default XSDIR file distributed with the MCNP code is
ordered such that the recommended tables appear first.

Default LIB specifier. The default library used for a table class can be specified
using a material option entry on the material specification card. For MCNP, three
material options are available to do this. They are the NLIB, PLIB and ELIB options
corresponding to the neutron, photoatomic and electron default library specifiers,
respectively. The names of the material options are stored in the variable ~mopt in the

character common block of deck je as initialized by deck ibldat.
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To illustrate the use of the default library specifier, consider the M card “m1
29063 0.6917 29065.60c 0.3083 nlib=22c plib=01p.” Any
combination of material options can be used as needed but they only apply to that M
card. The order of precedence for selecting a ZAID is the full ZAID in the entry pair, the
ZA from the entry with the ID from the default library specifier or the first appropriate
match to the ZA in the XSDIR file. Back to the example, the neutron, photoatomic and
electron tables are selected using the standard XSDIR file as follows. The neutrons
tables 29063.22¢ and 29065.60c¢ are used, the first from the ZA and NLIB library
specifier and the second specified directly by ZAID. The photoatomic table 29000.01p is
used, selected by the ZA shortened to elemental Z and PLIB library specifier. The
electron table 29000.01¢ is used, selected as the first appropriate electron table listed in
the XSDIR file.

The material option PNLIB has been added so that the user can specify the
photonuclear default library for a material in an analogous manner. This was done by
incrementing the number of material options in deck je¢ and adding the string constant
‘pnlib’ to the variable ~mopt initialization in deck ibldat.

To make use of the PNLIB material option, consider the example M card “m1
29063 0.6917 29065 0.3083 pnlib=03u” with the corresponding MPN card
“mpnl 29063 29063.” The override card specifies that *Cu should be used in
place of *Cu for photonuclear reactions in the second isotope of the material. The
PNLIB default library specifier indicates all photonuclear tables should come from the

LA150 revision 3 photonuclear data library, with library number 03. Thus, the
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29063.03u table would be attached to both material entries for handling photonuclear
collisions.

Table selection and storage. The portion of the coding that controls data table
selection and storage required extensive changes to enable loading a new class of table.
The storage allocation process was completely rewritten. The specific changes are
documented here.

The original section of code responsible for determining the storage needs for the
cross-section data used a restrictive, complicated algorithm. It contained dependencies
that assumed one table type per particle type attached to each material constituent, i.e.
only neutron, photoatomic and electron tables. (This is not strictly true as thermal tables
augment the neutron data and are stored separately but that is handled as a separate
optional exception.) As implemented, this algorithm was not extensible to include a
separate photonuclear table required in addition to a photoatomic table. The algorithm’s
complexity derived from a convoluted process whereby it determined the number of
duplicate tables requested in order to reduce the memory allocated for use in table header
and storage arrays. This was an unnecessarily complex process for relatively minor
savings in total memory needs.

The section of code that reads material specification cards was heavily revised.
Several new arrays were introduced to mirror the existing data pointers. The array izn
has been described above. To reiterate, the array izn contains the material isotope listing
for the purpose of simulating photonuclear collisions mirroring the array iza which
contains the default isotope listing for all other isotope/atom-fraction constituents of the

material.

45



All dynamically allocated memory in MCNP is placed in a single long array, das,
and referenced by offsets. This creates a confusing situation because all dynamically
allocated arrays are actually the same array, through either the Fortran77 equivalence or
pointer statement. To illustrate this consider the array jxs, itself located in the das array,
contains locators that are indexes into the other arrays also located in the das array.
Therefore, all arrays must be referenced by their own pointers, e.g. /jxs, that contain the
index of the first word of the corresponding array.

In the description of the table format in a previous section above, NXS, JXS and
IXS are shown as one and two dimensional arrays. In use within the code, arrays nxs, jxs
and ixs are given an additional dimension corresponding to their table index, variable iex.
Each table has a unique index assigned by its order within the array xss. Thus, in use the
fifth element of the NXS array for the fourth table is found at the location nxs(/nxs+5,4).
Similarly, the third element of the IXS array for the second emission particle in the fifth
table is found at the location ixs(/ixs+3,2,5).

There are numerous variables and arrays associated with the table selection and
storage. The array /me has dimensions of the number of constituents specified on the
material cards by the number of particles available for transport, i.e. mix by mipt. It
contains the neutron, photoatomic and electron table indices for each constituent of all
materials in the current simulation. The array /mn has dimension mix and contains the
photonuclear table indices. Arrays iza and izn have dimensions mirroring /me and /mn
and contain the ZA identifiers for the neutron/photoatomic/electron and photonuclear
material constituents, respectively. The tables are selected using their ZA, from either

array iza or izn, and their ID, from either the directly specified ID in array kmm or the
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default specifier located in either array /xd or Ixn. The arrays nxs, jxs and ixs contain the
entries corresponding to each of the mxe tables in the simulation. The arrays izn, Imn, Ixn
and ixs have been added to the appropriate common blocks to mirror the arrays iza, Ime,
Ixd and nxs/jxs, respectively. The parameters maxsec and mixs are added to the deck ze
to indicate the maximum number of secondary particles per table and the maximum
number of IXS array entries, 8 and 12, respectively.

A number of other new variables are also necessary to the task at hand. The
variable ispn is added to the fixed common block fixcom to hold the flag indicating
whether photonuclear physics is on or off. The array pnt is added to the fixed,
dynamically-allocated common block dac to contain the lowest photonuclear threshold-
energy for each material. The variable fotpn is added to the task common block tskcom
to hold the total photonuclear cross-section value for the current photon at its
corresponding energy for each task transporting particles. The variable npum is added in
the variable common block varcom for use in printing an error message. The variable
htn has been added to the character common block in deck vv to contain the string
‘cdytpmgue’ listing the classes of table in their default order.

Several existing variables have been enlarged to contain new values. The arrays
pax and paxtc contain the weight values by particle type for the overall summary tables
for the problem as a whole and the individual tasks, respectively. Their dimensions have
been incremented by one, from 16 to 17, to store photoabsorption and photoproduction
information by particle. The array jrwb is the mapping from particle termination type,
nter, to the appropriate storage location in the array pax. Its dimensions have also been

incremented by one to account for photoabsorption termination of the photon. The array
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pwb contains event information for each particle type for each cell. Its dimensions have
been incremented in size by two, from 19 to 21, to store photoabsorption and
photophoton production for photons as well as photoproduction for other particles. The
array pan stores interaction activity information by table, currently only photoatomic and
neutron, for each cell. Its dimensions have been expanded to include space for
photonuclear tables, first index from 2 to 3, as well as new entries, second index from 6
to 8, for the additional photonuclear interactions.

Now that the key variables are known, the initialization algorithms can be
described. MCNP starts a problem by reading the default input file “inp”. It makes two
passes through the cards in the file. The term card derives from the days of punch cards
and is simply a single line of input. The first pass sets up the storage necessary to process
the input and stores a few key user input parameters. The second pass stores the
remaining user input values.

Since photonuclear interactions is a new capability to MCNP(X), it was decided
that during the time it is a beta test capability the user should have to turn on
photonuclear physics. This was done in large part so that the existing regression test suite
could be used without change. The default may eventually be changed to have
photonuclear physics on such that the best available transport algorithms are used unless
the user turns them off. The fourth entry on the PHYS:P card is set to flag the use of
photonuclear physics. It is read in the first pass through the input file and stored in the
variable ispn. Any non-zero integer number will indicate that photonuclear physics is to

be used during the current transport simulation. Any positive integer indicates natural
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photonuclear collisions are to be sampled; any negative integer indicates biased
photonuclear collisions are to be sampled.

During the first pass, several key parameters are determined about the materials
specified. The number of materials specified in the input deck is stored in variable nmat!
as incremented by routine newed1. The number of isotope/atom-fraction pairs specified
on a material card is stored in variable nwc as incremented for each entry in the routine
nxtitl. The number of pairs for the material is then used to update several other variables
in the routine olded1. The total number of pairs seen on all material cards is stored in
variable mix. The maximum number of pairs for any material is stored in variable mnnm.
The variable npn sets the storage for the array pan and is incremented by the number of
pairs times the number of cells containing this material. Thermal neutron tables, which
contain low energy scattering data to augment neutron tables, are handled by the MT
card. The variable indt contains the total number of thermal table entries for all MT cards
as updated by routine oldcd1.

After this first pass through the input file, the storage requirements are computed
in the routines imcen and setdas for the table headers as well as other dynamically
allocated variables. The new coding takes a simple approach to allocating space for table
headers. In routine imen just after the call to pass1 that read the input file the input file
for the first time, do the following. Count the number of particles that are to be
transported in the problem assuming one table set is needed per particle. If photons are
transported and electrons are not, increment the count because an electron table set is
needed for the thick-target bremsstrahlung routines. If photons are being transported and

photonuclear physics is on, increment the count to indicate that two sets of tables are
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needed for photons. Remember that the variable mix contains the total number of
isotope/atom-fraction pairs for all materials. The maximum number of tables needed for
the problem can be computed by multiplying mix times the table sets needed and then
adding indt to account for thermal tables. This value is stored in variable mxel which is
then used in routine setdas to allocate storage for table headers.

The set of routines described above has simplified the original coding. It assumes
that every isotope/atom-fraction pair will need a set of tables and every thermal table
requested is different. The original logic in these routines attempted to account for tables
that were used by more than one material and remove the storage allocated for duplicates.
This represents a small memory savings in comparison to the amount of coding and work
needed. It therefore has been eliminated from the current coding.

Once the routine setdas has allocated the dynamic memory, variables are
initialized as necessary and the second pass of the input file is made. The arrays /xd and
Ixn are initialized to the default table type for each particle for each material (* * for
neutrons, ‘p’ for photoatomic, ‘e’ for electrons and ‘u’ for photonuclear). The array pnt
is initialized to parameter /iuge, the largest real value allowed by the system. All other
arrays of interest to materials are initialized with zero values.

The second pass though the input file checks and stores the remaining user input.
In the routine newerd, material cards are checked to ensure they are used by either a cell
or a tally multiplier. The M card is ignored otherwise and a warning is printed. The
number of materials after discarding those not used is stored in variable nmat. The name,
i.e. the number from the M card deck, of each material is stored in the array nm¢ in the

order they are seen.
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The routine chekit examines each item on the material card before it is passed to
the routine nextit to be stored. User input default library specifiers are examined to
ensure that the table type is suitable and that the corresponding particle is being
transported. Material constituent fractions are checked to ensure they are non-zero and
either all atom or all weight fractions. Warning or fatal error messages are printed as
appropriate.

The routine nextit actually stores the user input values from the input deck in the
correct memory location. The ZAID entries are split apart. The ZA is stored in arrays
iza and izn. The MPN card, which must follow the corresponding M card, can then
overwrite the ZA value in the array izn. The material constituent fractions are stored in
array fime. Positive values are atom fractions. Negative values are weight fractions that
are changed to atom fractions in the routine rhoden. A user input default material library
specifiers is stored appropriately in either array /xd or Ixn.

The routine oldcerd then makes final error checks and completes the storage of
material information. If any ZAID entry does not have a corresponding fraction, a fatal
error is issued. Otherwise, the number of pairs for the material is stored in array npg and
locators for the material entries are stored in array jmd. Warnings are printed to remind
the user if the photonuclear isotope override has been used.

The routine stuff determines the actual cross-section tables to be loaded. The
array ix/ contains a coded list of all cross-section tables to be loaded. The first section of
the routine stuff adds the neutron, photoatomic and electron tables requested to this list.
The array /me is updated with the table index into array ix/ to associate each table for

each particle type with the appropriate material constituent. A new section of code adds
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the photonuclear tables requested and performs a similar update for the array /mn. The
thermal tables are also added to array ix/ and array /m¢ is used to associate them with the
appropriate material.

The order of precedence for the table ID is determined by the algorithms in
routine stuff. The exact ZAID is requested if specified in the material entry. The ZA and
default ID are requested otherwise. The default ID can be from a material option in
which case it can include a library number. Otherwise, the request is for the first table of
the appropriate type in the XSDIR file.

The list of requested tables in array ix/ is then sorted and checked for duplicates.
The list is sorted by default table order and then alpha-numerically by ZA to facilitate
finding and loading the tables. Duplicate entries are removed from the list. Warnings are
issued to the user for near duplicate entries, e.g. ZAIDs 29063.22¢ and 29063.60c. The
table index arrays /me, Imn and Imt are updated to maintain correspondence to the
appropriate material entry.

The array ix/ is passed to routine ixsdir that determines the tables available for
use. The available cross-section tables are listed either on XS cards in the input deck or
in the default XSDIR file. The XS card or XSDIR entry provides basic information about
the cross-section table including its location in the computer file system. The ZAID
entries are checked first against the XS cards and then against the XSDIR entries. The
first near match, i.e. correct ZA and table type, is kept in case an exact match is not
found. The information from either the near match or the exact match, if found, is stored

in the array ixc. Near matches are not used for fully specified ZAIDs. For example, if
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only 29063.60c was found and but ZAID 29063.22¢ was requested, the near match would
not be used.

All array ix/ entries should now be matched with array ixc table location
information. As the process may have introduced duplicate entries for matches to
partially unspecified tables, they are removed. If any isotope is missing a needed table,
the simulation is stopped and an error message is printed. The transport process cannot
be run if any cross-section table is missing. Remember that the photonuclear isotope
override may request no table be used in which case no table is needed. This completes
the input file processing.

The cross-section tables are loaded by the routine xact and its subroutines. All
cross-section tables are loaded, processed and stored individually except for electron
tables. Electron tables are a special case. The electron data tables are loaded last and
processed all at once. The new photonuclear tables are handled individually just as all
other normal tables.

The routine getxst is called to process each individual table. After finding the
location of the next table in the appropriate library file, it calls the routine sread to read
the data into memory. The routine sread first checks to ensure that the table header
matches the table requested. It then stores the NXS and JXS entries in the corresponding
array and all other entries in the xss array. Back in the routine getxst, the jxs locator
values are updated to become indices into the runtime xss array. If appropriate, the IXS
entries are then extracted from the xss array and stored in the appropriate ixs array. The

locators in ixs are updated in a manner similar to jxs. If appropriate, data that are not
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needed in the current transport simulation are expunged from the xss array again
appropriate updating all locators.

To this point only one data table has been stored in the xss array at any time.
During the transport process all data tables are stored consecutively in the xss array.
Therefore, all locators are updated one more time to point to where the data will be
during the simulation. The table is then written to the file “runtpe” and the next table is
processed. When all tables have been processed, the array xss, now with all the tables
stored in order, is loaded back into memory from the file runtpe. This completes the
setup and storage phase.

It is worth noting here that this coding has been subject to extensive review in
addition to what was needed for this work. The MCNPX code has recently been updated
with the capability to load evaluated proton data to enable tabular sampling of nuclear
events. The coding to do this corresponds to the description above except without an
isotope override card. This coding has been implemented in MCNPX and was reviewed
again at that time. The process was documented [55] and the coding has been in use in

MCNPX with no bugs reported to date.

Physics Implementation

In the tabular data regime, MCNP(X) implements a statistical Monte Carlo
method to simulate radiation transport. This means that the details of any one history do
not necessarily represent physical reality. It is only when the details of many histories are
accumulated and considered as a set that average values corresponding to physically
meaningful quantities can be determined. This has a significant impact on the data

needed to perform the simulation as well as on how the simulation is conducted.
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The ACE tabular data include reaction cross sections and the average emission
parameters of the secondary particles. For most evaluated data, the word average implies
that if a reaction produces two neutrons from a (x,2n) reaction, the emission energy
spectrum is the average considering both neutrons together, not separately. In a real
collision, the amount of energy the first neutron takes away determines the energy
available for the emission of the second neutron. In a statistical sampling process, one
averaged emission spectrum is used to sample both neutrons. It is therefore possible to
sample reactions in which energy is not conserved for the collision. However, given that
enough collisions are sampled, the average emission parameters for the secondary
particles are correct.

Statistically average data requires considerably less memory than does true
sampling data. As current statistical tables require as much as two megawords of storage
per table, routinely using complete data is prohibitively expensive. A complete table
would need to include appropriate distributions for every second, third, etc. emission
particle and would exponentially increase the storage requirements.

The algorithm for statistical Monte Carlo sampling is simple and straight-forward.
During the transport process, the distance to the next event is used along with the
direction of flight to move particles through a simulation geometry. If the particle is in a
material, the distance-to-collision is one of the possible next events. The distance-to-
collision is sampled using a random number and the probability of the particle colliding
with an atom in the material. The probability of collision is known as the total
macroscopic cross section and is typically given in units of inverse centimeters. The

macroscopic cross section is the atom density times the total microscopic cross section
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for all reactions involving an incident particle type in a given material. The microscopic
cross sections are tabulated as a function of the incident particle energy in the ACE
tables.

As the routine hstory tracks a photon through a medium, it first calls the routine
photot to compute the total microscopic cross section for the current energy in the
current material. Previous to this work, the routine photot returned only the total
photoatomic cross section. The value of the total photoatomic cross section is stored in
variable totm. The logic to compute the photoatomic total cross section is left untouched.
However, a new test in routine photot checks to see if photonuclear physics is on and if
so calls the routine pnctot.

The routine pnctot has been added to compute the total photonuclear microscopic
cross section. It accumulates the total photonuclear cross-section in the variable fotpn.
This variable is initialized to zero upon entering the routine. If the incident energy is
below the photonuclear threshold, as stored in array pnt by material, the routine is done.
Otherwise, the total cross section for each isotope in the material is accumulated in fozpn.
Additionally, as each cross section is located, the current energy, the index and offset of
the current energy in the main energy grid and the value of the cross section for the
isotope are stored in the array ktc and rtc. This is done such that these values are
available immediately if the next request matches the current energy.

Once back in routine photot, the total photonuclear cross section for the material
is added to the total photoatomic cross section and stored in fotm just before returning to
routine hstory. The routine hstory uses this value to compute the total macroscopic

cross section, variable 4o, the atom density, times variable totm. The inverse of this
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value is known as the mean free path and stored in variable gs. The distance-to-collision,
stored in variable pmyf, is then computed from the well known Monte Carlo sampling
formula. (For general information on the Monte Carlo method for simulating radiation
transport, see the reference by Carter and Cashwell [56].) This is an important step in
achieving a more correct photon simulation as the use of only the photoatomic cross
section can overestimate the distance-to-collision by up to seven percent for photon
energies in the giant dipole resonance region and therefore skew the photon collision
distribution.

If the next event is a photon collision, the routine colidp is called to handle the
interaction. Similar to the treatment in routine photot, photonuclear interactions are
treated in a separate subroutine. If photonuclear physics is on and the photon is above the
photonuclear threshold energy, the routine coldpn is called at the beginning of colidp to
handle a possible photonuclear event.

Photonuclear events are rare in comparison to photoatomic events. For this
reason, it is useful to have a method to bias the sampling. The variable ispn, set by the
user as the fourth entry on the PHYS:P card, controls the biasing method. If the value is
a positive integer, photonuclear events occur at their natural frequency. That is, sample a
random number from zero to one and if it is less than the ratio of the total photonuclear
cross section to the total cross section, the collision is a photonuclear event. If not,
account for not sampling a photonuclear event, return to the routine colidp and sample a
photoatomic event in the normal manner.

Biasing forces a photonuclear collision. If the user has set the variable ispn to a

negative integer, the photon is split. Two particles each of reduced weight (a measure of
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their importance) are created. One is forced to undergo photonuclear absorption and the
other is passed back to the routine colidp for normal photoatomic sampling. The weight
is adjusted by the probability of each type of event, photonuclear or photoatomic.
Specifically, the weight of the photon that undergoes forced photonuclear sampling is
scaled by the ratio of the photonuclear cross section to the total cross section. The weight
of the photon that undergoes photoatomic sampling is the original photon weight minus
the portion that underwent photonuclear absorption.

For either natural or biased photonuclear collisions, it is necessary to update the
summary information. If it is a natural sampled photonuclear collision, the summary
arrays pax and pwb are updated to indicate the photon was terminated by a photonuclear
absorption. Ifitis a forced collision, the summaries are updated to account for the weight
and energy loss, but do not indicate absorption as the original photon with the remaining
weight continues onward.

Once it has been decided that all or part of the incident photon will undergo a
photonuclear collision, the target isotope must be chosen. A random number is sampled
and a target isotope is chosen based on the ratio of its partial cross section to the total
cross section. This is done by accumulating the cumulative probability that the reaction
occurred for each isotope in the material in turn until reaching the randomly sampled
probability. After the target isotope is chosen, the array pan is updated to indicate a
collision using that isotope’s table.

Based on the target isotope and the incident photon energy, a production cross
section can by calculated for each secondary particle of interest. The ratio of the

secondary particle-production cross section to the total cross section for that isotope is
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stored in variable fp and represents the average number of particle emissions expected.
An integer number of particles suitable for sampling can be obtained by adding a random
number from zero to one to the average value fp and taking the integer, floor, value. This
number is stored in variable np. Again, realize that because this is statistical Monte
Carlo, the average number of particles emitted is preserved only over large numbers of
histories.

Because biased photonuclear particle production can cause considerable
variations in weight, it is desirable to have a method to control the emission particle’s
weight. The weight windows present a reasonable method for achieving this. Weight
windows are user input values that control the value of particle weight in an energy
region in a spatial region. If the particle is above the weight-window limit, the weight is
reduced by splitting it among several identical particles such that the new particles fit in
the window. If the particle is below the weight-window limit, Russian roulette is played
and particles which survive have their weight increased to a value within the window.
The splitting or roulette of particle is limited to a reasonable value for any given step.

If only one energy group exists for the particle of interest at its current position,
the weight window control can be applied before sampling the emission parameters.
Specifically, the np particles to be sampled are split or rouletted appropriately. This is
advantageous for two reasons. First, it prevents sampling particles that do not undergo
further transported, thus saving CPU time. Second, it splits particles of high weight
before sampling emission parameters. This generally provides better statistics faster as

more of the emission phase-space is sampled per collision. Obviously, if more than one
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energy group exists for the weight window, the scheme can only be applied after the
particle is sampled and its energy is known. This is done as described below.

A loop over the integer number of particles to be emitted is used to select
appropriate emission parameters. Similar to the selection of target isotope, a production
reaction is randomly sampled from those available. Once the reaction is picked, the
energy and scattering angle are sampled using the standard ACE sampling routines and
returned in the laboratory system. The current center-of-mass to laboratory transform
does not account for the photon momentum. The routine rotas then updates the emission
particle’s direction of flight. Note that this is a statistical method that randomly samples
the reactions producing the emission particles, e.g. if two neutrons are emitted, one may
be from a (g2n) and the second from a (g fission) reaction.

Updates to the ACE sampling routines were needed for four different efforts. The
delayed neutron capability implemented by Chris Werner [57] needed to sample neutron
emission spectra from a new location in the class ‘c’ table. The upcoming release of a
new ACE continuous-energy neutron library built from the latest release of the ENDF/B-
VI evaluated data library will use correlated tabular energy-angle spectra. The coding to
implement Energy Law 61, correlated tabular-energy/tabular-angular distribution, and
Angular Law 2, tabular angular distributions, were written by Bob Little of X-5 at LANL.
The ACE sampling routines have only been used for incident neutron, emitted neutron-
photon reactions. Sampling for incident photons and protons with subsequent emission
of all light particles required removing certain dependencies within these routines and
updating certain algorithms. The effort to use proton tables in MCNPX and the effort to

use photonuclear tables in both MCNP and MCNPX required these changes.
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In order to avoid multiple implementations, one set of source code was needed
implementing the necessary changes. The integration of these changes was coordinated
within the scope of this work. The implementation and testing of the updated ACE
routines, done in cooperation with Larry Cox of the MCNP development team and Grady
Hughes of the MCNPX development team, is documented in two internal memoranda
[52,53]. The details of the modifications are left to those documents.

Once the emission particle has been sampled, several updates must be made. The
arrays pax, pwb and pan are updated to reflect the particle creation. Particles below their
respective energy cutoff are killed. The routines dxtran and tallyd are called to calculate
contributions to dxtran spheres and point detectors. The particles weight is checked
against the value for the weight-window, if in a region with energy depend weight
windows, and adjusted as described above. Finally, assuming no errors have been

encountered, the particle is banked for further transport by the routine hstory.

Tallies, Summaries and Other Capabilities

The major MCNP capabilities are all fully functional with the creation of
secondary particles from photonuclear interactions as implemented in the present work.
Contributions to dxtran spheres and point detectors are calculated as appropriate. Created
particles are transported using the standard routines. The weight window scheme is used
to control particle weights. The standard MCNP tallies work without change. Only a
few auxiliary functions not necessary to transport remain to be integrated.

Summary table information is the last important topic to cover. Biased Monte
Carlo can be dangerous if used as a black box. It is possible to force the random walk to

skip large areas of importance within a problem such that the answer produced does not
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reflect physical reality. In order to avoid this, MCNP provides the user a number of
summary tables to enable better understanding of the details of the simulation. The
example summary tables discussed below are located at the end of the chapter.

All MCNP simulations print a general problem summary. This is a set of tables
by particle type that present creation and loss information for external, physical and
variance reduction events. Photonuclear adds three new events to the standard MCNP
tables: photonuclear absorption of photons, creation of photophotons and creation of
photoneutrons. MCNPX will include similar entries for photoproduction of other light
particles. Examples of the expanded summary tables for neutrons and photons are shown
in Table 3-6 and Table 3-7, respectively.

Implementing the new entries for the problem summary tables was straight-
forward. The array pax is used to hold the values for these tables. It has been expanded
and updated as described above. The routine sumary actually prints the table to the
output file. New headers were added to this routine for the new table entries. The tables
are printed via a loop over each set of entries for each particle type. This loop was
appropriately updated to include printing of the new entries. The auxiliary information
such as average-time-to-event has also been updated.

Often more insight into the problem is needed than the general problem summary
provides. There are three optional print tables that provide more detailed information.
This information is provided by cell in each case. This allows the expert user to
understand the flow of events within the simulation and hopefully determine if an area or

event is under sampled or inappropriately biased.
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Table 3-6. Example problem summary table for neutrons.

neutron creation tracks weight energy neutron loss tracks weight energy
(per source particle) (per source particle)
source 0 0. 0. escape 20394 3.8037E-05 6.9346E-05
energy cutoff 0 0 0
time cutoff 0 0 0
weight window 0 0. 0. weight window 0 0 0
cell importance 0 0. 0. cell importance 0 0 0
weight cutoff 0 0. 0. weight cutoff 0 0. 0.
energy importance 0 0. 0. energy importance 0 0. 0.
dxtran 0 0. 0. dxtran 0 0 0
forced collisions 0 0. 0. forced collisions 0 0 0
exp. transform 0 0. 0. exp. transform 0 0 0.
upscattering 0 0. 0. downscattering 0 0. 1.0571E-05
capture 11 3.6632E-08 1.6110E-07
(n, xn) 0 0. 0. loss to (n,xn) 0 0 0
fission 0 0. 0. loss to fission 0 0 0
(gamma , xn) 20405 3.8073E-05 8.0078E-05
total 20405 3.8073E-05 8.0078E-05 total 20405 3.8073E-05 8.0078E-05
number of neutrons banked 20405 average time of (shakes) cutoffs
neutron tracks per source particle 8.1620E-03 escape 5.3788E-01 tco 1.0000E+34
neutron collisions per source particle 1.2217E-02 capture 2.5072E-01 eco 0.0000E+00
total neutron collisions 30543 capture or escape 5.3760E-01 wcl 0.0000E+00
net multiplication 0.0000E+00 0.0000 any termination 5.3760E-01 wC2 0.0000E+00




Table 3-7. Example problem summary table for photons.

v9

photon creation tracks weight energy photon loss tracks weight energy
(per source particle) (per source particle)
source 0 0. 0. escape 245286 5.6053E-02 6.5491E-01
energy cutoff 306851 1.9838E-02 5.0886E-02
time cutoff 0 0. 0.
weight window 0 0. 0. weight window 0 0. 0.
cell importance 0 0. 0. cell importance 0 0. 0.
weight cutoff 0 0. 0. weight cutoff 0 0. 0.
energy importance 0 0. 0. energy importance 0 0. 0.
dxtran 0 0. 0. dxtran 0 0. 0.
forced collisions 233325 0. 0. forced collisions 0 0. 0.
exp. transform 0 0. 0. exp. transform 0 0. 0.
from neutrons 0 0. 0. compton scatter 0 0. 1.7336E-01
bremsstrahlung 226688 9.0549E-02 1.0609E+00 capture 2 3.2140E-07 3.4372E-06
p-annihilation 0 0. 0. pair production 94574 1.4754E-02 1.8006E-01
electron x-rays 0 0. 0.
1st fluorescence 0 0. 0.
2nd fluorescence 0 0. 0.
(gamma , xgamma) 186700 2.2239E-04 3.7871E-04 loss to pn. abs. 0 1.2621E-04 2.0788E-03
total 646713 9.0771E-02 1.0613E+00 total 646713 9.0771E-02 1.0613E+00
number of photons banked 646713 average time of (shakes) cutoffs
photon tracks per source particle 2.5869E-01 escape 3.0983E-02 tco 1.0000E+34
photon collisions per source particle 9.4855E-02 capture 1.7548E-02 eco 8.2721E+00
total photon collisions 237138 capture or escape 3.0983E-02 wcl 0.0000E+00
any termination 2.5211E-02 wC2 0.0000E+00




Print Table 126 provides general cell activity by particle. It contains information
about the population of particles and their average weight, energy and mean free path.
No changes were necessary to the methodology for this print table. The values are
updated using information that is consistent with the new photonuclear capability.

Print Table 130 provides a detailed weight balance for each cell by particle type.
It is split into three parts: external, variance-reduction and physical events. The original
version of this table printed with events listed horizontally across the page and cells listed
vertically down the page. This completely filled the available 132-column width and
could not be expanded to include photonuclear events without exceeding the column
limitation. Therefore, when the new photonuclear events were added, the format was
rotated such that events are listed vertically down the page and cells are listed
horizontally across the page. A maximum of nine cells are printed across the page before
the process is repeated. A sub-total for each event type is included as well as a total over
all cells. Table 3-8 and Table 3-9 show examples of the new format for the neutron and
photon weight balance tables, respectively.

The change in format for Print Table 130 required that the print sequence be
revised to print the information rotated as described above. During the revision, the
coding was encapsulated in its own routine, tb1130, called as needed by routine action. It
is implemented as a simple series of print statements. For each event, it first prints the
header and then the individual cell values one at a time across the page. The 132-column
limit corresponds to a maximum of nine cells across the page. New pages are generated
as needed and headers are printed each time. The dimension for storage array pwb has

been incremented by one to provide storage for the calculation of the total over all cells.
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Table 3-8. Example page from the neutron weight balance table (Print Table 130).

lneutron weight balance in each cell

cell index
cell number

external events
entering

source

energy cutoff
time cutoff
exiting

subtotal

var.red. events
weight window
cell imp.
weight cutoff
energy imp.
dxtran

forced coll.
exp. trans.

subtotal

physical events
(n, xn)

fission

capture

loss to (n,xn)
loss to fission
(gamma , xn)

subtotal

total

1
35

2.2513E-04
0.0000E+00
0.0000E+00
0.0000E+00
2.2511E-04

1.8482E-08

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

0.0000E+00
0.0000E+00
1.8482E-08
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

2
40

6.7504E-05
0.0000E+00
0.0000E+00
0.0000E+00
1.0820E-04

-4.0691E-05

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

1.8420E-08
0.0000E+00
-3.9059E-06
-9.2100E-09
0.0000E+00
4.4588E-05

0.0000E+00

2.2992E-05
0.0000E+00
0.0000E+00
0.0000E+00
2.2992E-05

0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

2.7263E-04
0.0000E+00
0.0000E+00
0.0000E+00
2.7262E-04

5.6769E-09

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

0.0000E+00
0.0000E+00
5.6769E-09
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

401

1.4666E-03
0.0000E+00
0.0000E+00
0.0000E+00
1.4666E-03

0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

402

1.4397E-03
0.0000E+00
0.0000E+00
0.0000E+00
1.5762E-03

-1.3655E-04

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

8.1360E-09
0.0000E+00
-9.8012E-07
-4.0680E-09
0.0000E+00
1.3752E-04

0.0000E+00

403

2.1264E-03
0.0000E+00
0.0000E+00
0.0000E+00
2.1262E-03

1.6550E-07

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

0.0000E+00
0.0000E+00
1.6550E-07
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

404

1.3038E-03
0.0000E+00
0.0000E+00
0.0000E+00
1.3038E-03

7.8432E-09

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

0.0000E+00
0.0000E+00
7.8432E-09
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

print table 130

9
405

1.4402E-03
0.0000E+00
0.0000E+00
0.0000E+00
2.0719E-03

-6.3166E-04

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

7.2428E-08
0.0000E+00
-1.0274E-05
-3.6214E-08
0.0000E+00
6.4190E-04

0.0000E+00
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Table 3-9. Example page from the photon weight balance table (Print Table 130).

lphoton weight balance in each cell

cell index
cell number

external events
entering

source

energy cutoff
time cutoff

1
35

1.6142E-03
0.0000E+00
1.3090E-05
0.0000E+00

exiting -1.6016E-03

subtotal

var.red. events
weight window
cell imp.
weight cutoff
energy imp.
dxtran

forced coll.
exp. trans.

subtotal

physical events
from neutrons
bremsstrahlung
p-annihilation
electron x-rays
flourescence
pe. capture
pair production
pn. absorbtion
(gamma , xgamma)

subtotal

total

OO0 WO OO OO

4.9792E-07

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

.0000E+00
.0946E-06
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.5967E-06
.0000E+00
.0000E+00

0.0000E+00

2
40

4.6749E-03
0.0000E+00
-1.3067E-03
0.0000E+00
-6.8340E-04

2.6848E-03

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

8.0097E-08
6.3284E-04
0.0000E+00
0.0000E+00
0.0000E+00
-4.3389E-05
-3.3323E-03
-3.8444E-05
9.6437E-05

0.0000E+00

1.6677E-03
0.0000E+00
-6.2040E-08
0.0000E+00
-1.6678E-03

-1.2408E-07

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

.0000E+00
.2408E-07
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

[ Ne NoNololNoNoll o]

0.0000E+00

1.2534E-06
0.0000E+00
0.0000E+00
0.0000E+00
1.2534E-06

0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

(o Ne NoNololNolollolNo]

0.0000E+00

401

6.7342E-03
0.0000E+00
0.0000E+00
0.0000E+00
6.7342E-03

0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

(o NeNoNololNolollolNol

0.0000E+00

402

2.4362E-03
0.0000E+00
-3.9943E-03
0.0000E+00
-2.2175E-01

-2.2331E-01

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

3.2331E-08
2.3342E-01
0.0000E+00
0.0000E+00
0.0000E+00
-1.3489E-04
-1.0162E-02
-1.1947E-04
3.0068E-04

0.0000E+00

OOMNOO OO WO

403

2.2120E-01
0.0000E+00
8.3939E-05
0.0000E+00
2.2140E-01

2.7929E-04

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

.0000E+00
.0498E-04
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.5684E-05
.0000E+00
.0000E+00

0.0000E+00

OO OO OO o O

404

1.6007E-01
0.0000E+00
3.0400E-06
0.0000E+00
1.6007E-01

5.8938E-06

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

.0000E+00
.3281E-06
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.3428E-07
.0000E+00
.0000E+00

0.0000E+00

print table 130

9
405

5.6669E-02
0.0000E+00
-3.0342E-02
0.0000E+00
-1.0477E-02

1.5850E-02

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00

1.1550E-06
6.0550E-02
0.0000E+00
0.0000E+00
0.0000E+00
-1.5582E-03
-7.5133E-02
-6.2929E-04
9.1914E-04

0.0000E+00




The total over all cells is accumulated as the table is printed and is printed just after the
last cell. This process is done for each particle type being transported. It has been
verified that the values of the array pwb have not been corrupted and that the new print
sequence appropriately places the entries.

Print Table 140 provides details of particle interactions by nuclide for each cell.
Two tables previously provided information by nuclide and cell for neutron and
photoatomic interactions. A new table provides similar information for photonuclear
interactions. Table 3-10, Table 3-11 and Table 3-12 show examples of the format for
each type of interaction.

For unknown reasons, the production of photons due to neutron interactions was
previously listed in the photoatomic summary table. The photon statistics include the
total number of tracks produced as well as the average weight and energy of the photons
produced. The new location of these values in the neutron nuclide summary is
highlighted in Table 3-10. The removal of this information from the photoatomic
summary is shown in Table 3-11.

The information provided in Print Table 140 for collisions sampled using
photonuclear tables is similar to that provided for neutron tables. The nuclide and its
atom fraction for the cell in question are listed first. The total number of collisions and
the average weight per collision are listed next. The number of tracks and the average
weight and energy of the secondary particles produced are given for both photophotons
and photoneutrons. Totals by nuclide are also included.

The changes necessary to implement the revised Print Table 140 were extensive.

The array pan was expanded in dimension from two to three to allow for a new table type
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Table 3-10. Example page from the neutron activity by nuclide table (Print Table 140).

lneutron activity of each nuclide in each cell,

cell
index

1

total

cell
name

35

40

41

42

402

403

total

nuclides

7014.
8016.
.35¢c

18000

74184.

7014.
8016.
.35¢c

18000

7014.
8016.
.35¢

18000

74184.

7014.
8016.

60c
60c
60c
60c

60c

60c

60c

60c

60c
60c

atom

fraction

7
2

.71E-01
.20E-01
9.

60E-03

.00E+00

.71E-01
.20E-01
.60E-03

.71E-01
.20E-01
.60E-03
.00E+00

.20E-01
.80E-01

over all cells by nuclide

1001.

7014.

8016.
11023.
13027.
14000.
.35¢c
20000.
26056.
28058.
29063.
.42c
74184.
82208.

18000

51000

60c
60c
60c
60c
60c
60c

60c
60c
60c
60c

60c
60c

total
collisions

2538
898
21

512134

11
4
0

629
242
12

175033

9473
2933

41876433

total
collisions

1620572
14171
2606175
84243
77373
729203
33

84712
44103
13225
11865
1069402
19110650
16410706

e}

(&)

e}

PP oo WOWNO B OO O

per source particle

ollisions
* weight

.7247E-06
.9341E-07
.5974E-09

.7335E-04

.3721E-09
.4485E-09
.0000E+00

.1720E-07
.7373E-07
.7780E-09

.2015E-04

.3122E-06
.8493E-06

.8194E-02

ollisions
* weight

.0082E-03
.4608E-06
.6344E-03
.2891E-05
.9247E-05
.6399E-04
.4375E-08
.4344E-05
.7849E-05
.1831E-06
.3006E-06
.9361E-04
.3344E-02
.0838E-02

wgt. lost

to capture

1.
0.
0.

1.

8482E-08
0000E+00
0000E+00

.9059E-06

.0000E+00
.0000E+00
.0000E+00

.6769E-09
.0000E+00
.0000E+00
.8012E-07

.6550E-07
.0000E+00

7193E-04

wgt. lost

to capture

O R NOOUORFRENOOWWOWWND

.1615E-06
.1668E-07
.0568E-07
.9389E-07
.2334E-07
.0115E-06
.0000E+00
.0322E-06
.7703E-06
.4031E-08
.3625E-08
.1539E-05
.3293E-04
.3757E-07

wgt. gain

by fission

o

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.0000E+00
.0000E+00

.0000E+00

wgt. gain

by fission

OO OO OO OO OOOOo oo

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

2

S NeoloBololNolNeolNoNolNoNololNo)

wgt. gain
by (n,xn)

.0000E+00
.0000E+00
.0000E+00

.2100E-09

.0000E+00
.0000E+00
.0000E+00

.0000E+00
.0000E+00
.0000E+00

.0680E-09

.0000E+00
.0000E+00

.4140E-07

wgt. gain
by (n,xn)

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.9194E-07
.9455E-08

tot p
produced

0
0
0

202

8832

tot p
produced

P

o

o)

FNMNMNMNWWRRFRORMAMNMNOOO

print table 140

wgt. of
produced

.0000E+00
.0000E+00
.0000E+00

.0097E-08
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.2331E-08

.0000E+00
.0000E+00

.0267E-05

wgt. of
produced

.0000E+00
.0000E+00
.0000E+00
.4892E-07
.9632E-07
.2409E-06
.0000E+00
.3265E-06
.5110E-06
.2775E-08
.7590E-08
.3606E-06
.9072E-06
.0533E-07

oo NoOJdoooaNoNOOoOOo

avg p
energy

.0000E+00
.0000E+00
.0000E+00

.0720E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.2259E+00

.0000E+00
.0000E+00

.5069E+00

avg p
energy

.0000E+00
.0000E+00
.0000E+00
.3981E+00
.3646E+00
.9548E+00
.0000E+00
.3210E+00
.1853E+00
.6418E+00
.2947E+00
.2558E+00
.0824E+00
.4524E+00
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Table 3-11. Example page from the photoatomic activity by nuclide table (Print Table 140).

lphotoatomic activity of each nuclide in each cell,

cell
index

1

cell
name

35

40

41

42

402

403

total

nuclides

7000.

8000

74000.

7000.
8000.
18000.

7000

74000.

7000.
8000.

02p

.02p
18000.

02p
02p
02p

02p
02p

.02p
8000.
18000.

02p
02p

02p

02p
02p

atom

fraction

7
2

.71E-01
.20E-01
9.

60E-03

.00E+00

.71E-01
.20E-01
.60E-03

.71E-01
.20E-01
.60E-03
.00E+00

.20E-01
.80E-01

total over all cells by nuclide

1000.
7000.
8000.

11000

29000

02p
02p
02p

.02p
13000.
14000.
18000.
20000.
26000.
28000.

02p
02p
02p
02p
02p
02p

.02p
51000.
74000.
82000.

02p
02p
02p

total
collisions

212
85
11

78346

1
0
0

0
0
0

240672

1616
410

6384769

total
collisions

653
1981
44143
1321
5731
34281
11

6146
1500
3742
384
36061
3873350
2375465

collisions
* weight

J

.3152E-05
L2717E-06
6.8244E-07

(&)

4.8017E-03

6.2040E-08
0.0000E+00
0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00

1.4666E-02

9.9386E-05
2.4941E-05

3.8309E-01

collisions
* weight

.5293E-05
.2196E-04
.3585E-03
.9470E-05
.2715E-04
.8295E-03
.8244E-07
.3039E-04
.9856E-05
.2802E-04
.1824E-05
.1981E-03
.3013E-01
.4536E-01

FNMNNMNMNNMDNNJdJWOOR WY P W

per source particle

wgt. lost

to capture

0.
0.
0.

0000E+00
0000E+00
0000E+00

.3389E-05
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.3489E-04

.0000E+00
.0000E+00

.3187E-03

wgt. lost

to capture
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.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.2408E-07
.0000E+00
.2407E-07
.2409E-07
.2384E-07
.0000E+00
.3205E-05
.2326E-03
.0724E-03
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Table 3-12. Example page from the photonuclear activity by nuclide table (Print Table 140).

lphotonuclear activity of each nuclide in each cell,

cell
index

10

12

14

cell
name

40

402

405

451

406

407

total

nuclides

74184.

74184.

82208.

82208.

74184.
29063.

74184.
29063.

03u

03u

03u

03u

03u
03u

03u
03u

atom
fraction

1.00E+00

1.00E+00

9.34E-01

9.34E-01

9.98E-01
1.00E-03

9.98E-01
1.00E-03

total over all cells by nuclide

13027.
20040.
26056.
29063.
74184.
82208.

03u
03u
03u
03u
03u
03u

total
collisions

53756

165705

1069157

343129

624461
435474

1564103
934420

5190205

total
collisions

3889
47339
6889
1369894
2408025
1412286

collisions

* weight

.8444E-05

.1947E-04

.2929E-04

.8974E-04

.7915E-04
.0690E-08

.0354E-03
.2750E-07

.3916E-03

collisions

[ S VI

* weight

.1872E-07
.9092E-07
.4796E-07
.7819E-07
.5724E-03
.1903E-04

tot p
produced

94815

291682

915777

276449

958159
398280

2575333
856207

6366702

tot p
produced

2848
29003
5803
1254487
3919989
1192226

per source particle

=W W P e

wgt. of
produced

.6437E-05

.0068E-04

.1914E-04

.6978E-04

.1936E-04
.0306E-07

.5601E-03
.4837E-07

.0658E-03

wgt. of
produced

.4591E-07
.4934E-07
.3887E-07
.5144E-07
.8766E-03
.1889E-03

el =l SR

avg p
energy

.1576E+00

.1578E+00

.6709E+00

.6433E+00

.1622E+00
.4272E+00

.1564E+00
.1638E+00

.2768E+00

avg p
energy

.6055E+00
.8396E+00
.3300E+00
.2410E+00
.1579E+00
.6646E+00

tot n
produced

57388

175227

1048772

333256

617744
20

1603294
77

3835778

tot n
produced

321

29

2759

97
2453653
1382028

N e Y

wgt. of
produced

.4588E-05

.3752E-04

.4190E-04

.9253E-04

.1598E-04
.5686E-08

.1685E-03
.7239E-08

.6011E-03

wgt. of
produced

.6097E-08
.1120E-09
.0913E-07
.1293E-07
.7666E-03
.3443E-04
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avg n
energy

.4209E+00

.4152E+00

.2029E+00

.1867E+00

.3695E+00
.5598E+00

.3979E+00
.6041E+00

.6517E+00

avg n
energy

.5615E+00
.6706E-01
.6223E+00
.5940E+00
.3932E+00
.1991E+00




and from six to eight to allow for additional information. The expansion for additional
information allowed the photon production from neutron collision data to be moved back
into the neutron table listing. The new listing for photonuclear collisions is updated in
the routine coldpn to account for the number of collisions and their weight as well as the
number, weight and average energy of photons and neutrons produced.

Similar to the routine tbl130, a new routine was written for Print Table 140. The
routine action now calls routine tb1140 to print the nuclide activity information. Again, a
simple, brute-force solution was implemented to print the necessary information. It
follows the same format as in the original Print Table 140 though it has been condensed
in width to allow for the additional information as described above. The values for the
values for these existing tables have been checked to verify they have not been corrupted

by the relocation. The new values have been checked by hand.

Future Work

The next step in this effort is to implement the prototype coding into the MCNPX
code for release to a beta-user community. It is believed that this is the best audience to
begin using the new photonuclear physics capability. Over the last three years, these
users have helped guide the evolution of the MCNPX code by testing new capabilities
and suggesting future directions. As the last features necessary to implement the
photonuclear physics capability are finalized, the assistance of this community should
ensure that the final product is bug free and user friendly.

There are a few areas of known concern in the current coding. The LA150
photonuclear data make use of only one reaction cross section with secondary particle-

production based on appropriate yields and emission spectra given by Kalbach
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systematics. The errors and warnings in the prototype have been verified to ensure they
would catch problems with the LA150 data but further checks are needed to verify they
will catch all generic data errors. Similarly, the sampling routines have been verified to
correctly use the LA150 data, but further checks are needed to verify that other processed
data will work correctly. Last, MCNP and MCNPX are riddled with hidden
dependencies. It is expected that further user testing will produce several minor glitches.

The current sampling of photonuclear data using Energy Law 44 is based on the
original formalism by Kalbach [50,51]. Chadwick has proposed [11] that the reduced
momentum of the photon particle incident on the heavy target is more realistically
sampled as isotropic for multi-step compound decay. A new Energy Law including this
modification needs to be proposed to the Cross Section Evaluation Working Group
(CSEWG), the group which controls the ENDF format.

MCNP(X) provides many auxiliary functions in addition to its mainstream
capabilities. Some of these features, such as event log printing, have updated to include
photonuclear information. However, several others, including but are not limited to the
tally multiplier card, cross section plotting and ptrac file writing, have not been updated.
For this work, these features were not necessary. As time permits, they will be added

into future implementations.
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CHAPTER 4
VERIFICATION AND VALIDATION

Introduction to Verification and Validation

In today’s scientific world, the computer has become an essential tool. However,
the use of the computer is still an evolving subject. An entire field of study has devoted
itself to software quality assurance. The cornerstones of software quality assurance are
verification and validation. As this work is in large part a software coding project, it is
desirable to address the question of verification and validation here.

Verification in the context of software quality assurance is the process of ensuring
the functionality of the software. It can also be thought of as tackling the subtler issue of
the garbage in equals garbage out problem. The issue is how to ensure that the
functionality of the coding performs in the manner expected and does so for all valid
cases. A brief summary of the verification of the present work is presented in the next
section. The larger problem of ensuring that the results are not garbage is the domain of
validation and the primary focus of this chapter.

The quest of validation in the context of software quality assurance is to prove
that the coding and data in question perform with reliable results in the region of interest.
For the purpose of this work, the region of interest is the production of neutrons from
bremsstrahlung photons in the energy range up through several tens of MeV. As the

ability to use tabular photonuclear data within MCNP has not been generally available
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before, the validation results discussed here provide the basis for estimating the general
uncertainty for the this new capability as a whole.

For the purpose of this work, the ideal validation benchmark should include the
production of photons via bremsstrahlung radiation and the subsequent production of
neutrons from those photons. Additionally, such a benchmark should contain as few
extraneous complications as possible and must document enough of the setup and
analysis to conclude that a fair comparison to any simulation is being obtained. The
literature has been searched for such benchmarks with minimum results.

There is a dearth of experimental data available in the area of photonuclear
physics. Of the published results, few are suitable for use as benchmarks. Many early
experimentalists measured the photonuclear cross section of materials with
bremsstrahlung photons. The raw data of neutrons observed for a specific experimental
configuration would be an ideal benchmark. However, the raw data is typically
“unfolded” and represented as a set of cross sections. The experimental data thus
presented is unusable as a benchmark as the unfolding method is not documented and
typically a poor quality cross-section measurement in comparison to those obtained with
mono-energetic photons.

There are numerous other measurements in the literature that would be useful but
come from complicated systems that are not well documented. Measurements that are
based on poorly documented systems cannot be used as benchmarks because too many
assumptions must be made in the simulation model. For a measurement to be useful as a
benchmark, it must contain a description of the experimental setup that thoroughly

documents every significant parameter.

75



Two studies have been chosen from the available literature for the purpose of
validation of the work presented in this dissertation. Swanson [31,32] folded differential
photon fluxes calculated from analytical shower theory with measured cross sections to
obtain neutron yields from electrons incident on semi-infinite slab geometry. Barber and
George [58] reported absolute measurements of neutrons produced per electron incident
on several materials.

The results presented by Swanson are not true experimental measurements.
However, they are useful for a number of reasons. The Barber and George experiment
was the only work found to date that contains the details necessary to be defined as
experimental benchmark data. As a second study was desired for comparison, the work
of Swanson was chosen. That this study was chosen was not an arbitrary decision. The
original motivation for this work was the assessment of the neutron field in a medical
accelerator room. The defining work in this area is NCRP Report 79 [2]. Swanson
participated as a consultant to the task force which wrote this report. The method he has
used to calculate theoretical neutron yields is recommended in the report to calculate the
neutron source produced within an accelerator.

Swanson utilizes analytical shower theory and experimental cross-section
measurements to obtain an expected neutron yield released by electron bombardment of a
material. The accuracy of the neutron yield calculated is highly sensitive to the accuracy
of the cross-section measurements used. However, in the absence of the equivalent direct
measurement, this is a useful way to calculate neutron yields.

The Barber and George results are experimental and they are considered an

excellent benchmark. As such benchmark data are rare, great pains have been taken here
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to explain how the data was taken in the hopes that experimentalists who read this might
be compelled to perform similar measurements. It is hoped that the availability of this
new ability to simulate photonuclear interactions in radiation transport will encourage
such benchmark experiments.

Comparison of current calculations to each of the sets of data described are
presented as a section of this chapter. In each section, the original study is described in
enough detail to understand what must be taken into consideration in the simulation. The
setup of the simulation including any assumptions is depicted and the results of the
current calculation versus the original results are discuss. For completeness, the actual
MCNP input decks are included in Appendix D. Comparisons are included for each
material which has a corresponding tabular photonuclear data set. The final section of
the chapter will summarize the conclusions that have been drawn from these comparisons
and assess the overall uncertainty attributable to the evaluated data and its use by the

current coding.

Verification

Anyone who has ever written even the simplest piece of software has had to learn
something about verification. Rarely does a piece of software compile and run as it is
supposed to on the first attempt. Typically, it is necessary to debug the code to remove
errors in implementation. Even if it does compile and appear to run, it is wise to run test
cases to ensure that reasonable input conditions give reasonable results. Additionally,
there are numerous tasks that can be performed during the development cycle of the

software to ensure that it functions as expected.
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There were four major changes implemented within the existing MCNP code in
order to establish the functionality desired by this work. The verification of each major
change is discussed separately. This documentation is meant to provide an overview of
the verification that was done without actually showing all the details.

The input routines were revised in order to allow specification of a photonuclear
table for use by a material. As discussed in the implementation chapter, this required
extensive revisions to the original coding. The final implementation was inspected by
several code walkthroughs. (A code walkthrough is a detailed inspection of the code
modifications by two or more persons to ensure that revisions in question accurate
implement the desired functionality.) In addition, the arrays used to store the tabular data
were checked during debugging runs to ensure that the appropriate data was stored
correctly.

In addition to these algorithms implementation within MCNP for loading
photonuclear tables, they were duplicated within MCNPX for loading proton tables [55].
They were also subjected to a code walkthrough at that time. They have seen active use
since their implementation with no bugs reported.

The tabular data sampling routines were revised to correctly sample emission
parameters for any combination of incident and emitted particle. These changes been
duplicated in MCNPX in order to correctly handle proton tables and in MCNP for
miscellaneous other reasons [52,54,59]. There have been subjected to several code
walkthroughs at various stages in this work. During their implementation into the

distribution version of MCNP, they were subjected to extensive verification and quality
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assurance testing [53]. They have been in active use by this prototype, MCNPX and
MCNP with no bugs reported.

The output tables were updated to include details about the photonuclear
interactions in a simulation. These changes have been subjected to a walkthrough. They
have also undergone testing via debugging runs to ensure that the numbers reported
accurately reflect the experience of the simulation. They have been in use throughout
this work with no known problems.

The last major section of code revision is the addition of the photonuclear
collision routine. This set of algorithms represents the keystone of this work. Similar to
the other revisions, it has been subjected to code walkthroughs and debugging runs. In
addition, it has undergone a number of testing runs to ensure that it functions
appropriately. These tests generally check a specific feature. For example, a simulation
can be contrived to look for the correct attenuation of photons through a material in order
to ensure that the appropriate cross section is being used. Another example is the use of a
thin target surrounded by tally regions to check appropriate sampling of secondary
emission energy and angle. Numerous other tests were run to check various aspects of
the functionality [60].

In addition to the testing described above, MCNP has a set of regression tests
covering it core functionality. These tests were used throughout the development process
to ensure that the new or revised capabilities did not damage existing functionality.
Additional regression tests were added to check new functionality.

It is worth noting here that verification of large codes is a complicated process.

Inherent interdependencies can be overlooked and left unchecked. Despite the variety of
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verification performed during the development process, a bug was found in the
photonuclear collision routine very late in this process. It only affected the activation
simulations discussed in the following chapter but it serves as a reminder that verification

is a long-term effort over the life of a software project.

Comparison to Theoretical Yields

Calculating Theoretical Yields

During the late 1970’s and early 1980’s, there was general interest in developing a
methodology for estimating the neutron yields at various research and medical electron
accelerators for subsequent use in radiation protection calculations. William Swanson,
then at the Stanford Linear Accelerator Facility, documented a methodology and reported
neutron yields per electron incident on various materials at selected energies up to the
GeV range [31,32]. His work has been used by others to provide guidance on neutron
source-term calculations for electron accelerators.

Swanson folded experimental photoneutron cross-section measurements with
calculated photon fluxes to calculate “theoretical” neutron yields. In the results shown
here, analytical shower theory is used to predict the differential photon flux for an
electron of a specified energy incident on a semi-infinite (a half-space geometry)
material. Experimental photoneutron production cross sections were obtained either as a
piecewise continuous function or as a Lorentz parameterization. These were then
integrated together by folding the predicted flux with the macroscopic cross-section to
calculate the neutron yield.

It is worth digressing for a moment to state the obvious. The use of analytical

shower theory to calculate the differential photon flux can be replaced by the use of
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Monte Carlo electron-photon simulation. In fact, Swanson checked some of his
analytical flux predictions against the Monte Carlo generated differential photon fluxes of
Alsmiller and Moran [20] for a 10 radiation length thick (practically equivalent to semi-
infinite) lead target. The use of Monte Carlo to estimate the photon flux for a specific
geometry and material provides a better estimate of neutron yield from a real component
as spatial dependence can be obtained. However, Swanson was focused on obtaining a
general method.

Swanson reported yields for twelve materials in their natural elemental state.
There is a corresponding evaluated photonuclear data set available for aluminum, iron,
copper, tantalum, tungsten and lead. Each of these elements is listed in Table 4-1 with
their radiation length, density and the source of the photoneutron production cross-section
data used in calculating the “theoretical” yield as reported by Swanson. (For a definition
of the radiation length along with the original source for Swanson’s values, see the work
by Yung-Su [61].)

It is important to remember that the error in these calculations is a function of the
error in the prediction of the photon flux and the error in the cross-section data. Either
can have large influences on the results. In Swanson’s conclusions within the second
study, he states that the values obtained in the present work lie as much as 50 percent
below the original calculations in the energy range typical for radiation therapy. He then
goes on to say that the uncertainties in his present calculations are less than 20 percent
[32, p. 357]. This is meant to show that the change in the approximations used to obtain
the photon flux improved the results but it also shows the sensitivity of these calculations

to the underlying data and assumptions. However, as his comments point out, given the
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Table 4-1. Materials and properties used by Swanson to calculate theoretical neutron
yields.

Material Radiation Length | Density | Source of photoneutron cross-section data
(g/em’) (g/c)

Aluminum 24.01 2.699 Veyssiere et al. [62]

Iron 13.84 7.875 Montalbetti et al. [63]

Data normalized to agree with the Fe/Cu yield
ratio determined by Price et al. [64]

Copper 12.86 8.96 Fultz et al. [65]

Tantalum 6.82 16.6 Bergere et al. [66]

Tungsten 6.76 19.3 Veyssiere et al. [67]

Lead 6.37 11.35 Pb-206,7 from Harvey et al. [68]

Data scaled by 1.36 [32, p.348]
Pb-208 from Veyssiere et al. [69]

correct geometry and an accurate photon flux the underlying uncertainty in the cross

sections still leaves a large uncertainty in the yields.

Simulation Setup

Part of the reason these calculations were used as a benchmark was the simplicity
of the geometry involved. The neutron yields are reported on semi-infinite slabs.
Swanson refers several times to the fact that the semi-infinite condition is practically
achieved at a target thickness of 10 to 20 radiation lengths. With this in mind, the
simulations presented here use a mono-energetic, point electron beam incident on a recto-
linear slab 20 radiation lengths thick with the beam centered such that it is 20 radiation
lengths to each edge. The mono-energetic, point representation of the beam is equivalent
to the assumptions in the original work.

The yields as reported are for neutron production only. Neutron transport and
absorption within the material is not considered. In order to match these numbers, the

value calculated by the simulation is taken from the MCNP neutron creation summary
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table, i.e. the absolute neutron production per incident electron excluding absorption
within the target material. A tally of the neutrons escaping the sample is used to
determine when neutron production has converged and also to estimate the uncertainty in
the neutron yield.

The yields are reported for naturally occurring, elemental materials. The natural
abundance of each material is given in Table 4-2 along with the tabular data used for
photonuclear and neutron interactions within the sample. For many materials, only
selected isotopes have photonuclear evaluated data files available. If this is the case, the
isotope(s) available was (were) used by splitting the missing weight equally among those
on hand. The implications of this practice are discussed below.

Neutron tables were chosen to match the available photonuclear tables. All
isotopes except tantalum had a corresponding LA 150 [40] neutron evaluation covering
the energy range of interest up to 150 MeV. The tantalum evaluation used is from the

standard ENDF60 library [70] with an upper energy limit of 20 MeV. As the yields are

Table 4-2. Natural isotopic abundance for elemental target materials and their isotopic
representation due to lack of available tabular data.

Material Natural Isotopic Abundance’s Photonuclear ZAIDs
(atom %) (Atomic Abundance’s)

Aluminum “TAL (100%) 13027.03u (100%)

Iron >*Fe (5.8%), “°Fe (91.72%), 26056.03u (100%)
Fe (2.2%) and **Fe (0.28%)

Copper %Cu (69.17%) and “Cu (30.83%) 29063.03u (100%)

Tantalum "0Ta (0.012%) and "°'Ta (99.988%) | 73181.03u (100%)

Tungsten BOW (0.13%), "W (26.3%), 74184.03u (100%)
B3W (14.3%), "W (30.67%) and
15w (28.6%)

Lead “Pb (1.4%), “Pb (24.1%), 82206.03u (24.5667%),
27pb (22.1%) and ***Pb (52.4%) 82207.03u (22.5667%) and

82208.03u (53.8666%)
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quoted neglecting neutron transport and absorption within the target, this does not affect
the comparison. Electron tables are from the MCNP standard EL1 library and
photoatomic tables from MCPLIB02.

Neutron yields are tabulated for ten incident electron energies in the revised study
[32]: 10, 15, 20, 25, 34, 50, 100, 150, 500 and 1000 MeV. Because MCNP4B has an
upper energy limit for the current electron tables of 100 MeV, only the first seven
energies are used in this comparison. Future plans for the MCNP family of codes include
the integration of electron tables covering the energy range up to 100 GeV and the
inclusion of the CEM nuclear physics module to handle photonuclear interactions above
the range of tabular data. Additionally, the IAEA photonuclear data library will include
many of the isotopes currently missing. As these advances are made, this set of

calculations should be revisited to complete the verification-validation process.

Comparison to Current Calculations

The comparisons between the theoretically derived data and the MCNP
calculations are presented here as a set of graphical figures. The error bars on the
theoretically derived values are the 20 percent uncertainty quoted by Swanson. The
simulations have been run until the relative error in the calculation is negligible. The
overall uncertainty of the simulation method and data is the final goal of this discussion.
Each figure presents the experimental data as diamonds connected by a solid line with
calculated values represented as squares connected by a dashed line. The graphs are
presented on a log-scale to enable viewing of the entire range of data at once. It is

desired that the reader achieve only a sense of relative comparison from the figures with
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explanation of the details given in the text. The MCNP input decks and the reported and
calculated values are available in Appendix D.

The comparison for aluminum presented in Figure 4-1 shows very good
agreement except for the two lowest energy values. Despite using essentially the same
threshold energy, there is a factor of five difference in the value of the yield at 15 MeV.
This may be explained by differences in the shape of the photoneutron cross section in its
rise to the peak value.

Swanson’s values are based on the photoneutron cross section as measured at
Saclay [62]. Experimental data from a number of institutes [62,71-73] were used in the
evaluation process. However, the evaluated data do not include possible small resonance
in the rise region as seen in the data from Saclay. The small resonances are physically
realistic and these small changes in this region may have large influences on yield
calculations for incident energies near threshold.

Iron was a very difficult evaluation as very little experimental data exist for
guidance. Of the four naturally occurring iron isotopes, only *°Fe is currently available as
an evaluated data set. Considering only *%Fe is probably reasonable considering it
represents more than 90 percent of the elemental composition. However, the current
calculations over predict the reported values by 30 to 40 percent as shown in Figure 4-2.

The large difference seen between the reported and calculated values may be
explained by differences in the photoneutron cross sections. The reported values are
based on the experimental data of Montalbetti et al. [63] as scaled [32, p. 355] to agree
with data reported by Price et al. [64]. The evaluation is based on more recent

experimental data [73-76]. This once again points out the need for evaluated data to
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Figure 4-1. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick
aluminun target. (Reported values from Swanson, 1979.)
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ensure that accurate representations are provided based on multiple experimental data
sets.

Copper shows very good agreement between the current calculations and the
reported values of the yields. This is expected since both the reported values and the
current work are based on the original measurements by Fultz et al. [65]. However,
Figure 4-3 shows an increasing discrepancy between the values as the incident energy
increases.

One possible explanation for the discrepancy between the current calculation and
the reported value is the lack of an evaluated %Cu photonuclear data set. One way to
estimate the influence of the missing cross-section data is to examine the cross sections
for ©*Cu versus ®Cu versus “'Cu. Table 4-3 shows the values for the integrated
photoneutron-yield cross sections. Note that, as expected, the current work is in close
agreement to the “*Cu experimental data of Fultz et al. However, it underestimates the
photoneutron production from natural copper. As the photon flux increasing, e.g. with

increasing incident energy, this underestimation will cause a larger discrepancy.

Table 4-3. Integrated photoneutron yield cross-sections for copper.

Isotope Emax Current Value® | Reported Value | Source of cross-sections for
(MeV) | (mb-MeV) (mb-MeV) reported value

%Cu 27.8 688 680 Fultz et al. [65]

%Cu 25.1 619 584 Sund et al. [77]

®Cu 27.8 688 817 Fultz et al. [65]

NatCy 27.8 688 710 Fultz et al. [65]

Nilcy 19.6 371 450 Miller et al. [78]

? Current values are based only on ®Cu, i.e. they contain no estimation of the influence of
65
Cu.
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There is very good agreement, as shown in Figure 4-4, between the calculated and
reported yields for tantalum. The slight variations are most likely small differences in
(gn) and (g2n) cross-section shapes. The current work is based on experimental data
from Lawrence Livermore [79] scaled by 1.22 as recommended by Lee et al. [80]. The
reported yields are based on the experimental data from Saclay [66] which are believed
to contain an error in the multiplicity [80] which may account for the slight variations
seen.

It is worth examining the three available experimental cross-section
measurements, listed in Table 4-4, in order to emphasize a key theme. The small group
of individuals who perform nuclear data evaluations have available important information
that is not readily apparent to the outsider. It is generally believed that many of the early
cross-section measurements at Lawrence Livermore are 15 to 25 percent too low. It is
this kind of knowledge that is essential in determining that the higher cross-section values
reported in Table 4-4 are more probably correct and the Livermore data should be scaled
upwards to match. This need for in-depth knowledge of the experimental data is the
reason evaluated data exists and why it is important to the novice to trust the judgement

of those who produce this evaluated data.

Table 4-4. Integrated photoneutron yield cross-sections for tantalum.

Isotope Emax Current Value | Reported Value | Source of cross sections for
(MeV) | (mb-MeV) (mb-MeV) reported value
8ITa 22.0 3623 2970 Miller et al. [78]
BITa 24.6 3879 3735 Bramblett et al. [79]
Scaled by 1.22 [80]
I Ta 25.2 3929 3799 Bergere et al. [66]
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Figure 4-4. Calculated versus theoretical neutron yield for electrons of various incident energy on a thick

tantalum target. (Reported values from Swanson, 1979.)



The calculated yields under predict the reported yields for tungsten at all but the
highest energies shown in Figure 4-5. The difference is largest near threshold.
Swanson’s reported values are based on natural tungsten with a threshold of 6.2 MeV.
The current evaluated data is only isotopic '**W and has a threshold of 7.5 MeV. Both
works are derived from the original measurements of Veyssiere et al. [67]. Itis
hypothesized that if the remaining isotopes, comprising 70 atomic percent, of tungsten
were included the agreement would be closer.

The cross sections for lead have been reanalyzed since the Swanson study was
concluded. Based on an analysis performed by Berman et al. [81], the Livermore
measurements of Harvey et al. [68] are believed to be too low by a factor of 1.22, not
1.36 as was proposed by Fuller [32, p. 385]. Berman et al. also suggested the Saclay
measurement [69] of “”*Pb was too high and should be scaled down by a factor of 0.93.
Keeping these differences in mind, Figure 4-6 shows acceptable agreement between the

calculated and reported values for lead.

Comparison to Measured Yields

Experimental Setup

In an experiment by Barber and George [58], an electron beam was impinged on a
variety of targets at various energies and the absolute yield of neutrons per electron was
measured. The targets were composed of elemental materials of varying thickness
including Al, Cu, Ta and Pb. It is a testament to the diligence in making and reporting
these measurements that they have been cited within the literature more than 25 times,
including Swanson in his study described above. Their results are worthy of use as

benchmarks and ideal for benchmarking the current methodology and data.
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The Barber and George measurements were made at the Stanford Linear
Accelerator Facility (SLAC). The measurements are of use primarily due to the care that
was taken both in making the measurements and in documenting how they were made.
The Mark II linear accelerator offered a well characterized electron beam. The SLAC
facility presented a carefully controlled environment in which to make the measurements.
The parameters of interest in representing the experiment as reported in the original paper
are discussed below. Experimentalist please take note, these are the issues that must be
addressed when defining a benchmark.

A diagram of the experimental layout is shown in Figure 4-7. The electron beam
leaving the Mark II linear accelerator is collimated to a diameter of 0.187 inches. This
collimated diameter translates to a 0.5 inch beam diameter at the target location for a
nominal energy of 30 MeV. No information is provided on the variation in spot size with
beam energy and it is shown to be negligible by later simulations. After leaving the
collimator, the beam travels through the first of two identical 30-degree deflecting
magnets. These magnets translate the main axis of the beam in order to reduce the
background radiation escaping through the shielding wall.

The energy of the beam was variable over the range 10 to 36 MeV. The absolute
energy was estimated to be calibrated to within 2 percent error by measurements using
the photonuclear thresholds of deuterium, oxygen and copper. The energy spread is
controlled by the two variable-slit collimators located between the two deflecting
magnets. An energy spread of DE(/E( equal 2 percent was used throughout the

experiment as set by the slit collimators.
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Figure 4-7. Experimental setup for the Barber and George experiments.



The final beam parameter needed for obtaining absolute neutron yields is the
number of electrons per beam pulse. Barber had previously validated a method for
determining this parameter [82]. An ionization chamber is located just before the
experimental apparatus. It consisted of 0.005 inches of Mylar comprising two windows
and an 8§ inch thick chamber through which hydrogen flowed at one atmosphere of
pressure. The response of the ionization chamber to the beam current had been well
determined in the previous study. For this set of yield measurements, it was recalibrated
at a few energy points by comparison with a Faraday-cup monitor. No estimate was
given on the uncertainty in the electron beam intensity.

After transiting the ionization chamber, the electrons passed into a Lucite vacuum
chamber and struck the target material. The chamber was 8 inches in diameter and 19
inches long. There were two target locations although the exact position of either is not
reported nor the position used for each specific measurement. Lucite was chosen as the
vacuum-chamber wall material because its constituents have high photonuclear
thresholds and low neutron production cross-sections. A target size of 4.5 inches square
was chosen to ensure that even electrons that underwent multiple scattering in the
ionization chamber would still strike the target. The only important point not discussed
in the paper is if measurements were made to determine the background level, i.e. the
neutron count rate with the electron beam and no target present. The comparisons to
simulations seem to indicate background levels were considered.

The absolute yield was measured by surrounding the target in a large paraftin-
moderator box. The 32 inch square box extended 19 inches along the beam axis.

Moderated neutrons were detected by two enriched BF; proportional counters extending
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the length of the box and located symmetrically about the target chamber. Background
due to neutrons produced outside of this box was reduced by cladding the box with a thin
layer of boron carbide and an outside layer of paraffin 8 inches thick. Again, it is not
discussed if a measurement was made to determine the background counting level and if
it was accounted for in the reported data.

The absolute counting efficiency of the neutron box assembly was determined
with a RaBe neutron source and verified with measurements on photonuclear production
in heavy water. For the RaBe source, an efficiency of (0.92+0.05) percent was observed.
The D(g n)H reaction presents a system in which the neutron yield could be calculated
with reasonable accuracy. Using the efficiency determined from the RaBe source,
comparison of the calculated versus the measured yields for the heavy-water system
agreed within the limits of the relevant uncertainties.

The electron beam delivers an intense photon pulse that temporarily overloads the
counting apparatus. To counter this effect, the scaling circuits are gated off for 7.5
microseconds following the beam pulse to allow the associated circuitry to recover from
the large pile-up. Since the lifetime of thermal neutrons in the paraffin is much longer
than this period, this method is estimated to introduce minimal error (less than three
percent). It was further necessary to limit the beam intensity for the high-Z materials in
order to maintain this same gating time. It is not reported what effect changing the beam
intensity might have, if any, on the other parameters.

Barber and George estimate the uncertainty of their results using the experimental
apparatus described above to be 15 percent. Table 4-5 lists the experimental parameters

of interest for the subset of experiments that could be modeled using the evaluated data
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Table 4-5. Targets and essential experimental parameters are given as used to simulate
the experiments of Barber and George (1959).

Target Density Thickness Energies (in MeV) for which
(g/ce) (g/cm?) measurements are reported

Al-1 2.699 24.19 22.2,28.3 and 34.3

Cu-1 13.26

Cu-II 2.06 26.56 16.1,21.2,28.3, 34.4 and 35.5*

Cu-1I1 ' 39.86 (*only for Cu-I)

Cu-IV 53.13

Ta-1 16.6 6.21 10.3, 18.7, 28.3 and 34.3

Pb-1 5.88

Pb-II 11.42

Pb-111 11.35 17.30 18.7,28.3 and 34.5

Pb-IV 22.89

Pb-VI 34.42

available at this time. In general, the portion of the target identifier, e.g. Al-I, after the
dash indicates the approximate thickness of the target in units of radiation length. As
their results were presented as a series of graphical figures, it was necessary to digitize

and estimate the value of both the yield and energy for each point of interest.

Simulation Setup

The simulation of the experiment was able to simplify the layout because of the
design of the experiment and the way in which the yields were reported. With the
information available, it was only necessary to model the electron beam incident on the
target material and tally the neutrons exiting the target boundaries. All other
complications have been estimated by the original authors. Thus a total neutron yield, i.e.
the number of neutrons escaping the target, per incident electron can be computed using

the simplified schematic shown in Figure 4-8.
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Figure 4-8. Setup used for simulation of the Barber and George experiments.



The electron beam model was further simplified to reduce complications in the
input specifications. The relationship of the beam parameters, i.e. how the energy varied
as a function of radius in the beam and its subsequent angular distribution, was not
documented. The beam was therefore modeled as a mono-energetic, perpendicularly
incident source directly on the target.

An estimate of how much a variation in energy could effect the results was made
by adjusting the absolute energy of the beam. A one radiation thick tantalum target with
a 28.3 MeV electron beam perpendicularly incident was used as a baseline for such
changes. The results are presented in Figure 4-9. As the beam spread should be
Gaussian about the mean, the net effect of the energy tails should cancel out. This
estimate also serves as a predictor for uncertainties due to possible inaccurate reporting of
the absolute value of the energy.

Deviations in angle are more difficult to estimate. One method is to look at
changes in target thickness. This was done for the baseline case as described above and
Figure 4-9 shows that possible deviations in thickness are not negligible. Deviations in
incident angle of 1, 2, 3 and 5 degrees result in changes in apparent thickness of 1.7, 3.5,
5.2 and 8.7 percent, respectively. However, since these parameters are undocumented it
is believed that a mono-energetic beam is adequate for the level of accuracy desired and
that the error induced by variations in the beam should be considered as represented in
the experimental uncertainty. As a last note, variations from a beam radius of 0.25 inches
were considered and shown to have negligible impact.

Similar to the simulations used for comparison to the Swanson study, the

materials with more than one isotope in the natural elemental form had to be represented
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with the evaluations available. Table 4-2 shows the exact details of which evaluations
were used for each target material. Implications of these substitutions will be discussed
in the comparison section.

There are several other points worth mentioning about the simulations. The
photonuclear threshold marks the lowest energy photon that could produce a neutron. It
is therefore unnecessary to track either photons or electrons below this energy. Further,
forced collisions can be turned on in the target material such that every photon traversing
the target undergoes at least one collision. Photonuclear biasing can be used to force a
contribution to photonuclear interaction from each collision. This combination of
techniques allows the relative error of the calculated yield to be minimized using run
times of approximately 10 to 50 minutes on a single processor of an Origin2000 system.
Note that the relative error is a measure of the precision of the calculation, not the
accuracy of the simulation. The MCNP input decks as well as the reported and calculated

yield values are listed in Appendix D.

Comparison to Current Calculations

The comparisons between the experimental data and the calculations are
presented here as a set of graphical figures. The error bars on the experimental values are
the 15 percent uncertainty quoted by Barber and George. The calculated yield values are
taken directly from the relevant MCNP output deck. The relative error from the
calculation is negligible. The uncertainty in the simulations will be discussed in the
conclusions. Each figure presents the experimental data as diamonds connected by a

solid line with calculated values represented as squares connected by a dashed line.
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The comparison of the experimental versus calculated yield for aluminum is
shown in Figure 4-10. The agreement shown is reasonably good although it is uniformly
low by about 20 percent. As the first data point is at 22 MeV, these data support no
further conclusions about possible changes needed in the threshold to peak region of the
cross section suggested by the comparison to Swanson’s yield values.

The comparison of the experimental versus calculated yield for the four thickness’
of copper are shown in Figures 4-11 through 4-14. All four comparisons show similar
results. They show good overall agreement with the experimental results, within 15 to 25
percent. As discussed above, the elemental copper has been represented by isotopic “*Cu.
The addition of a *Cu evaluated data set will improve the agreement, probably by five
percent overall, and also improve the match of the shape.

The comparison of the experimental versus calculated yield for tantalum shows
excellent overall agreement. As seen in Figure 4-15, the results for the region away from
threshold are almost identical. However, the calculated value at 10 MeV is an order of
magnitude too low. As the threshold energy is believed correct, this raises the possibility
that the values of the cross section between threshold and the GDR peak needs to be
increased.

The comparison of the experimental versus calculated yield for all five thickness’
of lead are shown in Figures 4-16 through 4-20. The results are consistent for all five
thickness’. The calculations are generally 20 percent lower than the experimental yields.

This is acceptable agreement.
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Conclusions from Verification and Validation

It has been shown that the current evaluated data and the new photonuclear
interaction coding provide reasonable results for simulating neutron production from
materials for which an evaluated data set exists. Most important to the current work,
these comparisons have covered the prominent target, filter and shielding materials used
in medical electron accelerators. The overall uncertainty in the evaluated data is
estimated to be less than 25 percent.

As a last note in reference to Swanson’s theoretical yields, these comparisons are
considered something more than simple verification but not quite true validation. Good
agreement is seen between most of the data sets but those are typically based on the same
underlying experimental data. It is worth noting that analytical shower theory and Monte
Carlo electron-photon transport appear to provide similar results. This argues that the
neutron production is not highly sensitive to the photon production mechanism.

The evaluated photonuclear data library, like all other nuclear data libraries, will
evolve as practical experience using the data feeds back into the evaluations. This will be
a long process. The first part of this process should involve will be the further validation
of the evaluated photonuclear data as it becomes available. Hopefully, the ability to
simulate this class of problems will encourage experiments worthy of becoming
benchmarks.

To repeat this theme, validation data for the purposes of photonuclear physics is
sorely lacking. Only aluminum, copper, tantalum and lead have been directly validated
against true integral experimental data. The remainder of the evaluated data are

“validated” only in the sense that they were created through the same process and have
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derived from the best known cross-section measurements. This also elucidates the point
that further measurements of photonuclear cross sections will be necessary for isotopes
previously not measured or with multiple measurements that disagree.

It should also be noted that only the photoneutron yields are directly validated by
the simulations above. Emission characteristics, the energy and angle of the secondary
particles, are only validated in the sense that GNASH [41] has a long standing, well-
validated ability to produce such data. Experiments measuring energy and angle spectra
are needed.

Last, it is recommended that once this ability is made generally available, each
user community perform its own experiments to validate the data and code for their class
of problem. This set of validation activities shown above has set an uncertainty only on
the use of this data and coding for the calculation of neutron yields for simple geometries
and materials which have photonuclear evaluated data available. Simulations involving
production and transport through complex physical geometries and containing materials
for which evaluated data may not be available will be considerably more difficult. It is
incumbent on the user performing such work to understand the uncertainties of their

specific simulation.
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CHAPTER 5
APPLICATION: SIMULATION OF A MEDICAL ELECTRON ACCELERATOR

Introduction

It is now time to remember that the original motivation for this work was the
enhanced understanding of the radiation environment in the vicinity of a medical electron
accelerator (MEA). To this end, this chapter will discuss the previously available ability
to simulate electron-photon transport within a MEA and the extension of this ability by
the current work to include photonuclear physics and simulate electron-photon-neutron
transport. Two major sections are presented.

The first section demonstrates the ability to simulate electron-photon and
electron-photon-neutron environments by comparison to experimental data. The data
were obtained from measurements around the Phillips SL Series MEA located in
Treatment Room 5 of the Shands Cancer Center (SCC) at the University of Florida (UF).
The validation is further divided to cover the electron-photon model and the electron-
photon-neutron model. Once the simulation model has been validated, it can then be
used to investigate the interesting aspects of the radiation environment.

The second section of this chapter explores two questions of interest for MEAs in
general. The first question of major importance is the determination of the dose,
particularly the neutron dose, to the patients and workers in the vicinity of the machine.

The second question is the effect of increasing electron energy on the relative neutron to
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photon dose. Within both of these discussions, some fundamental lessons learned are

highlighted and several issues suitable for future work are proposed.

Validating the Simulation

Background

A computer model may generally be defined as the virtual world necessary to
adequately simulate the corresponding real world. The virtual world is never an exact
reproduction of reality but instead attempts to capture the essential details. The major
items necessary for radiation transport simulations are representing the physical
environment, providing transport data for the constituent materials, describing the initial
radiation source, implementing the transport algorithms to propagate the radiation source
and obtaining the resultant output information. It is worth digressing for a moment to
discuss in general terms what is important to each of these tasks and why.

Physical geometry. A standard MEA treatment room is an extremely complex
physical space. First and foremost of concern to the simulation is the electron accelerator
itself. This is typically a linear accelerator or a cyclotron consisting of a few thousand
pounds of meticulously engineered parts designed to deliver an intense radiation field to a
precise location. The bulk of this equipment is usually located within the treatment room
in a machine closet such that only the treatment head is visible in the main room. To
further complicate matters, MEAs are often designed with treatment heads capable of
delivering either electron or photon fields at multiple energy levels and involving
extremely complex parts. Finally, the as-installed configuration can include changes

from the original specifications for particular needs including increased shielding.
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Surrounding the MEA is the treatment room itself. It serves two essential
purposes. First, it is there to contain the radiation for the protection of those in the
vicinity. Second, it provides an esthetically-soothing, working environment in which to
treat cancer patients. For the purpose of shielding the radiation, these rooms are typically
constructed as concrete vaults though in some cases other shielding material may be used.
For the purpose of creating a working space, they are typically finished with wall-board,
drop ceilings, carpeting, cabinetry, instrumentation and associated miscellaneous items
typical of a clinical environment.

For the goal of simulating the electron-photon dose to a patient, it is only
necessary to include detailed modeling of the MEA treatment head. Specifically this
would include the electron target or scattering foil and all materials in the immediate
vicinity of the subsequent beam path. In the typical electron-photon simulation, e.g.
[83,84], only the target, collimators, filters and associated items are modeled.

Jumping slightly ahead, a typical dose calculation that uses a complete room
model in addition to the treatment head model gives the following characteristic results.
The electron-photon dose to the patient from a typical treatment using a Phillips SL
Series MEA in the high-energy photon mode consists of the following sources:
approximately 80 percent directly from photons produced in the electron target;
approximately 15 percent from photons produced or scattered in the filters and other
materials in the beam path; approximately four percent from photons produced or
scattered in the collimators; and less than one percent from room return and other
sources. Hence, there is justification for ignoring anything very far outside of the

electron-photon beam path for most electron-photon dose calculations.
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Simulating electron-photon-neutron transport makes life much more difficult.
Neutrons are notorious in the world of health physics for their ability to penetrate
materials either directly or by finding streaming paths. In practical terms, this means that
the exact geometry of the MEA and the room are necessary for accurately representing
the simulation environment. With their ability to scatter, any path between the neutron
production site and the patient or worker is a concern. However, even if complete
shielding coverage could be achieved, their penetrating ability ensures that some level of
neutron radiation will always be present.

Again, it is important to consider some characteristic results from later
simulations here in order to set an appropriate frame of mind. The neutron dose for two
standard photon field sizes, 5x5 and 30x30 sq. cm. respectively, consists of the following
sources: approximately 56-36 percent from room return; approximately 16-44 percent
from neutrons produced or scattered in the primary collimator; approximately 21-12
percent from neutrons produced or scattered in the secondary collimators; and the
remainder from neutrons produced or scattered at other locations in the treatment head.
Hence, for an accurate simulation it is necessary to account for the placement of
practically all the material around the treatment head and most of the material in the room
itself.

Transport data. Once the extent of the physical space is known, it is necessary
to provide transport data for each material found in the geometry. Transport data are
defined here as tabulated listings of interaction probabilities, i.e. reaction cross sections,
and the emission spectra for the resultant particles suitable for use in Monte Carlo

transport algorithms. For traditional MCNP simulations, these data are available by
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element for incident electrons and photons and by isotope for incident neutrons. Note
that the photon data to date has only included photoatomic interactions. The current
work has integrated photonuclear data, by isotope, into this mix.

Electron and photoatomic transport data exist as a complete library for the
elements from hydrogen to plutonium (Z equal 1 to 94) in the standard MCNP
distribution. Photoatomic data are provided over the incident energy range from 1 keV to
100 GeV [85] and electron data over the incident energy range from 1 keV to 100 MeV.
This means that electron-photon problems can be simulated for any typical condition
found in a MEA treatment room. The exclusion of photonuclear data from photon
interactions was found to make no significant difference in the electron-photon portion of
the dose calculated for a typical treatment plan.

Neutron and photonuclear transport data exist for a limited selection of isotopes
and over a varying range of incident energies. In the case of neutron data, the coverage
of isotopes is nearly complete in the incident energy range up to 20 MeV. There are
some significant isotopes missing, e.g. any germanium isotope. There are also some
materials which are represented as average “elemental” data rather than by individual
isotope, e.g. magnesium. However, most of the major isotopes have neutron data
available. Unfortunately, at this time photonuclear data exist for a very limited set of
isotopes.

In a practical sense, this means that neutron and photonuclear simulations must
make approximations in their representation of materials. Often this is trivial. For
example, splitting the 0.13 atom percent of tungsten-180 among the other four isotopic

data sets to represent elemental tungsten introduces negligible error into most
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simulations. However, serious error can occur when the missing constituent is more
significant, e.g. the lack of a germanium data set to simulate neutron transport in a
germanium detector. The problem of missing isotopes will play a significant role in
simulations requiring photonuclear data until such time as the evaluation of the major
isotopes is completed.

Radiation Source. Radiation transport starts from the creation, either artificially
or naturally, of a radiation source. For a MEA operating in a photon mode, the radiation
source is electrons which have been accelerated and directed onto a converter to produce
bremsstrahlung photons. The final spatial-directional-energy distribution of the electrons
incident on the target is system dependent. In most simulations, the final dose is not
sensitive to the exact distribution of electrons and a simplified description is acceptable.

A typical simulation uses a mono-energetic beam, perpendicularly incident on a
point on the target. This seems to be a fair approximation in the sense that it gives
reasonable results. It can be improved by uniformly distributing the electrons over a spot
rather than a point and by spreading the incident energy over a Gaussian distribution
though these are expected to be rather modest gains in accuracy. To date, the author has
not seen any work which methodically documents the effects of the variations in the
incident electron beam distribution.

Because detailed electron-photon transport is difficult and time consuming over
long distances, the radiation source is typically recomputed one or more times at
intermediate locations in the geometry. Specifically, the upper section of the treatment
head geometry is fixed for a treatment modality. One initial simulation of this

immovable portion of the treatment head can be used to create a phase-space file [84,86]
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of the radiation field passing through a plane just above the first movable object. The
phase-space file can be used as the radiation source for subsequent transport simulations
though the remainder of the geometry. Obviously, this step can be repeated. Since there
is typically only minor feedback from changing the lower geometry, this approach can
save a significant amount of time while introducing relatively minimal errors.

Transport algorithms. Once the radiation source is determined and the physical
world has been represented, the next step is to transport the radiation through the
geometry. For neutral particle transport, e.g. of neutrons and photons, the Monte Carlo
algorithms necessary to sample continuous-energy transport data are straight forward and
well established. However, the algorithms used for charged-particle transport, e.g. of
electrons, are a subject area still undergoing significant improvements.

Around this mix of transport algorithms, it is necessary to have a framework to
handle all the other details. As the radiation propagates through the geometry, it is
necessary to update the transport data for its current location. The distribution of
sampling must be monitored to ensure that the phase space of the problem has been
adequately covered. Summary information should be collected for later presentation.
Error states should be checked and appropriate warnings issued. All of this should be as
tightly coupled as possible.

It is generally accepted that separating portions of the transport tends to introduce
error into the simulation. The only way to avoid these errors is to pass the next portion of
the simulation a complete description of the necessary information. In the case described
above where the geometry is separated, the phase-space file must contain as accurate as

possible a description of the radiation source propagating into the subsequent geometry.
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This same situation exists for coupling the transport algorithms. It is desirable to have
one framework which includes the necessary components to handle electron, photon and
neutron transport.

Obtaining output. The best simulation model in the world still has to be able to
present the results in a reasonable manner. If the desired information is not conveyed to
the user, or it is conveyed in a misleading manner, the simulation has not finished its
work. The ideal would be to have all the details of everything that influenced the
simulation available. For example, it might be useful to know the energy distribution of
the photon flux as a function of spatial position over all locations. In practice, the
information available is typically constrained by the amount of memory and time
available to track these details. For the example, it might be enough to known the energy
distribution of the photon flux within a cell or at a point. A fine balance is needed.

It is these five issues that must be kept squarely in mind when evaluating a
radiation transport simulation. Understanding of these issues will lead to more thorough
comprehension of how the simulation relates to the physical world. Only with adequate

depth of knowledge can extrapolations be made back into the physical world.

Experimental Setup

The experimental data were obtained from the Phillips SL Series MEA in
Treatment Room 5 of the Shands Cancer Center at the University of Florida. Two sets of
experimental data were desired. The data desired and the basics of how they were
obtained are discussed in general here. More details are provided in the following section

as they relate to what was modeled in the simulation.
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The layout of the treatment room is shown in Figure 5-1. The MEA treatment
head is positioned as indicated and mounted on an extension such that it can rotate about
a fixed point in space. That point is known as isocenter and is located on the center-line
axis of the treatment head 100 cm source-to-surface distance (SSD) from the electron
target. The room contains a set of laser lights that are aligned in the in-plane (wall to
treatment head) and cross-plane (parallel to the maze) directions at the correct height
such that they cross at isocenter. A mirror and light system can also project through the
treatment head to indicate the SSD of an object in the beam path.

As part of the calibration of the MEA unit, a set of depth dose curves are taken.
This procedure uses a 48x40x40 cm (width x depth x height) Lucite tank with 1 cm thick
walls filled with water. The tank is placed such that it is centered directly below the
treatment head and the surface of the water is 100 cm from the electron target (100 cm
SSD, source to surface distance). A depth dose curve is the relative dose at each point
along the central axis in the water tank starting from isocenter.

The relative dose is measured by use of an ion chamber and a positioning system.
An Ton Chamber IC 10 connected to an Electrometer WP 5006 current monitor was used
in this experiment. A WP600 Controller is used to control the position of the ion
chamber and relay the position and current to a standard PC computer. The current and
position information is stored to disk along with the details of the treatment mode, e.g.
energy setting and collimator opening. A set of depth dose curves for photon field sizes
of 5x5 sq. cm., 10x10 sq. cm. and 30x30 sq. cm. with the machine in the high-energy
photon mode were obtained in this manner. The incident energy of the electrons in the

high-energy mode of the MEA can be estimated by simulating this data.
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The second set of experimental data desired is an estimate of the absolute neutron
production in the treatment room. One method to obtain this information is to measure
the activation of a known sample of material in the presence of the accelerator’s radiation
field. Activation is the transmutation of a nucleus from one isotope to an unstable
isotope. The decay of the unstable isotope is then measured and the number of such
isotopes observed can be used to estimate the radiation field the original sample
experienced. This technique is known as activation analysis. Many texts exist on the
subject, e.g. Alfassi [87], as well as specific guidance for measurements around MEAs
[88].

For the purpose of these experiments, gold was the material chosen. It has a
number of useful properties. First, in its elemental form, gold is mono-isotopic.
Therefore only one set of cross-section data are needed. The 7 Au(n,g)'®Au cross
section as a function of incident neutron energy is very large (98.8 barns for thermal
neutrons). More importantly, it is commonly used in activation analysis and the cross
section is well known, probably not more than 20 percent in error at any given energy
with an aggregate accuracy of better than 5 percent. Last, the decay of '**Au is well
documented and easily distinguished for counting by gamma-ray spectroscopy.

Activation analysis requires a calibrated detector system capable of discriminating
the radiation emission of interest. The Neutron Activation Analysis (NAA) laboratory at
the University of Florida Test Reactor (UFTR) facility maintains a set of germanium
detectors and associated equipment for this purpose. As their equipment was available
for use, it was unnecessary to setup and certify a new system. The counting system

utilizes the GammaVision software produced by EG&G Ortec.
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Eleven small foils and three large ingots of gold were available for use in these
experiments. Each sample was cleaned with alcohol, weighed, sealed within a plastic
sleeve and numbered. The activation in the gold is a function of the number of atoms
present and the number of neutrons available. Consequently, for the same neutron
population, the larger the mass of gold, the more activation, i.e. '**Au isotopes, produced.
The original motivation for using the ingots was that their 31.1 g (one troy ounce) mass
would activate quickly even in the relatively low neutron fluence of the treatment room.
They could therefore be used for a set of measurements without the need for long
irradiation times.

All of the samples had been subject to previous irradiation. The background
counts present in all the samples were evaluated at the NAA laboratory prior to their
irradiation. The foils had not been previously irradiated in more than one year and
showed no significant background. The ingots had been irradiated within the treatment
room slightly more than one month prior to this set of experiments. They showed a slight
background which had to be subtracted off the later counts. The GammaVision software
produces a report showing the energy boundaries of the gamma-ray peaks observed as
well as the net counts seen for the peak and the estimated one sigma error.

Gold has a second reaction of interest for these experiments. The photonuclear
(gn) threshold for "’Au is 8.0711 MeV. Thus, in the presence of high-energy photons,
%6 Au is produced. The '"°Au decay scheme is also well known and easily distinguished
for counting by gamma-ray spectroscopy. The '*’Au(gn)'*®Au cross section has been

measured experimentally [69,78,89,90] and is believed accurate to within 25 percent.
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While not directly a measure of the neutron production, simulation of the '*°Au
production provides a secondary check of the photon production and transport.

Activation of the available gold samples was conducted on Sunday afternoon,
April 18, 1999. Table 5-1 provides the number, mass and position of each sample. Due
to the small mass of some of the foils, sets were combined into one sample such that the
mass of each foil sample was about the same. Each sample was positioned to look at a
different aspect of the neutron population. The accelerator was set to the high-energy
photon mode with a 10x10 cm field size at 100 cm SSD throughout these experiments.

The first sample, 11, was placed bare at isocenter. It was situated on top of a
cardboard box such that the long axis of the ingot was in the cross-plane direction. This
was further supported by the treatment couch. The exact positioning was checked by the
lighting system . The cardboard box provided separation from the treatment couch to try
and lesson any effect it may have on the neutron population. The primary objective was
to observe the total neutron flux seen at isocenter including the room return. The
secondary objective was to observe the high-energy photon flux at isocenter.

The second sample, 12, was placed at isocenter surrounded by a moderator. A-
150 plastic was chosen as the moderating material as it was readily available and easier to
set up than a water tank. The plastic slabs are uniform in area, 30x30 cm, and of varying
thickness. A 16 cm tall block was constructed on top of the treatment couch such that the
center of the block was situated at isocenter. The sample was aligned such that the long
axis of the ingot was in the cross-plane direction. The position was checked by the

lighting system. The dimensions of the block were checked by ruler. The primary
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objective was to observe the effect of the moderator on the neutron population. The
secondary objective was to observe the high-energy photon flux at isocenter.

The third sample, 13, was placed in the maze corridor. It was taped in place on
the inside, i.e. nearest the room, wall such that it was 240 cm from the corner to the room
and 150 cm above the floor. The long axis of the ingot was parallel to the maze corridor.
The position was checked by ruler. The primary objective was to observe the neutron
population in the maze. The secondary objective was to observe the high-energy photon
flux from other sources within the accelerator. One possible secondary source of high-
energy photons is that the energy selection slit within the Phillips bending magnet
system. It constitutes a possible source of background contaminate photons and thus
neutrons. The sample was aligned near the in-plane axis to check for this effect.

The remaining samples, foil samples 1-6, were placed in the moderator block
similar to sample 12. They were distributed radially outward from isocenter along the
cross-plane axis with the spacing indicated in Table 5-1. The position was checked by
the light system and the spacing by ruler. The primary objective was to observe the
neutron population in the moderator as a function of depth into the block. The secondary
objective was to observe the in-beam versus out-beam high-energy photon flux.

The irradiation was carried out in 500 monitor unit (MU) increments. (The
monitor unit is measured by an ion chamber within the accelerator and 1 MU nominally
corresponds to 1 cGy absorbed dose at isocenter.) The start time and the total irradiation
for each sample are also listed in Table 5-1. Samples I1 and I2 were each irradiated for
3000 MU. Sample numbers 1 through 6 were irradiated with all the foils in place for a

total of 6000 MU. Sample I3 was expected to receive the least activation and was
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therefore left in place throughout the duration of the entire irradiation process for a total
of 12000 MU.

A standard EG&G high-purity germanium detector and associated equipment
were available in the control room at the time of the irradiation. Sample I1 was checked
at the 1000, 2000 and 3000 MU irradiation levels to determine its count rate for the
gamma-rays of interest. It was determined that count rate was sufficient after 3000 MU
irradiation. Sample 12 was run to match sample I1. The foil samples, because of their
smaller size, were irradiated for twice as long.

Final counting of the activated samples was performed at the NAA laboratory. As
discussed above, background counts were taken prior to irradiation. Final counting was
performed once later the same day as the irradiation and a second time the following day
to ensure no false readings were observed. The 333 and 356 keV decay lines from '*°Au
and the 412 keV decay line from 8 Au provided accurate assessment of the activation
due to each of these isotopes. This activity is used to compute production rate of the
isotopes seen while the beam was energized. The value is compared to simulation
calculations of the value in the comparison discussion below.

Two certified sources were also observed during the second set of counts. This
set of counts was used to determine the efficiency of the detector system for the gamma-
rays of interest in the counting geometry. It also ensured that the energy calibration of
the gamma-ray detection system was accurate. The final results are discussed in the

comparison below.
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Table 5-1. ID, mass, position, start time and length of irradiation of the gold samples.

Sample # Radial Individual Mass (g) Start Time Irradiation
Position (cm) ID # EST (MU)

11 0 11 31.1 14:13 3000
12 0 12 31.1 14:34 3000
I3 Maze I3 31.1 14:13 12000
1 0 1 0.0664

2 3 2 0.0634

3 6 3 0.0512

4 9 set (4,10) 0.0676 14:51 6000
5 11.5 set (5,6,9) 0.0782

6 14.5 set (7,8,11) 0.0790

- - 4 0.0514 - -

- - 5 0.0159 - -

- - 6 0.0466 - -

- - 7 0.0472 - -

- - 8 0.0158 - -

- - 9 0.0157 - -

- - 10 0.0162 - -

- - 11 0.0160 - -

Simulation Setup

The two sets of experimental data require modeling at very different levels of
detail. As discussed in the Background section, electron-photon dose calculations for a
patient or equivalent phantom do not require modeling of anything outside the main beam
path. On the other hand, the neutron problem is influenced by every object in the room
and especially the exact details of the treatment head. Likewise, the way in which the
transport is run and the goals of the output are also very different.

Before describing these models, the goals of each should be stated. There are two
key unknowns in the descriptions of the MEA obtained for use here: the mean electron
energy and the number of electrons incident on the target. The simulation of the depth

dose has as its goal the validation of the beam path geometry with its associated materials
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and the determination of these two unknowns. The value of these two unknowns is part
of the starting point for the second set of simulations. The second simulation attempts to
validate the neutron production and transport by matching the activation seen in the gold
samples.

Physical geometry. Simulation of the depth dose curves is an electron-photon
transport problem to solve the energy deposition in the water phantom. As such, it
requires an accurate description of the area directly around the beam path. It turns out
that this bit of physical geometry is the most difficult item to obtain.

Trying to obtain the exact schematics of a MEA is like trying to extract a sore
tooth from a man who hates dentists. Upon asking if the tooth is sore, he answers that it
might be but it’s nothing for a dentist. Upon finally going to the dentist and learning it
must come out, he makes the dentist promise he won’t pull it without his permission.
When the dentist asks for permission, the patient hems and hahs and talks about how the
rest of his teeth are fine and only with the greatest of reluctance gives up anything at all.

When the author first asked for blueprints of the Phillips MEA in question, he was
told that they existed but they were proprietary documents. This was understandable but
unfortunate. At that time, the author felt is was important to remain outside of the
obligations of handling proprietary data as it was desired to be able to publish full details
of the model without restriction in this dissertation. This was considered an absolute
must as without those details, the work presented cannot be replicated. Therefore, a
compromise was reached and a hand-drawn schematic of the beam path as well as a

generic diagram of the treatment head profile were made available.
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During the course of this work, the author has had opportunity to speak with
many researchers in this field. While many were willing to share experiences trying to
model MEAs, all except one were unwilling to share exact details of their models
because of obligations due to the proprietary nature of their source information. The
author believes that this is a very unfortunate state of affairs as it means each group must
start from scratch and no group can exactly replicate another's work as no two models
will be exactly the same. It should also be noted that several persons with access to
proprietary information made further statements to the effect that even with detailed
blueprints, the specifications were sometimes out of date and key details had changed
between the blueprints and the MEA as built.

The author owes a great debt to John Demarco and Indrin Chetty of the University
of California at Los Angeles Department of Radiation Oncology. They were the one
group willing to share their experiences using MCNP as a simulation tool [91] as well as
their well validated models of the Phillips SL series MEA [92]. In terms of simulating
electron-photon radiation transport in MEAs for calculating dose distributions, they have
significantly advanced the state-of-the-art. For the purposes of this work, being able to
start with their model meant no great effort was necessary to refine and validate the
geometry model.

The geometry model thus obtained included the electron target, the target
housing, the primary collimator, a hardening filter, two flattening filters and an ionization
chamber. Dimensionally it matched the hand-drawn schematic obtained earlier with one
exception. The exception was an aluminum ring just outside the second flattening filter.

It was determined to be outside the main beam path and therefore ignored. The
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placement and size of the secondary collimators and the water tank were determined
through discussions with the staff and engineers onsite at SCC.

The MCNP geometry specification was reordered and restructured during early
trial runs without affecting the original specifications except to speed up calculations.
MCNP geometry specifications can greatly influence run-times depending on the
complexity per cell description. The reordering served the secondary purpose of
describing the model in a more commented, structured manner for the sake of readability.
During these same runs it was found that presence of the ion chamber made no
significant contribution to the overall transport process and it was removed. A simple
schematic of the final simulation geometry is shown in Figure 5-2 and the details for the
MCNP input decks are given in Appendix E.

The second set of simulations has as its aim the accurate assessment of neutron
production and distribution within the treatment room. As discussed in the background
above, this is a considerably more difficult challenge than the depth dose simulations. In
fact, as the discussion in the comparison will show, while the challenge has been met
with more comprehensive techniques, the results still leave much to be desired. The
following discussion will point out a number of approximations which have been made
that contribute to the uncertainty in the final results.

The greatest single difficulty lies in adequately defining the physical space of
consequence. The starting point used here is the treatment head as defined in the depth
dose simulations. To this has been added the bare concrete walls of the treatment room.

The dimensions and materials of the room were derived from the original architectural
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Figure 5-2. Simple schematic of the known geometry in the medical
accelerator treatment head.
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drawings and specifications [93] as obtained from the archives of the Shands Facility
Management. For the primary simulations, nothing else was included.

It is worth spending some time on the known unknowns this approximation
introduces and why it was made. First and foremost, only about one-third of the total
material in the treatment head is represented. The remainder is significantly outside the
primary beam path and therefore was not necessary for the electron-photon simulation
and was not included in any of the available references.

A detailed representation of the lead and tungsten shielding, structural steel and
other materials in the treatment head is necessary for an accurate simulation of the
electron-photon-neutron problem. Without truly accurate descriptions of the locations
and compositions of these materials, anything done is subject to large error. The final
results presented below are obtained only with what is known. With that said, there are a
significant number of variations and/or educated guesses on placement of lead and
tungsten shielding that can be made to estimate the influence of this missing material.

It is recommended that future work undertake to obtain this information by direct
inspection of the MEA. It might be attempted to obtain this information through
blueprints or specifications but the final model should be matched against the actual
dimensions as measured. It was not feasible to obtain that information for the purpose of
the current study.

There is also a significant amount of material within the room that is not
represented in the simulation. Again, this is done due to the difficulty in obtaining
information on the placement and composition of the objects. It was not readily apparent

from the specifications if the room was finished as is typical for similar facilities. If this
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is the case, there are aluminum or steel studs providing cable runs between the concrete
and finished wall. The finished wall itself is probably gypsum board covered by paint
and/or wallpaper. Cabinetry and furnishings have been provided to make the room a
useful workspace. Additionally, the main bulk of the accelerator itself, the wall
partitioning the machinery room and many other miscellaneous items also reside within
the concrete vault.

This list of missing materials and unknowns could be continued though it
certainly becomes less significant. However, of probable importance are certain
construction materials and the accelerator itself. It is estimated [94] that one to two and a
half tons of structural steel or aluminum reside in the walls; one and a half to two and a
half tons of gypsum wall board, ceiling tiles or the equivalent coverings cover the walls
and ceiling; and, several hundred pounds of cabinetry are located against the walls. The
accelerator components, associated machinery and treatment couch account for hundreds,
if not thousands, of pounds of additional metals. The partition wall forming the
machinery closet is also left out. This lack of this material in the simulation represents an
unknown error that could play a significant role in neutron scattering and absorption.

Starting from this simplified model, four variations were used to simulate the
activation experimental setup. These are: the bare room; the room with detailed ingots at
1socenter and in the maze; the room with the moderator block at isocenter; and, the room
with the moderator block and detailed ingots at isocenter and in the maze. During the
course of this study, several variations have also been explored though none have been

included in the final simulations.
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Transport data. Those materials in the treatment head which were specified in
the simple drawing are the same as those specified in the UCLA model. The target is
tungsten alloyed with 10 weight percent rhenium and has a density of 19.47 g/cc. The
target housing is natural copper and has a density of 8.96 g/cc. The primary collimator is
tungsten alloyed with 1.5 weight percent copper and 3.5 weight percent nickel and has a
density of 18.78 g/cc. The hardening filter is natural aluminum and has a density of 2.7
g/cc. The flattening filters are both steel with a density of 7.9 g/cc. The composition was
not listed on the hand drawing so the UCLA definition was taken. The steel is iron with
18 weight percent chromium, 9 weight percent nickel, 2 weight percent manganese and 1
weight percent silicon. The secondary collimators are lead. The lead may or may not be
alloyed with antimony. For this model it was taken as natural lead and has a density of
11.35 g/cc.

For the transport simulation of the depth dose curves, electron and photoatomic
tables were available for all of the elements specified above. Tables are also available for
simulating the hydrogen and oxygen of the water tank. While available, the air was taken
to be a void for these simulations. The detailed material descriptions used in the actual
input decks are listed in Appendix E.

For the activation simulations, the concrete walls, air, gold and A-150 plastic have
been added to the physical description. Other materials may be present in the room but
are not included as they are not represented in the geometry. The definitions of those
materials present and not established earlier have been taken from well established
sources. Exact details of the material compositions used are once again found in

Appendix E.
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As with almost all MCNP simulations, tables are available for all elements of
interest for electron and photoatomic interactions. For neutron interactions, tables are
available for almost all isotopes and those unavailable constitute minor isotopes of
natural elements (less than 5 percent in all cases; less than 1 percent in most). However,
difficulty arises because only nine evaluated photonuclear tables are available for use:
2TA1, “Ca, Fe, ©Cuy, 18T, #y, 206207.208py,

The difficulty is deciding what is reasonable when no table exists for an isotope of
interest. What has always been done in past is to completely ignore the photonuclear
contributions. However, this virtually guarantees that the simulation will underpredict
the neutron production. Therefore, it seems more reasonable to follow the example used

184

in picking neutron tables and to use an available isotope, e.g. =~ W, to represent all the

180,182,183,184,186
SRR W., However, the reason these

isotopes present in the natural element, e.g.
tables are compiled by isotope is that each individual species in a naturally occurring
element has unique thresholds and reactions. Still, engineering practicality says that
something is better than nothing. As a result, the original argument is extended to say
that it is reasonable to use a table for an isotope of similar atomic weight if the necessary
isotopic table is missing. However, beware, you get what you pay for.

For the purposes of representing the materials in this simulation, missing tables
were substituted by isotope within an element or by nearest atomic neighbor.
Specifically, the "**W table was used to represent elemental tungsten and rhenium. The
53Cu table was used to represent elemental copper and nickel. The *’Al table represents

elemental aluminum and was also used to represent elemental silicon. The *°Fe table was

used to represent elemental iron, chromium and mangenese. The *°Ca table was used to
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represent elemental calcium. The major isotopes of lead, *°**7***Pb, have tables

available leaving only 1.4 atom percent ***

Pb to be covered by an appropriate mixture.
No photonuclear table was associated with hydrogen, carbon, nitrogen, oxygen, flourine,
sodium, magnesium, sulphur or argon. The exact definitions of the materials as well as
the geometry used in the simulation can be found in Appendix E.

Radiation source. The radiation source in the MEA is electrons on the target.
The electrons are produced by an electron gun, formed into bunches and accelerated
through a microwave chamber. They are then guided through a set of vacuum tubes to
the treatment head. A system of three bending magnets [95] then spread the beam, direct
it through an energy selection slit, refocus it and direct it onto the target. The actual
electron distribution on the target is probably a chopped Gaussian in energy, impinging
on a relatively small spot with a slight angular distribution about the normal. This
distribution as modeled in the simulation is a whole Gaussian in energy having a full
width at half maximum of 780 keV and perpendicularly incident on a spot size | mm in
diameter. This description is taken directly from the original UCLA model and is
believed accurate enough as it has been used to successfully match experimental data.

One of the key unknowns is the mean energy of the electrons incident on the
target. It will always be dependent on the specific MEA in use as it is a function of the
microwave cavity and RF tuning. The UCLA model gives this value as 22 MeV. Taking
22 MeV as a starting point, depth dose simulations were run at 1 MeV increments for 3

MeV on either side of this value, i.e. 19, 20, 21, 22, 23, 24 and 25 MeV. The details are

listed in Appendix E.
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The radiation source for the activation simulations is the exactly as described
above. However, it is worth noting that while this is still a good approximation to the full
source, it leaves out one portion which has the potential to be significant. As the
electrons pass through the system of bending magnets, they pass through the energy
selection slit. The bremsstrahlung photons occurring as a result of this process do not
affect the electron-photon dose as a significant amount of shielding blocks their direct
path to the treatment area. However, any high-energy photons from this process can
contribute to the production of neutrons.

Transport algorithms. The MCNP radiation transport code is the work of
hundreds of people over decades of time. One of the principal reasons the current work
was performed using the MCNP code as a base was the comprehensive validation of its
primary transport algorithms. This validation has been accomplished through the
diligence and use of thousands of users. MCNP is one of, if not the, gold standard in
neutron-photon transport and its electron-photon transport package has made great
advances over the last decade. For neutron and photon transport, there are many papers
in the literature validating the accuracy of the data combined with MCNP’s transport
algorithms.

Electron transport was added relatively recently in MCNP’s lineage and is still
undergoing significant improvements. However, the current set of electron transport
algorithms are derived from the well established ITS code [96] and have proven to be
accurate for most situations. Several papers have been published since electron transport
was first added to MCNP showing its application to electron accelerator environments.

Recent examples include work by Love et al. [97] and Jeraj et al. [98]. These show that
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while there is still work needed in this area, MCNP is capable of simulating this class of
problems.

However, since it was desired to run the depth dose simulations with the best
electron-photon physics transport package available, they have been run using the most
up-to-date electron physics package. As part of the upcoming release of MCNP version
4C, Ken Adams of the MCNP code development team has worked to correct some of the
known discrepancies in the electron transport algorithms [99]. A prototype code has been
designated MCNP4BNU to indicate it is based on MCNP4B2 and includes the new
electron package. The prototype was made available to the author for use in these
simulations [100].

The bulk of the current work has been directed at providing the algorithms
necessary to include photonuclear interactions in MCNP. The resultant prototype code is
designated MCNP4BPN to indicate that it is based on MCNP4B2 and includes
photonuclear physics. It has been well documented in Chapter 3 and validated in Chapter
4. The neutron, photoatomic and electron routines remain those of MCNP4B and as such
have been validated as previously described. MCNP4BPN is used for the bulk of the
activation simulations.

Obtaining Output. The MCNP code has a very well established, comprehensive
set of output tables. The have been well tested over the years by the users and present a
wealth of information about the simulation. Creation and loss tables present a summary
of the overall events. If needed, details are available about the events by cell and by the
type of interaction. And most important of all, a standardized tally package provides

requested results along with statistical analysis of their uncertainty.
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Part of the problem in simulating the depth dose calculations is doing detailed
electron-photon transport over more than a meter in distance. It is trivial to obtain the
bremsstrahlung spectrum from the target and transport it into the region of interest, i.e.
the water tank. It is more slightly more difficult to obtain the bremsstrahlung spectrum
from the other major components in the beam path and transport them to the region of
interest. It is extremely difficult to transport the scattered electrons to the region of
interest. Because of this, the typical approach has been to break the geometry up into
distinct regions and create a phase-space file which adequately describes the electron-
photon “source” at the start of each new location.

In the true spirit of engineering mentality, i.e. always use the biggest hammer
available, these simulations were run from the original electron source incident on the
target. This was done at great expense in terms of CPU time though it considerably eased
the amount of time that would have been necessary to understand and use phase-space
files. The generation and use of phase-space files is, in the opinion of the author, still an
art form rather than a science. Therefore a large number of CPU cycles were facilitated
by the availability of standardized variance reduction techniques within MCNP to run
these simulations from top to bottom.

A dxtran sphere allows a volume of interest to receive a representative neutral
particle from every collision site outside of the volume. In order to keep the Monte Carlo
game fair, any particle actually reaching the boundary of the dxtran sphere is killed. For
the purpose of these simulations, a photon dxtran sphere was placed around the water
tank. To illustrate how effective this method is, consider that a typical example

simulation shows that 8 million photons were killed at the dxtran boundary but 200
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million particles entered the sphere, a significant net gain of particles interacting with the
water tank.

Unfortunately, there is no method currently available to propagate electron
contributions over a distance. Therefore the electron transport had to proceed the
traditional way. Each electron reaching the water tank was the result of a long series of
collisions which managed to penetrate the full length of the treatment head and still be
going in the right direction at the bottom. Part of the requirement for long run-times
derives from the need to have enough of these particles contribute to the dose very near
the surface of the water tank.

The dose along the central axis of the water tank was calculated from the surface
to 30 cm. A three square centimeter column was defined extending along the central
axis. It was cut up into 39 vertical slices: the first five each 0.2 cm thick, the next nine
each 0.5 cm thick, the next 24 each 1 cm thick and the last cell 0.5 cm thick. The energy
deposited in each cell can be tallied and, with that, the absorbed dose calculated.

The standard MCNP tally package includes two methods for estimating energy
deposition. The first is a heating tally. This method computes the average energy
deposited in the volume of interest for each photon collision assuming all secondary
energy is deposited instantaneously and locally. This requires that the region in question
has reach electron equilibrium. This occurs for homogeneous regions away from
boundaries. Thus it is a reasonable approximation for those points after the build-up
region and peak dose. As this method depends primarily on the photon transport, it does

not require as much time to achieve a converged answer as the next method.
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The second method to estimate energy deposition in a volume is to measure the
net energy flow through its boundaries. This is achieved simply by tracking each particle
and adding its energy to the tally when it enters and subtracting off its energy when it
leaves. The primary energy loss mechanism is the slowing down of electrons within the
cell. Obtaining convergence for this energy deposition tally is difficult because it is
necessary to have a large number of particles, particularly electrons, traverse the volume
in order to obtain an accurate measure of the average energy deposited.

The energy deposition tally is also sensitive to the electron and photon energy
cutoffs. Because the energy of the particle is added to the cell when it enters, any
mechanism that prevents it from leaving will cause the energy to remain added to the
tally. Thus if the electron and photon energy cutoffs, the energy below which no further
transport is done, are too high, the tally will probably overestimate the absorbed dose. It
was found through preliminary simulations that electron and photon cutoffs of 0.5 and
0.1 MeV, respectively, gave reasonable answers in acceptable run times.

All standard MCNP tally outputs include a wealth of statistical information to
help the user determine the precision of the answer. These simulations were run until the
energy deposition tally showed convergence at less than 3 percent relative error. The
heating tallies could be run at the same time thereby making better use of the time spent.
The run-times needed to achieve convergence in the energy deposition tallies
corresponded to a relative error level in the heating tallies of less than 0.5 percent.
However, it should be remembered that these both these error levels indicate the
precision of the Monte Carlo results and not necessarily its true accuracy. There

accuracy will be discussed in detail in the comparison sub-section.
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Results were obtained in the manner described above for three field sizes. The
secondary collimators were set such that the photon field incident on the water tank 100
cm SSD was 5x5 cm, 10x10 cm and 30x30 cm, respectively. Each of the seven incident
energy distributions was considered. All other conditions were held constant such that 21
variations were run.

A debt of gratitude is owed to the Advanced Computing Laboratory (ACL) at Los
Alamos National Laboratory (LANL). They operate the world’s fastest integrated
computer (at least for today), the Blue Mountain SGI cluster [101]. At the time these
simulations were performed, the machine was severely underutilized. After about 4,000
hours of time to obtain some preliminary results, the final set of simulations took 35,000
hours of CPU time. However, this time was cheap in comparison to the learning curve
necessary to understand and utilize phase-space files.

Two standard MCNP tallies were used to obtain estimates of the activation in the
gold foil. The track length estimate evaluates the particle flux in a volume. A point
detector evaluates particle flux at a point. Either can be multiplied as a function of
energy with a production cross section and an atomic density to obtain the production rate
of an isotope per source electron per volume. Track length estimators were used to
evaluate the isotopic production rate in the ingots as measured over finite volumes. Point
detectors were used to evaluate the isotopic production rate in the foils as approximated
at a point. Again, the statistical analysis package provides useful information for
evaluating the precision of the results.

Several techniques were used by the activation simulations to reduce the CPU

time required. A dxtran sphere, as discussed above, was used to surround the volume
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where a track length estimate of particle production was made. Since electrons and
photons with an energy below the lowest photonuclear threshold are no longer capable of
producing neutrons they are not transported. This is done by setting the particle energy
cutoff to remove them from the simulation when they fall below 5.7 MeV, the lowest
photonuclear threshold in the simulation. The electron energy cutoff represents the most
substantial time savings as electron transport becomes much more CPU intensive at lower
energies. Photonuclear biasing was used such that the neutron production from every
photon collision would be evaluated. Finally, a single weight window was used for each
particle type to ensure that particle weight due to the biasing schemes did not cause
unnecessary fluctuations in the tallies.

It should be noted that dxtran spheres are not used in conjunction with point
detectors. Point detectors are also known as next event estimators. They work in a
manner analogous to dxtran spheres. A contribution is made to the flux at the point
detector from every particle collision. Therefore, dxtran spheres are used in those
simulations with a finite ingot defined and point detectors are used otherwise.

The activation simulations included the production rates of both "**Au and "*°Au.
The (n,g) cross section necessary for estimating production of 198 Au was available in the
ZAID 79197.60c data set found in the standard ENDF60 continuous-energy neutron
library [102]. The (gn) cross section necessary for estimating production of '*°Au was
taken from the Saclay '*’Au photoneutron cross-section evaluation [69] as available
electronically in the Atlas of Photonuclear Cross Sections [17].

There were five simulation setups of interest: the bare ingot at isocenter; the

moderated ingot at isocenter; the ingot located in the maze; the foils in moderator; and,
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the foils without the moderator. The point detector estimate used for the foils without the
moderator is useful for comparison purposes even though the equivalent experiment was
not performed. Considering the seven energy distributions, this lead to 35 simulations.

Each of these simulations was duplicated, for '*°Au production only, using
MCNP4BNU to determine if the enhanced electron physics would significantly change
the production rate. The simulation thus run is not quite identical to the MCNP4BPN
simulation in that MCNP4BNU does not include the photonuclear cross section.
Inclusion of the photonuclear cross section will shorten the photon mean free path
slightly but due to the relatively small change, it has very little effect on the gross photon
transport.

As with the depth dose simulations, it was desired to run until the statistical
package reported convergence for all the tallies. This was indeed the case for almost all
of the volume tallies. The few discrepancies involved warnings although other
indications showed that the tally had converged. The point detectors had a more difficult
time.

Point detectors are best used in a vacuum outside the main region of transport.
Because they are next event estimators, most contributions to them tend to be of low
weight as the particle has had to manage to scatter in the right direction and traverse a
significant amount of material. Unfortunately, when used in a material they suffer from
the occasional particle which collides relatively close by and has a high probability of
scattering in the direction of the detector. These particles, to use a technical term, clobber

the tally by introducing a sample with much higher weight than the average.
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The activation simulations used point detectors residing within materials, in some
cases within dense materials. As such, many of the these tallies did not converge due to
the problem described above. After many attempts to remedy the situation and long run-
times to see if enough normal particles could overcome the occasional offending particle,
the final results were taken despite some continuing problems. User judgement is used to
evaluate those results which did not converge and estimate their uncertainties in light of
those results which were converged.

As discussed above, the author holds with the notion that all credible scientific
work must be reproducible. In order to facilitate the reproduction of the data presented
here, Appendix E contains the information necessary to reconstruct the input decks. The
coding for the algorithms added to MCNP4B?2 has also been provided as well as the
coding necessary to reproduce the cross-section library used. The cross-section data are
available in the ENDF format from the LANL T-2 web site [103]. The only set of
information which would have been useful to include, but is not, is the actual MCNP
output files. Unfortunately, they form several hundred megabytes worth of text files and

their inclusion was not practical.

Discussion of the Results

Two sets of experimental data and simulation results have been described. This
section will discuss how well the simulations match the experimental data and make
suggestions about where to concentrate future work to improve these results. The
comparison of the depth dose data is presented first, followed by the activation data.

Depth dose. The experimental data exists as three relative depth dose curves for

photon field sizes of 5x5, 10x10 and 30x30 cm at 100 cm SSD. The original
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experimental data is presented in Figure 5-3. It was provided at 1 mm intervals without
an estimate of the error bars though they are expected to be small. The data was averaged
over each cell in order to facilitate comparison to the simulation results.

The heating tally results for each of the seven incident electron energies and for
each of the three field sizes are shown in Figure 5-4 compared to their respective ion
trace. Since this tally is only valid once electron equilibrium is achieved, the comparison
is only for those points after and including the peak value of the ion trace. The sum of
the squares of the difference between each tally value considered to the average of the ion
trace in the cell volume was then minimized. Remember that the ion trace is a set of
relative values. The general conclusion based on this graph is that the simulations appear
to be in the right neighborhood. However, despite the fact that they meet the “eyeball
norm”, no further conclusions can be readily made strictly from this graph.

Three difference plots between each heating tally result and the ion trace are
presented in Figure 5-5. This set of graphs provides much better insight into the true
measure of each simulation. The first conclusion to be drawn is that the simulation
model has fairly accurately modeled the true experiment. None of the results are more
than four percent different. However, there are still some discrepancies.

Figures 5-4 and 5-5 are presented without error bars. Error bars are not included
on these graphs as they would obscure the information being conveyed. The error bars
are not available for ion chamber trace. The error bars for the heating tallies are all less
than 0.3 percent of the tally value.

The first area of concern is the large slope in the difference plots just after the

peak value. This is most probably due to electron equilibrium not having been fully
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reached until just after the peak value. Remember that the heating tally is not valid near
boundaries where electron populations are in a non-equilibrium state.

The second area of concern is the increasing difference seen between the
simulations and the ion trace for the 10x10 and 5x5 cm field sizes. One hypothesis for
this difference is that the relative size of the tally volume is a much larger percentage of
the total photon field size as that field size is decreased. The area of the central column
used for defining the tally is 3 cm”. This corresponds to 1/3, 3 and 12 percent of the
30x30, 10x10 and 5x5 cm field sizes, respectively. It may be that the tally is being
influenced by the edges of the field boundary. Further study is needed.

Overall, the simulation geometry seems to have captured the essence of the
physical space within the beam path. Further, from the difference graphs, the energy of
the incident electrons would appear to be in the 20 to 21 MeV range. This value is based
on user judgement in evaluating the curves. If the 30x30 cm field size simulation is taken
as the most accurate, it would appear that the incident electron energy is above 20 MeV.
Granting that the 10x10 and 5x5 cm field size simulations are not as accurate they still
indicate that the higher energies are becoming more divergent especially above 21 MeV.

The energy deposition tally results for each of the seven incident electron energies
and for each of the three field sizes are shown in Figure 5-6 compared to their respective
ion trace. Again a least squares fit was used to match each simulation result to the ion
trace. Similar to the heating tally results, these graphs seem to indicate that the
simulation geometry is a fairly accurate representation of the treatment head along the

beam path. The discrepancy near the peak is discussed below.
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The percent differences between each energy deposition result and the ion trace
are presented in Figure 5-7. Due to the larger relative error in these results, they do not
provide as much insight as the heating tallies. Again no error bars are provided on the
graphs themselves as they would obscure the information to be conveyed. The error bars
for the simulation results are less than 3 percent. No error bars are available for the ion
traces.

The first discrepancy causing concern is the increasingly poor match between the
build-up region in the simulation versus the experiment. The build-up region is volume
near the surface where the electron population has not reached equilibrium. The results
for the simulation show discrepancies of approximately 30, 40 and 60 percent difference
in the surface cell for the 5x5, 10x10 and 30x30 cm field sizes, respectively. This is most
probably due to the lack of air in the simulation model. The air would provide a source
of Compton scattered electrons impinging on the surface of the water tank. This
explanation seems reasonable as the effect is worse for increasing field size where more
electrons would be produced by this mechanism.

The area beyond the build-up region seems to substantiate the results of the
heating tally. The overall agreement in this region is on the order of 5 percent or less.
Though it is more difficult to observe, the same divergence seen in the heating tallies
seems to be apparent here. Due to the larger relative errors, no conclusions about the
appropriate incident electron energy can be drawn directly from these graphs though
nothing seems to refute the conclusions drawn from the heating tallies.

The original goals of the depth dose simulation were to assess the incident

electron energy and the number of electrons on target per MU. The mean energy has
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been estimated to be in the 20 to 21 MeV range. Remembering that one monitor unit
corresponds to one centigray of absorbed dose at the peak of the depth dose curve for the
10x10 photon field size, Figure 5-8 shows the estimate of the number of electrons per
MU as a function of energy for each of the two tally approximations. Based on the errors
seen to this point, 10 percent error bars are included on these values. Taking the center of
the expected energy range, the estimate of (1.36%0. 14)40" electrons incident on the
target per MU is predicted.

The overall conclusion drawn by the depth dose comparison is that the
simulation’s treatment of the physical space in the area of the beam path is substantially
correct. Based on the results of simulations the mean incident energy is estimated to be
(20.5+0.5) MeV corresponding to (1.36+0.14)40" electrons on target per MU. Given an
average dose rate of 400-425 MU per minute, this represents an average of approximately
15 microamps of beam current. This number is a good sanity check for the work so far as
it makes physical sense.

Activation. The experimental data consists of an estimate for both '*°Au and
P8 Au production for four different configurations. Several of these production rates have
been simulated via two different methods. The final estimates of the production rate for
both '*°Au and '*®Au by experiment and by simulation are given in Tables 5-2 and 5-3,
respectively. How these numbers were calculated is the subject of the following
discussion.

Each activation simulation reports the production rate in atoms produced per
electron incident on the target per cubic centimeter of original atoms. The number of

electrons per MU was estimated in the previous comparison. Thus the production rate
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expressed in atoms produced per MU per cubic centimeter encapsulates the integral result
of the simulations. For the purpose of comparison, it is desired to express the
experimental data into this same format.

The raw data from the experiments consisted of several sets of counts for specific
decays as determined by gamma-ray spectroscopy. The two strongest emission lines
from "*°Au decay are a 333 keV gamma from 24.4 percent of the decays and a 355.72
keV gamma from 93.6 percent of the decays. The strongest emission line from '**Au
decay is a 411.8 keV gamma from 95.53 percent of the decays. Note that the decay data
used throughout this section is taken from the Nuclide Navigator program [104]. The
GammaVision software [105] used to control the counting provides an estimate of the net
counts for each peak observed. All three of these peaks were present and well defined in
each counting session. Other possible peaks of interest were not as well defined and
therefore ignored.

Assuming the production rate is constant in time over the length of the irradiation,
the number of counts seen is a function of that one value. Therefore, a system of
equations can be written to express the count rate as a function of the production rate in
atoms produced per MU per volume of sample atoms. Simple algebraic manipulation can
be used to solve for the production rate in terms of the count rate and the count rate can
be fed into these equations to estimate the production rate seen by each sample.

The number of counts seen by the detector can be calculated from Equation 5-1.
Here, C is the number of counts observed and D is the true number of decays that
occurred during the counting session. The dead time is accounted for by multiplying by

the ratio of LT, the live time of the detection system, to RT, the real time elapsed during
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the counting session. BR is the branching ratio, i.e. the number of gamma-rays of a
specified energy seen per decay. The times and branching ratios are assumed to have
negligible error.

The last three factors in Equation 5-1 require more significant explanation.
Because the dimensions of the ingots are significant in comparison to the mean free path
of the gamma-rays, self shielding (SS) occurs. The correction factors used here have
been computed by Monte Carlo simulation. Photons are produced uniformly within the
volume of a mock ingot and the average number which escape the boundary is tallied.
Given an ingot size of 4.1 x 2.4 x 0.1636 cm and a total mass of 31.1 g, the self-shielding
factors are 0.445, 0.477 and 0.541 for 333, 355.72 and 411.8 keV photons, respectively.
Although the Monte Carlo simulations for self shielding were run to convergence and
negligible simulation error, the distribution of the photons in the ingot remains an
unknown and the self-shielding factors are assigned a 10 percent uncertainty.

Self shielding in the foils was assumed to be negligible and assigned a factor of
unity. Although self-shielding effects might be present, they should be minimal. An
uncertainty of 5 percent should be assigned to this factor.

The detector efficiency (Ep) is a function of the gamma-ray energy and the
position of the photon source in relation to the detector. Two certified check sources,
13Ba and *'Cs, were available to determine the absolute efficiency of the counting
system. Four decay lines were of interest. The decay of '**Ba includes 302.71, 355.86
and 383.7 keV gamma rays. The decay of '*’Cs includes a 661.62 keV gamma ray.

Based on the counts rates observed from these four lines, detector efficiencies of 0.0504,
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0.0484 and 0.0437 were used for the 333, 355.72 and 411.8 keV photons, respectively.
The uncertainty in these efficiencies is estimated to be 10 percent.

At the time the counts were taken, it was not contemplated that the large finite
size of the ingot samples would have an effect other than self-shielding. During the final
analysis, it was discovered that the values estimated by the foils and the ingots differed
significantly. The only reasonable suspect for such a difference was the much larger size
of the ingots leading to a different detector efficiency than a point source. Therefore a

finite size (FS) factor has been added to the equation.

C:DX%XEDXBRXSSXFS (5-1)
Working back towards the production rate, the next step is to relate the true

number of decays (D) to the number of atoms present at the start of the counting session
(N1). The fraction of atoms that survive the counting session is given by the familiar
exponential decay term. Tgc and Tgc are the start and end time for the counting session,
respectively. The decay constant | is found in many sources and the values 1.30E-7 and
2.97E-7 per second are used for "**Au and '*®Au, respectively. The relation describing
the number of decays is written in full in Equation 5-2. The times and decay constants

are assumed to have negligible error.
D=Ny x(l- o ! >(Tsc-TEc)) (5-2)

The total number of atoms of interest in the sample at the beginning of the
counting session is a function of the number of atoms produced in each irradiation and

their subsequent decay. The total present at the start of the counting sessions is the sum

164



of each of the individual contributions as shown in Equation 5-3. Np; is the number
produced during irradiation i. The exponential decay term accounts for the number that
decayed between the end of the irradiation (T ;) and the start of the counting

session(Tsc). Again, the times and decay constants are assumed to have negligible error.

-l (Tgp;-T

1

Finally, the number of atoms produced from the irradiation is a direct function of
the production rate as shown in Equation 5-4. The production rate is given in units of
atoms produced per volume(V) of sample per dose(AD;) as measured in MU. The rate is
in terms of MU, as opposed to electrons, as that is the experimental measure of the
amount of irradiation. The decay of atoms during the irradiation time is ignored. This is
justified by the fact that less than one-quarter of one percent of the atoms produced
during any given irradiation decay before the end of the irradiation. The volume and the

dose are assumed to have negligible error.

Np; =P/ xAD; (5-4)

The linear system of equations relating the production rate to the count rate has
now been established. It is a trivial matter to solve for the production rate in terms of the
count rate. The uncertainty of the count rates varies by gamma-ray and by counting
session but on the whole is less than one percent for the ingots and a few percent for the
foils. The issue of the finite size factor has not been resolved and is left for further
discussion below.

The five configurations for the simulations have been described above. The final

results are production rates as a function of incident electron energy given in units of
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atoms produced per electron per volume of sample. These are changed to units of atoms
produced per MU per volume by multiplying the number of electrons per MU as
estimated in the previous set of simulations. The uncertainty in the number of electrons
per MU is estimated to be 10 percent. The uncertainty in the simulations is discussed in
more detail below.

The first experimental configuration simulated was the bare ingot at isocenter.
Simulations were run to calculate production of 8 Au using MCNP4BPN and production
of " Au using MCNP4BPN and MCNP4BNU. The results of the simulations are shown
in Figures 5-9 through 5-11, respectively.

For all of the simulations calculating the production rate of '*°*Au using both
MCNP4BPN and MCNP4BNU, almost no difference was seen. This can be attributed to
the fact that the gross photon transport characteristics are unaffected by the presence or
absence of the photonuclear portion of the photon cross section. It also indicates that the
changes in electron transport and bremsstrahlung production from version 4B to 4BNU
do not significantly affect this simulation. Therefore, while both sets of results will
continue to be shown, their results are discussed without differentiating between the two.

Similar to the depth dose simulation, the production rate of '*°Au depends mainly
on the electron-photon transport through the treatment head in the vicinity of the beam
path. The point estimates of the production rate in the beam path indicate that the high-
energy photon flux in this region is fairly uniform. The experimental values also confirm
this. It is also evident from the simulations that self shielding in the ingots has an effect
though in this case it changes the results by less than 10 percent. The best estimate of the

production rate for "*°*Au is 1.49407 atoms/e/cc from the volume estimate (the track
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Figure 5-9. Calculated production rate of 198 Au in the ingot located at isocenter.
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Figure 5-11. Calculated production rate of 196 Ay in the ingot located at isocenter using MCNP4BNU.
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length tally) and its uncertainty is estimated to be 25 percent. This uncertainty derives
mainly from uncertainties in the 197Au(g,n)l%Au cross section.

The production rate of '*®Au is very sensitive to the production and transport of
the neutrons. For the reasons discussed above, all the simulations attempting to simulate
the production of '**Au have a high level of uncertainty. It would be fair to say that these
simulations represents an accurate solution of the problem described but that the problem
described is incomplete. It is still worth discussing the results and drawing some
conclusions.

For production of '**Au in the bare ingot at isocenter, both the simulation using
point estimates and the simulation using a volume estimator give reasonable results.
However, these results are a factor of four different. This can be attributed to self
shielding in the gold ingot causing less neutron flux to be seen within the larger volume.
The volume estimate is clearly the best choice due to the self shielding in the sample.
The production rate of '*®Au is estimated to be 6.1830” atoms/e/cc and the uncertainty is
estimated to be a factor of three.

The second experimental configuration simulated was the moderated ingot at
isocenter. Simulations were run to calculate production of '** Au using MCNP4BPN and
production of 6 Au using MCNP4BPN and MCNP4BNU. The results of the simulations
are shown in Figures 5-12 through 5-14, respectively.

The presence of the moderator block reduces the high-energy photon flux
available for production of '*°Au. However, the results are very similar to those obtained
for the bare ingot. One difference is that the point detectors are subject to more high

weight variations in this region and therefore more subject to error. Self shielding in the
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Figure 5-12. Calculated production rate of 198 Au in the ingot located at isocenter surrounded by A-150 plastic.
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sample volume still reduces the activation by something less than 10 percent. The
volume estimate gives a value of 1.22307 atoms/e/cc for the '**Au production rate and
the estimated uncertain is about 25 percent.

The presence of the moderator block dramatically alters which neutrons are
causing activation in the sample. In the bare ingot, thermal neutrons scattered within the
room are readily available for absorption within the gold. The mean from path for the
average neutron in the moderator block is about 0.5 cm. This means that any room
scattered neutron must penetrate a minimum of 16 mean free paths to contribute to
production of '"®*Au. However, high-energy source neutrons have a longer mean free
path and can more readily penetrate to the center of the moderator. In this same process,
they are thermalized such that they are more easily absorbed in the gold. Again the
volume estimate is used for the final results. The production rate of '**Au is estimated to
be 2.1040® atoms/e/cc and the uncertainty is estimated to be a factor of three.

The third experimental configuration simulated was the moderated foils
distributed in the cross-plane. Simulations were run to calculate production of '**Au
using MCNP4BPN and production of '*°Au using MCNP4BPN and MCNP4BNU. The
results for all the foils were obtained using point detectors. Unfortunately, point
detectors are subject to large errors as described above. Therefore, these results did not
prove as generally useful as those from the ingots. However, they did provide some
insight into the modeling and, most importantly, insight into the probable value for the
finite size factor.

The production rate of '*°Au in the foils drops dramatically outside the region of

the photon field. In fact, due to the low exposure of those foils outside this region the
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experimental data is virtually meaningless. However, the two foils located in the primary
beam path provide some useful data. The simulation results for these foils are presented
in Figures 5-13 and 5-14. The point estimate at isocenter and 3 cm radially outward
along the cross-plane show essentially the same result. These estimates give a value of
1.23407 atoms/e/cc for the '**Au production rate and the estimated uncertain is about 25
percent.

It should be remembered that small, thin foils are typically used for activation
analysis because their size closely resembles the calibration sources used to determine
detector efficiency. Self shielding and finite size typically are not considered as
significant factors in computing the activation in the sample based on the decays counted.

It can be shown that the foils used in this experiment do not appear to suffer from
self shielding or finite size effects. Taking the self shielding and finite size factors to be
unity for the foils, the experimental value for the '*°Au production rate in samples 1 and 2
is approximately 1.64X0° atoms/MU/cc with an uncertainty of 12 percent. The point
detector estimation of the production rate is 1.36X10” atoms/e/cc with an uncertainty of
about 25 percent. Using the electron per MU value from above, this corresponds to a
production rate of 1.8540° atoms/MU/cc. This is a satisfactory match between the
experimental and simulation values. It continues to enforce the conclusion that the
electron-photon transport through the treatment head to the region around isocenter is
accurately modeled.

Knowing that the simulation model appears to be accurately representing the
electron-photon transport, the 6 Au production calculated can be taken as sufficiently

near truth. The moderated foil and moderated ingot simulations give results that are
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within 10 percent of each other. This indicates that the experimental production rates
should be within that same error margin. Taking self-shielding as computed above, the
experimental value from the ingot is a factor of 1.6 too high when compared to the value
from the foil. Based on the match between the foil estimate and the simulation, the
simulation for the ingot should be substantially correct. Therefore a value of 1.6 is
estimated for the finite size factor and used in calculating the experimental production
rate from the ingot samples. As the estimate of the finite size value is based only on this
one data point, it is assigned a 50 percent uncertainty. At a later date, this study should
be redone using only foils in order to avoid having to use a value like this.

The production rate of '**Au in the foils as estimated from the simulation is nearly
worthless. The point detectors used for this estimate were subject to large fluctuations
due to the problems described earlier. Using a healthy dose of user judgement, the
production rate of '**Au is estimated to be 8.36X0° atoms/e/cc and the uncertainty is
estimated to be a factor of three.

Though the remaining foils have been eliminated from the major comparison,
they are worth considering for a moment longer. The experimental data show a trend in
the moderator block that the '**Au production is highest in the main beam path where
high-energy neutrons can traverse the treatment head with little downscatter. Figure 5-15
shows that the simulation reproduces this trend though not as well defined as the
experimental data.

The last experimental configuration simulated was the bare ingot located in the

maze corridor. Simulations were run to calculate production of '**Au using MCNP4BPN
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and production of 5 Au using MCNP4BPN and MCNP4BNU. The results of the
simulations are shown in Figures 5-16 through 5-18, respectively.

The production rate of '*°Au in the ingot located in the maze is anticipated to be
very low. It is expected that the only significant contributions from the radiation source
as modeled will be for electrons that have scattered such that they can produce
bremsstrahlung heading towards the sample. The volume estimate gives a *°*Au
production rate of 4.6540"* atoms/e/cc and an estimated uncertain of 25 percent.

The production rate of '*®Au in the ingot located in the maze is anticipated to be
significant. Neutrons scatter off concrete very well and the maze corridor presents an
ideal streaming path. The volume estimate gives a '°°Au production rate of 7.8330™"°
atoms/e/cc and the uncertainty is estimated to be a factor of three.

With all of the assumptions going into the experimental and simulation
production rates now documented, the final values can be compared and conclusions
drawn. Tables 5-2 and 5-3 present the final values for the production rates of *°Au and
"8 Au, respectively. The values are tabulated in units of atoms produced per monitor unit
per cubic centimeter of gold sample. The ratio of the values is given to aid in

comparison.

Table 5-2. Experimental and simulated production rates of **Au for four configurations.

Configuration Production Rate ('"°Au/MU/cc””’ Au)
Experiment (E) Simulation (S) S/E

Ezrrrépllﬁgg ot socenter (1.88+0.9440° | (2.03+0.51)40° 1.080

Sample 12

Vo d‘;rate 4 Ingot at Isocenter (1.6320.82)40° | (1.71£0.43)20° 1.049

Samples 1 & 2

o d‘;rate i Foil Near Isoconter | (1:64£0.18)40° | (1.850.46)40° 1.128

gz‘r‘;pllgglgt Mz (1.8440.92)20" | (6.33£1.58)40° 320
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The production rate of 5Au supports the conclusion that the electron-photon
transport through the primary beam path in the treatment head is accurately simulated by
this model. The comparison shows three matches within 15 percent difference which is
in turn well within the accuracy of the individual values. The only anomaly is the
production rate in the sample in the maze.

From the discussion above, it should be remembered that the secondary objective
of the sample in the maze was to determine if high-energy photons were being produced
outside of the target area. The experimental production rate for that sample is four orders
of magnitude greater than the simulation. This is a clear indication that there is either an
unknown streaming path through the primary collimator, an unlikely situation, or that
there is another source of high-energy bremsstrahlung photons. It is believed that there is
a secondary source and that the source is the energy selection slit in the bending magnet
system. Due to their initial direction and the shielding in their path, photons produced at
the energy selection slit would not significantly affect the photon flux in the beam path
near isocenter. However, if such photons are being produced, they could represent a
significant source of high-energy photons, and thus photoneutrons, that are not included
within this model. The experimental observation of high-energy photons in the maze
supports this hypothesis.

The production rate of 8 Au supports the conclusion that the electron-photon-
neutron model is inadequate to simulate neutron estimates with an uncertainty of less
than a factor of three. This uncertainty was derived from these final numbers although it

has been quoted in the discussion above. With that said, this methodology still represents
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Table 5-3. Experimental and simulated production rates of '**Au for four configurations.

Configuration Production Rate ('"*Au/MU/cc””’ Au)
Experiment (E) Simulation (S) S/E
Ezrrrépllﬁgg ot Tsocenter (4.67+2.34)40° | (8.40+x.xx)40’ 1.799
E/fgﬁfd Ingot at Tsocenter (5.3742.69)40° | (2.862x.xx)20° 0.533
ﬁﬁgﬁeﬁfﬂ Near Tsocenter | (2-28£025)20° | (1.14£x xx)40° 0.500
Sample I3 (330+1.65)40° | (1.07+x.xx)40" 3242

Bare Ingot in Maze

a giant leap forward in the state-of-the-art for simulating these quantities in that coupled
simulations can be run and an accurate assessment of their uncertainty is available.
Further, the data make clear the areas of highest concern and help to prioritize future
work to improve the accuracy of this simulation model.

The final conclusion from the '*°Au production data above indicate the possible
existence of a photoneutron source not modeled in the current simulation. The
comparison for the moderated foil and the moderated ingot both indicate that the neutron
production is too low, possibly by a factor of two. These two bits of evidence lend
credence to the hypothesis that the energy selection slit is a significant source of high-
energy photons and therefore photoneutrons. This should be one of the first areas
addressed by future work.

Further, from the '**Au production data it is concluded that the simulation of
neutron scattering and absorption is inadequate. During the course of this study, many
variations of physical geometry and materials were explored. It was found from these
studies that the scattered neutron flux was most sensitive to the materials, in particular

tungsten, in the treatment head outside the primary beam path. With no other changes,
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the '** Au production in the bare ingot at isocenter could be reduced by a factor of three
by realistic increases in the size of the primary collimator. This is primarily due to the
fact that tungsten has an thermal absorption cross section two orders of magnitude greater
than lead. Placement of lead throughout the treatment head had a lessor, though still
significant, effect. One of the recommendations discussed above is to visually inspect the
treatment head in order to obtain an accurate model of the shielding outside the beam
path.

Several other factors also have a significant, though smaller, impact on the
neutron scattering and absorption. Once the two questions raised above have been
answered, the lesser problems will become more important to solve. Included in this is
an accurate description of the finished wall. Every scattered neutron traverses this
geometry numerous times. If any material with a significant capture cross section exists
within the general wall-board, it will have an impact. The main body of the accelerator
and the partition wall of the machine closet represent a significant amount of material
available to scatter or absorb neutrons. These and possibly other materials in the room
will eventually have to be modeled. Last, as new cross-section data becomes available,

the description of the neutron production will improve.

Implications

Now that the region of applicability for this simulation model is known, it can be
applied to the general problems at hand. In particular, two pressing questions exist. The
first is to estimate the dose due to photoneutrons around the MEA. The second is

evaluate the relative contributions from the photon and neutron components of the dose
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as the mean electron energy is increased. These two questions are addressed
simultaneously in this section.

For the purpose of addressing these questions, the physical model used for the
activation simulations is used without change. In reality, the accelerator would be
redesigned for any significant change in the incident electron energy in order to provide
an appropriate photon field in that target area. However, that is beyond the scope of this
study.

For the purpose of calculating the dose, the electron-photon dose and the neutron
dose are calculated separately. Similar to the studies performed above, MCNP4BNU is
used for the electron-photon transport problem and MNCP4BPN is used for the electron-
photon-neutron transport problem. The dose is estimated using point detector tallies
multiplied by appropriate flux-to-effective-dose conversion factors. The conversion
factors are taken from a tabulation by Rogers [106] for photons and the tabulation by the
ICRU [107] for neutrons. A hidden assumption necessary for this comparison is that the
number of electrons on target stays constant (1 3640") throughout these calculations.

Figure 5-19 shows the dose at isocenter over the mean electron energy range 10 to
100 MeV. Note that both the photon and neutron dose are not strongly dependent on the
field size. Field size is therefore ignored in the following discussion despite the fact that
it is included for each of the graphs. It can be observed that the ratio of the photon to
neutron dose remains fairly constant in this comparison.

The neutron dose at isocenter is approximately three orders of magnitude below
the photon dose. This is as it should be. Many state regulations specify an upper limit of

0.1% of the dose from neutrons. However, the figure shows that the two curves converge
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Figure 5-19. Theoretical neutron and photon dose per monitor unit at isocenter.




somewhat in the 15 to 50 MeV range with the point of closest approach around 20 to 25
MeV. The ratio in this energy range is around 0.0035 to 0.005, slightly above what is
desired. While this is of concern, it should be reviewed with the understanding that there
is a large uncertainty in the calculated value.

Figures 5-20 through 5-22 present the dose at one meter above, in front of and to
the side of the electron target, respectively. As might be expected due to the symmetric
nature of the treatment head model, they show very similar results. Of significant note is
that the neutron dose quickly exceeds the 0.1% limit desired. This is due to the lack of
shielding around the treatment head and can be remedied.

It is also worth noting that the photon dose is relatively flat in these locations. In
fact, the photon dose is relatively flat for all locations except at isocenter. This is useful
because it indicates that photon shielding in place is adequate for this entire energy
regime.

The neutron dose becomes the primary shielding problem in the maze corridor.
This is not unexpected. The neutron’s ability to scatter and utilize streaming paths has
already been discussed. The purpose of the maze is to create a longer distance between
their inception and their leakage into occupied areas. Figures 5-23 and 5-24 show the
dose at both extremities of the maze corridor.

The effective dose calculated at the entrance door for a typical 2000 MU
treatment is 0.001 cSv (1 millirem). This calculation is too high and again argues that
more work is needed to create a more detailed simulation model. The error is probably
due to the large uncertainties in the neutron shielding around the treatment head and the

uncertainties in modeling possible neutron absorbers in the room and maze.
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CHAPTER 6
SUMMARY AND CONCLUSIONS

The development and implementation of a systematic treatment of photonuclear
physics for use in coupled photon-neutron simulations has been presented. This
capability is based on the use of evaluated photonuclear data to enable Monte Carlo
sampling of tabulated data describing photonuclear interactions and the resultant
products. As such, it represents the state-of-the art in simulation capability using the
most accurate data available. These new developments have been assessed through the
process of verification and validation. Additionally, an initial application to the
simulation of medical electron accelerators (MEAs) has been presented.

The Evaluated Nuclear Data File (ENDF) format is the international standard for
representation of nuclear cross-section data in a complete manner. The Cross Section
Evaluation Working Group (CSEWG) of the National Nuclear Data Center (NNDC)
maintains ENDF/B-VI data library containing the recommended values for the United
States. For the first time ever, evaluated photonuclear data have been made available in
this format and they are undergoing review for inclusion into the ENDF/B library.

The Nuclear Theory and Applications Group of the Los Alamos National
Laboratory has created the Los Alamos LA 150 cross-section evaluation library that
includes evaluated data up to 150 MeV incident energy for photonuclear interactions with
selected materials. The evaluated data provided are complete descriptions of all possible

photonuclear reactions. That is, the absorption of the photon and the subsequent
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emission of all secondary particles is handled in a self-consistent manner to describe the
spectra of all emission products, not just neutrons. It is expected that these new
photonuclear evaluations will be formally accepted for inclusion in the ENDF/B-VI
library by CSEWG at a forthcoming meeting.

Further, the International Atomic Energy Agency (IAEA) has maintained a
Coordinated Research Project over the last three years with the goal to establish an
internationally accepted evaluated photonuclear library. That library and its associated
report are expected to be released later in 2000 and will include the evaluations in ENDF
format for the major isotopes of interest for photoneutron production. The newly
available evaluated data from both T-2 and IAEA represents a first-of-a-kind
advancement in this field that will help bring the accuracy to photonuclear simulations
that was previously available only to neutron, electron and photoatomic simulations.

The Monte Carlo N-Particle (MCNP) radiation transport code has long
represented the state-of-the-art in neutron, electron and photoatomic transport
simulations. The reputation of this code is in large measure due to the quality of the data
underlying the calculations. The MCNP code uses tabular data that include interaction
probabilities with complete descriptions of the resultant products. These data are
maintained in A Compact ENDF (ACE) format derived from evaluated data in ENDF
format. The current work has defined a new class of ACE table for the inclusion of
photonuclear data and presented a simple data processing code for the conversion of
ENDF evaluated photonuclear data into this new ACE format. The LA150 photonuclear

data available have been processed in this manner.
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The implementation of photonuclear interactions into MCNP has also been
presented. This included the definition of new user interface options for specifying the
photonuclear data to be used in a transport simulation. The standard definitions available
in MCNP have been extended to accept the specification of photonuclear tables and
libraries. In addition, since evaluated photonuclear data may not exist for the
corresponding neutron data, provisions have been added to allow the code user to specify
the most accurate neutron and photonuclear data separately. The setup and storage
sections of the code have been updated such that the tabular data specified for use is read
into memory in the standard manner.

With the introduction of complete evaluated data and their conversion into ACE
formatted tables, the sampling of emission particles from photonuclear absorption can be
performed using the existing ACE sampling routines. Slight modifications to these
routines were necessary to ensure the appropriate handling of new incident and emitted
particle types. These modified routines have the additional benefit of immediate use for
sampling nuclear interaction from new tabular proton data within the MCNPX code.

The photon collision routines within MCNP have been updated to include
sampling of photonuclear interactions. This includes accounting for the photonuclear
cross section in the distance-to-collision calculation and appropriately sampling
secondary particles produced from a photonuclear collision. This coding is fully
integrated such that coupled simulation of photon-neutron transport uses the standard
MCNP framework of routines. This means that tallies, variance reduction techniques and

summary information all reflect the coupled simulation.
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Since the photonuclear interaction is a rare event, a biasing scheme has been
introduced to increase the sampling of these events. The code user now has the ability to
simulate the photonuclear contribution to the radiation field from every photon collision.
Further, the photonuclear collision routine has been integrated with the standard MCNP
weight-window scheme to ensure that particle weights from photonuclear production do
not unnecessarily introduce large variations in the tally results. These enhancements
significantly reduce the computational run-times necessary to achieve statistically valid
results.

The accuracy of the results from the new ability to simulate coupled photon-
neutron radiation transport has also been appraised. Verification of the coding was done
to ensure that the newly implemented algorithms performed as expected. Validation of
the new data was achieved by comparison of simulation results with two sets of data
found in the literature.

The National Council on Radiation Protection and Measurement (NCRP)
provided recommendations for assessing the neutron production and transport around
medical electron accelerators [2]. This report recommends the method developed by
Swanson [31,32] for estimating neutron production. Swanson’s work documents neutron
yields from electrons incident on selected materials. Comparison of calculated yields
from the current work to Swanson’s revised [32] values shows that the current
methodology is able to accurately assess the neutron production within the uncertainty of
the underlying experimental data.

The experimental measurements of Barber and George [58] are the defining

benchmark for neutron production from electrons incident on selected materials.
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Comparison between the current calculated yields and the reported values shows
agreement to better than 25 percent. These results directly validate those materials for
which tabular data and experimental measurement were available. They indirectly
validate the methodology used to create the tabular data and provide a basis for
hypothesizing that all the available data are probably accurate to 25 percent for the
prediction of neutron production. Further benchmark data will be necessary to directly
conclude this. It should be noted that the difficulties in assessing nuclear interactions are
well known and for this problem 25 percent uncertainty is considered an excellent first
step.

An initial study has been prepared to determine the course future work should
take for the accurate assessment of the neutron environment around medical electron
accelerators. During the course of this study, it was demonstrated that the electron-
photon component of the MEA treatment beam is accurately modeled using current
simulation techniques.

However, despite the availability of a coupled simulation code and evaluated
photonuclear data, the current simulations are unable to reproduce experimental
measurements of neutron flux around the MEA with an accuracy better than a factor of
three. It is concluded that this is primarily due to limitations in the simulation model’s
description of the materials and their placement within the treatment head of the MEA
and to a lesser extent the placement of materials within the surrounding room. The lack
of certain isotopic evaluations in the current photonuclear library also introduces a source
of error though contributions from this source are expected to be less than those

mentioned above. Therefore, the first task that must be completed by future work is the
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more accurate modeling of the physical space around the medical electron accelerator
than has been necessary for electron-photon simulation.

Some interesting results have been obtained from the medical electron accelerator
simulation model currently available. It was shown that the neutron dose to a patient
during a typical radiotherapy treatment using high-energy photons (20 to 25 MeV) is on
the borderline of what is generally considered acceptable. This was expected and has
been a known concern for this type of treatment. This new capability provides a tool
which can be used to refine the estimation of the neutron dose and explore the
possibilities for reducing it. Of significant note, it was found by this study that tungsten
is an excellent neutron shielding material for use in MEAs due to its larger neutron
capture cross section. On the other hand, lead was seen to influence the neutron energy
distribution but have negligible effort on the population.

The simulation methodology was also shown to be able to assess the health
physics concerns around a typical medical electron accelerator. The model is capable of
estimating the direct neutron dose to technicians working near the MEA though further
refinement is necessary to reduce the large uncertainties. Future work should first
concentrate on refining the simulation model to improve this assessment. Other work
may also be undertaken to simulate the photon dose due to neutron activation of materials
within the treatment room and their subsequent gamma-ray decay.

The development and implementation of a systematic treatment of photonuclear
interactions in coupled photon-neutron simulations paves the way for many follow-on
studies. As the effort to integrate the new evaluated data into the transport codes has

been carried out under the supervision of staff from the Los Alamos National Laboratory,
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these developments are expected to make their way into publicly released versions of the
MCNP and MCNPX codes. The data processing capability for creation of photonuclear
ACE files has been integrated into the NJOY99 nuclear data processing code and
released last December (1999).

In addition to the recommendations above, many other possibilities have been
discussed with researchers in this field. Future studies may include the assessment of the
charged particle dose to patients undergoing radiotherapy from light-ions produced by
photonuclear reactions in tissue; the assessment and placement of neutron shielding for
both personnel and equipment around electron accelerators used for radiotherapy and
radiography; the assessment of the neutron source created by in-flight annihilation
photons impinging on a heavy water target; the assessment of material compositions for
unknown samples by photon interrogation; and many other interesting concepts. The
capability to simulate photonuclear interactions is therefore offered up with great hope

and expectation on what the future will bring.
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APPENDIX A
PHOTONUCLEAR ACE TABLE FORMAT

Introduction

This appendix documents the class ‘u” ACE table format as used by this work.
ACE tables are compact versions (A Compact ENDF) of Evaluated Nuclear Data Files
(ENDF). The MKPNT (MaKe PhotoNuclear Table) data processing code (described in
Chapter 4 and listed in full in Appendix B) converts ENDF formatted data into the ACE
‘u’ table format as described here. Limitations on the formats MKPNT will handle are
discussed in Chapter 4. Data in the ACE class ‘u’ format can then be used by the
photonuclear version of MCNP (described in Chapter 4 and listed in Appendix C) for the
simulation of radiation transport.

As the class ‘v’ format used here derives from the standard ACE format, the
descriptions of the data presented have been adapted from those in Appendix F of the
MCNP Users Guide [3]. However, many changes have been made to both streamline and
augment the old format. Comments are included to document where changes have been
made and to give guidance on appropriate uses of various representations. This appendix
was written to be suitable for inclusion in the appropriate location in the MCNP [3] and
MCNPX [42,108-110] user guides. Because of this, there is some information that is

redundant to Chapter 4.
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Table Layout

There are no changes from the standard ACE table layout. It is presented here in
Table A-1. The format as shown describes an ASCII text file. The binary version of the
file contains the data in the same order except stored in the machine dependent format for
integers, reals and characters, respectively. There is one generally accepted exception
from this format. Integers in the XSS array are typically written to the ASCII file in the
(I20) format for readability although they are stored as real value numbers in the binary
file and within the MCNP program.

A standard data library file contains multiple data tables, e.g. the MCPLIB02
library contains one photoatomic data set for each element from hydrogen to plutonium.
A specific table within the library file is found by looking up its starting line (whose
value is IRN) and referencing the data relative to the appropriate starting line. Similarly,
when stored as binary data the address of the first entry for the table in question is the

absolute starting point.

Table A-1. Standard table description for the photonuclear class ‘u’ ACE format.

Line Address Contents Format
Relative Absolute (Fortran Standard)
1 IRN ZAID, Atomic Weight, A10,2E12.0,1X, A10

Temperature, Date Processed
2 IRN+1 Comment A80
3-6 IRN+2 — IRN+5 | Inherited fields currently unused | 4(I7, F11.0) per line
(Fill with zeros or leave blank)
7-8 IRN+6 — IRN+7 | (NXS(I):I=1..16) 8(19) per line
9-12 IRN+8 — IRN+11 | (JXS(I):1=1..32) 8(19) per line
13-... IRN+11— ... (XSS(I):I=1..LXS) 4(E20.0) per line
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NXS Array Elements

Only data common to the whole table are stored in the NXS array. Specifically, it
contains the information necessary to understand the details within the remainder of the
table. Examples of this type of information include the number of energy points used, the
number of reaction cross sections listed and the number of secondary particles with
emission data. Because the format of this table was modified over several iterations, key
details about the table format itself are also included here. The significance of each entry
in the NXS array is documented in Table A-2.

Two elements of the NXS array have standard definitions. The first element of
the NXS array is always the length (number of entries) of the XSS array. This
standardization makes it possible to read in a generic table without knowing the details of
the sub-arrays. The second element of the NXS array is typically the target identifier.

This document pertains to format version one (TVN=1) of the ACE class ‘v’
table. For this version of the table, the number of parameter entries in each IXS array is

two (NPIXS=2), the number of entries in each IXS array is twelve (NEIXS=12).

Table A-2. Description of the NXS Array elements in a photonuclear class ‘v’ ACE
format.

Entry Parameter Fixed numeric descriptive

NXS(1) LXS Length of the XSS data block

NXS(2) ZA Atomic and mass number of the target isotope
ZA =7%1000 + A

NXS(3) NES Number of energy entries in the main energy grid

NXS(4) NTR Number of MT entries in the reaction-type listing

NXS(5) NTYPE Number of secondary particle types with IXS information

NXS(6) NPIXS Number of parameter entries (fixed values) in the IXS
array

NXS(7) NEIXS Number of entries (fixed values and locators) in IXS array
per secondary particle

NXS(8-15) Unused (Fill with value zero)

NXS(16) TVN Table Format Version
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Parameters are fixed values listed first in the array. Other entries are assumed to be
locators and their values updated as the table is shifted in memory. The maximum
number of secondary particles (NTYPE) for which emission data can be given is eight.
This structure and values of this table are subject to revision at which time the table

version number will be incremented.

JXS Array Elements

The JXS array elements contain locators to global data contained within the XSS
data block. Similar to the NXS elements, global applies to the main energy grid, the
cross-sections, additional information associated with each reaction and a pointer to the
secondary data array IXS. Locators are offsets into the XSS array. Descriptions of the
JXS locators are given in Table A-3. For example, the first value for the main energy
grid is located at XSS(ESZ).

This format has deviated from the traditional style in that it references all
secondary particle emission data through the use of the IXS construct. The use of the
IXS construct was first done for the LA150 neutron library [47,48]. This library was
constructed for use in MCNPX where emission descriptions for protons, deuterons,
tritons, helium-3 and alphas were desired in addition to neutrons and photons. The table
presented here completes the transition in that all emission data (including photon and
neutron) are referenced through the IXS array. This was done so that the table is now
consistent in its treatment of all secondary particle emission data. As a result, only data
general to the whole table should be referenced from the JXS array.

Another major change is the addition of the locators TOT, NON, ELS and THN.

In neutron type ‘c’ tables, the locator ESZ does quintuple duty. That is the energy grid,
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Table A-3. Description of the JXS Array elements in a photonuclear class ‘u” ACE
format.

Entry Locator | Offset to array of...

JXS(1) ESZ Main energy grid

JXS(2) TOT Total cross-section data

JXS(3) NON Total non-elastic cross-section data
JXS(4) ELS Elastic cross-section data

JXS(5) THN Total heating number data

JXS(6) MTR MT reaction numbers

JXS(7) LQR Q-value reaction energy data

JXS(8) LSIG Cross-section locators (relative to SIG)
JXS(9) SIG Primary locator for cross-section data
JXS(10) IXSA First word of IXS array

JXS(11) IXS First word of IXS block

JXS(12-32) Unused (Fill with zeros)

the total cross-section, the absorption cross section, the elastic cross section and the
heating numbers are referenced through the ESZ locator. These have now been
separated. The absorption cross section has been replaced by the non-elastic cross

section.

XSS Block

XSS Array

The XSS array is the generic container for the data. Because of this, it is also
referred to as the XSS Block. Descriptions of each of the arrays and their associated
values as located within the XSS block are presented here. It should be noted that the
ACE format uses only one energy grid for all cross-section data and that all cross sections

use linear-linear interpolation to determine intermediary values.
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ESZ Array

The ESZ array contains the data entries for the main energy grid. It represents a
superset of all energies used by any reaction cross section listed in the table. Energy
values are given in units of MeV. The entries should consist of a series of monotonically
increasing, positive values located at (XSS(I): [=FESZ..ESZ+NES-1). Duplicate entries
are not allowed. Sharp transitions should be represented as occurring over a finite
transition region rather than a true step change. Error checking should be done to ensure

the conditions specified.

TOT Array

The TOT array contains the data entries for the total cross section. Cross-section
values are given in units of barns. There must be an entry corresponding to each entry in
the ESZ array and they should be located at (XSS(I): I=TOT.. TOT+NES-1). Error
checking should be performed to ensure that these values are equivalent to the sum of the

elastic and non-elastic cross sections. This array must be present.

NON Array

The NON array contains the data entries for the total non-elastic cross section.
Cross-section values are given in units of barns. There must be an entry corresponding to
each entry in the ESZ array and they should be located at (XSS(I): [=ENON..NON+NES-
1). Error checking should be performed to ensure that these values are equivalent to the
sum of all partial cross sections excluding the elastic and any sub-totals. This array must
exist if any non-elastic cross-section data are present.

The non-elastic cross-section is listed rather than the absorption for convenience.

If the elastic cross section has not been included, the non-elastic cross section is identical
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to the total cross section and NON should be set equal to TOT and only one set of cross-
section entries is needed. One justification for not including the total absorption cross
section is that it does not make physical sense for the photonuclear process. Gamma

rays are emitted for all reactions that do not transition directly to a ground state.

ELS Array

The ELS array contains the data entries for the elastic cross section. Cross-
section values are given in units of barns. There must be an entry corresponding to each
entry in the ESZ array and they should be located at (XSS(I): I=ELS..ELS+NES-1). For
photonuclear physics, this cross section is negligible and typically is not included in the
original evaluation data file. If it is not included, ELS must be set to zero and no entries

are included in the XSS array.

THN Array

The THN array contains the data entries for the average heating numbers, i.e. the
average energy deposited per collision. Heating-number values are given in units of
MeV per collision. There must be an entry corresponding to each entry in the ESZ array
and they should be located at (XSS(I): F=THN..THN+NES-1). If no data have been
calculated for heating numbers, THN and each PHN entry (see discussion below) must be
set to zero and no entries are made in the XSS array.

The total heating number has recently undergone a revision. Since the MCNPX
code is capable of transporting most particles of interest, it is necessary to be able to
adjust the total heating numbers appropriately. Specifically, at the time of the simulation,
the total heating number should be adjusted to represent the average amount of energy

deposited per collision in a given material for all particles that are not transported.
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In order to obtain an “average” heating number, several assumptions are
necessary. Particles that are extremely penetrating, e.g. neutrinos, are assumed to deposit
their energy elsewhere. Particles that are of “limited” range, including neutrons and
photons, are not considered extremely penetrating. All particles of “limited” range are
assumed to deposit their energy instantaneously at the collision site. This is a poor
assumption for any situation that does not approximate an infinite, homogeneous medium
with a steady-state source.

In order to accurately represent energy deposition, particles for which secondary
distribution data exist and should be transported and their contribution to the total heating
number subtracted off the total before beginning the simulation. Again, if heating tallies
are used, it is essential to transport all particles for which instantaneous, local energy
deposition is not a good assumption. Note that the sum of the partial heating numbers
(PHNSs) given in the table may not add up to the total unless all possible secondary

particles (including the recoil particles) are included.

MTR Array

The MTR array contains the data entries for the reaction type MT numbers.
Reaction type MT numbers are taken directly from the ENDF-102 File Format Manual
[45]. There must be one MT value in the array for every reaction cross section to be
listed and they should be located at (XSS(I): =EMTR..MTR+NTR-1). The entries should
be in ascending order according to their numeric value.

Production cross sections for reaction products of interest may also be listed in the
MT array by using the ZA number in place of the ENDF MT number. An isotope’s ZA

number is defined as the atomic number (Z) times one-thousand plus the atomic mass
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number (A). For example, ’Be would have ZA equal to 4009. There is not a conflict
with MT numbers as the currently defined ENDF MT numbers end at 1000. Note that
production cross sections, i.e. all reactions with a MT value greater than 1000, are not

valid for transport and are used only as tally multipliers.

LQR Array

The LQR array contains the data entries for the Q-value associated with each
reaction. Q-values are given in units of MeV. There must be one entry corresponding to
each MT array entry and they should be located at (XSS(I): I=FLQR..LQR+NTR-1). For
reactions which are not physical events, e.g. production and summation listings, the Q-

value should be given as a zero (0) entry.

LSIG Array

The LSIG array contains the entries for the cross-section locators. Cross-section
locators are the array index to the first word of the corresponding MT reaction data
relative to the SIG locator. There must be one entry corresponding to each MT array

entry and they should be located at (XSS(I): I=LSIG..LSIG+NTR-1).

SIG Array

The SIG locator is the primary reference for finding the reaction cross-section
data. By tradition and for convenience, all reaction cross-section data are listed
sequentially at one location within the XSS array. Cross-section values are given in units
of barns. Each cross-section locator must point to a valid reaction cross-section.

Reaction cross-section data are given over a defined range of energies on the main

energy grid. The entries follow the format IE, NE, VALUES where IE is the starting
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index corresponding to an entry on the main energy grid and NE is the number of entries.
Thus the entries VALUES(1..NE) are the reaction cross-section values corresponding to
the energies ESZ(IE..IE+NE-1). The cross-section entries should be located at ((XSS(I):
[=SIG+LSIG(K)-1..SIG+LSIG(K)+NE): K=1..NTR) where LSIG(K) is the offset value
from the LSIG array that corresponds to the Kth reaction MT as listed in the MTR array.
Error checking should be done to ensure that IE is not less than one, that NE is not
greater than NES and that IE+NE-1 is less than or equal to NES.

For cross-section data that do not cover the entire energy range of the table, the
value of the last entry is assumed to be constant for the remainder of the main energy
grid. That is, for all energies up to the first entry, the cross-section value of the first entry
is used. Therefore, reactions with threshold values must start with a zero value entry.
Similarly, reactions which are negligible after a certain energy should contain a zero

value as their last entry.

IXS Block

The IXS block is a conceptual figment created to equate the secondary particle
information storage structure to the general storage model of the NXS/JXS/XSS block. It
is described as its own set of parameters, locators and data in order to help separate it
conceptually and make it easier to understand. In reality all the components of the IXS
array and its associated data are stored in the XSS block. To stress the point, references
to IXS(1) are equivalent to XSS(i). The secondary data should be listed sequentially by

particle type and not spread throughout the XSS block.
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IXS Array

The IXS array emulates the parameter/locator concept of NXS/JXS for secondary

particle information. Since a full set of IXS elements is needed for each secondary

particle, there are typically multiple IXS arrays in a table. They are listed sequentially

located at (XSS(I): I=(IXSA+NEIXS*(J-1)) .. (IXSA+NEIXS*(J-1))+H(NEIXS-1):

J=1.NTYPE). The elements of the IXS array are described in Table A-4.

The photonuclear table differs from the neutron and proton table versions in that

parameters specific to a secondary particle are also included in the IXS array. Thus, IXS

elements perform functions similar to NXS (parameter) and JXS (locator) elements. In

practice, they are used in an analogous manner to their conceptual equivalents. For

example, for the third (3) emission particle the parameter NTRP(3) (stored as IXS[2,3])

and the locator MTRP(3) (stored as IXS[5,3]) can be used to find the array of MT

reactions that produce that particle located at (XSS(I): EMTRP(3)..MTRP(3)+NTRP(3)-

1).

Table A-4. Description of the IXS Array elements in a photonuclear class ‘u” ACE
format.

Entry Parameter | Fixed number descriptive

IXS(1,)) IPT(J) Particle IPT number

1XS(2,)) NTRP(J) Number of MT reactions producing this particle

Entry Locator Offset to array of...

I1XS(3.)) PXS(J) Total particle production cross-section data

1XS(4,)) PHN(J) Particle average heating number data

IXS(5,)) MTRP(J) Particle production MT reaction numbers

I1XS(6,)) TYRP(J) Reaction coordinate system data

I1XS(7,)) LSIGP(J) Reaction yield locators (relative to SIGP)

IXS(8,J) SIGP(J) Primary locator for reaction yield data

1XS(9,)) LANDP(J) | Reaction angular distribution locators (relative to ANDP)
IXS(10.J) ANDP(J) Primary locator for angular distribution data

IXS(11,]) LDLWP(J) | Reaction energy distribution locators (relative to DLWP)
I1XS(12,]) DLWP(J) | Primary locator for energy distribution data
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This table also differs from neutron and proton tables in that all secondary particle
information is referenced through the relevant IXS elements. This is a change in that the
previous tables still referenced the incident particle type emission data (e.g. neutron in,
neutron out) through the JXS array. Photophoton emission data in a photonuclear table
are referenced through the IXS array exactly as photoneutron or photoproton emission
data.

The secondary particles for which data are supplied are identified by the index
IPT. These numbers were originally defined by the MCNP code for neutrons, photons
and electrons. They have been extended by the MCNPX code to cover the particles of
interest in high-energy accelerator environments. At the current time, only those particles
listed in Table A-5 have emission data available in the table. This is the source of the

maximum value limit for the parameter NTYPE.

PXS Array

This array contains the data entries for the total secondary particle-production
cross section. Production cross-section values are given in units of barns. The data

values follow the IE, NE, VALUES format as described in the SIGP array section above

Table A-5. Association of particles with their symbol and IPT index number as defined
in MCNP(X).

Particle Name Symbol IPT
(from mode card)

neutron n 1
photon p 2
electron e 3
proton h 9
deuteron d 31
triton t 32
helium 3 S 33
alpha a 34
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and are referenced to the main energy grid. The array must exist if any reaction data exist
for the particle type and is located at ((XSS(I): I=PXS(J)..PXS(J)+NE+1): J=1..NTYPE).
Error checking should be done to ensure that the value of each entry corresponds to the

sum of the relevant reaction yields.

PHN Array

This array contains the data entries for the particle average heating numbers. The
data values follow the IE, NE, VALUES format as described in the SIGP array section
above and are located at ((XSS(I): I=PHN(J)..PHN(J)+NE+1): J=1.NTYPE). Particle
average heating-numbers are given in units of MeV per collision. As described in the
discussion of the THN array above, these values are the contribution to the total heating
number by this particle type assuming that the particle’s average emission energy is
deposited locally. Error checking should be done to make sure that PHN is not greater

than THN.

MTRP Array

This array contains the data entries for the MT reaction-type numbers that
produce this secondary particle. MT-reaction numbers are specified in the same manner
here as for the MTR array and are located at ((XSS(I): =MTRP(J)..MTRP(J)+NTRP(J)-
1): J=1..NTYPE). The entries should be in ascending numeric order. Error checking
should be done to ensure that all MTRP entries correspond to a MTR entry at the JXS

level.
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TYRP Array

This array contains the data entries for the coordinate system of the reaction
producing the secondary particle. The emission-coordinate-system parameter indicates
either the lab system (value = 1) or the center-of-mass system (value = -1) and the entries
are located at ((XSS(I): I=TYRP(J)..TYRP(J)*NTRP(J)-1): J=1.NTYPE). Error
checking should be done to ensure that an entry exists for each reaction and that it
contains one of the two allowed values. This array is different than the TYR array for
neutron tables in that multiplicity data are not included in TYRP but instead utilize the

SIGP array.

LSIGP Array

This array contains the entries for the reaction yield locators. Reaction yield
locators are the relative location of the corresponding MT reaction data in the SIGP array.
There must be one entry corresponding to each MTRP array entry and they should be
located at ((XSS(I): I=LSIGP(J)..LSIGP(J)+NTRP-1): J=1.NTYPE). The notation

LSIGP(K,J) indicates the Kth entry (XSS(LSIGP(J)+K-1)) for the Jth secondary particle.

SIGP Array

The SIGP locator is the primary reference for finding the reaction yield data. All
reaction cross-section data for this secondary particle are listed sequentially within the
SIGP array. Reaction yields are given either as production cross sections or as
multiplicity data. There must be one set of data for each reaction specified in the MTRP
array and it is located as described in the relevant table below.

Production cross-section data are the simpler of the two yield descriptions.

Production cross-section values are given in units of barns. Data of this type are typically
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Table A-6. Reaction yield data in the form of a production cross-section.

Location in XSS Parameter | Description
SIGP(J)+LSIGP(K,J)-1 MFTYPE 13 — Production cross-section
SIGP(J)+LSIGP(K.,J) IE Starting index on main energy grid
SIGP(J)+LSIGP(K,J)+1 NE Number of consecutive entries
SIGP(J)+LSIGP(K,J)+2 .. PXS(I) Production cross-section values for
SIGP(J)+LSIGP(K,J)+NE+1 I=1..NE corresponding MT reaction
(linear-linear interpolation)

derived from File 13 of an ENDF evaluation and are therefore labeled with the MFTYPE
equal 13. The entries for this reaction yield are described in Table A-6. The average
“multiplicity” for the reaction as a function of energy can be calculated from the data by
dividing the production cross-section value by the corresponding MT reaction cross-
section value.

Alternatively, the multiplicity of the reaction may be used in conjunction with the
corresponding MT reaction cross section to determine the production cross section.
Multiplicity is unitless and implies the number of particles emitted per collision.
Multiplicities can be constant, e.g. for fixed reactions like (g 2n), or they can be variable,
e.g. for fission nubar values. Note that the general reaction, MT 5, can include any
combination of true reactions in a variable multiplicity. Also note that fission nubar data
are now included generally in this array rather than specifically in their own array.

Yield data of this type are typically found in File 6 or 12 of the ENDF-6 format
and hence are assigned the MFTYPE of 6 or 12. MFTYPE 16 is also allowed due to a
backwards compatibility issue arising from the fact that the value 16 has been used in
past to indicate MF File 6 yield data in neutron tables. Yield data for MFTYPE 6, 12 and

16 are described in Table A-7. This table and many of those to follow use the INT
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interpolation parameter as defined by ENDF. Defined INT values and their associated
formalism are listed in Table A-8. Error checking should be done to ensure that all
values of MTMULT match a reaction in the MTR listing.

This description provides a concise method to define a varying yield. For
example, the MT 5 general reaction has a set of energy/yield pairs which is typically
shorter than the defining the corresponding production cross section. The disadvantage
of this format is that it requires the lookup of the cross section and the yield followed by a

multiplication of the two to obtain the production cross section.

Table A-7. Reaction yield data in the form of reaction multiplicity.

Location in XSS Parameter | Description
IXS+SIGP(J)+LSIG(K,J)-1 MFTYPE | 6,12 or 16 — Reaction
multiplicity
IXS+SIGP(J)+LSIG(K,J) MTMULT | MT reaction to which
multiplicity applies
IXS+SIGP(J)+LSIG(K,J)+1 NR Number of interpolation

regions for multiplicity data
(If NR =0, NBT and INT are
omitted and linear-linear
interpolation is assumed
across all points)

IXS+SIGP(J)+LSIG(K,))+2 .. NBT() Starting index to which the
IXS+SIGP(J)+LSIG(K,J)+1+NR I=1..NR corresponding interpolation
parameter applies
IXS+SIGP(J)+LSIG(K,J)+2+NR .. INT(I) ENDF defined interpolation
IXS+SIGP(J)+LSIG(K,J)+1+2*NR I=1.NR parameters
IXS+SIGP(J)+LSIG(K,J)+2+2*NR NE Number of energies at which
the multiplicity is defined
IXS+SIGP(J)+LSIG(K,J)+3+2*NR .. E() Energy grid on which
IXS+SIGP(J)+LSIG(K,J)+2+2*NR+NE I=1..NE multiplicities are defined
IXS+SIGP(J)+LSIG(K,J)+3+2*NR+NE.. Y (D) Multiplicity (production

IXS+SIGP(J)+LSIG(K,J)+3+2*NR+2*NE | [=1..NE cross-section = reaction MT
cross-section * multiplicity)
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LANDP Array

This array contains the entries for the angular distribution locators. An angular
distribution locator is the location of the angular distribution data for the corresponding
MT reaction relative to the ANDP locator. There must be one entry corresponding to
each MTRP array entry and they should be located at ((XSS(I): I=LANDP(J)..
LANDP(J)+NTRP-1): J=1..NTYPE). LANDP(K,J) is the Kth entry for the Jth secondary
particle type.

Several LANDP array values have special meanings. A zero (0) locator value
indicates a reaction where all particles are emitted isotropically in the reference frame
defined by the corresponding entry in the TYRP array. Correlated energy/angle data are
indicated by a negative one (-1) locator value. In this case, the angular distribution data
are included with the energy emission distribution data in the DLWP array. For both
cases, no angular data are entered in the ANDP array. All other locators must be positive
integer values and indicate that the angular distribution data are contained in the ANDP

array.

ANDP Array

The ANDP locator is the primary reference for finding angular distribution data.
All angular distribution data for this secondary particle are listed sequentially in this
array. Three types of angular distribution table are currently allowed: isotropic, 32 equi-
probable bin or tabulated angular-bin data. There must be one set of distribution data for
each reaction specified in the MTRP array that is neither isotropic nor correlated

energy/angle. The angular distribution data is located as described in the relevant table.
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Table A-8. Interpolation schemes as defined for the ENDF-6 format.

Interpolation Scheme INT Value Interpolation Equation
Histogram 0 y(x) = y(Xo)
Linear-Linear 1 -
X Xy
Log-Linear 2 - 2y 6
y0) =SS sy,
lng—‘i 09
X0 @
Linear-Log 3 ,
ang N
y(x) =expg 02 ‘?’(x - x,) +In(y,)
3 ;
Log-L 4 0
og-Log glngyl g
_ Vo @ -
y(x) =exp Ingex 2 n(y, )7
él 22 0 Eup :
xo [} o

If all reactions are isotropic or correlated energy/angle (i.e. no data are present in the
ANDP array), ANDP should be set to zero.

The angular distribution data are a set of tables comprising the average-emission
angles for the Jth emission particle having the Kth reaction. These table are located using
the angular distribution header information is described in Table A-9. An example of
how to find a particular header in the ANDP array is given here. The appropriate angular
distribution header information for the second reaction listed in MTRP producing the
third secondary-emission particle starts at the array location
(XSS(ANDP(3)+LANDP(2,3)-1). ANDP(3) is the ninth IXS value for the third emission
particle (IXS(9,3)) and LANDP(2,3) is the value of the second entry in the LANDP array

for the third emission particle (XSS(IXS(10,3)-1+2)).
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Table A-9. Angular distribution header information.

Location in XSS Parameter Description
ANDP(J)+LANDP(K,J)-1 NE Number of energies at which
angular distributions are
tabulated
ANDP(J)+LANDP(K,J) .. E(L) Energy grid for the Kth
ANDP(J)+LANDP(K,J)*+NE-1 L=1..NE reaction angular distribution
ANDP(J)+LANDP(K,J)+NE .. LC(L) Locators for the angular data
ANDP(J)+LANDP(K,J)+2*NE-1 L=1.NE corresponding to energy grid

Once the angular distribution header information is located, the incident energy is
used to find the locator for the appropriate angular data table. Positive locators indicate
32 equi-probable binned data, zero locators indicate isotropic distributions and negative
locators indicate tabulated angular data. Isotropic distributions have no further data
entries.

Angular Law 1 is 32 equi-probable binned cosine angles. It has been the
traditional method used to represent angular distributions. A positive value for the
angular data locator indicates it contains Angular Law 1 data. This data consists of 33
cosine angle bin-boundaries which mark the points 1/32 apart in cumulative probability
density. There location in the ANDP array is described in Table A-10. The cosine of the
scattering angle is chosen by linear-linear interpolation of a randomly chosen point in the
cumulative density space. This method’s primary advantages are its speed of execution
and small memory requirements. As memory and CPU power are much more readily
available today than when this method was first conceived, it is no longer recommended
for use.

The Angular Law 2 tabulated angular distribution was recently introduced [111]

to more accurately reproduce highly anisotropic scattering distributions. It is generally
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Table A-10. Description of Angular Law 1 32 equi-probable bin angular distribution
table.

Location in XSS Parameter | Description

ANDP(J)+LC(L)-1 N/A First word of angular distribution data for
incident energy point L
LC(L) is greater than zero

ANDP()+LC(L)-1 .. CAB(M) Cosine angle boundaries of the 32 equi-probable
ANDP(J)+LC(L)+31 M=1..33 scattering bins

accepted that distributions with very anisotropic behavior, in particular very forward
peaked distributions, are not well represented by Angular Law 1. Specifically, the detail
of the high-probability area is well represented at the expense of the remainder of the
distribution. Angular Law 2 distributions remedy this by allowing a tabular distribution
of points. The description for Angular Law 2 data is given in Table A-11. The scattering
angle is chosen based on the random sampling of the cumulative probability density with

proper interpolation of its corresponding cosine value.

LDLWP Array

This array contains the entries for the energy distribution locators. An energy
distribution locator is the location of the emission law data for the corresponding MT
reaction relative to the DLWP locator. There must be one entry corresponding to each
MTRP array entry and they should be located at ((XSS(I):
[=LDLWP(J)..LDLWP(J)+NTRP-1): J=1.NTYPE). The elastic collision is now
explicitly included here if the data are included. All locators must be positive integer

values and indicate that emission distribution data are contained in the DLWP array.
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Table A-11. Description of Angular Law 2 tabulated angular distribution table.

Location in XSS Parameter | Description
ANDP(J)+LC(L)|-1 N/A First word of angular distribution data for
incident energy point L
LC(L) is less than zero
ANDP(J)+LC(L)|-1 Al Interpolation parameter for cosine

distribution ENDF defined interpolation
parameters (Only histogram or linear-
linear is allowed.)

ANDP(J)+|LC(L)| NP Number of points in the distribution
ANDP()+HLCL)+I .. CAM) Cosine of the scattering angle
ANDP(J)+|LC(L)|+NP M=1..NP

ANDP())+LC(L)[+1+NP .. PDF(M) Probability density function

ANDP())+LC(L)[+1+2*NP | M=1..NP

ANDP()+|LC(L)[+2+2*NP .. | CDF(M) Cumulative density function
ANDP(J)+|LC(L)[+1+3*NP M=1..NP

DLWP Array

The DLWP locator is the primary reference for finding emission distribution data.
All emission distribution data for this secondary particle are listed sequentially in the
DLWP array. Typically, the emission data described here are the energy spectra for the
secondary particle. However, many new data evaluations are taking advantage of the
correlated, energy and angle, emission distributions. If the angular distribution data are
contained in the emission distribution, the corresponding LANDP entry must be negative
one (-1). For all other cases, there must be a corresponding set of entries, as located by
LANDP and ANDP, to describe the appropriate angular distribution. There must be at
least one set of emission data for each reaction specified in the MTRP array.

Law Header. Each reaction has at least one emission distribution associated with
it as described in the relevant law header information data. The entries in the law header
information data are described in Table A-12. This header exists to facilitate describing

reactions that require more than one sampling law to describe the emission parameters
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correctly. An example of this would be second chance fission. The law header
containing the appropriate emission distribution(s) for the second reaction producing the
third emission particle starts at the array location (XSS(DLWP(3)+LDLWP(2,3)-1).
Here DLWP(3) is the twelfth IXS value for the third emission particle (IXS(12,3)) and
LDLWP(2,3) is the second entry in the LDLWP array for the third emission particle

(XSS(IXS(11,3)+2-1)).

Table A-12. Emission parameter law header information.

Location in XSS Parameter | Description
DLWP(J)+LDLWP(K,J)-1 LNW; Location of next law header
relative to DLWP(J)

If LNW; = 0, then this law is
used regardless

DLWP(J)+LDLWP(K.J) LAW; Name (#) of this law

DLWP(J)+LDLWP(K,J)+1 IDAT; Location of law dependent
data relative to DLWP(J)

DLWP(J)+LDLWP(K,J)+2 NR Number of interpolation

regions; if NR = 0, NBT and
INT are omitted and linear-
linear interpolation is
assumed for (E,P) pairs

DLWP)+LDLWP(K,J)+3 .. NBT() Starting index to which the
DLWP(J)+LDLWP(K,J)+2+NR I=1..NR corresponding interpolation
parameter applies
DLWP(J)+LDLWP(K,J)+3+NR .. INT(I) ENDF defined interpolation
DLWP(J)+LDLWP(K,J)+2+2*NR I=1.NR parameter in each region
DLWP(J)+LDLWP(K,J)+3+2*NR NE Number of energies
DLWP()+LDLWP(K,J)+4+2*NR .. E() Tabular energy points
DLWP(J)+LDLWP(K,J)+3+2*NR+NE I=1..NE
DLWP(J)+LDLWP(K,J)+4+2*NR+NE .. | P(I) Probability of law validity
DLWP(J)+LDLWP(K,J)+3+2*NR+2*NE | I=1..NE
DLWP(J)+IDAT;-1 LDAT First word of law dependent
data for LAW;
DLWP(J)+LNW;-1 LNW, First word of next law header
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Once the appropriate law header is located, the specific emission distribution is
determined based the probability of its validity at the incident energy. Because of the
number of laws that can be used, the description of the remainder of this array can be
daunting. The key to remember is that each reaction producing a given particle has a law
header that provides the location of the appropriate sampling law. Each of the laws and
their associated data is described in discussion below. The variable J always indicates the
Jth emission particle and the variable K always indicated the Kth reaction producing that
particle.

Energy Law 1. Energy Law 1 uses an equi-probable energy bin structure for
sampling emission energies. Its data format is described in Table A-13. It is similar in
nature to the Angular Law 1 and suffers from the same lack of fidelity for distributions
with groupings of high-probability regions. It is recommended to use Energy Law 4,
tabulated-energy-distribution, instead. Error checking should be done to ensure that each
Eoy table is a set of monotonically increasing real values ending with a value less than the
corresponding E;,.

Energy Law 2. Energy Law 2 is primarily for discrete photon-emission lines
produced by neutron interactions. Its data format is described in Table A-14. Its use is
discouraged with photonuclear reactions though it is possible to use it as a discrete line
emission, i.e. Eqy = EG, for LP=0 or LP=1. Use of the LP=2 option is strongly
discouraged for photonuclear interactions as it assumes simple neutron kinematics for
computing the emission energy, i.e. Eqt = EG + (AWR/(AWR+1)) * E;,. Error checking

should be done to ensure that LP is in the range 0 to 2 and that EG is a positive real value.
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Table A-13. Law dependent format for Energy Law 1 (Tabular Equi-probable Energy

Bins).
Location in XSS Parameter Description
DLWP()+IDAT;-1 LDAT(M) Primary reference for law; dependent
M=1..L data (from law header)
LDAT(1) NR Number of interpolation regions
(If NR =0, NBT and INT are omitted
and linear-linear interpolation is
assumed)
LDAT(2) .. NBT(N) Starting index to which the
LDAT(1+NR) N=1..NR corresponding interpolation parameter
applies
LDAT(2+NR) .. INT(N) ENDF defined interpolation parameter
LDAT(1+2*NR) N=I..NR in each region
Only histogram or linear-linear
LDAT(Q+2*NR) NE Number of incident energies tabulated
LDAT(3+2*NR) .. Ein(N) List of incident energies for which Ey
LDATQ+2*NR+NE) N=1..NE is tabulated
LDAT(3+2*NR+NE) NET Number of outgoing energies listed in
each E, table
LDAT(4+2*NR+NE) .. Eout1(N) Eou table have NET energies listed
LDAT@+2*NR+(NET+1)*NE) | N=1..NET; | comprising the boundaries of (NET-1)
Eoun(N) equi-probable bins. Sampling uses a
N=1..NET; | linear-linear interpolation between bin
e boundaries.
EoutNEm)
N=1.NET

Energy Laws 3 & 33. Energy Law 3 and 33 are inelastic level scattering. The

data format is described in Table A-15. Law 3 indicates neutron incident, neutron

emission. Law 33 indicates any combination of particles incident and emitted. Its use is

allowed for photonuclear interactions though the parameters must be chosen for

photonuclear kinetics instead of neutron kinetics. Sampling of this law follows the

simple formula of Ey, = LDAT(2) * (Eij, — LDAT(1)) in the center-of-mass system. Error

checking should be done to ensure that the corresponding TYRP entry is negative one.
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Table A-14. Law dependent format for Energy Law 2 (Discrete Emission Energy).

Location in XSS Parameter | Description
DLWP(J))+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..2 dependent data (from law header)
LDAT(1) LP Indicator of whether the emission
particle is primary or non-primary
LDAT(2) EG Emission energy (if LP=0 or LP=1)
Binding energy (LP=2)

Table A-15. Law dependent format for Energy Law 3/33 (Level Scattering).

Location in XSS Parameter | Description
DLWP(J)+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..2 dependent data (from law header)
LDAT(1) MT For neutron scattering
((A+1)/A) * |Q|
LDAT(2) CR For neutron scattering (A/(A+1))°

Energy Laws 4,44 & 61. Energy Laws 4, 44 and 61 are tabular energy
distributions. The common portion of the data format for this set of laws is described in
Table A-16. The tabular energy distribution provides the most flexibility of the energy
laws. Any energy-emission-spectral shape can be formed provided enough grid points
are used. Energy sampling is accomplished by determining the two closest incident
energy grid points, sampling a random cumulative probability to find the emission energy
from each grid and using histogram or linear-linear interpolation between them. If
discrete lines are used in the emission grid, correspondence of these lines must be
maintained between grids. Error checking should be done to ensure only histogram or
linear-linear interpolation between distributions is used and to ensure that discrete lines
are correctly handled. The format of the tabular distribution itself is dependant on which

law is specified.
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Table A-16. Law dependent format for Energy Laws 4, 44 and 61 (Tabular Energy
Distributions).

Location in XSS Parameter | Description
DLWP(J)+IDAT;-1 LDAT(M) | Primary reference for law;

M=1..L dependent data (from law header)
LDAT(1) NR Number of interpolation regions (If

NR=0, NBT and INT are omitted
and linear-linear interpolation is

assumed)
LDAT(2) .. NBT(N) Starting index to which the
LDAT(1+NR) N=1.NR | corresponding interpolation
parameter applies
LDAT(2+NR) .. INT(N) ENDF defined interpolation
LDAT(1+2*NR) N=1..NR | parameter in each region; only

histogram and linear-linear
interpolation are allowed

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) .. E(N) List of incident energies

LDATQ+2*NR+NE) N=1..NE

LDAT(3+2*NR+NE) .. LTB(N) Locators for tabular distributions

LDATQ+2*NR+2*NE) N=1.NE | relative to DLWP(J)

Energy Law 4 contains only energy-emission information. Its data format is
described in Table A-17. Angular distribution data must be included using the ANDP
array. Sampling is achieved by choosing a random number between zero and one,
finding the cumulative bin in which the random number falls and taking the
corresponding energy, appropriately interpolated. Error checking should be done to
ensure that the largest emission energy for any endothermic reactions is not more than its
corresponding incident energy, that the probability density function integrates to the
cumulative and that the cumulative density is monotonically increasing from zero to one.

The tabular distribution format for Energy Law 44 expands the Law 4 format to
include the Kalbach parameters for each emission energy. Its data format is described in

Table A-18. The parameters are used to compute the angular distribution based on the
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Table A-17. Tabular distribution format for Energy Law 4 (Tabular energy distribution).

Location in XSS Parameter | Description

DLWP(J)+LTB(N)-1 N/A First word of tabular distribution
data for incident energy point N

DLWP(J)+LTB(N)-1 INTT’ Overloaded variable:
Interpolation scheme for
distribution
mod(INTT’,10) = 1 -> Histogram
mod(INTT’,10) = 2 -> Lin.-Lin.
Number of discrete points in
distribution ND = int(INTT” / 10)

DLWP(J)+LTB(N) NP Number of points in the distribution

DLWP(J)+LTB(N)+1 .. Eout(O) Emission energy grid

DLWP(J)+LTB(N)+NP O=1..NP

DLWPJ)+LTB(N)+1+NP .. PDF(O) Probability density function

DLWP(J)+LTB(N)+2*NP O=1..NP

DLWPJ)+LTB(N)+1+2*NP .. CDF(O) Cumulative density function

DLWP(J)+LTB(N)+3*NP O=1..NP

Table A-18. Tabular distribution format for Energy Law 44 (Kalbach correlated

energy/angle distribution).

Location in XSS Parameter | Description

DLWP(J)+LTB(N)-1 N/A First word of tabular distribution
data for incident energy point N

DLWP(J)+LTB(N)-1 INTT’ Overloaded variable:
Interpolation scheme for
distribution
mod(INTT’,10) = 1 -> Histogram
mod(INTT’,10) = 2 -> Lin.-Lin.
Number of discrete points in
distribution ND = int(INTT” / 10)

DLWP(J)+LTB(N) NP Number of points in the distribution

DLWP(J)+LTB(N)+1 .. Eout(O) Emission energy grid

DLWP(J)+LTB(N)+NP O=1..NP

DLWP(J)+LTB(N)+1+NP .. PDF(O) Probability density function

DLWP(J)+LTB(N)+2*NP O=1..NP

DLWPJ)+LTB(N)+1+2*NP .. CDF(O) Cumulative density function

DLWP(J)+LTB(N)+3*NP O=1..NP

DLWP(J)+LTB(N)+1+3*NP .. R(O) Kalbach pre-compound fraction r

DLWP(J)+LTB(N)+4*NP O=1..NP

DLWP(J)+LTB(N)+1+4*NP .. A(O) Kalbach-Chadwick angular

DLWP(J)+LTB(N)+5*NP O=1..NP | distribution slope value a
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Kalbach-87 formalism [50,51]. For photonuclear reactions, the slope value must be
computed at the time the table was produced according to Chadwick’s modification [11]
to Kalbach’s original formalism. Sampling of Law 44 emission energy is analogous to
Law 4. Error checking should be done to ensure that the value for all R entries is in the
range from zero to one and that the value for all a entries is a non-negative real number.

Currently, the emission angle in MCNP is sampled using Kalbach’s original
formalism. It is under discussion whether a new law should be added to address the fact
that secondary particle emission from photonuclear multi-step compound reactions is
more correctly represented as isotropic. Due to the relatively small a values typical of
photonuclear emissions, this would be a small, less than five percent, correction.

The tabular distribution format for Energy Law 61 expands the Law 4 format to
include a pointer to an angular distribution. Its data format is described in Table A-19.
Positive angular distribution locators indicate a tabular angular distribution is available
and it is sampled by the same algorithm as Angular Law 2 data. Table A-20 describes the
data format for Law 61 tabular angular distribution data. A zero value for a locator
indicates an isotropic distribution. Angular Law 1 data is not allowed. All stipulations
for Law 4 still apply to the energy distribution and all stipulations for Angular Law 2 data
apply to relevant angular information. Error checking should also be done to ensure that
the value of all angular locators is either zero or a positive integer value.

Energy Law 5. Energy Law 5 is a temperature scaled equi-probable binned
function. Its data format is described in Table A-21. At the current time, no Los Alamos

National Laboratory supported library uses this law. The emission energy is computed
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Table A-19. Tabular distribution format for Energy Law 61 (Correlated tabular

energy/angle distribution).

Location in XSS Parameter | Description

DLWP(J)+LTB(N)-1 N/A First word of tabular distribution
data for incident energy point N

DLWP(J)+LTB(N)-1 INTT’ Overloaded variable:
Interpolation scheme for
distribution
mod(INTT’,10) = 1 -> Histogram
mod(INTT’,10) = 2 -> Lin.-Lin.
Number of discrete points in
distribution ND = int(INTT’ / 10)

DLWP(J)+LTB(N) NP Number of points in the distribution

DLWP(J)+LTB(N)+1 .. Eou(O) Emission energy grid

DLWP(J)+LTB(N)+NP O=1.NP

DLWP(J)+LTB(N)+1+NP .. PDF(O) Probability density function

DLWP(J)+LTB(N)+2*NP O=1.NP

DLWP(J)+LTB(N)+1+2*NP .. CDF(O) Cumulative density function

DLWP(J)+LTB(N)+3*NP O=1.NP

DLWP(J)+LTB(N)+1+3*NP .. LAD(O) Angular distribution locators

DLWP(J)+LTB(N)+4*NP O=1.NP

Table A-20. Tabular angular distribution format for Energy Law 61.

Location in XSS Parameter | Description

DLWP(J)+LAD(O)-1 N/A First word of tabular angular
distribution data for emission
energy O

DLWP(J)+LAD(O)-1 1 Interpolation parameter for cosine
distribution (Only histogram or
linear-linear allowed)

DLWP(J)+LAD(O) NP Number of points in the distribution

DLWP(J)+LAD(N)+1 .. CBB(P) Cosine bin boundaries

DLWP(J)+LAD(N)+NP P=1..NP

DLWP(J)+LAD(N)+1+NP .. PDF(P) Probability density function

DLWP(J)+LAD(N)+2*NP P=1..NP

DLWP(J)+LAD(N)+1+2*NP .. CDEF(P) Cumulative density function

DLWP(J)+LAD(N)+3*NP P=1..NP
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Table A-21. Law dependent format for Energy Law 5 (General Spectrum).

Location in XSS Parameter | Description
DLWP(J))+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..L dependent data (from law header)

LDAT(1) NR Number of interpolation regions
(If NR=0, NBT and INT are
omitted and linear-linear
interpolation is assumed)

LDAT(2) .. NBT(N) Starting index to which the

LDAT(1+NR) N=I..NR | corresponding interpolation
parameter applies

LDAT(2+NR) .. INT(N) ENDF defined interpolation

LDAT(1+2*NR) N=I..NR | parameter in each region

LDAT(Q+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) .. Ein(N) List of incident energies

LDAT(2+2*NR+NE) N=1..NE

LDAT(3+2*NR+NE) .. T(N) Temperature based on incident

LDAT(2+2*NR+2*NE) N=1..NE | energy

LDAT((B3+2*NR+2*NE) NET Number of X’s tabulated

LDAT(4+2*NR+2*NE) .. X(0) Tabulated probabilistic function

LDATB+2*NR+2*NE+NET) O=1..NET

by multiplying a nuclear temperature based on the incident energy times a randomly
sampled equi-probable binned emission probability. This law has been superceded by the
use of Law 4 distributions. It is not recommended for use for any purpose.

Energy Law 7. Energy Law 7 is a simple Maxwell-fission spectrum as defined
in File 5 of ENDF-6. Its data format is described in Table A-22. It is appropriate for all
fission reactions including photonuclear fission. The sampled emission energy is based
on the function f(E->E) = C sqrt(Eoy) exp( -Eout / T(E) ). The emission energy is
bounded by the range zero to the incident energy minus the restriction energy.

Energy Law 9. Energy Law 9 is an evaporation spectrum as defined in File 5 of

ENDF-6. Its data format is described in Table A-23. It is appropriate for nucleon
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Table A-22. Law dependent format for Energy Law 7 (Simple Maxwell Fission

Spectrum).

Location in XSS Parameter | Description

DLWP()+IDAT;-1 LDAT(M) | Primary reference for law;

M=1..L dependent data (from law header)

LDAT(1) NR Number of interpolation regions
(If NR=0, NBT and INT are
omitted and linear-linear
interpolation is assumed)

LDAT(2) .. NBT(N) Starting index to which the

LDAT(1+NR) N=1.NR | corresponding interpolation
parameter applies

LDAT(2+NR) .. INT(N) ENDF defined interpolation

LDAT(1+2*NR) N=1..NR | parameter in each region

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) .. Ein(N) List of incident energies

LDATQ+2*NR+NE) N=1..NE

LDAT(3+2*NR+NE) .. T(N) Temperature based on incident

LDAT(2+2*NR+2*NE) N=1.NE | energy

LDAT(3+2*NR+2*NE) U Restriction energy

Table A-23. Law dependent format for Energy Law 9 (Evaporation Spectrum).

Location in XSS Parameter | Description
DLWP(J))+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..L dependent data (from law header)

LDAT(1) NR Number of interpolation regions (If
NR=0, NBT and INT are omitted
and linear-linear interpolation is
assumed)

LDAT(2) .. NBT(N) Starting index to which the

LDAT(1+NR) N=I..NR | corresponding interpolation
parameter applies

LDAT(2+NR) .. INT(N) ENDF defined interpolation

LDAT(1+2*NR) N=1..NR | parameter in each region

LDAT(2+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) .. Ein(N) List of incident energies

LDAT(2+2*NR+NE) N=1..NE

LDAT(3+2*NR+NE) .. T(N) Temperature based on incident

LDAT(2+2*NR+2*NE) N=1..NE | energy

LDAT((B3+2*NR+2*NE) U Restriction energy
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emission from a compound nucleus decay. The sampled emission energy is based on the
function f(E->Eqy) = C Eqy exp( -Eoye / T(E) ). The emission energy is bounded by the
range zero to the incident energy minus the restriction energy.

Energy Law 11. Energy Law 11 is an energy-dependent Watt-spectrum as
defined in File 5 of ENDF-6. Its data format is described in Table A-24. The sampled
emission energy is based on the function f(E->Ey) = C exp( -Eqy / a(E) ) sinh( sqrt( -Eqyt
b(E)) ). The emission energy is bounded by the range zero to the incident energy minus
the restriction energy.

Energy Law 22. Energy Law 22 is a tabular linear function from UK Law 2 (no
reference currently available). Its data format is described in Table A-25 and Table A-26.
It is not recommended for use in photonuclear tables. It is similar to Law 1 and Law 4 in
that an incident energy is used to sample a tabulated distribution. However, the table is
always chosen as the next distribution under the incident energy and no interpolation is
done. Emission energy is sampled by choosing a random number in the range zero to
one, finding the cumulative bin just below the sample and using the corresponding
constant and temperature in the formula E,,; = CM * (E;, — T).

Energy Law 24. Energy Law 24 is a tabular energy multiplier distribution from
UK Law 6 (no reference currently available). Its data format is described in Table A-27.
It is not recommended for use by photonuclear tables. It is similar to Law 1 and Law 4 in
that an incident energy is used to sample a tabulated distribution. However, the table is
always chosen as the next distribution under the incident energy and no interpolation is

done. Emission energy is sampled by choosing a random number in the range zero to
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Table A-24. Law dependent format for Energy Law 11 (Energy Dependent Watt

Spectrum).
Location in XSS Parameter | Description
DLWP()+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..L dependent data (from law header)
LDAT(1) NR, Number of interpolation regions
(If NR,=0, NBT, and INT, are
omitted and linear-linear
interpolation is assumed)
LDAT(2) .. NBT,(N) | Starting index to which the
LDAT(1+NR,) N=1..NR, | corresponding interpolation
parameter applies
LDAT(2+NR,) .. INT,(N) ENDF defined interpolation
LDAT(1+2*NR,) N=1..NR, | parameter in each region
LDAT(2+2*NR,) NE, Number of incident energies
tabulated
LDAT(3+2*NR,) .. E.(N) List of incident energies
LDATQ+2*NR,+NE,) N=1..NE,
LDAT(3+2*NR,+NE,) .. a(N) Energy dependent parameter a
LDAT(2+2*NR,+2*NE,) N=1..NE,
LDAT(3+2*NR,+2*NE,) NRy Number of interpolation regions
(If NRp=0, NBT}, and INT,, are
Let W = 3+2*NR, +2*NE, omitted and linear-linear
interpolation is assumed)
LDAT(W+I) .. NBTy(N) | Starting index to which the
LDAT(W-+NRy) N=1..NRy, | corresponding interpolation
parameter applies
LDAT(W+I1+NRy) .. INTy(N) ENDF defined interpolation
LDAT(W+2*NRy) N=I1..NRy, | parameter in each region
LDAT(W+1+2*NRy) NE, Number of incident energies
tabulated
LDAT(W-+2+2*NRy) .. Epx(N) List of incident energies
LDAT(W+1+2*NR,+NEy) N=1..NE,
LDAT(W-+2+2*NRy,+NEy) .. b(N) Energy dependent parameter b
LDAT(W+1+2*NR,+2*NE,) N=1..NE,
LDAT(W+2+2*NRy+2*NEy) U Restriction energy
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Table A-25. Law dependent format for Energy Law 22 (Tabular Linear Functions).

Location in XSS Parameter | Description

DLWP(J))+IDAT;-1 LDAT(1) | Primary reference for law;
dependent data (from law header)

LDAT(1) NR Number of interpolation regions

LDAT(2) .. NBT(N) Starting index to which the

LDAT(1+NR) N=1.NR | corresponding interpolation
parameter applies

LDAT(2+NR) .. INT(N) Interpolation parameter in each

LDAT(1+2*NR) N=1.NR | region (ignored; histogram
assumed)

LDAT(Q+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) .. LTB(N) Locators for tabular distributions

LDAT(2+2*NR+NE) N=1..NE | relative to DLWP(J)

Table A-26. Tabular distribution format for Energy Law 22.

Location in XSS Parameter | Description

DLWP(J)+LTB(N)-1 N/A First word of tabular distribution
data for incident energy point N

DLWP(J)+LTB(N) NP Number of points in the distribution

DLWP()+LTB(N)+1 .. P(O) Cumulative probability bin

DLWP(J)+LTB(N)+NP O=1.NP | boundaries

DLWP(J)+LTB(N)+1+NP .. T(O) Temperature for bin

DLWP(J)+LTB(N)+2*NP O=1..NP

DLWP(J)+LTB(N)+1+2*NP .. CM(O) Constant multiplier for bin

DLWP(J)+LTB(N)+3*NP O=1..NP
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Table A-27. Law dependent format for Energy Law 24 (Tabular Energy Multiplier).

Location in XSS Parameter | Description
DLWP(J))+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..L dependent data (from law header)
LDAT(1) NR Number of interpolation regions
LDAT(2) .. NBT(N) Starting index to which the
LDAT(1+NR) N=1.NR | corresponding interpolation
parameter applies
LDAT(2+NR) .. INT(N) interpolation parameter in each
LDAT(1+2*NR) N=1.NR | region (ignored; assumed
histogram)
LDAT(Q+2*NR) NE Number of incident energies
tabulated
LDAT(3+2*NR) .. Ein(N) List of incident energies
LDAT(2+2*NR+NE) N=1..NE
LDAT(3+2*NR+NE) NET Number of energies listed in each
Eout table
LDAT(4+2*NR+NE) .. Ti(N) Multiplier table have NET listings
LDAT(3+2*NR+(NET+1)*NE) N=I1..NET | comprising the boundaries of
(NET-1) equi-probable bins.
Tne(N) Sampling uses a linear-linear
N=1..NET | interpolation between bin

boundaries.

one, using linear-linear interpolation within the equi-probable multiplier bin and

computing the emission energy from the formula Ey = T Ej,.

Energy Law 66. Energy Law 66 is an N-body phase-space distribution from File

6 Law 6 of ENDF-6. Its data format is described in Table A-28. It is not recommended

for use with photonuclear reactions due to the non-Newtonian nature of photon

interactions. Full details of this sampling scheme are found in Chapter 2 and Appendix F

of the MCNP Users Guide [3].

Energy Law 67. Energy Law 67 is the laboratory system, correlated

angle/energy law from File 6 Law 7 of ENDF-6. Its data format is described in Table A-

29. The angular cosine data and subsequent energy distributions are described in Table
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A-30 and Table A-31, respectively. This distribution first samples an appropriate cosine
an then uses the tabular energy distribution corresponding to the sampled angle. This law

is not recommended for photonuclear data.

Table A-28. Law dependent format for Energy Law 66 (N-body Phase Space
Distribution).

Location in XSS Parameter | Description
DLWP(J)+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..2 dependent data (from law header)
LDAT(1) NPSX Number of bodies in the phase
space
LDAT(2) A, Total mass ratio for the NPSX
particles

Table A-29. Law dependent format for Energy Law 67 (Tabulated Angle/Energy).

Location in XSS Parameter | Description

DLWP(J))+IDAT;-1 LDAT(M) | Primary reference for law;
M=1..L dependent data (from law header)

LDAT(1) NR Number of interpolation regions

(If NR=0, NBT and INT are
omitted and linear-linear
interpolation is assumed)

LDAT(2) .. NBT(N) Starting index to which the
LDAT(1+NR) N=I..NR | corresponding interpolation
parameter applies
LDAT(2+NR) .. INT(N) ENDF defined interpolation
LDAT(1+2*NR) N=1..NR | parameter in each region

Only histogram and linear-linear
interpolation are allowed

LDAT(Q+2*NR) NE Number of incident energies
tabulated

LDAT(3+2*NR) .. E(N) List of incident energies

LDAT(2+2*NR+NE) N=1..NE

LDAT(3+2*NR+NE) .. LTB(N) Locators for tabular cosine

LDAT(2+2*NR+2*NE) N=I1..NE | distributions relative to DLWP(J)
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Table A-30. Tabular distribution format for Energy Law 67.

Location in XSS Parameter Description
DLWP(J)+LTB(N)-1 N/A First word of tabular distribution
data for incident energy point N
DLWP(J)+LTB(N)-1 INTMU Interpolation scheme for
distribution
INTMU = 1 -> Histogram
INTMU = 2 -> Linear-linear
DLWP(J)+LTB(N) NMU Number of points in the distribution
DLWP(J)+LTB(N)+1 .. XMU(O) Secondary cosines
DLWP(J)+LTB(N)+*NMU O=1.NMU
DLWP(J)+LTB(N)+1+NMU .. LMU(O) Locators for secondary cosine
DLWP()+LTB(N)+2*NMU O=1.NMU | energy distribution relative to

DLWP(J)

Table A-31. Tabular energy distribution format for Energy Law 67.

Location in XSS Parameter Description
DLWP(J)+LMU(O)-1 N/A First word of tabular energy
distribution for secondary cosine
point O
DLWPJ)+LMU(O)-1 INTEP Interpolation scheme for
distribution
INTEP = 1 -> Histogram
INTEP = 2 -> Linear-linear
DLWP(J)+LMU(O) NPEP Number of points in the distribution
DLWP(J)+LMU(O)+1 .. EP(P) Secondary energy grid
DLWP(J)+LMU(O)+NPEP P=1..NPEP
DLWP()+LMU(O)+1+NPEP .. PDF(P) Probability density function
DLWP(J)+LMU(O)+2*NPEP P=1..NPEP
DLWP()+LMU(O)+1+2*NPEP .. | CDF(P) Cumulative density function
DLWP(J)+LMU(O)+3*NPEP P=1..NPEP
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APPENDIX B
MKPNT PROCESSING CODE

Introduction

This appendix contains the source code for the MKPNT data processing code.

It’s functionality is discussed in depth in Chapter 4. In order to build the executable

code, you must have an ANSI C compiler and the Unix make utility. The appropriate

Makefile is included here such that the code is built with the command “make mkpnt”. It

has only been tested on a Sun system using the standard sun compiler package. The files

are listed with the filename as the heading followed directly by the source code for that

file.

mkpnt.c

#include "endf6.h"
#include "acepnData.h"

void acepnFromENDF ( endfMaterialInformation *mi, aceTable *table );
void acePrintNTable( char *filename, aceTable *table );

/*********************************************************************

** mkpnt

* %

** Make Photonuclear Table

** Main Program
* k

** Reads in an endf photonuclear file
* %

** Creates an MCNP ace format photonuclear table (acepn)
* *

*/
int main( int argc, char **argv )
{
endfMaterialInformation *mi
= (endfMaterialInformation*)malloc( sizeof (endfMaterialInformation)

aceTable *table
= (aceTable*)malloc( sizeof (aceTable) );

/*

237



** check command line arguments

*/

if( argc !'= 3 ) {
printf ( "mkpnt: USAGE\n" );
printf( " @prompt> mkpnt endfFilenameIn aceFilenameOut\n" );
printf( " expects valid endf photonuclear file in filename in\n" );
printf( " will take the first material encountered in endf file\n" );
printf( " creates (or appends to) the ace library file filename out\n" );
exit( -1 );

}

/*

** read the whole endf file into memory

*/

endfReadMaterialFromFile( argv[1l], mi );

/*

** create a new photonuclear table

*x fill the information from the endf information

*/

afeMakeNTable ( mi, table );

*
i* print the new acepn table
*
aéePrintNTable( argv[2], table );
/*
** if no exit errors, print success
*
piintf( "successfully processed \"%$s\" into \"%s\"\n", argv[l], argv([2]

acepnData.h
#ifndef acepnData_h
#define acepnData h
#include <stdio.h>
#include <stdlib.h>
#define NUMBER IXS ENTRIES 12
/*
** Structure: acelaw4Distribution
*/
typedef struct acelawd4distribution {
int Offset;
double IncidentEnergy;
int InterpolationScheme;
int NumberOfDiscreteEmissions;
int NumberOfPoints;
double *EmissionEnergy;
double *Probability;
double *CumulativeProbability;
} acelLawéd4Distribution;
/*
** Structure: acelaw4
*/
typedef struct acelawd
int NumberOfRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfIncidentEnergies;

acelaw4Distribution *Distribution;
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} acelLawid;

/*
** Structure: acelLaw?
*/
typedef struct acelaw7 {
int NumberOfRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfIncidentEnergies;

double *IncidentEnergy;
double *Temperature;
double RestrictionEnergy;

} aceLaw7;
/*
** Structure: acelaw9
*/
typedef struct acelaw9 ({
int NumberOfRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfIncidentEnergies;

double *IncidentEnergy;
double *Temperature;
double RestrictionEnergy;

} acelLaw9;

/*

** Structure: acelaw44Distribution

*/

typedef struct acelawd44distribution ({
int Offset;
double IncidentEnergy;
int InterpolationScheme;
int NumberOfDiscreteEmissions;
int NumberOfPoints;

double *EmissionEnergy;

double *Probability;

double *CumulativeProbability;

double *PrecompoundFraction;

double *AngularDistributionSlope;
} aceLawd44Distribution;

/*
** Structure: acelaw44
*/
typedef struct acelawdd {
int NumberOfRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfIncidentEnergies;

acelaw44Distribution *Distribution;
} acelawidd;

/*
** Structure: acelLawInformation
*/
typedef struct acelawinformation {
int LocationOfNextLaw;
int OffsetToLawData;
int Number;
char *Name;
int NumberOfRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfEnergies;

double *Energy;
double *Probability;
void *LawData;

} acelLawInformation;
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** Structure: aceEmissionData

*/
typedef struct aceemissiondata {
int Offset;
int CoordinateSystem;
int AngularInformationType;
void *AngularInformation;
int NumberOfEnergyLaws;

acelawInformation *LawInformation;
} aceEmissionData;

/*
** Structure: aceMTInformation
*/
typedef struct acemtinformation {
int Number;
char Name [100];
char Reaction[100];
int NumberOfProducts;
int *ProductZA;
int *YieldOfProduct;
int *NumberOfEnergies; /* the energy terms are pointers
double *Energy; /* data located at the acepnData
int StartingIndex;
int NumberOfEntries;
double *CrossSection;
double Qs

} aceMTInformation;

/*
** Structure: aceYieldInformation
*/
typedef struct aceyieldinformation {
int NumberOfRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfYields;

double *Energy;
double *Yield;
} aceYieldInformation;

/%
** Structure: aceMTReference
*/
typedef struct acemtreference {
int Type;
int Offset;
aceMTInformation *MT;
aceYieldInformation *Yield;
aceEmissionData *Emit;
} aceMTReference;
/*
** Structure: aceProduct
*/
typedef struct aceproduct {
int ZA;
int IPT;
char *Name;
char *Symbol;
int IXS[NUMBER IXS ENTRIES];
int StartingIndex;
int NumberOfEntries;
double *ProductionCrossSection;
double *PartialHeatingNumber;
int NumberOfReactions;

aceMTReference **MTReference;
} aceProduct;
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/*

** Structure: acepnData

*/

typedef struct acepndata {

int
double

NumberOfEnergies;
*Energy;

aceMTInformation *TotalCrossSection;

aceMTInformation *NonelasticCrossSection;
aceMTInformation *ElasticCrossSection;
double *TotalHeatingNumber;

int NumberOfMTs;

int *MTLocator;
aceMTInformation **MT;

int NumberOfProducts;
aceProduct **product;

} acepnData;

/~k

** Structure: aceTable

*/

typedef struct acetable {

char TableIdentifier[11]; /* XSDIR
int ZA;
int Z;
int A;
char ThermalTableName[7];
int LibraryNumber;
char TableType;
char *IncidentParticleName;
double AtomicWeightRatio; /* XSDIR
char LibraryFileName[9]; /* XSDIR
char LibraryAccessRoute[71]; /* XSDIR
int LibraryFileType; /* XSDIR
int AddressInLibrary; /* XSDIR
int *LengthXSS; /* XSDIR
int BinaryRecordLength; /* XSDIR
int EntriesPerBinaryRecord; /* XSDIR
double NeutronProcessingTemperature; /* XSDIR
char ProcessDate[11]; /* XSLIB
char Comment [711]; /* XSLIB
char MaterialIdentifier[11]; /* XSLIB
int MaterialNumber;
int ZAs[16]; /* XSLIB
double AtomicWeightRatios[16]; /* XSLIB
int NXS[16]; /* XSLIB
int JXS[32]; /* XSLIB
fpos_t StartData;
void *Data; /* XSLIB
} aceTable;
#endif
acepnlO.c

#include "acepnData.h"

Entry

Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry
Entry 1
Entry
Entry
Entry

Entries
Entries
Entries
Entries

Entries

volid acePrintNTable( char *filename, aceTable *table );
void acePrintXSS( FILE *fACE, char ft, char dt,

int number, void *data,

int *count

)i

1’

2,
3
4
5
6
7,
8
9
0,
4
5
6

7
8
3
5

8

XSLIB Entry 1 */

XSLIB Entry 2 */

*/
*/
*/
*/

Pointer To NXS[O0]

*/
*/

XSLIB Entry 3 */

*/
*/
*/

9

- 37, odd */
- 38, even */
54 */
86 */

5

7

(87 + LengthXSS)

/*********************************************************************

** acePrintNTable

*/
void acePrintNTable( char *filename, aceTable *table )
{

int i, 3, k, 1;

int count = 1;

int tempi;

int =zeroi = 0;
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double tempd;
double zerod
FILE *fACE;
acepnData
aceProduct
aceMTReference
aceEmissionData
acelawInformation
aceLawd

aceLaw?

aceLaw9

acelaw44

/*
** open the ace 1
*/

fACE

= fil

fopen (

if( 'fACE ) {
printf ( "ERROR:
printf( "

filename

exit( -1

}

)i

/*
** print
*/

fprintf
fprintf
fprintf
fprintf

the head
fACE, "%
fACE,
fACE,
fACE,

(
( we
( we
( "%
fprintf ( "%
fprintf (

fACE,
fACE, "%
/%
*x the atom

section

print
** (this
*/
for (
fprintf (
1f( %

1; i <=
fACE,

i =

fACE

i % 4
fprintf (
}

/*
** print the nxs
*/
for (
fprintf (
1f( %

1; i <=
fACE,

i =

fACE

i % 8
fprintf (
}

/*

** print the jxs

*/

for( i =
fprintf
if( 1 % 8

fprintf (

i <=
fACE,

fACE

1;
(

}

ndata (acepnDat

/*

*ndata;
*prod;
*mtref;
*edata;
*lawinfo;
*law4d;
*law7;
*law9;
*lawdid;

ibrary for writing

ename, "a" );
acePrintNTable:\n" );
cannot open file \"%$s\" for writing\n",

)i

er information

10s",

121f",
121f",
10s\n",

table->Tableldentifier );
table->AtomicWeightRatio );
table->NeutronProcessingTemperature
table->ProcessDate );

-70s",
10s\n",

table->Comment ) ;

table->MaterialIdentifier );

ic weight section as all zeros
is no longer used)

16; i++ ) |
"$7d%111£",
)

;"\t )

zerod );

zeroi,

array

16; i++ ) |
"$9d", table->NXS[i-1]
)

;"\t )

array
32; i++ ) {

"%$9d", table->JXS[i-1]
)

;"\t )

a*)table->Data;
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*%k xkk ESZ JXS (1) *x*
** print the main energy listing

*/

acePrintXSSs( fACE, 'a', 'd', ndata->NumberOfEnergies,
ndata->Energy, &count );

/*

*% xkx TOT JXS (2) ***
** print the total cross section table

*/

if ( ndata->TotalCrossSection == NULL ) {
printf( "ERROR: did not find MT 1 (total cross section)" );
exit( -1 );

}

acePrintXSsS( fACE, 'a', 'd', ndata->NumberOfEnergies,

/~k

ndata->TotalCrossSection->CrossSection, &count );

*Kk kxk NON JXS (3) ***
** if different from total, print the total non-elastic

*x cross section table

*/

1f( table->JXS[2] != 0 && table->JXS[2] != table->JXS[1l] ) {
if ( ndata->NonelasticCrossSection == NULL ) {

printf ("ERROR: did not find MT 3

exit (

}

-1

acePrintXSsS( fACE, 'a', 'd', ndata->NumberOfEnergies,

}
/*

ndata->NonelasticCrossSection->CrossSection, &count

%k xkx ELS JXS (4) ***
** if exists, print the elastic cross section table

*/
if( table->JXS[3] != 0 ) {
if ( ndata->ElasticCrossSection == NULL ) {
printf ( "ERROR: did not find MT 2 (elastic cross section)"
exit( -1 );
}
acePrintXSS( fACE, 'a', 'd', ndata->NumberOfEnergies,
ndata->ElasticCrossSection->CrossSection, &count
}
/*

* kK k ok HNT JXS(S) * % %
** if exists, print the total heating number table

*/

if ( table->JXS[4] != 0 ) {
if ( ndata->TotalHeatingNumber == NULL ) {
printf ( "ERROR: did not find total heating number" );

exit (

}

-1 )

acePrintXSSs( fACE, 'a', 'd', ndata->NumberOfEnergies,

}
/*

ndata->TotalHeatingNumber, &count );

* Kk KKk Kk MTR JXS(6) * Kk Kk
** print the MT numbers

*/
for( i = 0; 1 < ndata->NumberOfMTs; i++ )
acePrintXsSs( fACE, 'a', 'i', 1,
& (ndata->MT [i] ->Number), &count );
/*

* Kk kKK LQR JXS(7) * Kk Kk
** print the Q value table

*/

for( i =

0; 1 < ndata->NumberOfMTs; i++ )

acePrintXSs( fACE, 'a', 'd', 1, &(ndata->MT[i]->Q), &count
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/*

*%k kxk LGIG JXS (8) ***

*% xk% QTG JXS(9) ***

** print the cross section offset entries and data

*/

acePrintXsSs( fACE, 'a', 'i', ndata->NumberOfMTs,
ndata->MTLocator, &count );

for( i = 0; 1 < ndata->NumberOfMTs; i++ ) {

acePrintXss( fACE, 'a', 'i', 1,
& (ndata->MT[i]->StartingIndex), &count );

acePrintXsSs( fACE, 'a', 'i', 1,
& (ndata->MT [i] ->NumberOfEntries), &count );

acePrintXSs( fACE, 'a', 'd', ndata->MT[i]->NumberOfEntries,
& (ndata->MT[i]->CrossSection[ndata->MT[i]->StartingIndex-11]),
&count );

}

/*
Kk kxkk TXSA JXS(10) ***
** print the IXS array

*/
for( i = 0; 1 < ndata->NumberOfProducts; i++ )
acePrintXss( fACE, 'a', 'i', NUMBER_IXS ENTRIES,
& (ndata->Product [1]->IXS[0]), &count );
/*

*%k xkk TXS JXS(11) ***
** print the IXS data block

*/

for( 1 = 0; i < ndata->NumberOfProducts; i++ ) {
prod = (aceProduct*)ndata->Product[i];
/%

** Don't print any entries for IXS value entries
* *

* Kk kK k Kk IPT IXS(l) * Kk x

** particle ipt number

* %

** ***x NTRP IXS(Z) * k%

** number of reactions producing this particle

*/

/*
** Kk*k*x PYXS IXS(3) * % *
** print the production cross section table
*/
acePrintXsSs( fACE, 'a', 'i', 1,
& (prod->StartingIndex), &count );
acePrintXss( fACE, 'a', 'i', 1,
& (prod->NumberOfEntries), &count );

acePrintXSs( fACE, 'a', 'd', prod->NumberOfEntries,
& (prod->ProductionCrossSection[prod->StartingIndex-1]),
&count ) ;

/*

*% x%% DPHN IXS(4) ***
** if exists, print the partial heating number table
*/
if( prod->IXS[3] != 0 && table->JXS[4] != 0 ) {
acePrintXsSs( fACE, 'a', 'i', 1,
& (prod->StartingIndex), &count );
acePrintXss( fACE, 'a', 'i', 1,
& (prod->NumberOfEntries), &count );
acePrintXSs( fACE, 'a', 'd', prod->NumberOfEntries,
& (prod->PartialHeatingNumber [prod->StartingIndex-1]),
&count ) ;
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/*
* *
* *

*/

*** MTRP IXS(5) **x*

print the mt

for( 3 =0; j <

/*
* *
* *
*/
fo

/*
* *
* *
* *
* *
*/
fo

fo

acePrintXsSs (

reference listing

prod->NumberOfReactions; j++ )

fACE, 'a', 'i', 1,

& (prod->MTReference[j]->MT->Number), &count );

*HKx TYRP IXS(6) ***
print the coordinate system listing

r(j=20; 3 <

prod->NumberOfReactions; j++ )

acePrintXss( fACE, 'a', 'i', 1,
& (prod->MTReference[]]->Emit->CoordinateSystem),
&count ) ;

**xx LSIGP IXS(7) ***

*x% STGP IXS(8) ***

print the cross section or yield data offsets
for each reaction and its data values

r(3j=20; 3 <

prod->NumberOfReactions; j++ )

acePrintXsSs( fACE, 'a', 'i', 1,
& (prod->MTReference[j]->0ffset), &count );

r(3j=20; 3 <

prod->NumberOfReactions; j++ ) {

mtref = prod->MTReferencel[]j];

acePrintXss( fACE, 'a', 'i', 1,
& (mtref->Type), &count );

switch( mtref-

case 5:

case 12:

case 16:
acePrintXss (

acePrintXsSs (

acePrintXsSs (

acePrintXsSs (

acePrintXsSs (

acePrintXSs (

acePrintXsSs (

break;

case 13:

acePrintXsSs (

acePrintXsSs (

acePrintXsSs (

>Type ) {

fACE, 'a', 'i', 1,
& (mtref->MT->Number), &count );

fACE, 'a', 'i', 1,
& (mtref->Yield->NumberOfRegions), &count );

fACE, 'a', 'i', mtref->Yield->NumberOfRegions,
mtref->Yield->NumberOfPointsInRegion, &count );

fACE, 'a', 'i', mtref->Yield->NumberOfRegions,
mtref->Yield->InterpolationSchemeInRegion, &count );

fACE, 'a', 'i', 1,
& (mtref->Yield->NumberOfYields), &count );

fACE, 'a', 'd', mtref->Yield->NumberOfYields,
mtref->Yield->Energy, &count );

fACE, 'a', 'd', mtref->Yield->NumberOfYields,
mtref->Yield->Yield, &count );

fACE, 'a', 'i', 1,
& (mtref->MT->StartingIndex), &count );

fACE, 'a', 'i', 1,
& (mtref->MT->NumberOfEntries), &count );

fACE, 'a', 'd', mtref->MT->NumberOfEntries,
& (mtref->MT->CrossSection[mtref->MT->StartingIndex-1]),
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&count );
break;

default:
printf ( "WARNING: trying to print LSIG type %d\n", mtref->Type );

} /* end switch MTReference type */
} /* end print cross section or yield info */

/*

Fx Axk TANDP IXS(9) **x*

Ak xxk ANDP IXS (10) ***

** print the angular distribution locators and information

*x currently the LANDP block indicates isotropy by a zero (0)

*x entry or information contained in the energy data
*x by a negative one (-1) entry

*x currently there is no separate angular information,
*x therefore the ANDP block never exists

*/

for( j = 0; j < prod->NumberOfReactions; Jj++ )
acePrintXss( fACE, 'a', 'i', 1,
& (prod->MTReference[j]->Emit->AngularInformationType),
&count ) ;

/*
Ak xxk LDLWP IXS(11) ***
Fx A%k TDLW IXS(12) **x*
** print the energy distribution offsets and data values
*/
for( j = 0; j < prod->NumberOfReactions; Jj++ )
acePrintXsSs( fACE, 'a', 'i', 1,
& (prod->MTReference[]]->Emit->0ffset), &count );
for( j = 0; j < prod->NumberOfReactions; Jj++ ) {
edata = prod->MTReference[j]->Emit;
for( k = 0; k < edata->NumberOfEnergyLaws; k++ ) {

lawinfo = & (edata->LawInformation[k]);

acePrintXsSs( fACE, 'a', 'i', 1,
& (lawinfo->LocationOfNextLaw), &count );

acePrintXss( fACE, 'a', 'i', 1,
& (lawinfo->Number), &count );

acePrintXsSs( fACE, 'a', 'i', 1,
& (lawinfo->0OffsetToLawData), &count );

acePrintXsSs( fACE, 'a', 'i', 1,
& (lawinfo->NumberOfRegions), &count );

acePrintXsSS( fACE, 'a', 'i', lawinfo->NumberOfRegions,
lawinfo->NumberOfPointsInRegion, &count );

acePrintXSsS( fACE, 'a', 'i', lawinfo->NumberOfRegions,
lawinfo->InterpolationSchemeInRegion, &count );

acePrintXsSs( fACE, 'a', 'i', 1,
& (lawinfo->NumberOfEnergies), &count );

acePrintXSs( fACE, 'a', 'd', lawinfo->NumberOfEnergies,
lawinfo->Energy, &count );

acePrintXSsS( fACE, 'a', 'd', lawinfo->NumberOfEnergies,
lawinfo->Probability, &count );
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switch( lawinfo->Number ) {
case 4:
law4 = (acelaw4*) (lawinfo->LawData) ;
acePrintXss( fACE, 'a', 'i', 1,
& (law4->NumberOfRegions), &count );
acePrintXSS( fACE, 'a', 'i', law4->NumberOfRegions,
law4->NumberOfPointsInRegion, &count );
acePrintXSSs( fACE, 'a', 'i', law4->NumberOfRegions,
law4->InterpolationSchemeInRegion, &count );
acePrintXss( fACE, 'a', 'i', 1,
& (law4->NumberOfIncidentEnergies), &count );
for( 1 = 0; 1 < law4->NumberOfIncidentEnergies; 1++ )
acePrintXss( fACE, 'a', '4d', 1,
& (law4->Distribution[l].IncidentEnergy),
&count ) ;
for( 1 = 0; 1 < law4->NumberOfIncidentEnergies; 1++ )
acePrintXss( fACE, 'a', 'i', 1,
& (lawd->Distribution[l] .Offset),
&count ) ;
for( 1 = 0; 1 < law4->NumberOfIncidentEnergies; 1++ ) {
acePrintXsSs( fACE, 'a', 'i', 1,
& (law4->Distribution[l].InterpolationSchemne),
&count ) ;
acePrintXsSs( fACE, 'a', 'i', 1,
& (law4->Distribution[1l].NumberOfPoints),
&count ) ;
acePrintXSS( fACE, 'a', 'd', law4->Distribution[l].NumberOfPoints,
law4->Distribution[l] .EmissionEnergy, &count );
acePrintXSS( fACE, 'a', 'd', law4->Distribution[l].NumberOfPoints,
law4->Distribution[l].Probability, &count );
acePrintXSs( fACE, 'a', 'd', law4->Distribution[l].NumberOfPoints,
law4->Distribution[l].CumulativeProbability, &count );
}
break;
case 7:
law7 = (acelLaw7*) (lawinfo->LawData) ;
acePrintXsSs( fACE, 'a', 'i', 1,
& (law7->NumberOfRegions), &count );
acePrintXSSs( fACE, 'a', 'i', law7->NumberOfRegions,
law7->NumberOfPointsInRegion, &count );
acePrintXss( fACE, 'a', 'i', law7->NumberOfRegions,
law7->InterpolationSchemeInRegion, &count );
acePrintXss( fACE, 'a', 'i', 1,
& (law7->NumberOfIncidentEnergies), &count );
acePrintXSS( fACE, 'a', 'd', law7->NumberOfIncidentEnergies,
law7->IncidentEnerqgy, &count );
acePrintXSSs( fACE, 'a', 'd', law7->NumberOfIncidentEnergies,

law7->Temperature,

&count ) ;
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acePrintXss( fACE, 'a', 'd', 1,
& (law7->RestrictionEnergy), &count );

break;
case 9:
law9 = (acelLaw9*) (lawinfo->LawData) ;

acePrintXss( fACE, 'a', 'i', 1,
& (law9->NumberOfRegions), &count );

acePrintXss( fACE, 'a', 'i', law9->NumberOfRegions,
law9->NumberOfPointsInRegion, &count );

acePrintXSs( fACE, 'a', 'i', law9->NumberOfRegions,
law9->InterpolationSchemeInRegion, &count );

acePrintXsSs( fACE, 'a', 'i', 1,
& (law9->NumberOfIncidentEnergies), &count );

acePrintXSS( fACE, 'a', 'd', law9->NumberOfIncidentEnergies,
law9->IncidentEnerqgy, &count );

acePrintXSs( fACE, 'a', 'd', law9->NumberOfIncidentEnergies,
law9->Temperature, &count );

acePrintXsSs( fACE, 'a', 'd', 1,
& (law9->RestrictionEnergy), &count );
break;
case 44:
lawd44d = (acelawd4d*) (lawinfo->LawData) ;
acePrintXsSs( fACE, 'a', 'i', 1,

& (lawd4->NumberOfRegions), &count );

acePrintXSs( fACE, 'a', 'i', law44->NumberOfRegions,
law44->NumberOfPointsInRegion, &count );

acePrintXss( fACE, 'a', 'i', law44->NumberOfRegions,
law44->InterpolationSchemeInRegion, &count );

acePrintXss( fACE, 'a', 'i', 1,
& (law44->NumberOfIncidentEnergies), &count );

for( 1 = 0; 1 < law44->NumberOfIncidentEnergies; 1++ )

acePrintXsSs( fACE, 'a', 'd', 1,
& (law44->Distribution([l].IncidentEnergy),
&count ) ;

for( 1 = 0; 1 < law44->NumberOfIncidentEnergies; 1++ )
acePrintXss( fACE, 'a', 'i', 1,
& (lawdd4->Distribution[l] .0Offset),
&count ) ;

for( 1 = 0; 1 < lawd44->NumberOfIncidentEnergies; 1++ ) {

acePrintXsSs( fACE, 'a', 'i', 1,
& (lawd44->Distribution[l].InterpolationScheme),
&count ) ;
acePrintXsSs( fACE, 'a', 'i', 1,
& (lawdd->Distribution[1l] .NumberOfPoints),
&count ) ;
acePrintXSS( fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,

law44->Distribution[l] .EmissionEnergy, &count );
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acePrintXsSs( fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
law44->Distribution[l] .Probability, &count );

acePrintXSS( fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
law44->Distribution[l] .CumulativeProbability, &count );

acePrintXSS( fACE, 'a', 'd', law44->Distribution[l].NumberOfPoints,
law44->Distribution[l].PrecompoundFraction, &count );

acePrintXSs( fACE, 'a', 'd', lawd44->Distribution[l].NumberOfPoints,
law44->Distribution[l].AngularDistributionSlope, &count

}

break;

default:
printf ( "ERROR: don't know energy law number %d\n", lawinfo->Number );
break;

}

fprintf ( £ACE, "\n" );
fclose( fACE );

/*********************************************************************
** acePrintXSSs
*/
void acePrintXSS( FILE *fACE, char ft, char dt,
int number, void *data, int *count )

{

int i;

int *idata;

double *ddata;

if ( number == )
return;

switch( ft ) {

case 'a':

switch( dt ) {

case 'i':
idata = (int*)data;
for( i = 0; i1 < number; i++ ) {

fprintf ( fACE, "%20d", idatalil );
if( *count % 4 == )

fprintf ( fACE, "\n" );
(*count) ++;

}

break;
case 'd':
ddata = (double*)data;
for( i = 0; 1 < number; i++ ) {

fprintf ( £fACE, "%20.11E", ddatali] );
if( *count % 4 == )

fprintf ( f£ACE, "\n" );
(*count) ++;

}

break;
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afeCollectEnergies.c

#include "endf6.h"
#include "acepnData.h"

void afeCollectEnergies( endfMaterialInformation *mi,
int *count, double **energy );
void afeAddEnergyToGrid( double *add, int sizeadd,
double *grid, int *sizegrid, int *maxsize );

/*********************************************************************

** afeCollectEnergies
* %

** Create a superset union of all relevant energy grids
* *

** Collect all energy values from any MF3 section,
*/
void afeCollectEnergies( endfMaterialInformation *mi,
int *count, double **energy )
{
int i, 37
int maxsize;

double dvp([2];
double *e;
double mega = 1.0e6;

endfMF3 *mf3data;
endfMF6 *mfé6data;

(*count) = 0;
for( i = 0; 1 < mi->NumberOfRecords; i++ ) {

/*
** count cross section energy grids
*/

if ( mi->Records[i]->MF == ) {
mf3data = (endfMF3*)mi->Records[i]->MFMT;
(*count) += mf3data->NumberOfPoints;

/*

** add an extra point for possible double value point start
*/

(*count) += 2;

}

/*
** count yield points and add to possible grid points
*/
if ( mi->Records[i]->MF == )y {

mfoedata = (endfMF6*)mi->Records[i]->MFMT;

for( j = 0; j < mfédata->NumberOfSubsections; j++ )
(*count) += mfédata->Secondaries[]j].NumberOfYieldPoints;

}

} /* end loop for max size of energy grid */
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/*
** allocate array at max possible size

*/

maxsize = (*count);

e = (double*)calloc( maxsize, sizeof( double ) );

/*
** now count actual entries added to the union grid
*/

(*count)

=0
for( i = 0;

i < mi->NumberOfRecords; i++ ) {

/*
** collect cross section energy grids
*/

if ( mi->Records[i]->MF == )y {

mf3data = (endfMF3*)mi->Records[i]->MFMT;

afeAddEnergyToGrid( mf3data->Energy, mf3data->NumberOfPoints,
e, count, &maxsize );

if ( mf3data->CrossSection[0] != 0 ) {
dvp[0] = dvp[l] = mf3data->Energy([0];
afeAddEnergyToGrid( dvp, 2, e, count, &maxsize );
}

if ( mf3data->Energy[mf3data->NumberOfPoints-1] < e[ (*count)-1] ) {
dvp[0] = dvpl[l] = mf3data->Energy[mf3data->NumberOfPoints-1];
afeAddEnergyToGrid( dvp, 2, e, count, &maxsize );

}
}

/*
** collect mf6 yield energy grids
*/

if ( mi->Records[i]->MF == ) {
mfédata = (endfMF6*)mi->Records|[i]->MFMT;

for( j = 0; j < mféedata->NumberOfSubsections; j++ )
afeAddEnergyToGrid( mfédata->Secondaries[j].YieldEnergy,
mfédata->Secondaries[]j] .NumberOfYieldPoints,
e, count, &maxsize );

}
} /* end for i records */
e = realloc( e, (*count) * sizeof( double ) );

for( i = 0; 1 < *count; i++ )
e[i] = e[i] / mega;

*energy = e;

/*********************************************************************

** afeAddEnergyToGrid

* *

** mesh two energy grids together
* *

** expects the grid to be in numerical order (least to greatest)

** if two consequtive points are coincident, add both
* *
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*/
void afeAddEnergyToGrid( double *add, int sizeadd,
double *grid, int *sizegrid, int *maxsize )
{
int i;
int threshold;
int curpos;

/%
** if no entries in union grid, add all remaining and exit function
*/
if( *sizegrid == 0 ) {
for( 1 = 0; i < sizeadd; i++ ) {
if( *sizegrid > *maxsize) {
*maxsize = *sizegrid;
grid = (double*)realloc( grid, *maxsize );
}
grid[i] = add[i];
(*sizegrid) ++;
}
return;

}
/*

** else if previous entries exist, mesh new entries in order
*/

for( 1 = 0, curpos = 0; 1 < sizeadd; i++ ) {

/*

** skip matching entries

*/

if( add[i] == grid[curpos] ) {
/*

** unless add contains two equal consecutive entries,
** then add both to grid unless they are already there

*/
if( add[i] == add[i-1] && 1 > 0
&& grid[curpos] != grid[curpos+l]
&& curpos < *sizegrid ) {
if( (*sizegrid)+1l > (*maxsize) )
grid = (double*)realloc( grid, ++ (*maxsize) );

memmove ( &grid[curpos+1l], &grid[curpos],

(*sizegrid - curpos) * sizeof( double ) );
grid[curpos] = add[i];
(*sizegrid) ++;

}

/*
** else drop duplicate and move to next entry
*/
}
/*
** add new energy, shuffling union grid
*/
else if( add[i] < grid[curpos] ) {
if( (*sizegrid)+1l > (*maxsize) )
grid = (double*)realloc( grid, ++ (*maxsize) );

memmove ( &grid[curpos+1l], &grid[curpos],
(*sizegrid - curpos) * sizeof( double ) );
grid[curpos] = add[i];
(*sizegrid) ++;
}

/*

** move to next grid position

*/

else if( add[i] > grid[curpos] ) {
curpos++;
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/*

** if at end of union grid, add all remaining and exit loop

*/
if( curpos == *sizegrid ) {
for( ; i < sizeadd; i++ ) {
if( (*sizegrid)+1l > (*maxsize) )
grid = (double*)realloc( grid, ++ (*maxsize) );
grid[curpos] = add[i];
curpos++;
(*sizegrid) ++;
}
}
/*

** else reset 1 to check against next grid entry
*/
else

i-=;

/* end else if */

/* end for i add entries */

afeCreateNTableHeader.c

#include "endf6.h"
#include "acepnData.h"

#include <time.h>

void afeCreateNTableHeader ( endfMateriallInformation *mi, aceTable *table

/*********************************************************************

** afeCreateNTableHeader

*/

void afeCreateNTableHeader ( endfMaterialInformation *mi, aceTable *table

{

table->Z
table->A = table->ZA % 1000;

table->LibraryNumber =
table->TableType = 'n';

sprintf ( table->Comment,

double eps = 0.000001;

time t now;

table->ZA = (int) (mi->TargetZA + eps);
= table->ZA / 1000;

0;

sprintf ( table->TableIdentifier, "%6d.%02d%c",

table->ZA, table->LibraryNumber, table->TableType

table->AtomicWeightRatio = mi->TargetAWR;

time ( &now );
strftime ( table->ProcessDate, 11, " %m/%d/%y", localtime (&now)

table->MaterialNumber = mi->MaterialNumber;
sprintf ( table->MaterialIldentifier, "mat%d", table->MaterialNumber

table->Z, mi->TargetSymbol, table->A,
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table->IncidentParticleName = (char*)calloc( 7, sizeof( char
strcpy( table->IncidentParticleName, "photon" );

)

"$d-%s-%d from %s distributed on %s",

)i

)i

)i

)i

)



mi->EvaluationLaboratory, mi->EvaluationDistributionDate );

afeGetMTInformation.c

#include "endf6.h"
#include "acepnData.h"

void afeGetMTInformation( endfMaterialInformation *mi, acepnData *data );
void afeFillCrossSection( endfMF3 *mf3data, aceMTInformation *mt );
int aceFindMT( int number, int numberofmts, aceMTInformation **mt );

void afeGetMTNames ( aceMTInformation *mt );

/*********************************************************************

** afeGetMTInformation
* *

*/
void afeGetMTInformation( endfMaterialInformation *mi, acepnData *data )

{ int i, 37
int mtn;
double *xs;
endfMF3 *mf3data;
aceMTInformation *mt;
/*

** determine the number of mf3 records and allocate an MTInformation
*x entry for each mf3

*/

data->TotalCrossSection == NULL;
data->ElasticCrossSection == NULL;
data->NonelasticCrossSection == NULL;

for( i = 0; 1 < mi->NumberOfRecords; i++ )

if ( mi->Records[i]->MF ==

&& mi->Records[i]->MT ! 1

&& mi->Records([1]->MT != 2

&& mi->Records([i]->MT != 3
data->NumberOfMTs++;

data->MT = (aceMTInformation**)calloc( data->NumberOfMTs,
sizeof ( aceMTInformation* ) );
for( i = 0; i < data->NumberOfMTs; i++ )
data->MT[i] = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
/*
** £il1l in the MTInfomation
*/
for( i =0, jJ = 0; 1 < mi->NumberOfRecords; i++ ) {
if ( mi->Records[i]->MF == ) {
mf3data = (endfMF3*)mi->Records[i]->MFMT;
if ( mi->Records[i]->MT == 1 ) {
data->TotalCrossSection =
(aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );

mt = data->TotalCrossSection;

}

else if( mi->Records[i]->MT == 2 ) {
data->ElasticCrossSection =
(aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
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}
/*

* *
* *
* *

*/

mt = data->ElasticCrossSection;
}
else if( mi->Records([i]->MT == 3 ) {
data->NonelasticCrossSection =
(aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt = data->NonelasticCrossSection;
}
else {
mt = data->MT[]j];
J++;
}

mt->Number = mi->Records[i]->MT;
afeGetMTINames ( mt );

mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );

mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
afeFillCrossSection( mf3data, mt );

mt->Q = mf3data->ReactionQM;

check the single neutron exit channel mts
summation in mt 4
xs in mt 50 - 91

if( (mtn = aceFindMT( 4, data->NumberOfMTs, data->MT )) >= 0 ) {

if( aceFindMT( 91, data->NumberOfMTs, data->MT ) < 0 ) {

mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 91;
afeGetMTNames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( i = 0; 1 < *mt->NumberOfEnergies; i++ )
mt->CrossSection[i] = data->MT[mtn]->CrossSection([i];
mt->StartingIndex = data->MT[mtn]->StartinglIndex;
mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
mt->Q = data->MT[mtn]->Q;
data->MT [mtn]->Q = 0;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i)
data->MT[i] = mt;
}
}
else {
XS (double*)calloc( data->NumberOfEnergies, sizeof( double ) );

for( 1 = 0; i < data->NumberOfMTs; i++ )
if ( data->MT[i]->Number >= 50 && data->MT[i]->Number <= 91 )
for( j = 0; j < data->NumberOfEnergies; j++ )
xs[j] += data->MT[i]->CrossSection([j];
for( i = 0; 1 < data->NumberOfEnergies; i++ )
if( xs[i] != data->MT[mtn]->CrossSection([i] )
break;
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}

if( i == data->NumberOfEnergies )
free( xs );

else {
printf ( "WARNING: MT4 Summation set to sum of partials\n" );
free( data->MT [mtn]->CrossSection );
data->MT [mtn] ->CrossSection = xs;

}

}

else {
if( aceFindMT( 91, data->NumberOfMTs, data->MT ) >= 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 4;
afeGetMTINames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);

}
/*

* *

* *
* *

*/

mt->Energy = data->Energy;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( data->MT[i]->Number >= 50 && data->MT[i]->Number <= 91 )
for( j = 0; j < data->NumberOfEnergies; j++ )
mt->CrossSection[j] += data->MT[i]->CrossSection[]j];
mt->Q = 0;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i)
data->MT[i] = mt;

}

check the single proton exit channel mts
summation in mt 103
xs in mt 600-649

if( (mtn = aceFindMT( 103, data->NumberOfMTs, data->MT )) >= 0 ) {

if ( aceFindMT( 649, data->NumberOfMTs, data->MT ) < 0 ) {

mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 649;
afeGetMTINames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( 1 = 0; i < *mt->NumberOfEnergies; i++ )
mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
mt->StartingIndex = data->MT[mtn]->StartingIndex;
mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
mt->Q = data->MT[mtn]->Q;
data->MT [mtn]->Q = 0;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i)
data->MT[i] = mt;
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}

}
}
else {
xs = (double*)calloc( data->NumberOfEnergies, sizeof( double ) );
for( i = 0; 1 < data->NumberOfMTs; i++ )

if( data->MT[1i]->Number >= 600 && data->MT[i]->Number <= 649 )

for( J = 0; j < data->NumberOfEnergies; j++ )
xs[j] += data->MT[i]->CrossSection[j];

for( i = 0; i < data->NumberOfEnergies; i++ )
if( xs[i] != data->MT[mtn]->CrossSection[i] )
break;
if( i == data->NumberOfEnergies )
free( xs );
else {

printf ( "WARNING: MT103 Summation set to sum of partials\n" );
free( data->MT [mtn]->CrossSection );
data->MT [mtn]->CrossSection = Xs;
}
}

else {

}
/*

* %
* %
* %
*/
if

if( aceFindMT ( 649, data->NumberOfMTs, data->MT ) >= 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 103;
afeGetMTNames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( i = 0; 1 < data->NumberOfMTs; i++ )
if( data->MT[1i]->Number >= 600 && data->MT[i]->Number <= 649 )
for( J = 0; j < data->NumberOfEnergies; j++ )
mt->CrossSection[j] += data->MT[i]->CrossSection[j];
mt->Q = 0;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i)
data->MT[i] = mt;

}

check the single deuteron exit channel mts
summation in mt 104
xs in mt 650 - 699

( (mtn = aceFindMT( 104, data->NumberOfMTs, data->MT )) >= 0 ) {

if( aceFindMT( 699, data->NumberOfMTs, data->MT ) < 0 ) {

mt (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 699;
afeGetMTINames ( mt );

mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);

mt->Energy = data->Energy;

for( i = 0; 1 < *mt->NumberOfEnergies; i++ )
mt->CrossSection[i] data->MT [mtn]->CrossSection[i];

mt->StartingIndex = data->MT[mtn]->StartinglIndex;

mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;

mt->Q = data->MT[mtn]->Q;

data->MT [mtn]->Q = 0;

for( i = 0; i < data->NumberOfMTs; i++ )
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if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), & (data->MT[i]), (data->NumberOfMTs - 1) );
data->MT[i] = mt;
}
}
else {
XS (double*)calloc( data->NumberOfEnergies, sizeof( double ) );

for( i = 0; i < data->NumberOfMTs; i++ )
if ( data->MT[i]->Number >= 650 && data->MT[i]->Number <= 699 )
for( J = 0; j < data->NumberOfEnergies; j++ )

xs[j] += data->MT[i]->CrossSection([j];

for( 1 = 0; i < data->NumberOfEnergies; i++ )
if( xs[i] != data->MT[mtn]->CrossSection([i] )
break;
if( i == data->NumberOfEnergies )
free( xs );
else {

printf ( "WARNING: MT104 Summation set to sum of partials\n" );
free( data->MT [mtn]->CrossSection );
data->MT [mtn] ->CrossSection = xs;

}

}
}
else {
if ( aceFindMT( 699, data->NumberOfMTs, data->MT ) >= 0 ) {

mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );

mt->Number = 104;

afeGetMTNames ( mt );

mt->CrossSection = (double*)calloc( data->NumberOfEnergies,

sizeof ( double ) );

mt->NumberOfEnergies = & (data->NumberOfEnergies);

mt->Energy = data->Energy;

for( i = 0; i < data->NumberOfMTs; i++ )
if ( data->MT[i]->Number >= 650 && data->MT[i]->Number <= 699 )

for( J = 0; j < data->NumberOfEnergies; j++ )
mt->CrossSection[j] += data->MT[i]->CrossSection[]j];

mt->Q = 0;

for( i = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), & (data->MT[i]), (data->NumberOfMTs - 1) );
data->MT[i] = mt;
}
}
}
/*
** check the single triton exit channel mts
*x summation in mt 105
*x xs in mt 700 - 749
*/
if( (mtn = aceFindMT( 105, data->NumberOfMTs, data->MT )) >= 0 ) {
if ( aceFindMT( 749, data->NumberOfMTs, data->MT ) < 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );

mt->Number = 749;
afeGetMTNames ( mt );
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mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( i 0; i < *mt->NumberOfEnergies; i++ )
mt->CrossSection[i] = data->MT[mtn]->CrossSection([i];
mt->StartingIndex = data->MT[mtn]->StartingIndex;
mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;
mt->Q = data->MT [mtn]->Q;
data->MT [mtn]->Q = 0;
for( 1 = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i) );
data->MT[i] = mt;
}
}
else {

xs = (double*)calloc( data->NumberOfEnergies, sizeof( double ) );
for( 1 = 0; i < data->NumberOfMTs; i++ )
if( data->MT[1i]->Number >= 700 && data->MT[i]->Number <= 749 )
for( j = 0; j < data->NumberOfEnergies; j++ )
xs[j] += data->MT[i]->CrossSection[j];
for( i = 0; i1 < data->NumberOfEnergies; i++ )

if( xs[i] != data->MT[mtn]->CrossSection[i] )
break;
if( i == data->NumberOfEnergies )
free( xs );
else {

printf ( "WARNING: MT105 Summation set to sum of partials\n" );
free( data->MT [mtn]->CrossSection );
data->MT [mtn] ->CrossSection = xs;
}
}
}
else {
if( aceFindMT( 749, data->NumberOfMTs, data->MT ) >= 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 105;
afeGetMTNames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies & (data->NumberOfEnergies) ;
mt->Energy = data->Energy;
for( 1 = 0; i < data->NumberOfMTs; i++ )
if( data->MT[1i]->Number >= 700 && data->MT[i]->Number <= 749 )

for( j = 0; j < data->NumberOfEnergies; j++ )
mt->CrossSection[j] += data->MT[i]->CrossSection[j];
mt->Q = 0;

for( 1 = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), &(data->MT[i]), (data->NumberOfMTs - i) );
data->MT[i] = mt;

}
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** check the single helium-3 exit channel mts

*x summation in mt 106
*x xs in mt 750 - 799
*/

if( (mtn = aceFindMT( 106, data->NumberOfMTs, data->MT )) >= 0 ) {
if ( aceFindMT( 799, data->NumberOfMTs, data->MT ) < 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 799;
afeGetMTINames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( 1 = 0; i < *mt->NumberOfEnergies; i++ )
mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];
mt->StartingIndex = data->MT[mtn]->StartingIndex;
mt->NumberOfEntries = data->MT [mtn]->NumberOfEntries;
mt->Q = data->MT [mtn]->Q;
data->MT [mtn]->Q = 0;
for( 1 = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), & (data->MT[i]), (data->NumberOfMTs - i)
data->MT[i] = mt;
}
}
else {

xs = (double*)calloc( data->NumberOfEnergies, sizeof( double ) );
for( i = 0; i < data->NumberOfMTs; i++ )

if ( data->MT[i]->Number >= 750 && data->MT[i]->Number <= 799 )
for( J = 0; j < data->NumberOfEnergies; j++ )

xs[j] += data->MT[i]->CrossSection[j];

for( 1 = 0; i < data->NumberOfEnergies; i++ )
if( xs[i] != data->MT[mtn]->CrossSection[i] )
break;
if( i == data->NumberOfEnergies )
free( xs );
else {

printf ( "WARNING: MT106 Summation set to sum of partials\n" );
free( data->MT [mtn]->CrossSection );
data->MT [mtn]->CrossSection = Xs;
}
}
}
else {
if ( aceFindMT( 799, data->NumberOfMTs, data->MT ) >= 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 106;
afeGetMTNames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( data->MT[i]->Number >= 750 && data->MT[i]->Number <= 799 )
for( J = 0; j < data->NumberOfEnergies; j++ )
mt->CrossSection[j] += data->MT[i]->CrossSection[j];
mt->Q = 0;
for( 1 = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )
break;
data->NumberOfMTs++;
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}
/*

* %
* %
* %
*/
if(

if( aceFindMT ( 849, data->NumberOfMTs, data->MT

}

data->MT = (aceMTInformation**)realloc( data-

>MT,

data->NumberOfMTs *

sizeof (
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {

memmove ( & (data->MT[i+1]), &(data->MT[i]),
data->MT[i] = mt;
}

check the single alpha exit channel mts
summation in mt 107
xs in mt 800 - 849

aceMTInformation* ) );

(data->NumberOfMTs - 1)

(mtn = aceFindMT ( 107, data->NumberOfMTs, data->MT )) >= 0 ) {

) <0 ) |

mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );

mt->Number = 849;
afeGetMTNames ( mt );

mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies) ;

mt->Energy = data->Energy;
for( i = 0; 1 < *mt->NumberOfEnergies; i++ )

mt->CrossSection[i] = data->MT[mtn]->CrossSection[i];

mt->StartingIndex

data->MT [mtn]->StartingIndex;

mt->NumberOfEntries = data->MT[mtn]->NumberOfEntries;

mt->Q = data->MT[mtn]->Q;
data->MT [mtn]->Q = 0;
for( i = 0; i < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )
break;
data->NumberOfMTs++;

>MT,

data->NumberOfMTs *

data->MT = (aceMTInformation**)realloc( data-
sizeof (
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {

memmove ( & (data->MT[i+1]), &(data->MT[i]),
data->MT[i] = mt;
}

else {

}
}

Xs =
for( i = 0; 1 < data->NumberOfMTs; i++ )

(double*)calloc ( data->NumberOfEnergies,

aceMTInformation* ) );

(data->NumberOfMTs - 1)

sizeof ( double ) );

if ( data->MT[i]->Number >= 800 && data->MT[i]->Number <= 849 )
for( j = 0; j < data->NumberOfEnergies; j++ )

xs[j] += data->MT[i]->CrossSection([j];
for( i = 0; 1 < data->NumberOfEnergies; i++ )

if( xs[i] != data->MT[mtn]->CrossSection[i]
break;
if( i == data->NumberOfEnergies )
free( xs );
else {

)

printf ( "WARNING: MT107 Summation set to sum of partials\n" );

free( data->MT[mtn]->CrossSection );
data->MT [mtn] ->CrossSection = xs;

}

else {

if ( aceFindMT ( 849, data->NumberOfMTs, data->MT ) >= 0 ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 107;
afeGetMTNames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,

sizeof ( double ) );
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mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
for( 1 = 0; i < data->NumberOfMTs; i++ )
if ( data->MT[i]->Number >= 800 && data->MT[i]->Number <= 849 )

for( j = 0; j < data->NumberOfEnergies; j++ )
mt->CrossSection[j] += data->MT[i]->CrossSection[j];
mt->Q = 0;

for( i = 0; i1 < data->NumberOfMTs; i++ )
if ( mt->Number < data->MT[i]->Number )

break;
data->NumberOfMTs++;
data->MT = (aceMTInformation**)realloc( data->MT,
data->NumberOfMTs *
sizeof ( aceMTInformation* ) );
if( i == data->NumberOfMTs - 1 )
data->MT[i] = mt;
else {
memmove ( & (data->MT[i+1]), & (data->MT[i]), (data->NumberOfMTs - i)
data->MT[i] = mt;
}
}
}
/*
** check total and nonelastic cross sections
*/
xs = (double*)calloc( data->NumberOfEnergies, sizeof( double ) );
for( 1 = 0; i < data->NumberOfMTs; i++ ) {
switch( data->MT[i]->Number ) {

/* skip all summation cross sections and the elastic */
case 1l: case 2: case 3: /*these should never be here anyway */
case 4: case 103: case 104: case 105: case 106: case 107:
case 201: case 202: case 203: case 204: case 205: case 206: case 207:

break;
default:
if ( data->MT[i]->Number > 1000 )
break;
for( j = 0; j < data->NumberOfEnergies; j++ )

xs[j] += data->MT[i]->CrossSection([j];
}
}
if ( data->NonelasticCrossSection == NULL ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 2;
afeGetMTNames ( mt );
mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
mt->CrossSection = xs;
mt->StartingIndex = 1;
mt->NumberOfEntries = data->NumberOfEnergies;
mt->Q = 0;
data->NonelasticCrossSection = mt;
}
else {
for( i = 0; 1 < data->NumberOfEnergies; i++ )
if ( data->NonelasticCrossSection->CrossSection[i] != xs[i] )
break;
if( i == data->NumberOfEnergies )
free( xs );
else {
printf ( "WARNING: MT3 Summation set to sum of partials\n" );
free( data->NonelasticCrossSection->CrossSection );
data->NonelasticCrossSection->CrossSection = xs;

}

if ( data->ElasticCrossSection != NULL ) {
if ( data->TotalCrossSection == NULL ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
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mt->Number = 1;
afeGetMTNames ( mt );

mt->CrossSection = (double*)calloc( data->NumberOfEnergies,
sizeof ( double ) );
mt->NumberOfEnergies = & (data->NumberOfEnergies);

mt->Energy = data->Energy;
for( i = 0; 1 < data->NumberOfEnergies; i++ )

mt->CrossSection[i] = data->ElasticCrossSection->CrossSection[i]

+ data->NonelasticCrossSection->CrossSection[i];

mt->StartingIndex = 1;
mt->NumberOfEntries =
mt->Q = 0;
data->TotalCrossSection = mt;

data->NumberOfEnergies;

}

else {

xs = (double*)calloc( data->NumberOfEnergies, sizeof( double ) );
for( 1 = 0; i < data->NumberOfEnergies; i++ )

xs[1i] = data->NonelasticCrossSection->CrossSection([i]

+ data->ElasticCrossSection->CrossSection([i];

for( 1 = 0; i < data->NumberOfEnergies; i++ )

if ( data->TotalCrossSection->CrossSection[i] != xs[i] )

break;

if( i == data->NumberOfEnergies )

free( xs );
else {

printf ( "WARNING: MT1 Summation set to sum of partials\n" );
free( data->TotalCrossSection->CrossSection );
data->TotalCrossSection->CrossSection = xs;
}
}
}
else {
if ( data->TotalCrossSection == NULL ) {
mt = (aceMTInformation*)calloc( 1, sizeof( aceMTInformation ) );
mt->Number = 1;
afeGetMTNames ( mt );
mt->NumberOfEnergies = & (data->NumberOfEnergies);
mt->Energy = data->Energy;
mt->CrossSection = data->NonelasticCrossSection->CrossSection;
mt->StartingIndex = 1;
mt->NumberOfEntries = data->NumberOfEnergies;
mt->Q = 0;
data->TotalCrossSection = mt;
free( data->NonelasticCrossSection );
data->NonelasticCrossSection = NULL;
}
else {
for( i = 0; i1 < data->NumberOfEnergies; i++ )
if ( data->TotalCrossSection->CrossSection[i]
!= data->NonelasticCrossSection->CrossSection[i] )

break;
if( i == data->NumberOfEnergies )
free( data->NonelasticCrossSection->CrossSection );
else {

printf ( "WARNING: MT1 Summation set to sum of partials\n" );
free( data->TotalCrossSection->CrossSection );
data->TotalCrossSection->CrossSection
= data->NonelasticCrossSection->CrossSection;
}
free( data->NonelasticCrossSection );
data->NonelasticCrossSection = NULL;

/*********************************************************************

** aceFindMT
* %

** Find the MT with number n in list of pointers to MTs
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** return the positive number (including zero) if found

*x return a negative number if not found

*/

int aceFindMT( int number, int numberofmts, aceMTInformation **mt )
{

int i;

for( i = 0; i < numberofmts; i++ )
if( mt[i]->Number == number )
break;

if( i < numberofmts )
return 1i;

else
return -1;

/*********************************************************************

** afeFillCrossSection
* *
** Fill the cross section values from existing ENDF data
*/
void afeFillCrossSection( endfMF3 *mf3data, aceMTInformation *mt )
{
int i, 37
int start, end;

double *xs = mt->CrossSection;
double mega = 1.0e6;

/*
** initialize starting index
*/

mt->StartingIndex = 1;

/*
** find first point on grid
*/
for( start = 0;
mt->Energy[start] * mega < mf3data->Energy[0];
start++ )
mt->StartingIndex++;

/*
** find last point on grid
*/
for( end = *mt->NumberOfEnergies - 1;
mt->Energy[end] * mega > mf3data->Energy[mf3data->NumberOfPoints - 1];
end-- )

mt->NumberOfEntries = end - start + 1;

/*
** £i11l all point in between by interpolation
*/
for( i = start, j = 0; 1 <= end; i++ ) {
if( i == start
&& mt->Energy[i] == mt->Energy[i+l]
&& mf3data->Energy([j] != mf3data->Energy[j+1] ) {
xs[i] = 0.0;
i++;
}
if ( mt->Energy[i] * mega == mf3data->Energyl[j] )
xs[1] = mf3data->CrossSection[]j];
else if( mt->Energy[i] * mega < mf3data->Energy([j] ) {
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/* interp value assuming all endf data has been linearlized*/

xs[i] = ( mt->Energy[i] * mega - mf3data->Energy[j-1] ) *
( mf3data->CrossSection[j] - mf3data->CrossSection[j-1] ) /
( mf3data->Energy[j] - mf3data->Energy[j-1] )

+ mf3data->CrossSection[j-1];
}

else { /* 1f( mt->Energy[i] * mega > mf3data->Energy[j] ) */
J++;
i--;

/*
** remove interpolated zero values from start of xs
*/
for( i = start; 1 < end; i++ ) {
if( xs[i] == 0.0 && xs[i+1l] == 0.0 ) {
(mt->StartingIndex) ++;
(mt->NumberOfEntries) --;
}
else
i = end;

afeGetMTNames.c

#include "acepnData.h"

void afeGetMTNames ( aceMTInformation *mt );

/*********************************************************************

** afeGetMTNames

* *

*/

void afeGetMTNames ( aceMTInformation *mt )

{
/*
** Name 1is specified from ENDF 102 format manual appendix B
** along with reaction and products.
* *
** Products are ZA, e.g. proton is 1001, neutron 1, gamma O,
*x etc...
* %
** Number of products uses -1 for explicit file 6 information
*x -2 indicates fission cross section, yield from nu data
*x -9 indicates summation cross section

*/
switch ( mt->Number ) {

/*
** Summation cross sections
*/
case 1:
strcpy ( mt->Name, "total" );
strcpy ( mt->Reaction, " (sum of elastic & non-elastic)" );
mt->NumberOfProducts = -9;
mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;
break;

case 3:
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strcpy ( mt->Name, "non-elastic" );

strcpy( mt->Reaction, " (sum of all non-elastic)"
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;

mt->YieldOfProduct = NULL;

break;

/*
** Reaction cross sections

*/

case 2:

strcpy ( mt->Name, "elastic" );
strcpy ( mt->Reaction, " (gamma, gamma)" );
mt->NumberOfProducts = 1;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof (

)i

mt->ProductZA[0] = 0;
mt->YieldOfProduct = calloc( mt->NumberOfProducts,
mt->YieldOfProduct[0] = 1;
break;
case 5:
strcpy ( mt->Name, "catch all" );
strcpy( mt->Reaction, " (gamma, any)" );
mt->NumberOfProducts = -1;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 11:
strcpy ( mt->Name, "2 neutron + deuterium" );
strcpy( mt->Reaction, " (gamma, 2n d)" );

mt->NumberOfProducts = 3;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof (

mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1002;
mt->ProductZA([2] = -1004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts,
mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 16:

strcpy( mt->Name, "2 neutron" );
strcpy ( mt->Reaction, " (gamma, 2n)" );
mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof (

mt->ProductZA[0] = 1;
mt->ProductZzA[l] = -2;
mt->YieldOfProduct =
mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[1] 1;
break;

case 17:

strcpy ( mt->Name, "3 neutron" );
strcpy( mt->Reaction, " (gamma, 3n)" );
mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof (

calloc( mt->NumberOfProducts,

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -3;
mt->YieldOfProduct = calloc( mt->NumberOfProducts,
mt->YieldOfProduct[0] = 3;
mt->YieldOfProduct[1l] = 1;
break;
case 18:
strcpy( mt->Name, "fission" );
strcpy( mt->Reaction, " (gamma, fission)" );
mt->NumberOfProducts = -1;

mt->ProductZA = NULL;
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mt->YieldOfProduct = NULL;

break;

case 22:
strcpy( mt->Name, "neutron + alpha" );
strcpy( mt->Reaction, " (gamma, n alpha)" );

mt->NumberOfProducts = 3;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[1l] = 2004;

mt->ProductZA[2] = -2005;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[l] = 1;

mt->YieldOfProduct[2 1;

break;

case 24:
strcpy( mt->Name, "2 neutron + alpha" );
strcpy ( mt->Reaction, " (gamma, 2n alpha)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -2006;
mt->YieldOfProduct calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 25:
strcpy ( mt->Name, "3 neutron + alpha" );
strcpy ( mt->Reaction, " (gamma, 3n alpha)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 2004;
mt->ProductZA([2] = -2007;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 3;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 28:
strcpy( mt->Name, "neutron + proton" );
strcpy( mt->Reaction, " (gamma, n p)" );

mt->NumberOfProducts = 3;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[1l] = 1001;

mt->ProductZA[2] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 29:
strcpy( mt->Name, "neutron + 2 alpha" );
strcpy ( mt->Reaction, " (gamma, n 2alpha)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -4009;
mt->YieldOfProduct calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 2;
mt->YieldOfProduct[2] = 1;
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break;

case 30:
strcpy ( mt->Name, "2 neutron + 2 alpha" );
strcpy ( mt->Reaction, " (gamma, 2n 2alpha)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -4010;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[1l] = 2;
mt->YieldOfProduct[2] = 1;
break;
case 32:
strcpy( mt->Name, "neutron + deuterium" );
strcpy( mt->Reaction, " (gamma, n d)" );

mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1002;
mt->ProductZA[2] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 33:
strcpy( mt->Name, "neutron + triton" );
strcpy ( mt->Reaction, " (gamma, n t)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1003;
mt->ProductZA[2] = -1004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 34:
strcpy ( mt->Name, "neutron + helium-3" );
strcpy( mt->Reaction, " (gamma, n he-3)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 2003;
mt->ProductZA[2] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 35:
strcpy( mt->Name, "neutron + deuteron + 2 alpha" );
strcpy( mt->Reaction, " (gamma, n d 2alpha)" );

mt->NumberOfProducts = 4;
mt->ProductZA calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;

mt->ProductZA[1l] = 1002;

mt->ProductZA[2] = 2004;

mt->ProductZA[3] = -5011;

mt->YieldOfProduct calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 2;
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mt->YieldOfProduct[3] = 1;

break;

case 36:
strcpy ( mt->Name, "neutron + triton + 2 alpha" );
strcpy( mt->Reaction, " (gamma, n t 2alpha)" );

mt->NumberOfProducts = 4;
mt->ProductZA calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1003;
mt->ProductZA[2] 2004;

mt->ProductZA[3] = -5012;
mt->YieldOfProduct calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1] 1;
mt->YieldOfProduct[2] = 2;
mt->YieldOfProduct[3] = 1;
break;
case 37:
strcpy( mt->Name, "4 neutron" );
strcpy( mt->Reaction, " (gamma, 4n)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -4;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 4;
mt->YieldOfProduct[1l] = 1;
break;
case 41:
strcpy ( mt->Name, "2 neutron + proton" );
strcpy ( mt->Reaction, " (gamma, 2n p)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1001;
mt->ProductZA[2] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 42:
strcpy( mt->Name, "3 neutron + proton" );
strcpy( mt->Reaction, " (gamma, 3n p)" );

mt->NumberOfProducts = 3;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[1l] = 1001;

mt->ProductZA[2] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 3;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 44:
strcpy( mt->Name, "neutron + 2 proton" );
strcpy ( mt->Reaction, " (gamma, n 2p)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1001;
mt->ProductZA[2] = -2003;
mt->YieldOfProduct calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 2;
mt->YieldOfProduct[2] = 1;
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break;

case 45:
strcpy ( mt->Name, "neutron + proton + alpha" );
strcpy ( mt->Reaction, " (gamma, n p alpha)" );

mt->NumberOfProducts = 4;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = 1001;
mt->ProductZA([2] = 2004;
mt->ProductZA[3] = -3006;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
mt->YieldOfProduct[2] = 1;
mt->YieldOfProduct[3] = 1;
break;
case 102:
strcpy ( mt->Name, "radiative capture" );
strcpy ( mt->Reaction, " (gamma, Xgamma)" );
mt->NumberOfProducts = -2;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;
case 108:
strcpy ( mt->Name, "2 alpha" );
strcpy ( mt->Reaction, " (gamma, 2alpha)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -4008;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[1l] = 1;
break;
case 109:
strcpy ( mt->Name, "3 alpha" );
strcpy ( mt->Reaction, " (gamma, 3alpha)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -6012;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 3;
mt->YieldOfProduct[1l] = 1;
break;
case 111:
strcpy( mt->Name, "2 proton" );
strcpy( mt->Reaction, " (gamma, 2proton)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -2002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 2;
mt->YieldOfProduct[1l] = 1;
break;
case 112:
strcpy ( mt->Name, "proton + alpha" );
strcpy( mt->Reaction, " (gamma, p alpha)" );

mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -3005;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;

case 113:

strcpy ( mt->Name,

strcpy ( mt->Reaction,

"triton + 2 alpha" );
t 2alpha)" );

" (gamma,

mt->NumberOfProducts = 3;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -5011;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 2;
mt->YieldOfProduct[2] = 1;
break;
case 114:
strcpy ( mt->Name, "deuteron + 2 alpha" );
strcpy( mt->Reaction, " (gamma, d 2alpha)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -5010;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 2;
mt->YieldOfProduct[2] = 1;
break;
case 115:
strcpy( mt->Name, "proton + deuteron" );
strcpy( mt->Reaction, " (gamma, p d)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = 1002;
mt->ProductZA[2] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 116:
strcpy( mt->Name, "proton + triton" );
strcpy ( mt->Reaction, " (gamma, p t)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = 1003;
mt->ProductZA[2] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
mt->YieldOfProduct[2] = 1;
break;
case 117:
strcpy( mt->Name, "deuteron + alpha" );
strcpy( mt->Reaction, " (gamma, d alpha)" );
mt->NumberOfProducts = 3;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = 2004;
mt->ProductZA[2] = -3006;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double

mt->YieldOfProduct

[0] = 1;
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mt->YieldOfProduct[1l] = 1

mt->YieldOfProduct[2] = 1;
break;
/*
** Production cross sections
*/
case 201:
strcpy ( mt->Name, "neutron production" );
strcpy( mt->Reaction, " (gamma, Xn)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 202:
strcpy ( mt->Name, "gamma production" );
strcpy( mt->Reaction, " (gamma, Xgamma)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 203:
strcpy ( mt->Name, "proton production" );
strcpy( mt->Reaction, " (gamma, Xp)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 204:
strcpy ( mt->Name, "deuteron production" );
strcpy ( mt->Reaction, " (gamma, Xd)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 205:
strcpy ( mt->Name, "triton production" );
strcpy ( mt->Reaction, " (gamma, Xt)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 206:
strcpy ( mt->Name, "helium-3 production" );
strcpy ( mt->Reaction, " (gamma, XHe-3)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 207:
strcpy ( mt->Name, "alpha production" );
strcpy ( mt->Reaction, " (gamma, Xalpha)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;
/*
** one neutron exit channel with excited residual
*/

case 4:
strcpy( mt->Name, "single neutron channel sum" );
strcpy ( mt->Reaction, " (gamma, n)" );
mt->NumberOfProducts = -9;
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mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 50:
strcpy ( mt->Name, "neutron + ground state residual" );
strcpy ( mt->Reaction, " (gamma, n0)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1

break;

’

case 51:
strcpy ( mt->Name, "neutron + 1lst excited state residual" );
strcpy( mt->Reaction, " (gamma, nl)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 52:
strcpy ( mt->Name, "neutron + 2nd excited state residual" );
strcpy( mt->Reaction, " (gamma, n2)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductzA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1

break;

’

case 53:
strcpy ( mt->Name, "neutron + 3rd excited state residual" );
strcpy( mt->Reaction, " (gamma, n3)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 54:
strcpy ( mt->Name, "neutron + 4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 55:
strcpy ( mt->Name, "neutron + 5th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n5)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
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mt->YieldOfProduct =
mt->YieldOfProduct [0]
1

calloc ( mt->NumberOfProducts, sizeof( double ) );
=1;
mt->YieldOfProduct[1l] = 1;

break;
case 56:
strcpy( mt->Name, "neutron + 6th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n6)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 57:
strcpy( mt->Name, "neutron + 7th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n7)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductzA[l] = -1;

mt->YieldOfProduct =
mt->YieldOfProduct[0]
1

calloc ( mt->NumberOfProducts, sizeof( double ) );
:l;
mt->YieldOfProduct[1l] = 1;

break;

case 58:
strcpy ( mt->Name, "neutron + 8th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n8)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 59:
strcpy( mt->Name, "neutron + 9th excited state residual" );
strcpy( mt->Reaction, " (gamma, n9)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 60:
strcpy ( mt->Name, "neutron + 10th excited state residual" );
strcpy ( mt->Reaction, " (gamma, nlO)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 61:
strcpy ( mt->Name, "neutron + 11lth excited state residual" );
strcpy ( mt->Reaction, " (gamma, nll)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
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mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 62:
strcpy ( mt->Name, "neutron + 12th excited state residual" );
strcpy ( mt->Reaction, " (gamma, nl2)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 63:
strcpy ( mt->Name, "neutron + 13th excited state residual" );
strcpy ( mt->Reaction, " (gamma, nl3)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 64:
strcpy( mt->Name, "neutron + 1l4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, nl4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 65:
strcpy( mt->Name, "neutron + 15th excited state residual" );
strcpy ( mt->Reaction, " (gamma, nl5)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductzA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 66:
strcpy( mt->Name, "neutron + 1l6th excited state residual" );
strcpy( mt->Reaction, " (gamma, nl6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 67:
strcpy( mt->Name, "neutron + 17th excited state residual" );
strcpy( mt->Reaction, " (gamma, nl7)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->ProductZA[0] = 1;

mt->ProductzA[l] = -1;

mt->YieldOfProduct = lloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1 1
break;

Q
V1)

’

case 68:
strcpy ( mt->Name, "neutron + 18th excited state residual" );
strcpy ( mt->Reaction, " (gamma, nl8)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 69:
strcpy ( mt->Name, "neutron + 19th excited state residual" );
strcpy( mt->Reaction, " (gamma, nl9)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 70:
strcpy ( mt->Name, "neutron + 20th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n20)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 71:
strcpy ( mt->Name, "neutron + 21st excited state residual" );
strcpy ( mt->Reaction, " (gamma, n2l1)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 72:
strcpy( mt->Name, "neutron + 22nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, n22)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;

break;

case 73:
strcpy ( mt->Name, "neutron + 23rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, n23)" );

mt->NumberOfProducts = 2;
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mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 74:
strcpy( mt->Name, "neutron + 24th excited state residual" );
strcpy( mt->Reaction, " (gamma, n24)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[1l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1

break;

’

case 75:
strcpy( mt->Name, "neutron + 25th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n25)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductzA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 76:
strcpy ( mt->Name, "neutron + 26th excited state residual" );
strcpy( mt->Reaction, " (gamma, n26)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 77:
strcpy ( mt->Name, "neutron + 27th excited state residual" );
strcpy( mt->Reaction, " (gamma, n27)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 78:
strcpy ( mt->Name, "neutron + 28th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n28)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 79:
strcpy ( mt->Name, "neutron + 29th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n29)" );
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mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;

break;

case 80:
strcpy( mt->Name, "neutron + 30th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n30)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 81:
strcpy( mt->Name, "neutron + 31lst excited state residual" );
strcpy( mt->Reaction, " (gamma, n31)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 82:
strcpy ( mt->Name, "neutron + 32nd excited state residual" );
strcpy( mt->Reaction, " (gamma, n32)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 83:
strcpy( mt->Name, "neutron + 33rd excited state residual" );
strcpy( mt->Reaction, " (gamma, n33)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 84:
strcpy ( mt->Name, "neutron + 34th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n34)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1

break;

’

case 85:
strcpy ( mt->Name, "neutron + 35th excited state residual" );
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strcpy ( mt->Reaction, " (gamma, n35)" );
mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 86:
strcpy ( mt->Name, "neutron + 36th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n36)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 87:
strcpy( mt->Name, "neutron + 37th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n37)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 88:
strcpy( mt->Name, "neutron + 38th excited state residual" );
strcpy ( mt->Reaction, " (gamma, n38)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;
mt->ProductZA[l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 89:
strcpy( mt->Name, "neutron + 39th excited state residual" );
strcpy( mt->Reaction, " (gamma, n39)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[l] = -1;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;

break;

case 90:
strcpy ( mt->Name, "neutron + 40th excited state residual" );
strcpy( mt->Reaction, " (gamma, n40)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[l] = -1;

mt->YieldOfProduct calloc ( mt->NumberOfProducts, sizeof( double ) );

mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 91:
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strcpy ( mt->Name, "neutron + continuum state residual" );

strcpy( mt->Reaction, " (gamma, nz)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1;

mt->ProductZA[1l] = -1;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
/*
** one proton exit channel with excited residual
*/

case 103:
strcpy ( mt->Name, "single proton channel sum" );
strcpy( mt->Reaction, " (gamma, proton)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;
case 600:
strcpy ( mt->Name, "proton + ground state residual" );
strcpy ( mt->Reaction, " (gamma, pO0)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 601:
strcpy ( mt->Name, "proton + lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, pl)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 602:
strcpy ( mt->Name, "proton + 2nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, p2)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 603:
strcpy( mt->Name, "proton + 3rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, p3)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
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case 604:
strcpy ( mt->Name, "proton + 4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 605:
strcpy( mt->Name, "proton + 5th excited state residual" );
strcpy( mt->Reaction, " (gamma, p5)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 606:
strcpy ( mt->Name, "proton + 6th excited state residual" );
strcpy( mt->Reaction, " (gamma, p6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 607:
strcpy ( mt->Name, "proton + 7th excited state residual" );
strcpy( mt->Reaction, " (gamma, pth)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 608:
strcpy ( mt->Name, "proton + 8th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p8)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 609:
strcpy ( mt->Name, "proton + 9th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p9)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
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case 610:
strcpy( mt->Name, "proton + 10th excited state residual" );

strcpy ( mt->Reaction, " (gamma, plO0)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 611:
strcpy ( mt->Name, "proton + 1llth excited state residual" );
strcpy ( mt->Reaction, " (gamma, pll)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 612:
strcpy( mt->Name, "proton + 12th excited state residual" );
strcpy( mt->Reaction, " (gamma, pl2)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 613:
strcpy( mt->Name, "proton + 13th excited state residual" );
strcpy( mt->Reaction, " (gamma, pl3)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 614:
strcpy ( mt->Name, "proton + 14th excited state residual" );
strcpy( mt->Reaction, " (gamma, pl4)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 615:
strcpy ( mt->Name, "proton + 15th excited state residual" );
strcpy( mt->Reaction, " (gamma, pl5)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
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break;

case 616:
strcpy ( mt->Name, "proton + 16th excited state residual" );
strcpy ( mt->Reaction, " (gamma, pl6)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 617:
strcpy ( mt->Name, "proton + 17th excited state residual" );
strcpy ( mt->Reaction, " (gamma, pl7)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 618:
strcpy( mt->Name, "proton + 18th excited state residual" );
strcpy ( mt->Reaction, " (gamma, pl8)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 619:
strcpy ( mt->Name, "proton + 19th excited state residual" );
strcpy ( mt->Reaction, " (gamma, pl9)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 620:
strcpy ( mt->Name, "proton + 20th excited state residual" );
strcpy( mt->Reaction, " (gamma, p20)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZzA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 621:
strcpy( mt->Name, "proton + 21st excited state residual" );
strcpy( mt->Reaction, " (gamma, p2l)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
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mt->YieldOfProduct[1l] = 1;

break;

case 622:
strcpy ( mt->Name, "proton + 22nd excited state residual" );
strcpy( mt->Reaction, " (gamma, p22)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 623:
strcpy ( mt->Name, "proton + 23rd excited state residual" );
strcpy( mt->Reaction, " (gamma, p23)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 624:
strcpy ( mt->Name, "proton + 24th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p24)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 625:
strcpy ( mt->Name, "proton + 25th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p25)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 626:
strcpy( mt->Name, "proton + 26th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p26)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 627:
strcpy ( mt->Name, "proton + 27th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p27)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;
break;
case 628:
strcpy( mt->Name, "proton + 28th excited state residual" );
strcpy( mt->Reaction, " (gamma, p28)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 629:
strcpy ( mt->Name, "proton + 29th excited state residual" );
strcpy( mt->Reaction, " (gamma, p29)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 630:
strcpy ( mt->Name, "proton + 30th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p30)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 631:
strcpy ( mt->Name, "proton + 31st excited state residual" );
strcpy ( mt->Reaction, " (gamma, p31)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 632:
strcpy ( mt->Name, "proton + 32nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, p32)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 633:
strcpy ( mt->Name, "proton + 33rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, p33)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
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mt->YieldOfProduct =
mt->YieldOfProduct [0]
1

calloc ( mt->NumberOfProducts, sizeof( double ) );
=1;
mt->YieldOfProduct[1l] = 1;

break;

case 634:
strcpy( mt->Name, "proton + 34th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p34)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;

case 635:
strcpy( mt->Name, "proton + 35th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p35)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 636:
strcpy ( mt->Name, "proton + 36th excited state residual" );
strcpy( mt->Reaction, " (gamma, p36)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 637:
strcpy ( mt->Name, "proton + 37th excited state residual" );
strcpy( mt->Reaction, " (gamma, p37)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 638:
strcpy ( mt->Name, "proton + 38th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p38)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 639:
strcpy ( mt->Name, "proton + 39th excited state residual" );
strcpy( mt->Reaction, " (gamma, p39)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
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mt->ProductZA[1l] = -1001;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 640:
strcpy ( mt->Name, "proton + 40th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p40)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 641:
strcpy ( mt->Name, "proton + 41lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, p4l)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 642:
strcpy ( mt->Name, "proton + 42nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, p42)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 643:
strcpy( mt->Name, "proton + 43rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, p43)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 644:
strcpy( mt->Name, "proton + 44th excited state residual" );
strcpy( mt->Reaction, " (gamma, p44)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 645:
strcpy ( mt->Name, "proton + 45th excited state residual" );
strcpy( mt->Reaction, " (gamma, p45)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 646:
strcpy ( mt->Name, "proton + 46th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p46)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;

mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 647:
strcpy ( mt->Name, "proton + 47th excited state residual" );
strcpy( mt->Reaction, " (gamma, p47)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 648:
strcpy ( mt->Name, "proton + 48th excited state residual" );
strcpy ( mt->Reaction, " (gamma, p48)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 649:
strcpy ( mt->Name, "proton + continuum state residual" );
strcpy ( mt->Reaction, " (gamma, pz)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1001;
mt->ProductZA[1l] = -1001;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
/*
** one deuteron exit channel with excited residual
*/
case 104:
strcpy( mt->Name, "single deuteron channel sum" );
strcpy ( mt->Reaction, " (gamma, deuteron)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 650:
strcpy ( mt->Name, "deuteron + ground state residual" );
strcpy ( mt->Reaction, " (gamma, dO)" );

mt->NumberOfProducts = 2;
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mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 651:
strcpy( mt->Name, "deuteron + 1lst excited state residual" );
strcpy( mt->Reaction, " (gamma, dl)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 652:
strcpy ( mt->Name, "deuteron + 2nd excited state residual" );
strcpy( mt->Reaction, " (gamma, d2)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 653:
strcpy ( mt->Name, "deuteron + 3rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, d3)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 654:
strcpy ( mt->Name, "deuteron + 4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 655:
strcpy ( mt->Name, "deuteron + 5th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d5)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 656:
strcpy ( mt->Name, "deuteron + 6th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d6)" );
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mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 657:
strcpy( mt->Name, "deuteron + 7th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d7)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 658:
strcpy ( mt->Name, "deuteron + 8th excited state residual" );
strcpy( mt->Reaction, " (gamma, d8)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 659:
strcpy( mt->Name, "deuteron + 9th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d9)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 660:
strcpy ( mt->Name, "deuteron + 10th excited state residual" );
strcpy( mt->Reaction, " (gamma, d1l0)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 661:
strcpy ( mt->Name, "deuteron + 1lth excited state residual" );
strcpy ( mt->Reaction, " (gamma, dl1)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 662:

strcpy ( mt->Name, "deuteron + 12th excited state residual" );
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strcpy ( mt->Reaction, " (gamma, d12)" );
mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 663:
strcpy ( mt->Name, "deuteron + 13th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d13)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 664:
strcpy( mt->Name, "deuteron + 1l4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, dl4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 665:
strcpy( mt->Name, "deuteron + 15th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d15)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 666:
strcpy( mt->Name, "deuteron + 1l6th excited state residual" );
strcpy( mt->Reaction, " (gamma, dl6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 667:
strcpy( mt->Name, "deuteron + 17th excited state residual" );
strcpy( mt->Reaction, " (gamma, dl17)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 668:
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strcpy ( mt->Name, "deuteron + 18th excited state residual" );
strcpy( mt->Reaction, " (gamma, d18)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 669:
strcpy ( mt->Name, "deuteron + 19th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d19)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 670:
strcpy ( mt->Name, "deuteron + 20th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d20)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 671:
strcpy ( mt->Name, "deuteron + 21lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, d21)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 672:
strcpy ( mt->Name, "deuteron + 22nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, d22)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 673:
strcpy ( mt->Name, "deuteron + 23rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, d23)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
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case 674:
strcpy( mt->Name, "deuteron + 24th excited state residual" );
strcpy( mt->Reaction, " (gamma, d24)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 675:
strcpy( mt->Name, "deuteron + 25th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d25)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 676:
strcpy ( mt->Name, "deuteron + 26th excited state residual" );
strcpy( mt->Reaction, " (gamma, d26)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 677:
strcpy ( mt->Name, "deuteron + 27th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d27)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 678:
strcpy ( mt->Name, "deuteron + 28th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d28)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 679:
strcpy ( mt->Name, "deuteron + 29th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d29)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
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case 680:
strcpy ( mt->Name, "deuteron + 30th excited state residual" );

strcpy ( mt->Reaction, " (gamma, d30)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 681:
strcpy ( mt->Name, "deuteron + 31lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, d31)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 682:
strcpy( mt->Name, "deuteron + 32nd excited state residual" );
strcpy( mt->Reaction, " (gamma, d32)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 683:
strcpy ( mt->Name, "deuteron + 33rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, d33)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 684:
strcpy ( mt->Name, "deuteron + 34th excited state residual" );
strcpy( mt->Reaction, " (gamma, d34)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 685:
strcpy ( mt->Name, "deuteron + 35th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d35)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
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break;

case 686:
strcpy ( mt->Name, "deuteron + 36th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d36)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 687:
strcpy ( mt->Name, "deuteron + 37th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d37)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 688:
strcpy( mt->Name, "deuteron + 38th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d38)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 689:
strcpy( mt->Name, "deuteron + 39th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d39)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 690:
strcpy( mt->Name, "deuteron + 40th excited state residual" );
strcpy( mt->Reaction, " (gamma, d40)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 691:
strcpy ( mt->Name, "deuteron + 41lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, d41)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[1l] = -1002;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
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mt->YieldOfProduct[1l] = 1;

break;

case 692:
strcpy ( mt->Name, "deuteron + 42nd excited state residual" );
strcpy( mt->Reaction, " (gamma, d42)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 693:
strcpy ( mt->Name, "deuteron + 43rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, d43)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;

mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 694:
strcpy ( mt->Name, "deuteron + 44th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d44)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 695:
strcpy ( mt->Name, "deuteron + 45th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d45)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 696:
strcpy ( mt->Name, "deuteron + 46th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d46)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 697:
strcpy( mt->Name, "deuteron + 47th excited state residual" );
strcpy ( mt->Reaction, " (gamma, d47)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;
break;
case 698:
strcpy( mt->Name, "deuteron + 48th excited state residual" );
strcpy( mt->Reaction, " (gamma, d48)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 699:
strcpy( mt->Name, "deuteron + continuum state residual" );
strcpy( mt->Reaction, " (gamma, dz)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1002;
mt->ProductZA[1l] = -1002;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
/*
** one triton exit channel with excited residual
*/

case 105:
strcpy ( mt->Name, "single triton channel sum" );
strcpy( mt->Reaction, " (gamma, triton)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 700:
strcpy ( mt->Name, "triton + ground state residual" );
strcpy ( mt->Reaction, " (gamma, t0)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 701:
strcpy ( mt->Name, "triton + 1lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, t1)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 702:
strcpy ( mt->Name, "triton + 2nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, t2)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
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mt->YieldOfProduct =
mt->YieldOfProduct [0]
1

calloc ( mt->NumberOfProducts, sizeof( double ) );
=1;
mt->YieldOfProduct[1l] = 1;

break;

case 703:
strcpy( mt->Name, "triton + 3rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, t3)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;

case 704:
strcpy( mt->Name, "triton + 4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 705:
strcpy( mt->Name, "triton + 5th excited state residual" );
strcpy( mt->Reaction, " (gamma, t5)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 706:
strcpy( mt->Name, "triton + 6th excited state residual" );
strcpy( mt->Reaction, " (gamma, t6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 707:
strcpy ( mt->Name, "triton + 7th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t7)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 708:
strcpy ( mt->Name, "triton + 8th excited state residual" );
strcpy( mt->Reaction, " (gamma, t8)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
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mt->ProductZA[1l] = -1003;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 709:
strcpy ( mt->Name, "triton + 9th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t9)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 710:
strcpy ( mt->Name, "triton + 10th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t10)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 711:
strcpy( mt->Name, "triton + 1lth excited state residual" );
strcpy ( mt->Reaction, " (gamma, t11)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 712:
strcpy( mt->Name, "triton + 12th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t12)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 713:
strcpy( mt->Name, "triton + 13th excited state residual" );
strcpy( mt->Reaction, " (gamma, t13)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 714:
strcpy( mt->Name, "triton + 1l4th excited state residual" );
strcpy( mt->Reaction, " (gamma, t14)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 715:
strcpy ( mt->Name, "triton + 15th excited state residual" );
strcpy ( mt->Reaction, " (gamma, tl5)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 716:
strcpy ( mt->Name, "triton + 16th excited state residual" );
strcpy( mt->Reaction, " (gamma, tl6)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 717:
strcpy ( mt->Name, "triton + 17th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t17)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 718:
strcpy ( mt->Name, "triton + 18th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t18)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 719:
strcpy( mt->Name, "triton + 19th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t19)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 720:
strcpy( mt->Name, "triton + 20th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t20)" );

mt->NumberOfProducts = 2;
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mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 721:
strcpy( mt->Name, "triton + 21st excited state residual" );
strcpy( mt->Reaction, " (gamma, t21)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 722:
strcpy( mt->Name, "triton + 22nd excited state residual" );
strcpy( mt->Reaction, " (gamma, t22)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 723:
strcpy ( mt->Name, "triton + 23rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, t23)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 724:
strcpy ( mt->Name, "triton + 24th excited state residual" );
strcpy( mt->Reaction, " (gamma, t24)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 725:
strcpy ( mt->Name, "triton + 25th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t25)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 726:
strcpy ( mt->Name, "triton + 26th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t26)" );
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mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 727:
strcpy( mt->Name, "triton + 27th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t27)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 728:
strcpy( mt->Name, "triton + 28th excited state residual" );
strcpy( mt->Reaction, " (gamma, t28)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 729:
strcpy( mt->Name, "triton + 29th excited state residual" );
strcpy( mt->Reaction, " (gamma, t29)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 730:
strcpy( mt->Name, "triton + 30th excited state residual" );
strcpy( mt->Reaction, " (gamma, t30)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 731:
strcpy ( mt->Name, "triton + 31st excited state residual" );
strcpy ( mt->Reaction, " (gamma, t31)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 732:
strcpy ( mt->Name, "triton + 32nd excited state residual" );

302



strcpy ( mt->Reaction, " (gamma, t32)" );
mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 733:
strcpy ( mt->Name, "triton + 33rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, t33)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 734:
strcpy( mt->Name, "triton + 34th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t34)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 735:
strcpy( mt->Name, "triton + 35th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t35)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 736:
strcpy( mt->Name, "triton + 36th excited state residual" );
strcpy( mt->Reaction, " (gamma, t36)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 737:
strcpy( mt->Name, "triton + 37th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t37)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 738:
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strcpy ( mt->Name, "triton + 38th excited state residual" );
strcpy( mt->Reaction, " (gamma, t38)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 739:
strcpy ( mt->Name, "triton + 39th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t39)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 740:
strcpy ( mt->Name, "triton + 40th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t40)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 741:
strcpy ( mt->Name, "triton + 41st excited state residual" );
strcpy ( mt->Reaction, " (gamma, t41)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 742:
strcpy( mt->Name, "triton + 42nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, t42)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 743:
strcpy( mt->Name, "triton + 43rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, td43)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
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case 744:
strcpy( mt->Name, "triton + 44th excited state residual" );
strcpy( mt->Reaction, " (gamma, t44)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 745:
strcpy( mt->Name, "triton + 45th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t45)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 746:
strcpy ( mt->Name, "triton + 46th excited state residual" );
strcpy( mt->Reaction, " (gamma, t46)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 747:
strcpy ( mt->Name, "triton + 47th excited state residual" );
strcpy ( mt->Reaction, " (gamma, t47)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;

mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 748:
strcpy ( mt->Name, "triton + 48th excited state residual" );
strcpy ( mt->Reaction, " (gamma, td48)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 749:
strcpy ( mt->Name, "triton + continuum state residual" );
strcpy ( mt->Reaction, " (gamma, tz)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 1003;
mt->ProductZA[1l] = -1003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
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** one helium-3 exit channel with excited residual

*/

case 106:
strcpy( mt->Name, "single helium-3 channel sum" );
strcpy ( mt->Reaction, " (gamma, he3)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;
case 750:
strcpy ( mt->Name, "helium-3 + ground state residual" );
strcpy ( mt->Reaction, " (gamma, he3-0)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 751:
strcpy( mt->Name, "helium-3 + 1lst excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-1)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 752:
strcpy ( mt->Name, "helium-3 + 2nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-2)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 753:
strcpy ( mt->Name, "helium-3 + 3th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-3)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 754:
strcpy ( mt->Name, "helium-3 + 4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-4)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;
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break;

case 755:
strcpy ( mt->Name, "helium-3 + 5th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-5)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 756:
strcpy ( mt->Name, "helium-3 + 6th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-6)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 757:
strcpy ( mt->Name, "helium-3 + 7th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-7)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 758:
strcpy( mt->Name, "helium-3 + 8th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-8)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 759:
strcpy( mt->Name, "helium-3 + 9th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-9)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 760:
strcpy( mt->Name, "helium-3 + 10th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-10)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductzZA[0] = 2003;

mt->ProductZA[1l] = -2003;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
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mt->YieldOfProduct[1l] = 1;

break;

case 761:
strcpy ( mt->Name, "helium-3 + 1lth excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-11)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 762:
strcpy ( mt->Name, "helium-3 + 12th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-12)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 763:
strcpy ( mt->Name, "helium-3 + 13th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-13)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 764:
strcpy ( mt->Name, "helium-3 + 14th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-14)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1] 1;
break;
case 765:
strcpy( mt->Name, "helium-3 + 15th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-15)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 766:
strcpy( mt->Name, "helium-3 + 1l6th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-16)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;
break;
case 767:
strcpy ( mt->Name, "helium-3 + 17th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-17)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 768:
strcpy( mt->Name, "helium-3 + 18th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-18)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 769:
strcpy ( mt->Name, "helium-3 + 19th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-19)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 770:
strcpy ( mt->Name, "helium-3 + 20th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-20)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 771:
strcpy ( mt->Name, "helium-3 + 21st excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-21)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 772:
strcpy ( mt->Name, "helium-3 + 22nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-22)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;

309



mt->YieldOfProduct =
mt->YieldOfProduct [0]
1

calloc ( mt->NumberOfProducts, sizeof( double ) );
=1;
mt->YieldOfProduct[1l] = 1;

break;

case 773:
strcpy ( mt->Name, "helium-3 + 23rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-23)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;

case 774:
strcpy ( mt->Name, "helium-3 + 24th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-24)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 775:
strcpy( mt->Name, "helium-3 + 25th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-25)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 776:
strcpy( mt->Name, "helium-3 + 26th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-26)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 777:
strcpy ( mt->Name, "helium-3 + 27th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-27)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 778:
strcpy ( mt->Name, "helium-3 + 28th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-28)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
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mt->ProductZA[1l] = -2003;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 779:
strcpy ( mt->Name, "helium-3 + 29th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-29)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 780:
strcpy ( mt->Name, "helium-3 + 30th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-30)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 781:
strcpy( mt->Name, "helium-3 + 31lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-31)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 782:
strcpy ( mt->Name, "helium-3 + 32nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-32)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 783:
strcpy( mt->Name, "helium-3 + 33rd excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-33)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 784:
strcpy ( mt->Name, "helium-3 + 34th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-34)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 785:
strcpy ( mt->Name, "helium-3 + 35th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-35)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 786:
strcpy ( mt->Name, "helium-3 + 36th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-36)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 787:
strcpy ( mt->Name, "helium-3 + 37th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-37)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 788:
strcpy ( mt->Name, "helium-3 + 38th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-38)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 789:
strcpy( mt->Name, "helium-3 + 39th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-39)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 790:
strcpy( mt->Name, "helium-3 + 40th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-40)" );

mt->NumberOfProducts = 2;
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mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 791:
strcpy ( mt->Name, "helium-3 + 41lst excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-41)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 792:
strcpy ( mt->Name, "helium-3 + 42nd excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-42)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 793:
strcpy ( mt->Name, "helium-3 + 43rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-43)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;

mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 794:
strcpy ( mt->Name, "helium-3 + 44th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-44)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 795:
strcpy ( mt->Name, "helium-3 + 45th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-45)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 796:
strcpy ( mt->Name, "helium-3 + 46th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-46)" );
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mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 797:
strcpy ( mt->Name, "helium-3 + 47th excited state residual" );
strcpy ( mt->Reaction, " (gamma, he3-47)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 798:
strcpy( mt->Name, "helium-3 + 48th excited state residual" );
strcpy( mt->Reaction, " (gamma, he3-48)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 799:
strcpy ( mt->Name, "helium-3 + continuum state residual" );
strcpy( mt->Reaction, " (gamma, he3z)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductzA[0] = 2003;
mt->ProductZA[1l] = -2003;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
/%
** one alpha exit channel with excited residual
*/

case 107:
strcpy ( mt->Name, "single alpha channel sum" );
strcpy( mt->Reaction, " (gamma, alpha)" );
mt->NumberOfProducts = -9;

mt->ProductZA = NULL;
mt->YieldOfProduct = NULL;

break;

case 800:
strcpy ( mt->Name, "alpha + ground state residual" );
strcpy( mt->Reaction, " (gamma, alphaO)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 801:

strcpy ( mt->Name, "alpha + 1lst excited state residual" );
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strcpy ( mt->Reaction, " (gamma, alphal)" );
mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 802:
strcpy ( mt->Name, "alpha + 2nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha2)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 803:
strcpy ( mt->Name, "alpha + 3rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha3)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 804:
strcpy ( mt->Name, "alpha + 4th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha4)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 805:
strcpy( mt->Name, "alpha + 5th excited state residual" );
strcpy( mt->Reaction, " (gamma, alphab)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 806:
strcpy( mt->Name, "alpha + 6th excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 807:
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strcpy ( mt->Name, "alpha + 7th excited state residual" );

strcpy( mt->Reaction, " (gamma, alpha7)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 808:
strcpy ( mt->Name, "alpha + 8th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha8)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 809:
strcpy ( mt->Name, "alpha + 9th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha9)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 810:
strcpy ( mt->Name, "alpha + 10th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphalO)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 811:
strcpy( mt->Name, "alpha + 11th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphall)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 812:
strcpy ( mt->Name, "alpha + 12th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphal2)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
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case 813:
strcpy( mt->Name, "alpha + 13th excited state residual" );
strcpy( mt->Reaction, " (gamma, alphal3)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 814:
strcpy ( mt->Name, "alpha + 14th excited state residual" );
strcpy( mt->Reaction, " (gamma, alphal4d)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 815:
strcpy ( mt->Name, "alpha + 15th excited state residual" );
strcpy( mt->Reaction, " (gamma, alphalb)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 816:
strcpy ( mt->Name, "alpha + 16th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphal6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 817:
strcpy ( mt->Name, "alpha + 17th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphal7)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 818:
strcpy ( mt->Name, "alpha + 18th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphal8)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
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case 819:
strcpy( mt->Name, "alpha + 19th excited state residual" );

strcpy ( mt->Reaction, " (gamma, alphal9)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 820:
strcpy ( mt->Name, "alpha + 20th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha20)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 821:
strcpy( mt->Name, "alpha + 21st excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha2l)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 822:
strcpy( mt->Name, "alpha + 22nd excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha22)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 823:
strcpy ( mt->Name, "alpha + 23rd excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha23)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 824:
strcpy ( mt->Name, "alpha + 24th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha24)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
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break;

case 825:
strcpy ( mt->Name, "alpha + 25th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha25)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 826:
strcpy ( mt->Name, "alpha + 26th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha26)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 827:
strcpy( mt->Name, "alpha + 27th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha27)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 828:
strcpy( mt->Name, "alpha + 28th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha28)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 829:
strcpy( mt->Name, "alpha + 29th excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha29)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 830:
strcpy( mt->Name, "alpha + 30th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha30)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
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mt->YieldOfProduct[1l] = 1;

break;

case 831:
strcpy ( mt->Name, "alpha + 31lst excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha3l)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;

break;

case 832:
strcpy ( mt->Name, "alpha + 32nd excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha32)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 833:
strcpy ( mt->Name, "alpha + 33rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha33)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 834:
strcpy ( mt->Name, "alpha + 34th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha34)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 835:
strcpy( mt->Name, "alpha + 35th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha35)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 836:
strcpy( mt->Name, "alpha + 36th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha36)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
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mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[l] = 1;
break;
case 837:
strcpy ( mt->Name, "alpha + 37th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha37)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 838:
strcpy( mt->Name, "alpha + 38th excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha38)" );

mt->NumberOfProducts = 2;

mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;

mt->YieldOfProduct[1l] = 1;

break;

case 839:
strcpy ( mt->Name, "alpha + 39th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha39)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 840:
strcpy ( mt->Name, "alpha + 40th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha40)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 841:
strcpy ( mt->Name, "alpha + 41lst excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha4l)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 842:
strcpy ( mt->Name, "alpha + 42nd excited state residual" );
strcpy ( mt->Reaction, " (gamma, alphad2)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
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mt->YieldOfProduct =
mt->YieldOfProduct [0]
1

calloc ( mt->NumberOfProducts, sizeof( double ) );
=1;
mt->YieldOfProduct[1l] = 1;

break;

case 843:
strcpy( mt->Name, "alpha + 43rd excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha43)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;

case 844:
strcpy( mt->Name, "alpha + 44th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha44)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;

case 845:
strcpy( mt->Name, "alpha + 45th excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha4b)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 846:
strcpy( mt->Name, "alpha + 46th excited state residual" );
strcpy( mt->Reaction, " (gamma, alpha4d6)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );

mt->ProductZA[0] = 2004;
mt->ProductZA[1l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 847:
strcpy ( mt->Name, "alpha + 47th excited state residual" );
strcpy( mt->Reaction, " (gamma, alphad7)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;

mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[l] = 1;
break;
case 848:
strcpy ( mt->Name, "alpha + 48th excited state residual" );
strcpy ( mt->Reaction, " (gamma, alpha48)" );

mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
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mt->ProductZA[l] = -2004;

mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
case 849:
strcpy ( mt->Name, "alpha + continuum state residual" );
strcpy ( mt->Reaction, " (gamma, alphaz)" );
mt->NumberOfProducts = 2;
mt->ProductZA = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->ProductZA[0] = 2004;
mt->ProductZA[l] = -2004;
mt->YieldOfProduct = calloc( mt->NumberOfProducts, sizeof( double ) );
mt->YieldOfProduct[0] = 1;
mt->YieldOfProduct[1l] = 1;
break;
default:
printf ( "ERROR: unexpected case; got mt number %d\n", mt->Number );
break;

afeGetMTProducts.c

#include "endf6.h"
#include "acepnData.h"

volid afeGetMTProducts ( endfMaterialInformation *mi, aceTable *table );
void afeMF5toLawData ( endfMF5Distribution *mf5, acelLawInformation *1i );
void afeMF6toLawData ( endfSecondary *sec, acelawInformation *1i );
void afeComputeCumulativeProbability( int law, int d, void *lawdata,
int Interpolation );
void afeComputeKalbachSlopeParameter ( endfMaterialInformation *mi,
aceTable *table, acelaw44 *lawi44,
int pOutZA, double AWRout );
double afeComputeBindingEnergy( int cnZA, int pZA );
int afeIntCompare( const void *vl, const void *v2 );
int afeZAtoIPT( int ZA );
double aceComputeYield( double energy, aceYieldInformation *yieldinfo );
double acelnterpretPoint( int interp, double energy, double *egrid, double *vgrid );

int aceFindMT( int number, int numberofmts, aceMTInformation **mt );

/*********************************************************************

** afeGetMTProducts

* *

*/
void afeGetMTProducts ( endfMaterialInformation *mi, aceTable *table )
{

int i, 3, k, 1, m, n;

int end;

int count;

int *mtcount;
int *zalist;

double mega = 1.0e6;

acepnData *data = (acepnData*)table->Data;
aceProduct *tpProd;

aceMTReference *mtref;

aceMTInformation *mt;

aceYieldInformation *yielddata;

aceEmissionData *emitdata;

endfMF1T *tnu;

323



endfMF1P *pnu;

endfMF1 “*mfldata;
endfMF4 *mfddata;
endfMF5 *mfb5data;
endfMF6 *mf6data;

/*
** Count the maximum number of secondaries if every one was different
*/
for( i = 0, count = 0; i < mi->NumberOfRecords; i++ ) {
/* only one product, neutrons, can be specified by mf5 */
if ( mi->Records[i]->MF == )

count++;
/* explicit number of products from mf6 description */
else if( mi->Records[i]->MF == ) {

mfedata = (endfMF6*) (mi->Records[i]->MFMT) ;

count += mf6data->NumberOfSubsections;

}

/*
** create a list of all secondaries specified
*/
data->NumberOfProducts = count;
zalist = (int*)calloc( count, sizeof( int ) );
for( i = 0, count = 0; i < mi->NumberOfRecords; i++ ) {
if ( mi->Records[i]->MF == )
zalist[count++] = 1;
else if( mi->Records[i]->MF == ) |
mfédata = (endfMF6*) (mi->Records[i]->MFMT) ;
for( j = 0; j < mfedata->NumberOfSubsections; j++ )
zalist[count++] = (int) (mfédata->Secondaries[j].ParticleZA + 0.000001);
}
}
/*
** sort list least to greatest
*/
for( i = 0; 1 < count; i++ )
for( j = i+l; j < count; j++ )
if( zalist[j] < zalist[i] )
gsort ( (void*)zalist, (size t)count, sizeof(int), &afeIntCompare );
/*
** remove duplicate entries from list
*/
for( i = 1; 1 < count; i++ )
if( zalist[i] == zalist[i-1] ) {
memmove ( &zalist[i-1], &zalist[i], (count - 1)*sizeof (int) );
count--;
i--;
}
/*

** remove all za references greater than alpha (2004) for now
*/
while( zalist[count - 1] > 2004 && count > 0)

count--;

/*
** create the product holders
*/
data->NumberOfProducts = count;
data->Product = (aceProduct**)calloc( count, sizeof( aceProduct* ) );
for( 1 = 0; 1 < count; i++ ) {
data->Product[i] = (aceProduct*)calloc( 1, sizeof( aceProduct ) );
data->Product[i]->ZA = zalist[i];
data->Product [i]->IPT = afeZAtoIPT( zalist[i] );
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}
/*

** free the temporary za listing
*/
free( zalist );

/*
** count the number of reactions involving each product
*/
for( i = 0; 1 < mi->NumberOfRecords; i++ ) {
if ( mi->Records[i]->MF == ) {
for( k = 0; k < data->NumberOfProducts; k++ )
if ( data->Product[k]->ZA == )
(data->Product [k] ->NumberOfReactions) ++;
}
else if( mi->Records[i]->MF == ) |
mfodata = (endfMFo6*) (mi->Records[i]->MFMT) ;
for( j = 0; j < mfédata->NumberOfSubsections; j++ ) {
for( k = 0; k < data->NumberOfProducts; k++ )
if ( data->Product[k]->ZA
== (int) (mfédata->Secondaries[]j].ParticleZA + 0.000001) )
(data->Product [k] ->NumberOfReactions) ++;
}
}
}
/*
** allocate space for references to said reactions
*/
for( 1 = 0; i < data->NumberOfProducts; i++ ) {
data->Product [i]->MTReference = (aceMTReference**)
calloc( data->Product[i]->NumberOfReactions, sizeof( aceMTReference* ) );
for( j = 0; j < data->Product[i]->NumberOfReactions; Jj++ )
data->Product[i]->MTReference[]]
= (aceMTReference*)calloc( 1, sizeof( aceMTReference ) );
}
/%

** create a temp count for each product to ensure don't exceed count above
*/

mtcount = (int*)calloc( data->NumberOfProducts, sizeof( int ) );

/*
** connect the appropriate mt reference and fill in the yield and emission data
*/

for( 1 = 0; i < mi->NumberOfRecords; i++ ) {

if ( mi->Records[i]->MF == )y {
mf5data = (endfMF5%*) (mi->Records[i]->MFMT) ;

for( k = 0; k < data->NumberOfProducts; k++ )
if ( data->Product[k]->ZA == )
break;
if ( k >= data->NumberOfProducts )
break;

switch( mi->Records[i]->MT ) {

case 4:
1l = aceFindMT( 91, data->NumberOfMTs, data->MT );
break;

case 103:
1 = aceFindMT( 649, data->NumberOfMTs, data->MT );
break;

case 104:
1 = aceFindMT( 699, data->NumberOfMTs, data->MT );
break;

case 105:
1 = aceFindMT( 749, data->NumberOfMTs, data->MT );
break;
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case 106:
1 = aceFindMT( 799, data->NumberOfMTs, data->MT );
break;
case 107:
1 = aceFindMT( 849, data->NumberOfMTs, data->MT );
break;
default:
1 = aceFindMT ( mi->Records[i]->MT, data->NumberOfMTs, data->MT );
break;
}
if( 1 <0 ) {
printf ( "ERROR: mt reference by mf5 mt%d not found in ace table\n",
mi->Records[i]->MT );
exit( -1 );
}

if ( mtcount[k] >= data->Product[k]->NumberOfReactions ) {
printf ( "ERROR: trying to fill more reactions that found\n" );
exit( -1 );

}

data->Product [k] ->MTReference [mtcount [k] ]->Type = 5;
data->Product [k] ->MTReference [mtcount [k] ]->MT = data->MT[1l];

data->Product [k]->MTReference [mtcount [k]]->Yield
= (aceYieldInformation*)calloc( 1, sizeof( aceYieldInformation ) );
yielddata = data->Product[k]->MTReference [mtcount[k]]->Yield;

if ( data->MT[1]->Number == 18 ) {
for( m = 0; m < mi->NumberOfRecords; m++ )
if ( mi->Records[m]->MF == )y {
if ( mi->Records[m]->MT == 452 ) {
mfldata = (endfMF1*) (mi->Records[m]->MFMT) ;
tnu = (endfMF1T*)mfldata->NuParameters;
break;
}
else if( mi->Records[m]->MT == 456 ) {
mfldata = (endfMF1*) (mi->Records[m]->MFMT) ;
pnu = (endfMF1P*)mfldata->NuParameters;
break;
}
}
if( m == mi->NumberOfRecords ) {
printf ( "ERROR: fission cross section given without nubar\n" );
exit( -1 );
}
if ( mi->Records[m]->MT == 452 ) {
if ( tnu->NumberOfInterpolationRegions == 0 ) {

printf ( "ERROR: total nu with poly coeff. not currently supported\n" );
exit( -1 );
}

printf( "NOTE: fission spectrum will use total nu\n" );

yielddata->NumberOfRegions = tnu->NumberOfInterpolationRegions;
yielddata->NumberOfPointsInRegion
= (int*)calloc( tnu->NumberOflInterpolationRegions, sizeof( int ) );
yielddata->InterpolationSchemeInRegion
= (int*)calloc( tnu->NumberOfInterpolationRegions, sizeof( int ) );
for( n = 0; n < tnu->NumberOfInterpolationRegions; n++ ) {
yielddata->NumberOfPointsInRegion[n]
= tnu->NumberOfPointsInRegion[n];
yielddata->InterpolationSchemeInRegion[n]
= tnu->InterpolationSchemeInRegion[n];

}
yielddata->NumberOfYields = tnu->NumberOfPoints;

yielddata->Energy
= (double*)calloc( yielddata->NumberOfYields, sizeof( double ) );
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yielddata->Yield

= (double*)calloc( yielddata->NumberOfYields, sizeof( double ) );
for( n = 0; n < yielddata->NumberOfYields; n++ ) {
yielddata->Energy[n] = tnu->Energy[n] / mega;
yielddata->Yield[n] = tnu->Nuln];
}
}
else if( mi->Records[m]->MT == 456 ) {

printf ( "NOTE: fission spectrum will use prompt nu\n" );

yielddata->NumberOfRegions = pnu->NumberOfInterpolationRegions;
yielddata->NumberOfPointsInRegion
= (int*)calloc( pnu->NumberOfInterpolationRegions, sizeof( int ) );
yielddata->InterpolationSchemeInRegion
= (int*)calloc( pnu->NumberOfInterpolationRegions, sizeof( int ) );
for( n = 0; n < pnu->NumberOfInterpolationRegions; n++ ) {
yielddata->NumberOfPointsInRegion[n]
= pnu->NumberOfPointsInRegion[n];
yielddata->InterpolationSchemeInRegion[n]
= pnu->InterpolationSchemeInRegion[n];

}

yielddata->NumberOfYields = pnu->NumberOfPoints;
yielddata->Energy

= (double*)calloc( yielddata->NumberOfYields, sizeof( double ) );
yielddata->Yield

= (double*)calloc( yielddata->NumberOfYields, sizeof( double ) );
for( n = 0; n < yielddata->NumberOfYields; n++ ) {

yielddata->Energy[n] = pnu->Energy[n] / mega;

yielddata->Yield[n] = pnu->Nul[n];

}
}

} /* end of if fission, set nu as yield */

else {
yielddata->NumberOfRegions = 1;
yielddata->NumberOfPointsInRegion = (int*)calloc( 1, sizeof( int ) );
yielddata->InterpolationSchemeInRegion = (int*)calloc( 1, sizeof( int )
yielddata->NumberOfPointsInRegion[0] = 2;
yvielddata->InterpolationSchemeInRegion[0] = 2;

yielddata->NumberOfYields = 2;

yielddata->Energy = (double*)calloc( 2, sizeof( double ) );
yielddata->Yield = (double*)calloc( 2, sizeof( double ) );
yielddata->Energy[0] = data->Energyl[0];

yielddata->Energy[l] = data->Energy[data->NumberOfEnergies-1];

for( m = 0; m < data->MT[1]->NumberOfProducts; m++ )
if ( data->MT[1l]->ProductZA[m] == )

break;
yielddata->Yield[0] = data->MT[1l]->YieldOfProduct[m];
yielddata->Yield[1l] = data->MT[1l]->YieldOfProduct[m];

}

data->Product [k]->MTReference [mtcount [k] ] ->Emit
= (aceEmissionData*)calloc( 1, sizeof( aceEmissionData ) );
emitdata = data->Product[k]->MTReference [mtcount [k]]->Emit;

for(m = 0; m < mi->NumberOfRecords; m++ )
if ( mi->Records[m]->MF ==

&& mi->Records[m]->MT == mi->Records[i]->MT )
break;
if( m >= mi->NumberOfRecords ) {

printf ( "ERROR: no corresponding mf4 data for mf5 mt%d\n",
data->MT[1]->Number );
exit( -1 );
}

/* set coordinate system -1 for CM or 1 for Lab */
mfddata = (endfMF4*)mi->Records [m]->MFMT;
if ( mf4data->FrameOfReference == ) {

if ( data->Product[k]->ZA > 2004 )
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emitdata->CoordinateSystem = 1;
else
emitdata->CoordinateSystem = -1;
}
else if( mf4data->FrameOfReference == )
emitdata->CoordinateSystem = -1;
else
emitdata->CoordinateSystem = 1;

emitdata->AngularInformationType = 0;
emitdata->AngularInformation = NULL;

count = mf5data->NumberOfPartialEnergyDistributions;
emitdata->NumberOfEnergylLaws = count;
emitdata->LawInformation

= (acelawInformation*)calloc( count, sizeof( aceLawInformation ) );

for(m = 0; m < count; m++ ) {

emitdata->LawInformation[m] .NumberOfRegions
= mfbSdata->Distributions[m] .NumberOfEnergyRegions;
emitdata->LawInformation[m] .NumberOfPointsInRegion
= (int*)calloc( emitdata->LawInformation[m].NumberOfRegions,
sizeof ( int ) );
emitdata->LawInformation[m].InterpolationSchemeInRegion
= (int*)calloc( emitdata->LawInformation[m].NumberOfRegions,
sizeof ( int ) );
for( n = 0; n < emitdata->LawInformation[m].NumberOfRegions; n++ ) {
emitdata->LawInformation[m] .NumberOfPointsInRegion[n]
= mfbSdata->Distributions[m] .NumberOfEnergyPointsInRegion([n];
emitdata->LawInformation[m].InterpolationSchemeInRegion[n]
= mfbSdata->Distributions[m].InterpolationSchemeInEnergyRegion[n];

}

emitdata->LawInformation[m] .NumberOfEnergies
= mfSdata->Distributions[m] .NumberOfEnergyPoints;
emitdata->LawInformation[m].Energy
= (double*)calloc( emitdata->LawInformation[m].NumberOfEnergies,
sizeof ( double ) );
emitdata->LawInformation[m].Probability
= (double*)calloc( emitdata->LawInformation[m].NumberOfEnergies,
sizeof ( double ) );
for( n = 0; n < emitdata->LawInformation[m].NumberOfEnergies; n++ ) {
emitdata->LawInformation[m] .Energy[n]
= mf5data->Distributions[m].Energy[n] / mega;
emitdata->LawInformation[m].Probability[n]
= mfS5data->Distributions[m] .EnergyProbability[n] * mega;
}

afeMF5toLawData ( & (mf5data->Distributions[m]),
& (emitdata->LawInformation[m]) );

mtcount [k]++;

} /* end of if mf5 record */

else if( mi->Records[i]->MF == ) {
mfodata = (endfMF6*) (mi->Records[i]->MFMT) ;
for( j = 0; j < mfedata->NumberOfSubsections; j++ ) {

for( k = 0; k < data->NumberOfProducts; k++ )
if ( data->Product[k]->ZA
== (int) (mfédata->Secondaries[j].ParticleZA + 0.000001) )
break;
if ( k >= data->NumberOfProducts )
continue;
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switch( mi->Records[i]->MT ) {

case 4:
1l = aceFindMT( 91, data->NumberOfMTs, data->MT );
break;

case 103:
1 = aceFindMT( 649, data->NumberOfMTs, data->MT );
break;

case 104:
1 = aceFindMT( 699, data->NumberOfMTs, data->MT );
break;

case 105:
1 = aceFindMT( 749, data->NumberOfMTs, data->MT );
break;

case 106:
1 = aceFindMT( 799, data->NumberOfMTs, data->MT );
break;

case 107:
1 = aceFindMT( 849, data->NumberOfMTs, data->MT );
break;

default:
1 = aceFindMT ( mi->Records[i]->MT, data->NumberOfMTs, data->MT );
break;

}

if( 1 <0 ) {
printf ( "ERROR: mt reference by mf6 mt%d not found in ace table\n",

mi->Records[i]->MT );

exit( -1 );

}

if ( mtcount[k] >= data->Product[k]->NumberOfReactions ) {
printf ( "ERROR: trying to fill more reactions that found\n" );
exit( -1 );

}

data->Product [k] ->MTReference [mtcount [k] ]->Type = 16;
data->Product [k] ->MTReference [mtcount [k] ]->MT = data->MT[1l];

data->Product [k]->MTReference [mtcount [k]]->Yield
= (aceYieldInformation*)calloc( 1, sizeof( aceYieldInformation ) );
yielddata = data->Product[k]->MTReference [mtcount[k]]->Yield;

yielddata->NumberOfRegions = mfé6data->Secondaries[]j].NumberOfYieldRegions;
yielddata->NumberOfPointsInRegion
= (int*)calloc( yielddata->NumberOfRegions, sizeof( int ) );
yielddata->InterpolationSchemeInRegion
= (int*)calloc( yielddata->NumberOfRegions, sizeof( int ) );
for( m = 0; m < yielddata->NumberOfRegions; m++ ) {
yielddata->NumberOfPointsInRegion [m]
= mfédata->Secondaries[j].NumberOfYieldPointsInRegion [m];
yielddata->InterpolationSchemeInRegion[m]
= mfédata->Secondaries[j].InterpolationSchemeInYieldRegion[m];

}

yielddata->NumberOfYields = mfédata->Secondaries[j].NumberOfYieldPoints;
yielddata->Energy

= (double*)calloc( yielddata->NumberOfYields, sizeof( double ) );
yielddata->Yield

= (double*)calloc( yielddata->NumberOfYields, sizeof( double ) );

for( m = 0; m < yielddata->NumberOfYields; m++ ) {
yielddata->Energy[m] = mf6data->Secondaries[j].YieldEnergy[m] / mega;
yielddata->Yield[m] = mfédata->Secondaries[]j].Yield[m];

}

data->Product [k] ->MTReference [mtcount [k] ]->Emit
= (aceEmissionData*)calloc( 1, sizeof( aceEmissionData ) );
emitdata = data->Product[k]->MTReference[mtcount[k]]->Emit;

/* set coordinate system -1 for CM or 1 for Lab */
if ( mfedata->FrameOfReference == ) {
if ( data->Product[k]->ZA > 2004 )
emitdata->CoordinateSystem = 1;
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else
emitdata->CoordinateSystem = -1;
}
else if( mfoedata->FrameOfReference == )
emitdata->CoordinateSystem = -1;
else
emitdata->CoordinateSystem = 1;

emitdata->AngularInformationType = 0;
emitdata->AngularInformation = NULL;

emitdata->NumberOfEnergyLaws = 1;
emitdata->LawInformation
= (acelLawInformation*)calloc( 1, sizeof( acelLawInformation ) );

emitdata->LawInformation[0] .NumberOfRegions = 1;
emitdata->LawInformation[0] .NumberOfPointsInRegion

= (int*)calloc( 1, sizeof( int ) );
emitdata->LawInformation[0].InterpolationSchemeInRegion

= (int*)calloc( 1, sizeof( int ) );
emitdata->LawInformation[0] .NumberOfPointsInRegion[0] = 2;
emitdata->LawInformation[0O].InterpolationSchemeInRegion[0] = 2;
emitdata->LawInformation[0] .NumberOfEnergies = 2;
emitdata->LawInformation[0O] .Energy

= (double*)calloc( 2, sizeof( double ) );
emitdata->LawInformation[0].Probability

= (double*)calloc( 2, sizeof( double ) );
emitdata->LawInformation[0] .Energy[0]

= data->Energy[0];
emitdata->LawInformation[0] .Energy[1l]

= data->Energy[data->NumberOfEnergies-1];

emitdata->LawInformation[0].Probability[0] = 1;
emitdata->LawInformation[0].Probability[1l] = 1;
afeMFo6toLawData ( & (mf6data->Secondaries[j]),

& (emitdata->LawInformation[0]) );
if( emitdata->LawInformation[0] .Number == 44 ) {

afeComputeKalbachSlopeParameter ( mi, table,
(acelLawd4d*)emitdata->LawInformation[0] .LawData,
data->Product[k]->ZA,
mfédata->Secondaries[]j] .ParticleAWR ) ;
emitdata->AngularInformationType = -1;

}
mtcount [k]++;
} /* end of for j subsections of mf6 data */
} /* end of else if mf6 record */

} /* end of for i records in endf material */
/*
** compute the production cross section for each product
*
fér( i = 0; i1 < data->NumberOfProducts; i++ ) {

data->Product[i]->StartingIndex = 1;

data->Product [i]->NumberOfEntries data->NumberOfEnergies;

data->Product[i]->ProductionCrossSection
= (double*)calloc( data->NumberOfEnergies, sizeof( double ) );

for( j = 0; j < data->Product[i]->NumberOfReactions; Jj++ ) {
mtref = data->Product[i]->MTReference([]j];

for ( = mtref->MT->StartingIndex - 1;

k
k < (mtref->MT->StartingIndex - 1 + mtref->MT->NumberOfEntries);
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k++ )
data->Product[i]->ProductionCrossSection[k]
+= aceComputeYield( mtref->MT->Energy[k], mtref->Yield )
* mtref->MT->CrossSection[k];

}

end = data->Product[i]->NumberOfEntries;
for( jJ = 0; j < end; j++ ) {
if( data->Product[i]->ProductionCrossSection[]j] ==
&& data->Product[i]->ProductionCrossSection[j+1] == 0 ) {
(data->Product [i]->StartingIndex) ++;
(data->Product [i] ->NumberOfEntries)--;
}
else
j = end;

}

for( i = 0; i < data->NumberOfProducts - 1; i++ )
for( j = i+l; j < data->NumberOfProducts; Jj++ )
if ( data->Product[1]->IPT > data->Product[]j]->IPT ) {
tpProd = data->Product[j];
data->Product[j] = data->Product(i];
data->Product[i] = tpProd;
}

/*********************************************************************

** aceComputeYield
* %
*/
double aceComputeYield( double energy, aceYieldInformation *yieldinfo )
{
int i, 3j;
int points;

for( 1 = 0; i < yieldinfo->NumberOfYields; i++ )
if( energy == yieldinfo->Energyl[i] )
return yieldinfo->Yield[i];
else if( energy < yieldinfo->Energy([i] )
break;

if( 1 == ) o
printf ( "WARNING: received energy less than first yield energy\n" );
return yieldinfo->Yield[O0];

}

else if ( 1 == yieldinfo->NumberOfYields ) {
printf ( "WARNING: received energy greater than last yield energy\n" );
return yieldinfo->Yield[yieldinfo->NumberOfYields-1];

}

else {
points = yieldinfo->NumberOfPointsInRegion[0];
for( jJ = 0; i > points && J < yieldinfo->NumberOfRegions; j++ )

points += yieldinfo->NumberOfPointsInRegion[]j];

return acelnterpretPoint( yieldinfo->InterpolationSchemeInRegion([j],
energy, &(yieldinfo->Energy[i-1]),
& (yieldinfo->Yield[i-11) );

/*********************************************************************

** acelnterpretPoint
* *

*/
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double acelnterpretPoint( int interp, double energy, double *egrid, double *vgrid )
{

switch( interp ) {

case 1: /* histogram y in x */

return vgrid[0];

case 2: /* lin x lin y */

return ( ( energy - egrid[0] )
/ ( egrid[l] - egrid[0] )
* (vgrid[1l] - wvgrid[O0] )
+ vgrid[0]

)

case 3: /* log x log y */

log
log

vgrid[1l] / vgrid[0] )

return ( exp( log( energy / egrid[ )
/
*
+ vgrid[0])

g 0]
log( egrid([l] / egrid[0] )
( [0

(

)
)i

case 4: /* log x lin y */

return ( log( energy / egrid[0] )
/ log( egrid[1l] / egrid[0] )
* (vgrid[1l] - wvgrid[O0] )

+ ( vgrid[O0])
)i

case 5: /* lin x log y */

return ( exp( ( energy - egrid[0] )
/ ( egrid[l] - egrid[0] )
* log( vgrid[1l] / vgrid([0] )
+ log( vgrid[0])

)
)i

/*********************************************************************

** afeMF5toLawData
* k

*/
void afeMF5toLawData ( endfMF5Distribution *mf5d, acelLawInformation *1i )
{

int i;

double mega = 1.0e6;

acelaw?7 *law7;
acelLaw9 *law9;

endfMF5LF7 *mf51f7;
endfMF5LF9 *mf51f9;
switch( mf5d->EnergyDistributionLaw ) {

case 1:
break;

case 5:
break;

case 7:
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li->Number = 7;
li->Name = (char*)calloc( strlen("simple Maxwell fission spectrum") + 1,
sizeof ( char ) );

strcpy ( 1i->Name, "simple Maxwell fission spectrum" );
law7 = (acelLaw7*)calloc( 1, sizeof( acelLaw?7 ) );
li->LawData = (void*)law7;
law7->RestrictionEnergy = mf5d->UpperEnergyDelta / mega;
mf51f7 = (endfMFS5LF7*)mf5d->Parameters;
law7->NumberOfRegions = mf51f7->NumberOfThetaRegions;
law7->NumberOfPointsInRegion

= (int*)calloc( law7->NumberOfRegions, sizeof( int ) );
law7->InterpolationSchemeInRegion

= (int*)calloc( law7->NumberOfRegions, sizeof( int ) );
for( i = 0; 1 < law7->NumberOfRegions; i++ ) {

law7->NumberOfPointsInRegion[i]

= mf51£f7->NumberOfThetaPointsInRegion[i];
law7->InterpolationSchemeInRegion[i]
= mf51f7->InterpolationSchemeInThetaRegion[i];

}
law7->NumberOfIncidentEnergies = mf51f7->NumberOfThetaPoints;
law7->IncidentEnergy

= (double*)calloc( law7->NumberOfIncidentEnergies, sizeof( double ) );

law7->Temperature
= (double*)calloc( law7->NumberOfIncidentEnergies, sizeof( double ) );

for( 1 = 0; i < law7->NumberOflIncidentEnergies; i++ ) {
law7->IncidentEnergy[i] = mf51f7->ThetaEnergy[i] / mega;
law7->Temperature[i] = mf51f7->Thetali];

}

break;

case 9:
li->Number = 9;
li->Name = (char*)calloc( strlen("evaporation spectrum") + 1,

sizeof ( char ) );
strcpy( li->Name, "evaporation spectrum" );

law9 = (acelLaw9*)calloc( 1, sizeof( acelLaw9 ) );
li->LawData = (void*)law9;

law9->RestrictionEnergy = mf5d->UpperEnergyDelta / mega;
mf51f9 = (endfMF5LF9*)mf5d->Parameters;

law9->NumberOfRegions = mf51f9->NumberOfThetaRegions;
law9->NumberOfPointsInRegion
= (int*)calloc( law9->NumberOfRegions, sizeof( int ) );
law9->InterpolationSchemeInRegion
= (int*)calloc( law9->NumberOfRegions, sizeof( int ) );
for( i = 0; i < law9->NumberOfRegions; i++ ) {
law9->NumberOfPointsInRegion[i]
= mf51f9->NumberOfThetaPointsInRegion[i];
law9->InterpolationSchemeInRegion[i]
= mf51f9->InterpolationSchemeInThetaRegion[i];
}
law9->NumberOfIncidentEnergies = mf51f9->NumberOfThetaPoints;
law9->IncidentEnergy
= (double*)calloc( law9->NumberOfIncidentEnergies, sizeof( double ) );
law9->Temperature
= (double*)calloc( law9->NumberOfIncidentEnergies, sizeof( double ) );
for( i = 0; 1 < law9->NumberOfIncidentEnergies; i++ ) {
law9->IncidentEnergy[i] = mf51f9->ThetaEnergy[i] / mega;
law9->Temperature[i] = mf51f9->Thetalil];
}

break;

case 11:
break;

case 12:
break;

default:
break;
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/*********************************************************************

** afeMF6toLawData

* *

*/

void afeMF6toLawData ( endfSecondary *sec, acelawInformation *1i )
{

int i, 3;
double mega = 1.0e6;

aceLaw4 *lawd;
acelaw44 *lawdd;

endflLawl *elawl;

switch( sec->ReactionLaw ) {
case 1:
elawl = (endflLawl*)sec->LawData;

switch( elawl->AngularRepresentation ) {
case 1:
li->Number = 4;
li->Name = (char*)calloc( strlen("continuous tabular spectrum")+1,
sizeof ( char ) );
strcpy( li->Name, "continuous tabular spectrum" );
law4 = (acelaw4*)calloc( 1, sizeof( acelLawd ) );
li->LawData = (void*)law4;
law4->NumberOfRegions = elawl->NumberOfSecEnergyRegions;
law4->NumberOfPointsInRegion
= (int*)calloc( law4->NumberOfRegions, sizeof( int ) );
law4->InterpolationSchemeInRegion
= (int*)calloc( law4->NumberOfRegions, sizeof( int ) );
for( i = 0; 1 < law4->NumberOfRegions; i++ ) {
law4->NumberOfPointsInRegion[i]
= elawl->NumberOfSecEnergyPointsInRegion[i];
law4->InterpolationSchemeInRegion[i]
= elawl->InterpolationSchemeInSecEnergyRegion[i];

}

law4->NumberOfIncidentEnergies = elawl->NumberOfSecEnergyPoints;
law4->Distribution = (acelLaw4Distribution¥*)
calloc( law4->NumberOfIncidentEnergies, sizeof( acelLawd4Distribution ) );
for( i = 0; 1 < law4->NumberOfIncidentEnergies; i++ ) {
if( elawl->ES[i] .NumberOfAngularParameters != 0 ) {
printf ( "ERROR: MF6 Law 1, Lang 1 and NA not 0\n" );
printf( " Will process, but ignore angular information\n" );

}

law4->Distribution[i].IncidentEnergy = elawl->ES[i].IncidentEnergy / mega;
law4->Distribution[i].NumberOfDiscreteEmissions

= elawl->ES[i] .NumberOfDiscreteEmissions;
law4->Distribution[i].InterpolationScheme

= elawl->InterpolationSchemeForSecEnergy;

law4->Distribution[i] .NumberOfPoints
= elawl->ES[i] .NumberOfEmissionEnergies;

law4->Distribution[i] .EmissionEnergy = (double¥*)

calloc( law4->Distribution([i] .NumberOfPoints, sizeof( double ) );
law4->Distribution[i].Probability = (double¥*)

calloc( law4->Distribution([i].NumberOfPoints, sizeof( double ) );
law4->Distribution[i] .CumulativeProbability = (double¥*)

calloc( law4->Distribution([i] .NumberOfPoints, sizeof( double ) );
for( jJ = 0; j < law4->Distribution[i].NumberOfPoints; j++ ) {

law4->Distribution[i] .EmissionEnergy[7j]
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= elawl->ES[i] .EmissionEnergy[j] / mega;
law4->Distribution[i] .Probability[]]
= elawl->ES[i] .Parameters[j] [0] * mega;

}

afeComputeCumulativeProbability( 4, i, (void*)law4,
elawl->InterpolationSchemeForSecEnergy );

}

break;
case 2:
li->Number = 44;
li->Name = (char*)
calloc( strlen("correlated Kalbach energy-angle spectrum")+1,
sizeof ( char ) );
strcpy( 1li->Name, "correlated Kalbach energy-angle spectrum" );
law44 = (acelawd4d*)calloc( 1, sizeof( aceLawdd ) );
li->LawData = (void*)law44;

law44->NumberOfRegions = elawl->NumberOfSecEnergyRegions;
law44->NumberOfPointsInRegion

= (int*)calloc( law44->NumberOfRegions, sizeof( int ) );
law44->InterpolationSchemeInRegion

= (int*)calloc( law44->NumberOfRegions, sizeof( int ) );
for( 1 = 0; i < law44->NumberOfRegions; i++ ) {

law44->NumberOfPointsInRegion[i]

= elawl->NumberOfSecEnergyPointsInRegion[i];
law44->InterpolationSchemeInRegion[i]

= elawl->InterpolationSchemeInSecEnergyRegion[i];

}

law44->NumberOfIncidentEnergies = elawl->NumberOfSecEnergyPoints;

law44->Distribution = (acelLaw44Distribution*)
calloc( law44->NumberOfIncidentEnergies, sizeof( aceLaw44Distribution ) );
for( i = 0; 1 < lawd44->NumberOfIncidentEnergies; i++ ) {
if( elawl->ES[i] .NumberOfAngularParameters != 1 ) {
printf ( "ERROR: MF6 Law 1, Lang 1 and NA not 1\n" );
printf( " Will process, but ignore angular information\n" );

}

lawd44->Distribution[i].IncidentEnergy = elawl->ES[i].IncidentEnergy / mega;
law44->Distribution([i] .NumberOfDiscreteEmissions

= elawl->ES[i] .NumberOfDiscreteEmissions;
law44->Distribution([i].InterpolationScheme

= elawl->InterpolationSchemeForSecEnergy;

law44->Distribution[i] .NumberOfPoints
= elawl->ES[i] .NumberOfEmissionEnergies;

law44->Distribution[i] .EmissionEnergy = (double¥*)

calloc( law44->Distribution[i] .NumberOfPoints, sizeof( double ) );
law44->Distribution[i] .Probability = (double*)

calloc( law44->Distribution[i] .NumberOfPoints, sizeof( double ) );
law44->Distribution[i].CumulativeProbability = (double*)

calloc( law44->Distribution[i] .NumberOfPoints, sizeof( double ) );
law44->Distribution[i] .PrecompoundFraction = (double*)

calloc( law44->Distribution[i] .NumberOfPoints, sizeof( double ) );
law44->Distribution[i].AngularDistributionSlope = (double*)

calloc( law44->Distribution[i] .NumberOfPoints, sizeof( double ) );

for( j = 0; j < lawd44->Distribution[i].NumberOfPoints; j++ ) {
law44->Distribution[i] .EmissionEnergy[]j]
= elawl->ES[i] .EmissionEnergy[j] / mega;
law44->Distribution[i] .Probability[]]
= elawl->ES[i] .Parameters[j] [0] * mega;
law44->Distribution[i].PrecompoundFraction[j]
= elawl->ES[i].Parameters[j][1l];

}

afeComputeCumulativeProbability( 44, i, (void*)lawid4,
elawl->InterpolationSchemeForSecEnergy );
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}
break;
case 11:
case 12:
case 13:
case 14:
case 15:
default:
printf ( "ERROR: don't know case lang %d in law 1 yet\n",
elawl->AngularRepresentation );

}

break;

default:
printf ( "ERROR: don't know case law %d yet\n", sec->ReactionLaw );
break;

}

/*********************************************************************

** afeComputeKalbachSlopeParameter

* *

*/

void afeComputeKalbachSlopeParameter ( endfMaterialInformation *mi,
aceTable *table, acelaw44 *lawi44,
int pOutZA, double AWRout )

int i, 3;
int pInZA, tnZA, cnZA, photonuclear;
double Sa, Sb, Ia, Ib, Ea, Eb, EMa, EMb;

double AWRtn, AWRrn, AWRin;
double E1, E3;

/*
** if photon incident on nucleus, treat as neutron and modify
*x in accordance with Chadwick et. al., J. Nuc. Sci. & Tech.,
*x Vol. 32, No. 11, pp. 1154-1158.
*/
if( mi->IncidentParticleZA == ) {

pInZA = 1;

AWRin = 1.0;
photonuclear = 1;

}

else {
pInZA = mi->IncidentParticleZA;
AWRin = mi->IncidentParticleAWR;
photonuclear = 0;

}

/* the offset is to ensure that ZA is not rounded down */
tnZA = (int) (mi->TargetZA + 0.000001);

cnZA = ( tnzZA / 1000 + pInzA / 1000 ) * 1000
+ (tnZA % 1000 + pInZA % 1000 );

Sa = afeComputeBindingEnergy( cnZA, pInZA );
Sb = afeComputeBindingEnergy( cnZA, pOutZA );

switch( pInZA ) {
case 1:
case 1001:
case 1002:
EMa = 1.0;
break;
case 2004:
EMa = 0.0;
break;
default:
printf( "ERROR: can't find EMa for ZA %d\n", pInZA );
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exit( -1 );
}

switch( pOutza ) {

case 1:
EMb = 0.5;
break;

case 1001:

case 1002:

case 1003:

case 2003:
EMb = 1.0;
break;

case 2004:
EMb = 2.0;
break;

default:
printf( "ERROR: can't find EMa for ZA %d\n", pInZA );
exit( -1 );

AWRtn = mi->TargetAWR;
AWRrn = AWRin + AWRtn - AWRout;
for( i = 0; i < law44->NumberOfIncidentEnergies; i++ ) {

Ea = law44->Distribution([i].IncidentEnergy * AWRtn
/ (AWRtn + AWRin) + Sa;

if( Ea > 130.0 )

E1l = 130.0;
else
El = Ea;

if( Ea > 41.0 )

E3 = 41.0;
else
E3 = Ea;

for( j = 0; J < lawd44->Distribution[i].NumberOfPoints; j++ ) {

Eb = law44->Distribution[i].EmissionEnergy[j] * (AWRrn + AWRout)
/ AWRrn + Sb;

law44->Distribution([i] .AngularDistributionSlope[]]
= 0.04 * E1 * Eb / Ea
+ 1.8e-6 * pow( E1l * Eb / Ea, 3.0 )
+ 6.7e-7 * EMa * EMb * pow( E3 * Eb / Ea, 4.0 );

}

if ( photonuclear ) {
for( i = 0; 1 < lawd44->NumberOfIncidentEnergies; i++ ) {
for( j = 0; j < lawd44->Distribution[i].NumberOfPoints; j++ ) {

El = sqrt( lawd44->Distribution[i].IncidentEnergy / 1878.0 );
E3 = 9.3 / sqgrt( law44->Distribution[i].EmissionEnergy[j] );
if( E3 > 4.0 ) E3 = 4.0;
if( E3 < 1.0 ) E3 = 1.0;
law44->Distribution([i].AngularDistributionSlope[j] *= EL*E3;

/*********************************************************************

** afeComputeBindingEnergy
* *

*/
double afeComputeBindingEnergy( int cnZA, int pZA )
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double AC, zZC, NC, AA, ZA, NA, I;
double S, S1, S2, S3, S4, S5, S6;

7ZC = cnzZA / 1000;
AC = cnZA % 1000;
NC = AC - ZC;

ZA = ZC - pzZA / 1000;
AA = AC - pZA % 1000;
NA = AA - ZA;

switch( pZA ) {
case 1:
case 1001:
I =0.0;
break;
case 1002:
I =2.22;
break;
case 1003:
I = 8.48;
break;
case 2003:
I =7.72;
break;
case 2004:
I = 28.3;
break;
default:
printf( "ERROR: can't find nucleon binding energy I",
" in separation energy for ZA %d\n", pZA );
exit( -1 );

S1 = ( AC - AA );

S2 = (NC - 2ZC ) * ( NC - zC ) / AC;

S2 -= ( NA - ZA ) * ( NA - ZA ) / AA;

S3 = pow( AC, (2./3.) ) - pow( AR, (2./3.) );

S4 = (NC -2C ) * ( NC - 2C ) / pow( AC, (4./3.) );:
S4 -= (NA - ZA ) * ( NA - ZA ) / pow( AA, (4./3.) );
S5 = 7ZC * z2C / pow( AC, (1./3.) );

S5 -= ZA * ZA / pow( AA, (1./3.) );

S6 = (zZC * ZC / AC ) - ( ZA * ZA / DA );

S = 15.68*31 - 28.07*s2 - 18.56*S3 + 33.22*S4 -0.717*S5 +1.211*S6 - I;

return S;

/*********************************************************************

** afeComputeCumulativeProbability
* %
*/
void afeComputeCumulativeProbability( int law, int d, void *lawdata,
int Interpolation )
{
int i;
int count;

double templ, temp2;
double runtot;
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double “*energy;
double *prob;
double *cumprob;

acelLawd *law4d;
acelaw44 *lawdd;

switch( law ) {
case 4:
count = ((acelLaw4*)lawdata)->Distribution[d].NumberOfPoints;
energy = ((acelaw4*)lawdata)->Distribution[d].EmissionEnerqgy;
prob = ((acelaw4d*)lawdata)->Distribution[d].Probability;
cumprob = ((acelaw4*)lawdata)->Distribution([d].CumulativeProbability;
break;
case 44:
count = ((acelaw44*)lawdata)->Distribution[d].NumberOfPoints;
energy = ((acelawd44*)lawdata)->Distribution[d].EmissionEnergy;
prob = ((acelaw44*)lawdata)->Distribution[d].Probability;
cumprob = ((acelLaw44*)lawdata)->Distribution[d].CumulativeProbability;
break;
default:

printf ( "ERROR: can't compute cumulative probability for law %d\n", law );
exit( -1 );

) { /* Linear-linear interpolation */
0; i < count; i++ )
prob[i] + prob[i-1] ) * ( energyl[i] - energyl[i-1] );

if ( Interpolation !=
for( i = 1, runtot
runtot += .5 * (

1

}
else { /* Histogram interpolation */
for( i = 1, runtot = 0; i < count; i++ )
runtot += prob[i-1] * ( energyl[i] - energyl[i-1] );

}

if( abs( runtot - 1.0 ) > 0.01 )
printf ( "WARNING: distribution %d not normalized\n", d );

/* Renormalize all distributions for most accurate machine computation */
for( i = 0; 1 < count; i++ )

prob[i] = prob[i] / runtot;
if ( Interpolation != 1 ) {
for( i = 1, cumprob[0] = 0.0; i < count; i++ )
cumprob[i] = cumprob[i-1]
+ .5 * ( prob[i] + prob[i-1] ) * ( energy[i] - energy[i-1] );
}
else {
for( i = 1, cumprob[0] = 0.0; i < count; i++ )
cumprob[i] = cumprob[i-1] + prob[i-1] * ( energy[i] - energyl[i-1] );

/*********************************************************************

** afeZAtoIPT
* %
*/
int afeZAtoIPT( int ZA )
{
switch( ZA ) {
case 0:
return 2;
case 1:
return 1;
case 1000:
return 3;
case 1001:
return 9;
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case 1002:
return 31;
case 1003:
return 32;
case 2003:
return 33;
case 2004:
return 34;
default:
printf ( "ERROR: afeZAtoIPT:can't convert ZA '%d' to an IPT\n", ZA );
return( -1 );

/*********************************************************************

** afeIntCompare
* *
*/
int afelIntCompare( const void *vl, const void *v2 )
{
if( *((int*)vl) < *((int*)v2) )
return -1;
else if( *((int*)vl) > *((int*)v2) )
return 1;
else
return 0;

afeMakeNTable.c

#include "endf6.h"
#include "acepnData.h"

void afeMakeNTable( endfMaterialInformation *mi, aceTable *table );

void afeCollectEnergies( endfMaterialInformation *mi,

int *count, double **energy );
void afeGetMTInformation( endfMaterialInformation *mi, acepnData *data );
void afeGetMTProducts( endfMaterialInformation *mi, aceTable *table );
void afeCreateNTableHeader ( endfMaterialInformation *mi, aceTable *table );
void afeVerifyNTable( aceTable *table );

/*********************************************************************

** afeMakeNTable
* *
** Take an existing endf photonuclear data set and create a compact

*x evaluation in the photonuclear 'n' format (ACE-PN)
* *

*/
void afeMakeNTable ( endfMaterialInformation *mi, aceTable *table )
{
acepnData *data = (acepnData*)calloc( 1, sizeof( acepnData ) );
table->Data = (void*)data;
/*
** Create the Table header information
*/

afeCreateNTableHeader ( mi, table );

/*

** Create the superset energy grid
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*/
afeCollectEnergies( mi, & (data->NumberOfEnergies), & (data->Enerqgy) );

/*
** Transfer the mt information to the appropriate fields

*/

afeGetMTInformation( mi, (acepnData*) (table->Data) );
/*

** Create the Product fields

*/

afeGetMTProducts ( mi, table );

/*
** verify any cross checks and fill in all the "pointer" variables
*/

afevVerifyNTable ( table );

afeVerifyNTable.c

#include "endf6.h"
#include "acepnData.h"

#include <time.h>

void afeVerifyNTable( aceTable *table );

/*********************************************************************
** afeVerifyNTable

*/

void afeVerifyNTable( aceTable *table )

{
int i, j, k, 1;

acepnData *ndata = (acepnData*) (table->Data);
aceProduct *prod;

aceMTReference *mtref;

acelLawInformation *lawinfo;

acelLawd *law4d;

acelLaw4Distribution *lawédd;

aceLaw?7 *law7;

aceLaw9 *law9;

acelaw44 *lawdi4;

acelawd44Distribution *law44d;

/*
** Initialize the NXS & JXS arrays
*/
for( i =0; i < 16; i++ )
table->NXS[i] = 0;
for( i = 0; i < 32; i++ )
table->JXS[i] = 0;
/*
** set the nxs values
*/
table->NXS[0] = 0; /* no XSS entries yet; set as proceeds */
table->NXS[1] = table->ZA;
table->NXS[2] = ndata->NumberOfEnergies;
table->NXS[3] = ndata->NumberOfMTs;
table->NXS[4] = ndata->NumberOfProducts;
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/*
** set the jxs values
*/

/*
* Kk kk Kk ESZ st(l) * Kk Kk

** arrange energy grid locator

*/

table->JXS[0] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[2];

/*

** Kkkx TOT JXS(2) * % *

** arrange total cross section locator
*/

table->JXS[1] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[2];

/*
k% kxk NON JXS (3) ***
** if present and unique, arrange non-elastic cross section locator
*/
if ( ndata->NonelasticCrossSection != NULL ) {
table->JXS[2] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[2];
}
else
table->JXS[2] = table->JXS[1];

/*
*% kxk ELS JXS (4) ***
** if present, arrange elastic cross section locator
*/
if ( ndata->ElasticCrossSection != NULL ) {
table->JXS[3] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[2];
}
else
table->JXS[3] = 0;

/*
* Kk kKk Kk HTN JXS(5) * Kk Kk
** if present, arrange total heating number locator
*/
if ( ndata->TotalHeatingNumber != NULL ) {
table->JXS[4] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[2];
}
else
table->JXS[4] = 0;

/*
*% x%k% MTR JXS (6) ***

** arrange the MT number entries
*/

table->JXS[5] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[3];

/*
* Kk kKk Kk LQR JXS(7) * Kk Kk

** arrange the Q value entries

*/

table->JXS[6] = table->NXS[0] + 1;
table->NXS[0] += table->NXS[3];

/*

** Kk*k*x [ STG st(g) * % *

** arrange the cross section offset entries
*/

table->JXS[7] = table->NXS[0] + 1;
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ta

/~k
* *

* *
* *

ble->NXS[0] += table->NXS[3];

**kx STG JXS(9) ***
calculate the first word of the cross section (SIG) table and
for each MT reaction cross setion, calculate offset

*/

table->JXS[8] = table->NXS[0] + 1;

ndata->MTLocator = (int*)calloc( ndata->NumberOfMTs, sizeof( int

for( i = 0; i < ndata->NumberOfMTs; i++ ) {
ndata->MTLocator[i] = table->NXS[0] + 1 - table->JXS[8] + 1;
table->NXS[0] += ( 2 + ndata->MT[i]->NumberOfEntries );

}

/*

* *

* *

Fxk TXSA JXS(10) **x*
calculate the first word of the IXS array entries

*/

table->JXS[9] = table->NXS[0] + 1;

table->NXS[0] += ( table->NXS[4] * NUMBER IXS ENTRIES );
/*

* *

* *

FHAHAOTXS JXS(11) ***
calculate the first word of the IXS block entries

*/

table->JXS[10] = table->NXS[0] + 1;

/*

** set the ixs values for each product particle
*/

for( 1 = 0; i < ndata->NumberOfProducts; i++ ) {

prod = ndata->Product[i];

/%
* Kk Kk kK IPT IXS(l) * Kk Kk

** store the ipt number of this particle
*/

prod->IXS[0] = prod->IPT;

/*

*% kx% NTRP IXS (2) ***

** store the number of reactions creating this particle
*/

prod->IXS[1] = prod->NumberOfReactions;

/*
KKk kxkk PXS IXS(3) ***
** arrange the production cross section entries

*/

prod->IXS[2] = table->NXS[O0] + 1;
table->NXS[0] += ( 2 + prod->NumberOfEntries );
/*

*% k%% PHN IXS (4) ***
** if present, arrange the partial heating number entries
*/

if( table->JXS[4] != 0 && prod->PartialHeatingNumber != NULL )
prod->IXS[3] = table->NXS[0] + 1;
table->NXS[0] += ( 2 + prod->NumberOfEntries );

}

else
prod->IXS[3] = 0;

/*

*% x%% MTRP IXS(5) ***
** arrange the MT reference entries

*/

prod->IXS[4] = table->NXS[0] + 1;
table->NXS[0] += prod->NumberOfReactions;
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/*
*% kx*k TYRP IXS(6) ***

** arrange the Coordinate System entries
*/

prod->IXS[5] = table->NXS[O0] + 1;
table->NXS[0] += prod->NumberOfReactions;

/*

FHokkk TSTGP IXS(7) ***

** arrange the cross section or yield information offset entries
*/

prod->IXS[6] = table->NXS[0] + 1;

table->NXS[0] += prod->NumberOfReactions;

/*

*kKk kxk STGP IXS (8) ***

** arrange the cross section or yield information locator
*/

prod->IXS[7] = table->NXS[0] + 1;

/*
** arrange the cross section offsets for each MT reference
*/

for( j = 0; j < prod->NumberOfReactions; Jj++ ) {

mtref = prod->MTReference[j];

switch( mtref->Type ) {

case 5:

case 12:

case 16:
mtref->0ffset = table->NXS[0] + 1 - prod->IXS[7] + 1;
table->NXS[0] += ( 4 + 2 * mtref->Yield->NumberOfRegions

+ 2 * mtref->Yield->NumberOfYields );

break;

case 13:
mtref->0ffset = table->NXS[0] + 1 - prod->IXS[7] + 1;
table->NXS[0] += ( 3 + mtref->MT->NumberOfEntries );
break;

}
}

/*

FH kkk TANDP IXS(9) ***

** arrange the angular offset information
*/

prod->IXS[8] = table->NXS[0] + 1;
table->NXS[0] += prod->NumberOfReactions;

/*
*K <x% ANDP IXS(10) **x*

** currently no angular data is allowed
*/

prod->IXS[9] = 0;

/*

FH kkk TDLWP IXS(11) ***

** arrange the emission offset information
*/

prod->IXS[10] = table->NXS[0] + 1;
table->NXS[0] += prod->NumberOfReactions;

/*

k& xxk DLW IXS (12) ***

** arrange the emission data locator
*/

prod->IXS[11] = table->NXS[0] + 1;

344



/*
** arrange the emission offsets for each MT reference
*/

for( j = 0; j < prod->NumberOfReactions; Jj++ ) {

mtref = prod->MTReference([]j];

mtref->Emit->0ffset = table->NXS[0] + 1 - prod->IXS[11l] + 1;

/*

** for each law, arrange appropriate offsets

*

fér( k = 0; k < mtref->Emit->NumberOfEnergyLaws; k++ ) {
lawinfo = & (mtref->Emit->LawInformation([k]);
table->NXS[0] += ( 5 + 2 * lawinfo->NumberOfRegions

+ 2 * lawinfo->NumberOfEnergies );
lawinfo->OffsetToLawData = table->NXS[0] + 1 - prod->IXS[11l] + 1;

switch( lawinfo->Number ) {

case 4:
law4 = (acelaw4*) (lawinfo->LawData) ;
table->NXS[0] += ( 2 + 2 * law4d->NumberOfRegions

+ 2 * lawd4->NumberOfIncidentEnergies );

for( 1 = 0; 1 < law4->NumberOfIncidentEnergies; 1++ ) {
law4d = & (lawd4->Distribution[l]);

law4d->0Offset = table->NXS[0] + 1 - prod->IXS[11l] + 1;

table->NXS[0] += ( 2 + 3 * law4d->NumberOfPoints );
}
break;
case 7:
law7 = (acelLaw7*) (lawinfo->LawData) ;
table->NXS[0] += ( 3 + 2 * law7->NumberOfRegions
+ 2 * law7->NumberOfIncidentEnergies );
break;
case 9:
law9 = (acelLaw9*) (lawinfo->LawData) ;
table->NXS[0] += ( 3 + 2 * law9->NumberOfRegions
+ 2 * law9->NumberOfIncidentEnergies );
break;
case 44:
law44 = (acelaw44*) (lawinfo->LawData) ;
table->NXS[0] += ( 2 + 2 * law44->NumberOfRegions
+ 2 * lawd44->NumberOfIncidentEnergies );
for( 1 = 0; 1 < law44->NumberOfIncidentEnergies; 1++ ) {
lawd44d = & (lawd4->Distribution[1l]);

law44d->0ffset = table->NXS[0] + 1 - prod->IXS[11l] + 1;

table->NXS[0] += ( 2 + 5 * law44d->NumberOfPoints );
}
break;
}
if( k == mtref->Emit->NumberOfEnergyLaws )
lawinfo->LocationOfNextLaw = table->NXS[0] + 1;
else
lawinfo->LocationOfNextLaw = 0;
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} /* end of loop on energy laws */
} /* end of loop on number of reactions for product */

} /* end of loop on number of products */

endf6.h

#ifndef ENDF6 h
#define ENDF6_h

#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "endfLine.h"
#include "endfNumber.h"
#include "endfConvert.h"

#include "endfMF1l.h"
#include "endfMF2.h"
#include "endfMF3.h"
#include "endfMF4.h"
#include "endfMF5.h"
#include "endfMF6.h"

#include "endfMF1IMT451.h"

/*

** Function: endfReadMaterialFromFile

*/

int endfReadMaterialFromFile ( char *filename, endfMaterialInformation *mi );

/*
** Function: endfPrintMaterialToFile
*/

int endfPrintMaterialToFile( char *filename, endfMaterialInformation *mi );

#endif

endf6.c

#include "endf6.h"

/*********************************************************************

** endfReadMaterialFromFile
* %

** read in an endf6 style file for a single material
* *

*/
int endfReadMaterialFromFile( char *filename, endfMaterialInformation *mi )
{

FILE *fENDF;

endfline line;

endfline oldline;

int i, file;

/*

** open the endf file for reading

*/

fENDF = fopen( filename, "r" );
if( 'fENDF ) {
printf ( "ERROR: endfReadMaterialFromFile:\n" );
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printf( " cannot open file \"%s\" for reading\n", filename );
return( -1 );

}

/*

** initialize the line

*/

line.body[0] = "\O0';

line.material = 0;

line.mf = 0;
line.mt = 0;
line.number = 0;
line.file = fENDF;
oldline = line;

/*

** find the start of the material information

*/

while( line.mf != 1 && line.mt != 451 ) {
oldline = line;

endfReadLine ( &line );

/*

** copy the line previous to new material into evaluation title
** if no line before, file with null string

*/

strcpy ( mi->EvaluationTitle, oldline.body );

/*
** read the data from the file
*/

endfReadMF1MT451 ( &line, mi );
endfReadRecords ( &line, mi );

/*

** close the file
*/

close( fENDF );

return( 0 );

/*********************************************************************

** endfPrintMaterialToFile
* %

** print out an entire endf6 style file
* *

** expects output file pointer is in 'line->body'
* %

*/
int endfPrintMaterialToFile( char *filename, endfMaterialInformation *mi )
{

int intzero = 0;

double doublezero = 0.0;

FILE *fENDF;

endflLine line;

/*

** open the endf file for writing

*/

fENDF = fopen( filename, "w" );

if( !'fENDF ) {
printf ( "ERROR: endfPrintMaterialToFile:\n" );
printf( " cannot open file \"%$s\" for writing\n", filename );
return( -1 );
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/*
** initialize the line
*/

line.body[0] = "\0';
line.material = 0;
line.mf = 0;

line.mt = 0;
line.number = 0;
line.file = fENDF;

/*

** make sure the material is in endf 6 format

*/

if( mi->LibraryFormat != 6 ) {
printf ( "ERROR: endfPrintMaterialToFile:\n" );
printf( " ENDF-6 file format not set: mi->LibraryFormat is '%d'\n",

mi->LibraryFormat );

return( -2 );

}

/*

** if exists print the evaluation title line

*/

if( mi->EvaluationTitle[0] != "\0' ) {

strcpy( line.body, mi->EvaluationTitle );
line.material = 7777;

line.mf = 0;

line.mt = 0;

line.number = 0;

endfPrintLineToFile( line );

}

endfPrintMF1IMT451 ( &line, mi );
endfPrintRecords( &line, mi );

/*

** create zeroes line for end markers

*/

endfNextLine( &line );

endfPutNumber ( &line, 1, 2, (void*)&doublezero );
endfPutNumber ( &line, 2, 2, (void*)&doublezero );
endfPutNumber ( &line, 3, 1, (void*)&intzero );
endfPutNumber ( &line, 4, 1, (void*)&intzero );
endfPutNumber ( &line, 5, 1, (void*)é&intzero );
endfPutNumber ( &line, 6, 1, (void*)é&intzero );
/*

** print end of last section marker

*/

line.mf = 0;

line.mt = 0;

endfPrintLineToFile( line );

/*

** print end of material marker

*/

line.number++;

line.material = 0;

endfPrintLineToFile( line );

/*
** print end of file marker
*/

line.number = 0;
line.material = -1;
endfPrintLineToFile( line );

/~k

** close file

*/
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close( fENDF );

endfConvert.h

#ifndef endfConvert h
#define endfConvert_h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*

** Function: endfAtomicName

*/

void endfAtomicName ( int z, char *name );
/*

** Function: endfAtomicSymbol

*/

void endfAtomicSymbol ( int z, char *symbol );
/*

** Function: endfParticleType

*/

void endfParticleType( int IncidentParticleZA, char *IncidentParticleType );

#endif

endfConvert.c

#include "endfConvert.h"

/*********************************************************************

** endfAtomicName
* %

** given an atomic number, return the element name
* *

** double check that no names are longer than 16
** limit set in mflmt451 structure definition

* *
*/
void endfAtomicName ( int z, char *name )
{
char “*names[110] = { "", "Hydrogen", "Helium", "Lithium", "Beryllium", "Boron",
"Carbon", "Nitrogen", "Oxygen", "Fluorine", "Neon",
"Sodium", "Magnesium", "Aluminum", "Silicon", "Phosphorus",

"Sulfur", "Chlorine", "Argon", "Potassium", "Calcium",
"Manganese",

"Scandium", "Titanium", "Vanadium", "Chromium",
"Iron", "Cobalt", "Nickel", "Copper", "Zinc",

"Gallium", "Germanium", "Arsenic", "Selenium", "Bromine",
"Krypton", "Rubidium", "Strontium", "Yttrium", "Zirconium",

"Niobium", "Molybdenum", "Technetium", "Ruthenium",
"Palladium", "Silver", "Cadmium", "Indium", "Tin",
"Antimony", "Tellurium", "Iodine", "Xenon", "Cesium",

"Neodymium",
"Terbium",

"Barium", "Lanthanum", "Cerium", "Praseodymium",

"Promethium", "Samarium", "Europium", "Gadolinium",

"Rhodium",

"Dysprosium”, "Holmium", "Erbium", "Thulium", "Ytterbium",
"Lutetium", "Hafnium", "Tantalum", "Tungsten", "Rhenium",

"Osmium", "Iridium", "Platinum", "Gold", "Mercury",
"Thallium", "Lead", "Bismuth", "Polonium", "Astatine",
"Radon", "Francium", "Radium", "Actinium", "Thorium",
"Protactinium", "Uranium", "Neptunium", "Plutonium",
"Curium", "Berkelium", "Californium", "Einsteinium",
"Mendelevium", "Nobelium", "Lawrencium", "Rutherfordium",
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"Seaborgium", "Bohrium", "Hassium", "Meitnerium" };

strncpy( name, names[z], strlen(names([z]) );
name [strlen (names[z])] = '\0';

/*********************************************************************
** endfAtomicSymbol
* *

** given an atomic number, return the elemental symbol
* *

*/

void endfAtomicSymbol ( int z, char *symbol )

{

char *symbols[llO] = { "v, "H", "He", "Li", "Be", "B", "C", "N", "O",
"Na" "Mg" nAlT ngim npn ngn noln AT ngn
4 4 4 4 4 4 4 4 4

"Sc", "Ti", "y", "Cr", "Mn", "Fe", "Co", "Ni",
"Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr",
"Nb" "Mo" npen "Ry" "Rh" npgr "Ag" negn

’ ’ ’ ’ ’ ’ ’ ’
"gh" nTen nyn "Xe" "Cs" "Ba" "La" "Ce"

’ ’ ’ ’ ’ ’ ’ ’
"pp" "gm" "EL" "ear "Th" " Dy" "Ho" "R

’ ’ ’ ’ ’ ’ ’ ’
"Ta" nHEN npgn Al "Re" "Os" " npgn

’ ’ ’ ’ ’ ’ ’ ’
wTl", "pb", "Bi", "po", "At", "Rn", "Fr", "Ra",
"pa", "uv, "Np", "py", "Am", "Cm", "Bk", "Cf",
"Md", "No", "Lr", "Rf", "vav, "quv, "Bh", "Hs",

strncpy( symbol, symbols([z], strlen(symbols[z]) );
symbol [strlen (symbols[z])] = "\0';

/*********************************************************************

** endfParticleType
* *

** given an incident particle awr, return the particle type
* *

*/

npn
’

"cu",
wynw,
"In",

"pr",
"Tm",

"Au",
"Ac",

"Es",
"ME"

void endfParticleType( int IncidentParticleZA, char *IncidentParticleType )

{
int i;
const int NumberOfTypes = 8;

char “*typel[8] = {
"photon",
"neutron",
"electron",
"proton",
"deuteron",
"triton",
"helium-3",
"alpha"

double za[8] = {
0.0,
1.0,
1000.0,
1001.0,
1002.0,
1003.0,
2003.0,
2004.0

}i

for( 1 = 0; 1 < NumberOfTypes; i++ )
if( za[i] == IncidentParticleZA )
break;
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#1i

if( i == NumberOfTypes ) {

printf ( "ERROR: What did you shoot at me?!? a

exit( -1 );
}

strcpy( IncidentParticleType,

fndef endfLine h

#define endfLine h

#1i
#1i
#i

/*

* *

*/

nclude <stdio.h>
nclude <string.h>
nclude <stdlib.h>

Structure: endfline

typedef struct endfline {

/*

* *

*/

int endfReadLine (

/*

* *

*/

void endfPrintLine (

/*

* *

*/

void endfPrintLineToFile (

/*

* *

*/

void endfNextLine (

char body[67];

int material;
int mf;

int mt;

int number;
FILE *file;
endfline;

Function: endfReadLine

Function: endfPrintLine

Function: endfPrintLineToFile

Function: endfNextLine

#endif

#1i

nclude "endfLine.h"

endfline *line

typeli]

)i

endfLine line );

endfline line

endfLine *line );

)i

'$f'\n", IncidentParticleZA );

endfLine.h

endfLine.c

/*********************************************************************

* *

* *

* *

* *

* *

* *

* *

* *

* *

endfReadLine

reads a line from an endf style file given in

loads:
body <- record
mat <- materal number
mf <- file number
mt <- reaction number
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*x number <- line number
* *
** These errors are not yet implemented.
** thinking about having a strict/non-std option
** Fatal Error: if line length is not 80 characters
** Fatal Error: if any variable is unreadable
** Fatal Error: if mat, mf, mt, or number doesn't match expected
*/
int endfReadLine( endfLine *1line )
{
char temp[133], t[10];
int i;
static int LineNumber = 0;

LineNumber++;

fgets( temp, 132, line->file );
if( temp[80] != '"\n' ) {
printf ( "ERROR: did not find proper 80 character line: line %d\n%s\n",
LineNumber, temp );
exit( -1 );
}

strncpy( line->body, &temp[0], 66 );
line->body[66]="\0";

strncpy( t, &temp[66], 4 );
t[4]1="\0";
if( !sscanf( t, "%d", &line->material ) ) {
printf ( "ERROR: could not read mat number '$s' in line %d\n%s\n",
t, LineNumber, temp );
exit( -1 );
}

strncpy( t, &temp[70], 2 );
t[2]1="\0";
if( !sscanf( t, "%d", &line->mf ) ) {
printf ( "ERROR: could not read mf number '$%s' in line %d\n%s\n",
t, LineNumber, temp );
exit( -1 );
}

strncpy( t, &temp[72], 3 );
t[3]1="\0";
if( !sscanf( t, "%d", &line->mt ) ) {
printf ( "ERROR: could not read mt number '$%s' in line %d\n%s\n",
t, LineNumber, temp );
exit( -1 );
}

strncpy( t, &temp[75], 5 );
t[51="\0";
if( !sscanf( t, "%d", &line->number ) ) {
printf ( "ERROR: could not read line number '$%s' in line %d\n%s\n",
t, LineNumber, temp );

/*********************************************************************

** endfPrintLine
* *

** print the line in the endf format for use in id with original file
* *
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*/
void endfPrintLine( endflLine line )
{
printf( "%66s%4d%2d%3d%5d\n", line.body, line.material,
line.mf, line.mt, line.number );

/**********************************************k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*******

** endfPrintLineToFile
* %

** print the line in the endf format to the file pointer 'line.file'
* *

*/
void endfPrintLineToFile( endfLine line )
{
fprintf( line.file, "%66s%4d%2d%3d%5d\n", line.body, line.material,
line.mf, line.mt, line.number );

/*********************************************************************

** endfNextLine
* %

** pblank the 'line->body' and increment the 'line->number' by 1
* *

*/

void endfNextLine( endflLine *line )

{
static char 1[] =

strcpy( line->body, 1 );
line->number++;

endfMF1MT451.h

#ifndef endfMFIMT451_h
#define endfMFIMT451_h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "endfLine.h"
#include "endfNumber.h"
#include "endfConvert.h"

#include "endfMF1l.h"
#include "endfMF2.h"
#include "endfMF3.h"
#include "endfMF4.h"
#include "endfMF5.h"
#include "endfMF6.h"

/*
** Structure: endfRecord
*/
typedef struct endfrecord { /* ENDF Parameter Name */
int MF; /* MFi */
int MT; /* MTi */
int NumberOfLines; /* NCi */
int ModificationNumber; /* MODi */
void *MFMT ;
} endfRecord;
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/~k

** Structure:

endfMaterialInformation

*/

typedef struct endfmaterialinformation {
char EvaluationTitle[67];
double TargetZA;
char TargetName[16];
char TargetSymbol[3];
int TargetIsotope;
int TargetAtomicNumber;
double TargetAWR;
int TargetResonancePointer;
int TargetFissions;
int LibraryIdentifier;
int MaterialModificationNumber;
int MaterialNumber;
double TargetExcitationEnergy;
double TargetStability;
int TargetState;
int TargetIsomer;
int LibraryFormat;
double IncidentParticleAWR;
char IncidentParticleType[l6];
int SublibraryNumber;
int IncidentParticleZA;
int EvaluationType;
int LibraryVersion;
double Temperature;
int DerivedLibrary;
int NumberOfCommentLines;
int NumberOfRecords;
char EvaluationLaboratory[12];
char EvaluationDate[6];
char EvaluationAuthors[34];
char EvaluationReference[23];
char EvaluationDistributionDate[6];
char EvaluationRevisionDate[6];
char EvaluationSource[19];
char EvaluationRevisionNumber[22];
char EvaluationMasterDate[6];
char **Comments;
endfRecord **Records;

} endfMaterialInformation;

/~k

** Function:

*/

void endfReadMF1MT451 (

/~k

** Function:

*/

void endfReadRecords (

/*

** Function:

*/

void endfPrintMF1MT451 (

/*

** Function:

*/

void endfPrintRecords (

#endif

endfReadMF1MT451

endfLine *line,

endfReadRecords

endflLine *line,

endfPrintMF1IMT451

endflLine *line,

endfPrintRecords

endfLine *line,

/~k
/~k
/*

/*
/~k
/~k
/*
/*
/~k
/~k
/*
/*
/~k
/~k
/~k

/*

/*
/*
/~k
/~k
/*

ENDF Parameter Name */
Title line given on MFQ MTO */
ZA */

AWR */
LRP */
LFI */
NLIB */
NMOD */
MAT */
ELIS */
STA */
LIS */
LISO */
NFOR */
AWI */

NSUB */

NVER */
TEMP */
LDRV */
NWD */
NXC */

endfMaterialInformation *mi );

endfMaterialInformation *mi );

endfMaterialInformation *mi );

endfMaterialInformation *mi );
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#1i

nclude

"endfMF1MT451.h"

endfMF1MT451.c

/*********************************************************************

endfReadMF1MT451

* *
* *
* *
* *
* *
* *
* *

*/

void endfReadMF1MT451 (

{

loads the material information from the mfl mt451 required section
allocates records for holding the specified record entries

Fatal Error:

int i;

mi->MaterialNumber =

/* [ZA, AWR, LRP, LFI, NLIB, NMOD]
endfGetNumber ( *line, 1, 2,
endfGetNumber ( *line, 2, 2
endfGetNumber ( *line, 3, 1
endfGetNumber ( *line, 4, 1
endfGetNumber ( *line, 5, 1
endfGetNumber ( *line, 6, 1

/*

* *
* *

*/

if

Set some other values
When converting ZA to

'LibraryFormat'

an int,

endflLine *line,

is not 6

line->material;

*/

(ENDF-6 style)

&mi->TargetZA ) ;
, &mi->TargetAWR ) ;

based on the ZA number

endfMaterialInformation *mi )

, &mi->TargetResonancePointer );
, &mi->TargetFissions );

, &mi->LibraryIdentifier );

, &mi->MaterialModificationNumber

)i

add eps to avoid rounding error

mi->TargetIsotope =
mi->TargetAtomicNumber

endfAtomicName ( mi->TargetAtomicNumber,

(int) (mi->TargetZA + 0.00001) %

1000;

( (int) (mi->TargetZA + 0.00001)

endfAtomicSymbol ( mi->TargetAtomicNumber,

endfReadLine( line );
/* [ ELIS, STA, LIS, LISO, 0, NFOR ]
endfGetNumber ( *line, 1, 2
endfGetNumber ( *line, 2, 2,
endfGetNumber ( *line, 3, 1,
endfGetNumber ( *line, 4, 1,
endfGetNumber ( *line, 6, 1,
if( mi->LibraryFormat != 6 ) {
printf ( "ERROR: endfReadMF1MT451:\n" );
printf( " this is not an ENDF-6 file:
mi->LibraryFormat );
endfPrintLine( *line );
exit( -1 );
}
endfReadLine( line );
/* [ AWI, 0.0, 0, O, NSUB, NVER ] */
endfGetNumber ( *line, 1, 2,
endfGetNumber ( *line, 5, 1,
endfGetNumber ( *line, 6, 1,

mi->IncidentParticleZA =
mi->EvaluationType =
endfParticleType (

endfReadLine (
/* [ TEMP,
endfGetNumber (
endfGetNumber (
endfGetNumber (

0.0,

line );

LDRV, 0, NWD,
*line, 1, 2,
*line, 3, 1,
*1line, 5, 1,

NXC
smi->Temperature );
&mi->DerivedLibrary );
&mi->NumberOfCommentLines

*/

mi->SublibraryNumber
mi->IncidentParticleZA,

1 */

mi->TargetName ) ;
mi->TargetSymbol

&mi->IncidentParticleAWR ) ;
&mi->SublibraryNumber ) ;
&mi->LibraryVersion );

mi->SublibraryNumber / 10;

% 10;

read library format

- mi->TargetIsotope )

)i

, &mi->TargetExcitationEnergy );
smi->TargetStability );
&mi->TargetState )
s&mi->TargetIsomer ) ;
&mi->LibraryFormat );

raq! \nvv,

mi->IncidentParticleType );

)i
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endfGetNumber ( *line, 6, 1, &mi->NumberOfRecords );

/*
** Allocate space and read comment lines
*/
mi->Comments = (char**)calloc( mi->NumberOfCommentLines, sizeof( char* ) );
for( i = 0; i < mi->NumberOfCommentLines; i++ ) {
mi->Comments[i] = (char*)calloc( 67, sizeof( char ) );

endfReadLine ( line );
strncpy ( mi->Comments[i], line->body, 66 );
mi->Comments[i][66] = '"\0';

}

strncpy ( mi->EvaluationLaboratory, &mi->Comments[0][11], 11 );
mi->EvaluationLaboratory[11l] = "\0';

strncpy ( mi->EvaluationDate, &mi->Comments[0][27], 5 );

mi->EvaluationDate[5] = '\0';
strncpy ( mi->EvaluationAuthors, &mi->Comments[0][33], 33 );
mi->EvaluationAuthors[33] = '\0';

strncpy ( mi->EvaluationReference, &mi->Comments[1][0], 22 );
mi->EvaluationReference[22] = '\0';

strncpy ( mi->EvaluationDistributionDate, &mi->Comments[1][27], 5 );
mi->EvaluationDistributionDate[5] = '\0';

strncpy ( mi->EvaluationRevisionDate, &mi->Comments[1][38], 5 );
mi->EvaluationRevisionDate[5] = '\0';

strncpy ( mi->EvaluationMasterDate, &mi->Comments[1][55], 5 );
mi->EvaluationMasterDate[5] = '"\0';

strncpy ( mi->EvaluationRevisionNumber, &mi->Comments([2][44], 22 );

mi->EvaluationRevisionNumber [22] = '\0';
/%
** Allocate space and read record cards
*/
mi->Records = (endfRecord**)calloc( mi->NumberOfRecords, sizeof( endfRecord* ) );
for( 1 = 0; 1 < mi->NumberOfRecords; i++ ) {
mi->Records[i] = (endfRecord*)calloc( 1, sizeof( endfRecord ) );
endfReadLine( line );
endfGetNumber ( *line, 3, 1, &mi->Records[i]->MF );
endfGetNumber ( *line, 4, 1, &mi->Records[i]->MT );
endfGetNumber ( *line, 5, 1, &mi->Records[i]->NumberOfLines );
endfGetNumber ( *line, 6, 1, &mi->Records[i]->ModificationNumber );
switch( mi->Records[i]->MF ) {
case 1:
mi->Records[1i]->MFMT = (endfMFl*)calloc( 1, sizeof( endfMF1l ) );
break;
case 2:
mi->Records[1]->MFMT = (endfMF2*)calloc( 1, sizeof( endfMF2 ) );
break;
case 3:
mi->Records[1]->MFMT = (endfMF3*)calloc( 1, sizeof( endfMF3 ) );
break;
case 4:
mi->Records[1]->MFMT = (endfMF4*)calloc( 1, sizeof( endfMF4 ) );
break;
case 5:
mi->Records[1i]->MFMT = (endfMF5*)calloc( 1, sizeof( endfMF5 ) );
break;
case 6:
mi->Records[1]->MFMT = (endfMF6*)calloc( 1, sizeof( endfMFo6 ) );
break;
default:
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printf ( "ERROR: Record description '%d' on line '%d' says mf '%d'\n",
line->number, i+1, mi->Records[i]->MF );
exit( -1 );
}

} /* end of record information and allocation */

/*
** error check on end of section

*/

endfReadLine ( line );

if( line->mf != 1 && line->mt != 0 ) {

printf ( "ERROR: expected end of mfl mt45]1 section: got mf '$d' mt '%d'\n",
line->mf, line->mt );

endfPrintLine( *line );

exit( -1 );

/*********************************************************************

** endfReadRecords
* *
** loads all material record information into the
** appropriate record section
* *
** expects to be handed 'line' with endf file open
** to first line past the end of the mfl mt451 data
* *
*/
voilid endfReadRecords( endfLine *1line, endfMaterialInformation *mi )
{

int i;

int file = 1; /* current mf = 1 */

for( i = 1; i < mi->NumberOfRecords; i++ ) {
/*
** skip over the end of endf file section marker
*/
if ( mi->Records[i]->MF != file ) {
endfReadLine ( line );
if( line->mf != 0 && line->mt != 0 ) {

printf ( "ERROR: end of file %d not properly terminated\n", file );
endfPrintLine( *line );
exit( -1 );

}

file = mi->Records[i]->MF;

}

/*
** check for beginning of proper section

*/

endfReadLine( line );

if( line->mf != mi->Records[i]->MF && line->mt != mi->Records[i]->MT ) {

printf ( "ERROR: didn't find next expected record\n" );

printf( " got mf '%2d' and mt '%3d'\n",
line->mf, line->mt );

printf( " wanted mf '%2d' and mt '%3d'\n",
mi->Records[i]->MF, mi->Records([i]->MT );

endfPrintLine( *line );

exit( -1 );
}
/*
** hand off section to proper reader
*/
switch( line->mf ) {
case 1:

endfReadMF1 ( line, (endfMFl*)mi->Records[i]->MFMT );
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break;

case 2:
endfReadMF2 ( line, (endfMF2*)mi->Records[i]->MFMT );
break;

case 3:
endfReadMF3( line, (endfMF3*)mi->Records[i]->MFMT );
break;

case 4:
endfReadMF4 ( line, (endfMF4*)mi->Records[i]->MFMT );
break;

case 5:
endfReadMF5( line, (endfMF5*)mi->Records[i]->MFMT );
break;

case 6:
endfReadMF6 ( line, (endfMF6*)mi->Records[i]->MEMT );
break;

default:
printf ( "ERROR: how do I load an mf%d file\n", line->mf );
endfPrintLine( *line );
exit( -1 );

}

/*********************************************************************

** endfPrintMF1MT451

* *

** prints the material information in the mfl mt451 required section
* *

**% 'line->file' should be a passed writable file pointer
* %

*/
void endfPrintMF1MT451 ( endfLine *line, endfMaterialInformation *mi )
{

int i;

int intzero = 0;

double doublezero = 0.0;

line->mf = 1;
line->mt = 451;
line->material = mi->MaterialNumber;
line->number = 0;

endfNextLine( line );

/* [ZA, AWR, LRP, LFI, NLIB, NMOD] */

]
endfPutNumber ( line, 1, 2, (void*)é&mi->TargetZA );
endfPutNumber ( line, 2, 2, (void*)é&mi->TargetAWR ) ;
endfPutNumber ( line, 3, 1, (void*)&mi->TargetResonancePointer );
endfPutNumber ( line, 4, 1, (void*)&mi->TargetFissions );
endfPutNumber ( line, 5, 1, (void*)é&mi->LibraryIdentifier );
( )

endfPutNumber ( line, 6, 1, (void*)é&mi->MaterialModificationNumber );
endfPrintLineToFile( *line );

endfNextLine ( line );

/* [ ELIS, STA, LIS, LISO, 0, NFOR ] */

endfPutNumber ( line, 1, 2, (void*)&mi->TargetExcitationEnergy );
endfPutNumber ( line, 2, 2, (void*)&mi->TargetStability );
endfPutNumber ( line, 3, 1, (void*)é&mi->TargetState );
endfPutNumber ( line, 5, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&mi->TargetIsomer );
endfPutNumber ( line, 6, 1 ( )

void*) &émi->LibraryFormat ) ;
endfPrintLineToFile( *line );

endfNextLine( line );

/* [ AWI, 0.0, 0, O, NSUB, NVER ] */

endfPutNumber ( line, 1, 2, (void*)&mi->IncidentParticleAWR );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
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endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)é&mi->SublibraryNumber );
endfPutNumber ( line, 6, 1, ( ) &mi->LibraryVersion );

void*
endfPrintLineToFile( *line );

endfNextLine ( line );
/* [ TEMP, 0.0, LDRV, 0, NWD, NXC ] */

endfPutNumber ( line, 1, 2, (void*)é&mi->Temperature );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&mi->DerivedLibrary );
endfPutNumber ( line, 4, 1, (void*)é&intzero );
endfPutNumber ( line, 5, 1, (void*)é&mi->NumberOfCommentLines );
endfPutNumber ( line, 6, 1, (void*)é&mi->NumberOfRecords );
endfPrintLineToFile( *line );

/*

** print comment lines

*/

for( i = 0; i < mi->NumberOfCommentLines; i++ ) {

endfNextLine ( line );
strcpy( line->body, mi->Comments[i] );
endfPrintLineToFile( *line );

}

/*
** print record cards
*/
for( 1 = 0; i < mi->NumberOfRecords; i++ ) {
endfNextLine( line );
endfPutNumber ( line, 3, 1, &mi->Records[i]->MF );
endfPutNumber ( line, 4, 1, &mi->Records[i]->MT );
endfPutNumber ( line, 5, 1, &mi->Records[i]->NumberOfLines );
endfPutNumber ( line, 6, 1, &mi->Records[i]->ModificationNumber );
endfPrintLineToFile( *line );
}
/*
** print end of mfl mt451 marker
*/

endfNextLine( line );
/* [ 0, 0.0, O, O, 0, O 1 */

line->mt = 0;

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *1line );

/*********************************************************************

** endfPrintRecords
* *

** prints each of the material record cards
* *
** 'line->file' should be a passed writable file pointer

*% 'line->mf' should contain the starting endf file section number
* *

*/
void endfPrintRecords( endfLine *1line, endfMaterialInformation *mi )
{

int i;

int intzero = 0;

double doublezero 0.0;
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for( i = 1; i < mi->NumberOfRecords; i++ ) {

/*

** print an end of endf file section marker on mf change

*/

if( mi->Records[i]->MF != line->mf ) {
endfNextLine( line );
/* [ 0, 0.0, O, O, 0, O 1 */
line->mf = 0;
line->mt = 0;
endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *1line );
line->mf = mi->Records[i]->MF

}

/*

** hand off section to proper printer

*/

line->mt = mi->Records[i]->MT;

switch( line->mf ) {

case 1:
endfPrintMF1 ( line, mi->Records[i]->MFMT ) ;
break;

case 2:
line->number += mi->Records[i]->NumberOfLines; /* REMOVE WHEN WRITE READER/WRITER

*/

endfPrintMF2 ( line, mi->Records[i]->MFMT ) ;
break;

case 3:
endfPrintMF3( line, mi->Records[i]->MFMT ) ;
break;

case 4:
endfPrintMF4 ( line, mi->Records[i]->MFMT ) ;
break;

case 5:
endfPrintMF5( line, mi->Records[i]->MFMT ) ;
break;

case 6:
endfPrintMF6( line, mi->Records[i]->MFMT ) ;
break;

default:
printf( "ERROR: don't know how to print an mf%d file\n", line->mf );
exit( -1 );

}

}
}
endfMF1.h

#ifndef endfMF1 h
#define endfMF1_h

#include "endfLine.h"
/*

** Structure: endfMF1T
*/

typedef struct endfmflt {

/* ENDF Parameter Name */

int NumberOfCoefficients; /* NC */
double *PolyCoefficients; /* Ci x/
int NumberOfInterpolationRegions; /* NR */
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int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfPoints;
double *Energy;
double *Nu;
} endfMF1T;
/*
** Structure:
*/
typedef struct endfmflp {
int NumberOfInterpolationRegions;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
int NumberOfPoints;
double *Energy;
double *Nu;
double SpontaneousNu;
endfMF1P;

endfMF1P

}
/*

** Structure:
*/

typedef struct endfmfld {

int NumberOfPrecursors;

double *DecayConstants;

int NumberOfInterpolationRegions;
int *NumberOfPointsInRegion;

int *InterpolationSchemeInRegion;
int NumberOfPoints;

double *Energy;

double *Nu;

double SpontaneousNu;

endfMF1D;

endfMF1D

}
/*

** Structure:

*/

typedef struct endfmfle {
double TotalEnergy;
double erTotalEnergy;
double FragmentEnergy;
double erFragmentEnergy;
double PromptNeutronEnergy;
double erPromptNeutronEnergy;
double DelayedNeutronEnergy;
double erDelayedNeutronEnergy;
double PromptGammaEnergy;
double erPromptGammaEnergy;
double DelayedGammaEnergy;
double erDelayedGammaEnergy;
double BetaEnergy;
double erBetaEnergy;
double NeutrinoEnergy;
double erNeutrinoEnergy;
double SeenEnergy;
double erSeenEnergy;

} endfMF1E;

endfMF1E

ET

EFR
ENP
END
EGP
EGD
EB

ENU

/*
** Structure:
*/

typedef struct endfmfl {
double TargetZA;

double TargetAWR;

int NuRepresentation;
int NuType;

void *NuParameters;
endfMF1;

endfMF1

/
/

/*

/~k
/*
/*

/*

/~k
/*
/*
/~k

/*
/*
/~k

/*
/~k
/~k
/*

*/
*/
*/
*/
*/
*/

*/
*/

*

Z

*

NP */
Ei */

Nu (Ei) */

/* ENDF Parameter Name */
NR */

NP */
Ei */
Nu (Ei)
Nu */

*/

/* ENDF Parameter Name */
NNEF */
Lambda i */
NR */

NP */
Ei */
Nu (Ei)
Nu */

*/

ENDF Parameter Name */

ER: total - neutrino */

/* ENDF Parameter Name */
A */

/* BAWR */
LNU */

361



** Function: endfReadMF1

*/

void endfReadMF1l ( endfLine *
/*

** Function: endfReadMF1E

*/

void endfReadMF1E ( endfLine
/*

** Function: endfReadMF1T

*/

void endfReadMF1T( endfLine
/*

** Function: endfReadMF1P

*/

void endfReadMF1P( endfline
/*

** Function: endfReadMF1D

*/

void endfReadMF1D( endflLine
/*

** Function: endfPrintMF1

*/

void endfPrintMF1l ( endfLine
/*

** Function: endfPrintMF1E
*/

void endfPrintMF1E ( endfLine
/*

** Function: endfPrintMF1T
*/

void endfPrintMF1T( endfLine
/%

** Function: endfPrintMF1P
*/

void endfPrintMF1P( endflLine
/*

** Function: endfPrintMF1D
*/

void endfPrintMF1D( endfLine

#endif

#include "endfMF1.h"

line,

*1ine,

*1ine,

*line,

*line,

*line,

*1ine,

*1ine,

*line,

*line,

endfMF1

endfMF1

endfMF1

endfMF1

endfMF1

endfMF1

endfMF1

endfMF1

endfMF1

endfMF1 *data );

*data

*data

*data

*data

*data

*data

*data

*data

*data

’

endfMF1.c

/*********************************************************************

** endfReadMF1
* %
** read the nubar data
* *
** 'NuType'
-1 is

1 is

2 1is

3 is

* *
* *

Total
Prompt
Delayed

* *
* *
* %
*/
void endfReadMF1 (
{

endflLine *

line,

is duplication of mt for ease of use
the energy distribution amoung the particles

endfMF1 *data )
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if( line->mt == 452 )
data->NuType = 1;

else if( line->mt == 456 )
data->NuType = 2;

else if( line->mt == 455 )
data->NuType = 3;

else if( line->mt == 458 )
data->NuType = -1;

else {

printf ( "ERROR: What the heck is mt '%d'\n", line->mt );
endfPrintLine( *line );
exit( -1 );

}

/* [ ZA, AWR, 0, LNU, O
endfGetNumber ( *line, 1
endfGetNumber ( *line, 2,
endfGetNumber ( *line, 4

01 */
, 2, &data->TargetZA );
2, &data->TargetAWR );
1, &data->NuRepresentation );

switch( data->NuType ) {

case -1:
data->NuParameters = (endfMF1lE*)calloc( 1, sizeof( endfMF1E
endfReadMF1E( line, data );
break;

case 1:
data->NuParameters = (endfMF1T*)calloc( 1, sizeof( endfMF1T
endfReadMF1T( line, data );
break;

case 2:
data->NuParameters = (endfMF1P*)calloc( 1, sizeof( endfMF1P
endfReadMF1P( line, data );
break;

case 3:
data->NuParameters = (endfMF1D*)calloc( 1, sizeof( endfMF1D
endfReadMF1D( line, data );
break;

/*********************************************************************

* *
* *
* *
* *

*/

endfReadMF1E

read the components of energy release due to fission

void endfReadMF1lE ( endflLine *line, endfMF1l *data )

{

int i;
endfMF1E “*par = (endfMFlE*)data->NuParameters;

endfReadLine( line );

/* [ 0.0, 0.0, O, O, 18, 9 ] */

endfGetNumber ( *line, 5, 1, &i );

if( 1 !'=18 ) {
printf ( "ERROR: Energy release number of entries expects 18;
endfPrintLine( *line );
exit( -1 );

}

endfGetNumber ( *line, 6, 1, &i );

if( i !'=9) {
printf ( "ERROR: Energy release number of subparts expects 9;
endfPrintLine( *line );
exit( -1 );

endfReadLine( line );
/* [ EFR, eEFR, ENP, eENP, END, eEND ] */
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endfGetNumber ( *line, 1, 2, &par->FragmentEnergy );
endfGetNumber ( *line, 2, 2, &par->erFragmentEnergy );
endfGetNumber ( *line, 3, 2, &par->PromptNeutronEnergy );
endfGetNumber ( *line, 4, 2, &par->erPromptNeutronEnergy );
endfGetNumber ( *line, 5, 2, &par->DelayedNeutronEnergy );
endfGetNumber ( *line, 6, 2, &par->erDelayedNeutronEnergy );

endfReadLine( line );
/* [ EGP, eEGP, EGD, eEGD, EB, eEB ] */

endfGetNumber ( *line, 1, 2, &par->PromptGammaEnergy );
endfGetNumber ( *line, 2, 2, &par->erPromptGammaEnergy );
endfGetNumber ( *line, 3, 2, &par->DelayedGammaEnergy );
endfGetNumber ( *line, 4, 2, &par->erDelayedGammaEnergy );
endfGetNumber ( *line, 5, 2, &par->BetaEnergy );
endfGetNumber ( *line, 6, 2, &par->erBetaEnergy );
endfReadLine( line );

/* [ ENU, eENU, ER, eER, ET, eET ] */

endfGetNumber ( *line, 1, 2, &par->NeutrinoEnergy );
endfGetNumber ( *line, 2, 2, &par->erNeutrinoEnergy );
endfGetNumber ( *line, 3, 2, &par->SeenEnergy );
endfGetNumber ( *line, 4, 2, &par->erSeenEnergy );
endfGetNumber ( *line, 5, 2, &par->TotalEnergy );
endfGetNumber ( *line, 6, 2, &par->erTotalEnergy );

/*

** error check on end of section

*/

endfReadLine( line );

if( line->mf != 1 && line->mt != 0 ) {

printf ( "ERROR: expected end of section mf 1 mt 0: got mf '$d' mt '%d'\n",
line->mf, line->mt );

endfPrintLine( *line );

exit( -1 );

/*********************************************************************

** endfReadMF1T

* *

** read the total nubar parameters
* %

*/
void endfReadMF1T( endflLine *line, endfMF1l *data )
{
int i;
endfMF1T “*par = (endfMF1T*)data->NuParameters;
if ( data->NuRepresentation == 1 ) {

endfReadLine( line );
/* [ 0.0, 0.0, O, 0, NC, */
endfGetNumber ( *line, 5, 1, &par->NumberOfCoefficients );

o

par->PolyCoefficients = (double*)calloc( par->NumberOfCoefficients,
sizeof ( double ) );

for( i = 0; 1 < par->NumberOfCoefficients; i++ ) {
if( 1 % 6 == )
endfReadLine( line );
endfGetNumber ( *line, (i%6)+1, 2, &par->PolyCoefficients[i] );
}
}
else {
endfReadLine ( line );
/* [ 0.0, 0.0, O, O, NR, NP ] */
endfGetNumber ( *line, 5, 1, &par->NumberOfInterpolationRegions );
endfGetNumber ( *line, 6, 1, &par->NumberOfPoints );
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par->NumberOfPointsInRegion

= (int*)calloc( par->NumberOfInterpolationRegions,
par->InterpolationSchemeInRegion

= (int*)calloc( par->NumberOfInterpolationRegions,

sizeof ( int

sizeof ( int

for( i = 0; 1 < par->NumberOfInterpolationRegions; i++ ) {

if( 1 % 3 == )
endfReadLine( line );

) )i

) )i

endfGetNumber ( *line, (1+2%*i)%6, 1, &par->NumberOfPointsInRegion[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 1, &par->InterpolationSchemeInRegion[i] );

}

par->Energy

= (double*)calloc( par->NumberOfPoints, sizeof( double ) );

par->Nu

= (double*)calloc( par->NumberOfPoints, sizeof( double ) );

for( i = 0; 1 < par->NumberOfPoints; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*1i)%6, 2, &par->Energy
endfGetNumber ( *line, (1+2*i)%6+1, 2, &par->Nuli]

/*
** error check on end of section

*/

endfReadLine ( line );

if( line->mf != 1 && line->mt != 0 ) {

[i1 ) s
)i

printf ( "ERROR: expected end of section mf 1 mt 0: got mf '$d' mt '%d'\n",

line->mf, line->mt );
endfPrintLine( *line );
exit( -1 );

/*********************************************************************

* *
* *
* *
* *

*/
{

endfReadMF1P

read the prompt nubar parameters

void endfReadMF1P( endflLine *line, endfMF1l *data )
int i;
endfMF1P “*par = (endfMF1P*)data->NuParameters;
if ( data->NuRepresentation == ) {

endfReadLine( line );
/* [ 0.0, 0.0, O, O, 1, O 1 */
endfGetNumber ( *line, 5, 1, &i );

if( 1 !'=1) {
printf ( "ERROR: Prompt nubar represetation (LNU=1)
endfPrintLine( *line );
exit( -1 );

}

endfReadLine( line );

endfGetNumber ( *line, 1, 2, &par->SpontaneousNu );
}
else {

endfReadLine( line );

/* [ 0.0, 0.0, 0, O, NR, NP ] */
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endfGetNumber ( *line, 5, 1, &par->NumberOfInterpolationRegions );
endfGetNumber ( *line, 6, 1, &par->NumberOfPoints );

par->NumberOfPointsInRegion

= (int*)calloc( par->NumberOfInterpolationRegions, sizeof( int ) );
par->InterpolationSchemeInRegion

= (int*)calloc( par->NumberOfInterpolationRegions, sizeof( int ) );

for( i = 0; i < par->NumberOfInterpolationRegions; i++ ) {
if( 1 % 3 == )
endfReadLine ( line );
endfGetNumber ( *line, (1+42*1) %6, 1, &par->NumberOfPointsInRegion[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 1, &par->InterpolationSchemeInRegion([i] );

}

par->Energy

= (double*)calloc( par->NumberOfPoints, sizeof( double ) );
par->Nu

= (double*)calloc( par->NumberOfPoints, sizeof( double ) );

for( i = 0; i < par->NumberOfPoints; i++ ) {
if( 1 % 3 == )
endfReadLine ( line );
endfGetNumber ( *line, (1+2%*i)%6, 2, &par->Energyl[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 2, &par->Nuli] );

/*

** error check on end of section

*/

endfReadLine( line );

if( line->mf != 1 && line->mt != 0 ) {

printf ( "ERROR: expected end of section mf 1 mt 0: got mf '$d' mt '%d'\n",
line->mf, line->mt );

endfPrintLine( *line );

exit( -1 );

/*********************************************************************

** endfReadMF1D

* *

** read the delayed nubar parameters
* k

*/
void endfReadMF1D( endflLine *line, endfMF1l *data )
{
int i;
endfMF1D *par = (endfMF1D*)data->NuParameters;
if ( data->NuRepresentation == 1 ) {

endfReadLine( line );
/* [0.0, 0.0, O, O, NNF, 0 ] */
endfGetNumber ( *line, 5, 1, &par->NumberOfPrecursors );

par->DecayConstants = (double*)calloc( par->NumberOfPrecursors, sizeof( double ) );
for( i = 0; i < par->NumberOfPrecursors; i++ ) {
if( 1 % 6 == )
endfReadLine ( line );
endfGetNumber ( *line, (i%6)+1, 2, &par->DecayConstants[i] );
}

endfReadLine ( line );

/* [ 0.0, 0.0, O, O, 1, O 1 */
endfGetNumber ( *line, 5, 1, &i );
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if( 1 !=1) {

printf ( "ERROR: Prompt nubar represetation

endfPrintLine( *line );
exit( -1 );
}

endfReadLine( line );

endfGetNumber ( *line, 1, 2, &par->SpontaneousNu

}
else {
endfReadLine( line );
/* [0.0, 0.0, O, O, NNF, 0 ] */

endfGetNumber ( *line, 5, 1, &par->NumberOfPrecursors

par->DecayConstants = (double*)calloc( par->NumberOfPrecursors, sizeof (
for( i = 0; i < par->NumberOfPrecursors; i++
if( 1 % 6 == )
endfReadLine( line );
endfGetNumber ( *line, (i%6)+1, 2, &par->DecayConstants[i] );
}
endfReadLine ( line );
/* [ 0.0, 0.0, O, O, NR, NP ] */
endfGetNumber ( *line, 5, 1, &par->NumberOfInterpolationRegions );
endfGetNumber ( *line, 6, 1, &par->NumberOfPoints );
par->NumberOfPointsInRegion
= (int*)calloc( par->NumberOfInterpolationRegions, sizeof( int ) );
par->InterpolationSchemeInRegion
= (int*)calloc( par->NumberOfInterpolationRegions, sizeof( int ) );
for( 1 = 0; i < par->NumberOfInterpolationRegions; i++ {
if( 1% == )
endfReadLine( line );
endfGetNumber ( *line, (1+2%*i)%6, 1, &par->NumberOfPointsInRegion[i]
endfGetNumber ( *line, (1+2*i)%6+1, 1, &par->InterpolationSchemeInRegion[i]
}
par->Energy
= (double*)calloc( par->NumberOfPoints, sizeof( double )
par->Nu
= (double*)calloc( par->NumberOfPoints, sizeof( double )
for( 1 = 0; i < par->NumberOfPoints; i++ ) {
if( i % 3 ==20)
endfReadLine ( line );
endfGetNumber ( *line, (1+2%*i)%6, 2, &par->Energyl[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 2, &par->Nuli] );
}
}
/*
** error check on end of section
*/
endfReadLine( line );
if( line->mf != 1 && line->mt != 0 ) {
printf ( "ERROR: expected end of section mf 1 mt 0: got mf d' mt '$d'\n",

line->mf, line->mt );
endfPrintLine( *line );
exit( -1 );

/*********************************************************************

** endfPrintMF1
* %

** print the nubar data
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* *

*/

void endfPrintMF1l( endflLine *line, endfMF1l *data )

{

/*
* *
* *
* *
* *

*/

int intzero = 0;
double doublezero = 0.0;

endfNextLine ( line );
/* [ ZA, AWR, 0, LNU, 0, 0 ] */

endfPutNumber ( line, 1, 2, (void*)&data->TargetZA );
endfPutNumber ( line, 2, 2, (void*)&data->TargetAWR );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&data->NuRepresentation );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );
switch( data->NuType ) {
case -1:

endfPrintMF1E( line, data );

break;
case 1:

endfPrintMF1T( line, data );

break;
case 2:

endfPrintMF1P( line, data );

break;
case 3:

endfPrintMF1D( line, data );

break;
default:

printf ( "ERROR: how did I get here? in PrintMFl with weird NuType
data->NuType );
exit( -1 );

/%
** print end of record marker
*/

endfNextLine( line );

/* [ 0.0, 0.0, O, O, O, O 1 */
line->mt = 0;

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );

R Rk kb b b b b b b b b b b b b b b b b b b b b b kb b kb b b b b e b kb b b b b b b b b b b b b b bk b b b b b b

endfPrintMF1E

print the components of energy release due to fission

void endfPrintMF1E( endflLine *line, endfMF1l *data )

{

int i;

int intzero = 0;

double doublezero = 0.0;

endfMF1E “*par = (endfMFlE*)data->NuParameters;

endfNextLine( line );
/* [ 0.0, 0.0, O, O, 18, 91 */
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endfPutNumber
endfPutNumber
endfPutNumber
endfPutNumber
i 18;
endfPutNumber (
i 9;
endfPutNumber (
endfPrintLineTo

(
(
(
(

endfNextLine ( 1
/* [ EFR, eEFR,
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPrintLineTo

endfNextLine ( 1
/* [ EGP, eEGP,
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPutNumber (
endfPrintLineTo

endfNextLine ( 1
/* [ ENU, eENU,
endfPutNumber (

endfPutNumber
endfPutNumber
endfPutNumber
endfPutNumber
endfPutNumber (

endfPrintLineTo

(
(
(
(

/*********************************************************************

** endfPrintMF1T

* *

’

)i

line, 1, 2, (void*)&doublezero );

line, 2, 2, (void*)s&doublezero );

line, 3, 1, (void*)s&intzero );

line, 4, 1, (void*)&intzero );

line, 5, 1, (void*)s&i );

line, 6, 1, (void*)&i );

File( *1line );

ine );

ENP, eENP, END, eEND ] */

line, 1, 2, (void*)s&par->FragmentEnergy );
line, 2, 2, (void*)é&par->erFragmentEnergy );
line, 3, 2, (void*)é&par->PromptNeutronEnergy );
line, 4, 2, (void*)s&par->erPromptNeutronEnergy );
line, 5, 2, (void*)s&par->DelayedNeutronEnergy );
line, 6, 2, (void*)é&par->erDelayedNeutronEnergy
File( *1line );

ine );

EGD, eEGD, EB, eEB ] */

line, 1, 2, (void*)é&par->PromptGammaEnergy );
line, 2, 2, (void*)é&par->erPromptGammaEnergy );
line, 3, 2, (void*)s&par->DelayedGammaEnergy );
line, 4, 2, (void*)s&par->erDelayedGammaEnergy );
line, 5, 2, (void*)&par->BetaEnergy );

line, 6, 2, (void*)é&par->erBetaEnergy );

File( *1line );

ine );

ER, eER, ET, eET ] */

line, 1, 2, (void*)s&par->NeutrinoEnergy );
line, 2, 2, (void*)s&par->erNeutrinoEnergy );
line, 3, 2, (void*)&par->SeenEnergy );

line, 4, 2, (void*)é&par->erSeenEnergy );

line, 5, 2, (void*)s&par->TotalEnergy );

line, 6, 2, (void*)s&par->erTotalEnergy );

File( *line );

** print the total nubar parameters

* *

*/

void endfPrintMF1

{

i

intzero

doublez
*par

int

int
double
endfMF1T

T(

0;
ero = 0.

0;

if ( data->NuRepresentation

endfLine *line,

endfMF1 *data )

(endfMF1T*)data->NuParameters;

== ) |

endfNextLine( line );

/* [ 0.0, 0.0, O, O, NC, O ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );

endfPutNumber ( line, 2, 2, (void*)&doublezero );

endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&intzero );

endfPutNumber ( line, 5, 1, (void*)é&par->NumberOfCoefficients

endfPutNumber ( line, 6, 1, (void*)&intzero );

endfPrintLineToFile( *line );

for( 1 = 0; i < par->NumberOfCoefficients; i++ ) {
if( i % 6 ==20)
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endfNextLine( line );
endfPutNumber ( line, (i%6)+1, 2, (void*)&par->PolyCoefficients([i] );
if( 1 % 6 == )
endfPrintLineToFile( *1line );
}
if( 1% 6 !=20)
endfPrintLineToFile( *1line );
}
else if( data->NuRepresentation == ) {
endfNextLine( line );
/* [ 0.0, 0.0, O, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&par->NumberOfInterpolationRegions );
endfPutNumber ( line, 6, 1, (void*)&par->NumberOfPoints );
endfPrintLineToFile( *line );
for( 1 = 0; i < par->NumberOfInterpolationRegions; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 1, (void*)é&par->NumberOfPointsInRegion[i] );
endfPutNumber ( line, (1+2*i)%6+1, 1, (void*)s&par->InterpolationSchemeInRegion([i] );
if( 1% 3==2)

endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );

for( 1 = 0; i < par->NumberOfPoints; i++ ) {
if( 1% == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 2, (void*) &par->Energyl[i] );

endfPutNumber ( line, (1+2*i)%6+1, 2, (void*)s&par->Nuli] );
if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );
}
else {
printf ( "ERROR: Nu representation '%d' was not recognized\n",
data->NuRepresentation );
exit( -1 );

/*********************************************************************

** endfPrintMF1P

* *

** print the prompt nubar parameters
* *

*/
void endfPrintMF1P( endflLine *line, endfMF1l *data )
{
int i;
int intzero = 0;
double doublezero = 0.0;
endfMF1P *par = (endfMF1P*)data->NuParameters;
if ( data->NuRepresentation == ) {

endfNextLine ( line );

/* [ 0.0, 0.0, O, O, 1, O 1 */
endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
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endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );

i=1;
endfPutNumber ( line, 5, 1, (void*)&i );

endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );

endfNextLine( line );
endfPutNumber ( line, 1, 2, (void*)&par->SpontaneousNu );
endfPrintLineToFile( *line );
}
else if( data->NuRepresentation == ) {
endfNextLine( line );
/* [ 0.0, 0.0, O, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );

endfPutNumber ( line, 2, 2, (void*)&doublezero );

endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&intzero );

endfPutNumber ( line, 5, 1, (void*)&par->NumberOfInterpolationRegions );
endfPutNumber ( line, 6, 1, (void*)&par->NumberOfPoints );
endfPrintLineToFile( *line );

for( 1 = 0; i < par->NumberOfInterpolationRegions; i++ ) {

if( 1 % 3 == )
endfNextLine ( line );

endfPutNumber ( line, (1+2*1)%6, 1, (void*)é&par->NumberOfPointsInRegion[i] );
endfPutNumber ( line, (1+2*i)%6+1, 1, (void*)s&par->InterpolationSchemeInRegion[i]

if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 1!=0)
endfPrintLineToFile( *line );

for( 1 = 0; i < par->NumberOfPoints; i++ ) {
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 2, (void*) &par->Energyl[i] );
endfPutNumber ( line, (1+2*i)%6+1, 2, (void*)s&par->Nuli] );
if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );
}
else {
printf ( "ERROR: Nu representation '%d' was not recognized\n",
data->NuRepresentation );
exit( -1 );

/*********************************************************************

** endfPrintMF1D

* *

** print the delayed nubar parameters
* *

*/
void endfPrintMF1D( endfLine *line, endfMFl *data )
{
int i;
int intzero = 0;
double doublezero = 0.0;
endfMF1D *par = (endfMF1D*)data->NuParameters;
if ( data->NuRepresentation == ) {
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endfNextLine ( line );

/* [ 0.0, 0.0, O, O, NNF, 0 ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&intzero );

endfPutNumber ( line, 5, 1, (void*)&par->NumberOfPrecursors );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );

for( 1 = 0; i < par->NumberOfPrecursors; i++ ) {

if( i % 6 == )
endfNextLine( line );
endfPutNumber ( line, (i%6)+1, 2, (void*)&par->DecayConstants[i] );
if( i % 6 == )
endfPrintLineToFile( *1line );
}
if( 1% 6 !=0)
endfPrintLineToFile( *line );

endfNextLine ( line );

/* [ 0.0, 0.0, O, O, 1, O 1 */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
i=1;

endfPutNumber ( line, 5, 1, (void*)&i );

endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *1line );

endfNextLine( line );
endfPutNumber ( line, 1, 2, (void*)&par->SpontaneousNu );
endfPrintLineToFile( *line );
}
else if( data->NuRepresentation == ) |
endfNextLine( line );
/* [ 0.0, 0.0, 0O, O, NNF, O ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)é&intzero );

endfPutNumber ( line, 5, 1, (void*)&par->NumberOfPrecursors );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *1line );

for( 1 = 0; i < par->NumberOfPrecursors; i++ ) {

if( 1 % 6 == )
endfNextLine( line );
endfPutNumber ( line, (i%6)+1, 2, (void*)&par->DecayConstants[i] );
if( i % 6 == )
endfPrintLineToFile( *line );
}
if(i %6 !'=0)
endfPrintLineToFile( *line );

endfNextLine ( line );

/* [ 0.0, 0.0, 0, O, NR, NP ] */
endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)é&intzero );
endfPutNumber ( line, 5, 1, (void*) &par->NumberOfInterpolationRegions );
endfPutNumber ( line, 6, 1, (void*) &par->NumberOfPoints );
* .

endfPrintLineToFile( *1line );
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for( i = 0; 1 < par->NumberOfInterpolationRegions; i++ ) {

if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1i)%6, 1, (void*)&par->NumberOfPointsInRegion[i] );

o

endfPutNumber ( line, (1+2%*1i)

if( 1 % 3 == )
endfPrintLineToFile( *line );

6+1, 1, (void*)é&par->InterpolationSchemeInRegion[i]

}
if( 1% 3 !=0)
endfPrintLineToFile( *line );

for( i = 0; 1 < par->NumberOfPoints; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 2, (void*)s&par->Energyl[i] );

endfPutNumber ( line, (1+2%*1i)
if( 1 % 3 == )
endfPrintLineToFile( *line );

o

6+1l, 2, (void*)é&par->Nuli] );

}
if(1 % 3 !=0)
endfPrintLineToFile( *line );
}
else {
printf ( "ERROR: Nu representation '%d' was not recognized\n",
data->NuRepresentation );
exit( -1 );

endfMF2.h

#ifndef endfMF2_h
#define endfMF2 h

#include "endfLine.h"

/*

** Structure: endfMF2

*/

typedef struct endfmf2 ({
int hello;

} endfMF2;

/*

** Function: endfReadMF2

*/

void endfReadMF2 ( endflLine *line, endfMF2 *data );

/*

** Function: endfPrintMF2

*/

void endfPrintMF2 ( endflLine *line, endfMF2 *data );

#endif

endfMF2.c

#include "endfMF2.h"

/*********************************************************************

** endfReadMF2

* *

** What to do with the file 2?77?72 blahh

* *

*/
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void endfReadMF2 ( endflLine *line, endfMF2 *data )
{

int i=1;

while( 1 ) {
endfReadLine ( line );
if( line->mt == )
i=0;

}

printf( "write the mf2 reader sections\n" );

}

/*********************************************************************

** endfPrintMF2
* %

** Still need to write the mf2 printer too
* *
*/
void endfPrintMF2 ( endflLine *line, endfMF2 *data )
{
int intzero = 0;
double doublezero = 0.0;

endfNextLine( line );
/* [ 0.0, 0.0, O, O, O, O] */
line->mt = 0;
endfPutNumber ( line,
endfPutNumber ( line,
endfPutNumber ( line,
(
(

1 &doublezero );

2

3
endfPutNumber ( line, 4,

5

6

*

&doublezero );
&intzero );
&intzero );
&intzero );
&intzero );

void*
void*
void*
void*
void*
void*
line );

endfPutNumber ( line,
endfPutNumber ( line,
endfPrintLineToFile (

(
(
(
(
(
(

endfMF3.h

#ifndef endfMF3 h
#define endfMF3_h

#include <stdio.h>
#include <stdlib.h>

#include "endfLine.h"
#include "endfNumber.h"

/*
** Structure: endfMF3
*/
typedef struct endfmf3 ({
double TargetZA;
double TargetAWR;
double ReactionQM;
double ReactionQI;
int BreakupFlag;
int NumberOfInterpolationRegions;
int NumberOfPoints;
int *NumberOfPointsInRegion;
int *InterpolationSchemeInRegion;
double *Energy;
double *CrossSection;
} endfMF3;

/*
** Function: endfReadMF3
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*/
void endfReadMF3( endfLine *line, endfMF3 *data );

/*

** Function: endfPrintMF3

*/

void endfPrintMF3( endfline *1line, endfMF3 *data );

#endif

endfMF3.c

#include "endfMF3.h"

/*********************************************************************

** endfReadMF3

* *

** passed first line of mf3 section, load the remaining data
* *

*/
void endfReadMF3( endflLine *line, endfMF3 *data )
{

int i;

/* [ ZA, AWR, O, O, 0, O 1 */

endfGetNumber ( *line, 1, 2, &data->TargetZA );
endfGetNumber ( *line, 2, 2, &data->TargetAWR );

endfReadLine( line );

/* [ oM, QI, 0, LR, NR, NP ] */

endfGetNumber ( *line, 1, 2, &data->ReactionQM );

endfGetNumber ( *line, 2, 2, &data->ReactionQI );

endfGetNumber ( *line, 4, 1, &data->BreakupFlag );

endfGetNumber ( *line, 5, 1, &data->NumberOfInterpolationRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfPoints );

data->NumberOfPointsInRegion

= (int*)calloc( data->NumberOfInterpolationRegions, sizeof( int ) );
data->InterpolationSchemeInRegion

= (int*)calloc( data->NumberOfInterpolationRegions, sizeof( int ) );

for( i = 0; 1 < data->NumberOfInterpolationRegions; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 1, &data->NumberOfPointsInRegion[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 1, &data->InterpolationSchemeInRegion[i] );
}

o

data->Energy
= (double*)calloc( data->NumberOfPoints, sizeof( double ) );
data->CrossSection

= (double*)calloc( data->NumberOfPoints, sizeof( double ) );
for( i = 0; i < data->NumberOfPoints; i++ ) {
if( 1 % 3 == )

endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->Energyl[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 2, &data->CrossSection[i] );

}

/*
** error check on end of section

*/

endfReadLine ( line );

if( line->mf != 3 && line->mt != 0 ) {

printf ( "ERROR: expected end of section mf 3 mt 0: got mf '$d' mt '%d'\n",
line->mf, line->mt );
endfPrintLine( *line );
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exit( -1 );

/**********************************************k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k********

** endfPrintMF3

* *

** print a mf3 section

* *

** expects 'line->body' to point to a writable file pointer
** expects 'line->mf' to be set to mf3

** expects 'line->mt' to be set to current mt
* *

*/
void endfPrintMF3( endflLine *line, endfMF3 *data )
{

int i;

int intzero = 0;

double doublezero 0.0;

endfNextLine ( line );

/* [ ZA, AWR, O, O, 0, O 1 */
endfPutNumber ( line, 1, 2, (void*)&data->TargetZA );
endfPutNumber ( line, 2, 2, (void*)&data->TargetAWR );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );
endfNextLine( line );
/* [ oM, QI, 0, LR, NR, NP ] */
endfPutNumber ( line, 1, 2, (void*)&data->ReactionQM ) ;
endfPutNumber ( line, 2, 2, (void*)&data->ReactionQI );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&data->BreakupFlag );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfInterpolationRegions );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfPoints );
endfPrintLineToFile( *line );
for( 1 = 0; i < data->NumberOflInterpolationRegions; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 1, (void*)&data->NumberOfPointsInRegion[i] );
endfPutNumber ( line, (1+2*i)%6+1, 1, (void*)s&data->InterpolationSchemeInRegion[i]

if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 1!=0)
endfPrintLineToFile( *line );

for( i = 0; i < data->NumberOfPoints; i++ ) {
if( i % 3 == )
endfNextLine( line );

endfPutNumber ( line, (1+2*1)%6, 2, (void*)&data->Energyl[i] );
endfPutNumber ( line, (14+2*1i)%6+1, 2, (void*)&data->CrossSection[i] );

if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );

/*

** print end of record marker
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*/
endfNextLine( line );
/* [ 0.0, 0.0, O, O, O, O] */
line->mt = 0;
endfPutNumber ( line,
endfPutNumber ( line,
endfPutNumber ( line,
(
(

1 &doublezero );

2

3
endfPutNumber ( line, 4,

5

6

*

&doublezero );
&intzero );
&intzero );
&intzero );
&intzero );

(void*
(void*
(void*
, (void*
(void*
, (void*
line );

endfPutNumber ( line,
endfPutNumber ( line,
endfPrintLineToFile (

endfMF4.h

#ifndef endfMF4_h
#define endfMF4_h

#include <stdio.h>
#include <stdlib.h>

#include "endfLine.h"
#include "endfNumber.h"

/*
** Structure: endfMF4
*/
typedef struct endfmfd {
double TargetZA;
double TargetAWR;
int TransformationMatrix;
int AngularRepresentation;
int AllIsotropic;
int FrameOfReference;
} endfMF4;

/*
** Function: endfReadMF4

*/

void endfReadMF4 ( endflLine *line, endfMF4 *data );

/*
** Function: endfPrintMF4

*/

void endfPrintMF4 ( endfline *1line, endfMF4 *data );

#endif

endfMF4.c

#include "endfMF4.h"

/*********************************************************************

** endfReadMF4

* *

** passed first line of mf4 section, load the remaining data
* *

*/
void endfReadMF4 ( endfline *line, endfMF4 *data )

{
double temp;

/* [ ZA, AWR, LVT, LTT, 0, 0 ] */

endfGetNumber ( *line, 1, 2, &data->TargetZA );
endfGetNumber ( *line, 2, 2, &data->TargetAWR );
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endfGetNumber ( *line, 3, 1, &data->TransformationMatrix );
endfGetNumber ( *line, 4, 1, &data->AngularRepresentation );

endfReadLine( line );

/* [ 0.0, AWR, LI, LCT, 0, 0 ] */

endfGetNumber ( *line, 2, 2, &temp );

endfGetNumber ( *line, 3, 1, &data->AllIsotropic );
endfGetNumber ( *line, 4, 1, &data->FrameOfReference );

if( data->AllIsotropic != 1 ) {
printf( "ERROR: File 4 is not all isotropic: HELP!! (%d)\n", data->AllIsotropic );
endfPrintLine( *line );
exit( -1 );

}

if( temp != data->TargetAWR ) {

printf( "ERROR: File 4 AWR's don't match; 1'%d' 2'%d'\n", temp, data->TargetAWR );
endfPrintLine( *line );
exit( -1 );

}

/*
** error check on end of section

*/

endfReadLine( line );

if( line->mf != 4 && line->mt != 0 ) {

printf ( "ERROR: expected end of section mf 4 mt 0: got mf '$d' mt '%d'\n",
line->mf, line->mt );

endfPrintLine( *line );

exit( -1 );

/*********************************************************************

** endfPrintMF4

* *

** print an mf4 section record

* *

** expects 'line->body' to point to a writable file pointer

** expects 'line->mf' to be set to mf4

** expects 'line->mt' to be set to current mt

* *

*/

void endfPrintMF4 ( endflLine *line, endfMF4 *data )

{
int intzero = 0;
double doublezero

I~
o
o
~

endfNextLine ( line );

/* [ ZA, AWR, LVT, LTT, 0, 0 ] */

endfPutNumber ( line, 1, 2, (void*)&data->TargetZA );
endfPutNumber ( line, 2, 2, (void*)&data->TargetAWR );
endfPutNumber ( line, 3, 1, (void*)s&data->TransformationMatrix );
endfPutNumber ( line, 4, 1, (void*)&data->AngularRepresentation );
endfPutNumber ( line, 5, 1, (void*)&intzero );

endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );

endfNextLine( line );

/* [ 0.0, AWR, LI, LCT, 0, 0 ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );

endfPutNumber ( line, 2, 2, (void*)&data->TargetAWR );
endfPutNumber ( line, 3, 1, (void*)&data->AllIsotropic );
endfPutNumber ( line, 4, 1, (void*)&data->FrameOfReference );
endfPutNumber ( line, 5, 1, (void*)&intzero );

endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );
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/*
** print end of record marker
*/

endfNextLine( line );

/* [ 0.0, 0.0, O, O, O, O 1 */
line->mt = 0;

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)é&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *1line );
}
endfMF5.h
#ifndef endfMF5 h
#define endfMF5_h
#include <stdio.h>
#include <stdlib.h>
#include "endfLine.h"
#include "endfNumber.h"
/*
** Structure: endfMFS5LF1
*/
typedef struct endfmf51fl {
int NumberOfThetaRegions;
int NumberOfThetaPoints;
int *NumberOfThetaPointsInRegion;
int *InterpolationSchemeInThetaRegion;
double *ThetaEnergy;
double *Theta;
} endfMF5LF1;
/*
** Structure: endfMFS5LF5
*/
typedef struct endfmf51f5 {
int NumberOfThetaRegions;
int NumberOfThetaPoints;
int *NumberOfThetaPointsInRegion;
int *InterpolationSchemeInThetaRegion;
double *ThetaEnergy;
double *Theta;
int NumberOfGRegions;
int NumberOfGPoints;
int *NumberOfGPointsInRegion;
int *InterpolationSchemeInGRegion;
double *GEnergy;
double *G;
} endfMF5LF5;
/*
** Structure: endfMFSLE7
*/
typedef struct endfmf51f7 {
int NumberOfThetaRegions;
int NumberOfThetaPoints;
int *NumberOfThetaPointsInRegion;
int *InterpolationSchemeInThetaRegion;

double *ThetaEnergy;
double *Theta;
} endfMF5LF7;
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/*
** Structure: endfMFS5LF9

*/
typedef struct endfmf51f9 ({
int NumberOfThetaRegions;
int NumberOfThetaPoints;
int *NumberOfThetaPointsInRegion;
int *InterpolationSchemeInThetaRegion;

double *ThetaEnergy;
double *Theta;
} endfMF5LF9;

/*
** Structure: endfMFS5LF11
*/
typedef struct endfmfbI1fll ({
int NumberOfARegions;
int NumberOfAPoints;
int *NumberOfAPointsInRegion;
int *InterpolationSchemeInARegion;
double *AEnergy;
double *A;
int NumberOfBRegions;
int NumberOfBPoints;
int *NumberOfBPointsInRegion;
int *InterpolationSchemeInBRegion;
double *BEnergy;
double *B;

} endfMF5LF11;

/*
** Structure: endfMFSLF12
*/
typedef struct endfmf51£f12 {
int NumberOfMTRegions;
int NumberOfMTPoints;
int *NumberOfMTPointsInRegion;
int *InterpolationSchemeInMTRegion;

double *MTEnergy;
double *MaximumTemperature;
} endfMF5LF12;

/*

** Structure: endfMF5Distribution

*/

typedef struct endfmfS5distribution {
double UpperEnergyDelta;

int EnergyDistributionLaw;

int NumberOfEnergyRegions;

int NumberOfEnergyPoints;

int *NumberOfEnergyPointsInRegion;

int *InterpolationSchemeInEnergyRegion;

double *Energy;
double *EnergyProbability;
void *Parameters;

} endfMF5Distribution;

/*
** Structure: endfMF5S
*/
typedef struct endfmfb {
double TargetZA;
double TargetAWR;
int NumberOfPartialEnergyDistributions;
endfMF5Distribution *Distributions;
} endfMF5;

/*
** Function: endfReadMF5
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*/
void endfReadMF5( endfLine *line, endfMF5 *data );

/*

** Function: endfReadMFS5LF1

*/

void endfReadMF5LF1 ( endflLine *line, endfMF5LF1 *data );
/*

** Function: endfReadMFS5LES

*/

void endfReadMF5LF5( endflLine *line, endfMF5LF5 *data );
/*

** Function: endfReadMFS5LE7

*/

void endfReadMF5LF7( endflLine *line, endfMF5LF7 *data );
/*

** Function: endfReadMFS5LF9

*/

void endfReadMFS5LF9( endflLine *line, endfMF5LF9 *data );
/*

** Function: endfReadMFS5LF11

*/

void endfReadMF5LF11( endflLine *line, endfMF5LF1l1 *data );
/*

** Function: endfReadMFS5LF12

*/

void endfReadMF5LF12( endflLine *line, endfMF5LF12 *data );

/*
** Function: endfPrintMF5

*/

void endfPrintMF5( endflLine *line, endfMF5 *data );

/%

** Function: endfPrintMF5LF1

*/

void endfPrintMF5LF1( endfLine *line, endfMF5LF1 *data );
/*

** Function: endfPrintMF5LF5

*/

void endfPrintMFS5LF5( endfLine *line, endfMF5LF5 *data );
/%

** Function: endfPrintMF5LF7

*/

void endfPrintMF5LF7( endfLine *line, endfMF5LF7 *data );
/*

** Function: endfPrintMF5LF9

*/

void endfPrintMF5LF9( endfline *line, endfMFS5LF9 *data );
/*

** Function: endfPrintMF5LF11

*/

void endfPrintMF5LF11( endfLine *line, endfMF5LF11 *data );
/*

** Function: endfPrintMF5LF12

*/

void endfPrintMF5LF12 ( endflLine *line, endfMF5LF12 *data );

#endif
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endfMF5.c

#include "endfMF5.h"

/*********************************************************************

** endfReadMF5

* *

** passed first line of mf5 section, load the remaining data
* *

*/
void endfReadMF5( endflLine *1line, endfMF5 *data )
{

int i,73;

/* [ ZA, BAWR, 0, 0, NK, 0 ] */

endfGetNumber ( *line, 1, 2, &data->TargetZA );

endfGetNumber ( *line, 2, 2, &data->TargetAWR );

endfGetNumber ( *line, 5, 1, &data->NumberOfPartialEnergyDistributions );

data->Distributions = (endfMF5Distribution*)
calloc( data->NumberOfPartialEnergyDistributions, sizeof( endfMF5Distribution ) );

for( j = 0; j < data->NumberOfPartialEnergyDistributions; j++ ) {
endfReadLine( line );

/* [ U, 0,0, 0, LF, NR, NP ] */

endfGetNumber ( *line, 1, 2, &data->Distributions[j].UpperEnergyDelta );
endfGetNumber ( *line, 4, 1, &data->Distributions[j].EnergyDistributionlLaw );
endfGetNumber ( *line, 5, 1, &data->Distributions[j].NumberOfEnergyRegions );
endfGetNumber ( *line, 6, 1, &data->Distributions[]j].NumberOfEnergyPoints );

data->Distributions[j].NumberOfEnergyPointsInRegion
= (int*)calloc( data->Distributions[j].NumberOfEnergyRegions,
sizeof ( int ) );
data->Distributions[j].InterpolationSchemeInEnergyRegion
= (int*)calloc( data->Distributions[j].NumberOfEnergyRegions,
sizeof ( int ) );

for( i = 0; i < data->Distributions[j].NumberOfEnergyRegions; i++ ) {
if( 1 % 3 == )
endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->Distributions[j].NumberOfEnergyPointsInRegion[i] );
endfGetNumber ( *line, (1+2*1i)%6+1, 1,
&data->Distributions[j].InterpolationSchemeInEnergyRegion([i] );

}

data->Distributions[j].Energy
= (double*)calloc( data->Distributions[j].NumberOfEnergyPoints,
sizeof ( double ) );
data->Distributions[j].EnergyProbability
= (double*)calloc( data->Distributions[j].NumberOfEnergyPoints,
sizeof ( double ) );

for( 1 = 0; i < data->Distributions[j].NumberOfEnergyPoints; i++ ) {
if( 1 % 3 == )
endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 2,
&data->Distributions[j].Energy[i] );
endfGetNumber ( *line, (142*1i)%6+1, 2,
&data->Distributions[j].EnergyProbability[i] );
}

switch( data->Distributions[j].EnergyDistributionLaw ) {

case 1:
data->Distributions[j].Parameters = calloc( 1, sizeof( endfMF5LF1 ) );
endfReadMFS5LF1 ( line, (endfMF5LFl1*)data->Distributions[]j].Parameters );
break;

case 5:
data->Distributions([j].Parameters = calloc( 1, sizeof( endfMF5LF5 ) );

endfReadMFS5LF1 ( line, (endfMF5LFl1*)data->Distributions[]j].Parameters );
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break;

case 7:
data->Distributions[j].Parameters = calloc( 1, sizeof( endfMF5LF7 ) );
endfReadMFS5LEF7 ( line, (endfMF5LF7*)data->Distributions[]j].Parameters );
break;

case 9:
data->Distributions[j].Parameters = calloc( 1, sizeof( endfMF5LF9 ) );
endfReadMFS5LF9 ( line, (endfMF5LF9*)data->Distributions[]j].Parameters );
break;

case 11:
data->Distributions([j].Parameters = calloc( 1, sizeof( endfMF5LF11 ) );
endfReadMFS5LF11( line, (endfMF5LF11*)data->Distributions([j].Parameters );
break;

case 12:
data->Distributions([j].Parameters = calloc( 1, sizeof( endfMF5LF12 ) );
endfReadMFS5LF12 ( line, (endfMF5LF12*)data->Distributions([j].Parameters );
break;

default:

printf ( "ERROR: Loading MF5 data and got case '%d'; HELP!!\n",
data->Distributions[j].EnergyDistributionLaw ) ;
exit( -1 );
}

} /* end of for j number of partial energy distributions */

/*

** error check on end of section

*/

endfReadLine( line );

if( line->mf != 5 && line->mt != 0 ) {

printf ( "ERROR: expected end of section mf 5 mt 0: got mf '$d' mt '%d'\n",
line->mf, line->mt );

endfPrintLine( *line );

exit( -1 );

}

/*********************************************************************

** endfReadMF5LF1

* *

** load the LF 1 theta spectral information

* k

*/

void endfReadMF5LF1 ( endfLine *line, endfMF5LF1 *data )

{
printf ( "ERROR: haven't written the MF5 LF1 reader yet\n" );
exit( -1 );

R e e e Y
** endfReadMF5LF5

* *

** load the LF 5 theta spectral information
* *

*/
void endfReadMF5LF5( endfLine *line, endfMF5LF5 *data )
{

int i;

/*

** Read the Energy / Theta pairs

*/

endfReadLine( line );

/* [ 0.0, 0.0, 0, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfThetaRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfThetaPoints );

data->NumberOfThetaPointsInRegion
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= (int*)calloc( data->NumberOfThetaRegions, sizeof( int ) );
data->InterpolationSchemeInThetaRegion

= (int*)calloc( data->NumberOfThetaRegions, sizeof( int ) );
for( 1 = 0; i < data->NumberOfThetaRegions; i++ ) {
if( 1 % 3 == )

endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfThetaPointsInRegion[i] )
endfGetNumber ( *line, (1+2*1i)%6+1, 1,
&data->InterpolationSchemeInThetaRegion[i] );
}

data->ThetaEnergy

= (double*)calloc( data->NumberOfThetaPoints, sizeof( double ) );
data->Theta

= (double*)calloc( data->NumberOfThetaPoints, sizeof( double ) );

for( i = 0; 1 < data->NumberOfThetaPoints; i++ ) {
if( 1 % 3 == )
endfReadLine( line );

endfGetNumber ( *line, (1+2*i)%6, 2, &data->ThetaEnergy[i] ):;
(

endfGetNumber ( *line, (1+2*i)%6+1, 2, &data->Thetali] );
}
/*
** Read the Energy / G pairs
*/

endfReadLine( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfGRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfGPoints );

data->NumberOfGPointsInRegion

= (int*)calloc( data->NumberOfGRegions, sizeof( int ) );
data->InterpolationSchemeInGRegion

= (int*)calloc( data->NumberOfGRegions, sizeof( int ) );

for( i = 0; 1 < data->NumberOfGRegions; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfGPointsInRegion[i] );
endfGetNumber ( *line, (142*1i)%6+1, 1,
&data->InterpolationSchemeInGRegion[i] );

}

data->GEnergy

= (double*)calloc( data->NumberOfGPoints, sizeof( double ) );
data->G

= (double*)calloc( data->NumberOfGPoints, sizeof( double ) );

for( i = 0; i < data->NumberOfGPoints; i++ ) {
if( 1 % 3 == )
endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->GEnergy[i] );
endfGetNumber ( *line, (14+2*i)%6+1, 2, &data->G[i] );

/*********************************************************************

** endfReadMF5LF7

* *

** load the LF 7 theta spectral information
* *

*/
void endfReadMF5LF7( endfLine *line, endfMF5LF7 *data )
{
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int i;

endfReadLine ( line );

/* [ 0.0, 0.0, 0, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfThetaRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfThetaPoints );

data->NumberOfThetaPointsInRegion
= (int*)calloc( data->NumberOfThetaRegions, sizeof( int ) );
data->InterpolationSchemeInThetaRegion

= (int*)calloc( data->NumberOfThetaRegions, sizeof( int ) );
for( 1 = 0; i < data->NumberOfThetaRegions; i++ ) {
if( 1 % 3 == )

endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfThetaPointsInRegion[i] );
endfGetNumber ( *line, (1+2*1i)%6+1, 1,
&data->InterpolationSchemeInThetaRegion[i] );
}

data->ThetaEnergy

= (double*)calloc( data->NumberOfThetaPoints, sizeof( double ) );
data->Theta

= (double*)calloc( data->NumberOfThetaPoints, sizeof( double ) );

for( 1 = 0; i < data->NumberOfThetaPoints; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->ThetaEnergyl[i] );
endfGetNumber ( *line, (1+2*i)%6+1, 2, &data->Thetal[i] );

o

/*********************************************************************

** endfReadMF5LF9

* *

** load the LF 9 theta spectral information

* %

*/

void endfReadMF5LF9( endfLine *line, endfMF5LF9 *data )
{

int i;

endfReadLine ( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfThetaRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfThetaPoints );

data->NumberOfThetaPointsInRegion

= (int*)calloc( data->NumberOfThetaRegions, sizeof( int ) );
data->InterpolationSchemeInThetaRegion

= (int*)calloc( data->NumberOfThetaRegions, sizeof( int ) );

for( i = 0; 1 < data->NumberOfThetaRegions; i++ ) {
if( i % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfThetaPointsInRegion[i] );
endfGetNumber ( *line, (142*1i)%6+1, 1,
&data->InterpolationSchemeInThetaRegion[i] );
}
data->ThetaEnergy
= (double*)calloc( data->NumberOfThetaPoints, sizeof( double ) );
data->Theta
= (double*)calloc( data->NumberOfThetaPoints, sizeof( double ) );

for( i = 0; i < data->NumberOfThetaPoints; i++ ) {
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if( 1% 3 ==20)

endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->ThetaEnergy([i] ):;
endfGetNumber ( *line, (14+2*i)%6+1, 2, &data->Thetal[i] ):;

/*********************************************************************

** endfReadMF5LF11

* *

** load the LF 11 theta spectral information

* *

*/
void endfReadMF5LF11( endfLine *line, endfMF5LF11 *data )
{

int i;

/*

** Read the Energy / A pairs

*/

endfReadLine ( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfARegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfAPoints );

data->NumberOfAPointsInRegion

= (int*)calloc( data->NumberOfARegions, sizeof( int ) );
data->InterpolationSchemeInARegion

= (int*)calloc( data->NumberOfARegions, sizeof( int ) );

for( 1 = 0; i < data->NumberOfARegions; i++ ) {
if( 1% == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfAPointsInRegion[i] );
endfGetNumber ( *line, (142*1i)%6+1, 1,
&data->InterpolationSchemeInARegion([i] );

}

data->AEnergy

= (double*)calloc( data->NumberOfAPoints, sizeof( double ) );
data->A

= (double*)calloc( data->NumberOfAPoints, sizeof( double ) );

for( 1 = 0; i < data->NumberOfAPoints; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->AEnergyl[i] );
endfGetNumber ( *line, (14+2*i)%6+1, 2, &data->A[i] );

/*

** Read the Energy / B pairs

*/

endfReadLine( line );

/* [ 0.0, 0.0, 0, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfBRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfBPoints );

data->NumberOfBPointsInRegion

= (int*)calloc( data->NumberOfBRegions, sizeof( int ) );
data->InterpolationSchemeInBRegion

= (int*)calloc( data->NumberOfBRegions, sizeof( int ) );

for( i = 0; 1 < data->NumberOfBRegions; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
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&data->NumberOfBPointsInRegion[i] );
endfGetNumber ( *line, (1+2*1i)%6+1, 1,
&data->InterpolationSchemeInBRegion([i] );

}

data->BEnergy

= (double*)calloc( data->NumberOfBPoints, sizeof( double ) );
data->B

= (double*)calloc( data->NumberOfBPoints, sizeof( double ) );

for( i = 0; 1 < data->NumberOfBPoints; i++ ) {
if( 1% == )

endfReadLine( line );

endfGetNumber ( *line, (

(

endfGetNumber ( *line,

1+2*i) %6, 2, &data->BEnergyl[i] );
1+2*i)%6+1, 2, &data->B[i] );

o

/*********************************************************************

** endfReadMF5LF12

* *

** load the LF 12 theta spectral information
* %

*/
void endfReadMF5LF12( endfLine *line, endfMF5LF12 *data )
{

int i;

/*

** Read the Energy / Maximum Temperature pairs

*/

endfReadLine( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfGetNumber ( *line, 5, 1, &data->NumberOfMTRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfMTPoints );

data->NumberOfMTPointsInRegion

= (int*)calloc( data->NumberOfMTRegions, sizeof( int ) );
data->InterpolationSchemeInMTRegion

= (int*)calloc( data->NumberOfMTRegions, sizeof( int ) );

for( 1 = 0; i < data->NumberOfMTRegions; i++ ) {
if( 1% 3 ==20)
endfReadLine ( line );

endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfMTPointsInRegion[i] );

endfGetNumber ( *line, (142*1i)%6+1, 1,
&data->InterpolationSchemeInMTRegion([i] );

}

data->MTEnergy

= (double*)calloc( data->NumberOfMTPoints, sizeof( double ) );
data->MaximumTemperature

= (double*)calloc( data->NumberOfMTPoints, sizeof( double ) );

for( i = 0; i < data->NumberOfMTPoints; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->MTEnergyl[i] );
(

endfGetNumber ( *line, 1+2*i)%6+1, 2, &data->MaximumTemperature[i] );

/*********************************************************************

** endfPrintMF5S

* *
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* *
* *
* *
* *
* *
* *

*/

void endfPrintMF5 (

{

print an mf5 section record

'line->body' to point to a writable file pointer

expects
expects 'line->mf'
expects 'line->mt'

to be set to mf5
to be set to current mt

int i, I;

int intzero = 0;

double doublezero = 0.0;

endfNextLine( line );

/* [ zA, AWR, 0, 0, NK, 0 ] */

endfPutNumber ( line, 1, 2, (void*)&data->TargetZA );
endfPutNumber ( line, 2, 2, (void*)&data->TargetAWR );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void¥*)

endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );

endfLine *line,

endfMF5 *data )

&data->NumberOfPartialEnergyDistributions );

.UpperEnergyDelta );

.EnergyDistributionLaw
.NumberOfEnergyRegions

NumberOfEnergyPoints

i++ ) |

)i

for( j = 0; j < data->NumberOfPartialEnergyDistributions; j++ ) {

endfNextLine( line );
/* [ U 0,0, 0, LF, NR, NP ] */
endfPutNumber ( line, 1, 2, (void*)&data->Distributions[]]
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&data->Distributions[]]
endfPutNumber ( line, 5, 1, (void*)&data->Distributions[]]
endfPutNumber ( line, 6, 1, (void*)&data->Distributions([j].
endfPrintLineToFile( *line );
for( i = 0; 1 < data->Distributions[j].NumberOfEnergyRegions;

if( 1 % 3 == )

endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 1,
(void*) &data->Distributions[j].NumberOfEnergyPointsInRegion[i]
endfPutNumber ( line, (1+2*1i)%6+1, 1,
(void*) &data->Distributions[j].InterpolationSchemeInEnergyRegion[i]
if( i % 3 == )
endfPrintLineToFile( *line );

}
if(1 % 3 !=0)

endfPrintLineToFile( *line );

for( i = 0; 1 < data->Distributions([j].NumberOfEnergyPoints;
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 2,
(void*) &data->Distributions([j] .Energy[i] )
endfPutNumber ( line, (1+4+2*1i)%6+1, 2,
(void*) &data->Distributions[j] .EnergyProbability[i]
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *1line );
switch( data->Distributions[j].EnergyDistributionLaw ) {
case 1:
endfPrintMF5LF1 ( line, (endfMFS5LF1*)data->Distributions([j].Parameters
break;
case 5:
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endfPrintMF5LF5( line, (endfMF5LF5*)data->Distributions[j].Parameters );

break;
case 7:

endfPrintMF5LF7 ( line, (endfMF5LF7*)data->Distributions[j].Parameters );

break;
case 9:

endfPrintMF5LF9( line, (endfMFS5LF9*)data->Distributions([j].Parameters

break;
case 11:

)i

endfPrintMF5LF11( line, (endfMF5LFll*)data->Distributions[j].Parameters

break;
case 12:

)i

endfPrintMF5LF12 ( line, (endfMFS5LF12*)data->Distributions[]j].Parameters );

break;
default:
printf ( "ERROR: Printing MF5 data and got case '%d'; HELP!!\n",
data->Distributions[j].EnergyDistributionLaw ) ;

}

} /* end of for j number of partial energy distributions */

/*
** print end of record marker
*/

endfNextLine( line );

/* [ 0.0, 0.0, O, O, O, O] */
line->mt = 0;

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *1line );

/*********************************************************************

** endfPrintMF5LF1

* *

** print the LF 1 theta spectral information

* *

*/

void endfPrintMF5LF1 ( endfLine *line, endfMF5LF1 *data )

{
printf ( "ERROR: haven't written the MF5 LF1 writer yet\n" );
exit( -1 );

/*********************************************************************
** endfPrintMF5LF5

* *

** print the LF 5 theta spectral information
* *

*/
void endfPrintMF5LF5( endfLine *line, endfMF5LF5 *data )
{

int i;

int intzero = 0;

double doublezero = 0.0;

/*

** Print the Energy / Theta pairs

*/

endfNextLine( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
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endfPutNumber ( line, 3, 1, (void*
endfPutNumber ( line, 4, 1, (void*
endfPutNumber ( line, 5, 1, (void*
endfPutNumber ( line, 6, 1, (
endfPrintLineToFile( *1line );

for( i = 0; i < data->NumberOfThetaRegions;
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1i)%6, 1,
(void*) &data->NumberOfThetaPointsInRegion[i]
endfPutNumber ( line, (1+4+2*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInThetaRegion[i]
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if(1 % 3 !=0)
endfPrintLineToFile( *line );

for( 1 = 0; i < data->NumberOfThetaPoints; i++ ) {

if( 1 % 3 == )

endfNextLine( line );

endfPutNumber ( line, (1+2*1)%6, 2, (void*)&data->ThetaEnergy[i]

endfPutNumber ( line, (14+2*1i)%6+1, 2, (void*)&data->Thetal[i]

if( 1 % 3 == )

endfPrintLineToFile( *line );

}
if( i %3 1!=0)

endfPrintLineToFile( *line );
/*
** Print the Energy / G pairs
*/
endfNextLine( line );
/* [ 0.0, 0.0, 0, O, NR, NP ] */
endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)é&intzero );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfGRegions
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfGPoints
endfPrintLineToFile( *line );

(void*) &data->InterpolationSchemeInGRegion[i]

)
)
)
)

&intzero
&intzero

)
)

&data->NumberOfThetaRegions
void*) &data->NumberOfThetaPoints );

i++ ) {

i++ ) |

)i

for( i = 0; 1 < data->NumberOfGRegions;
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 1,
(void*) &data->NumberOfGPointsInRegion[i]
endfPutNumber ( line, (1+2*1i)%6+1, 1,
if( i1 % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );

for( i = 0; 1 < data->NumberOfGPoints;
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6,
endfPutNumber ( line, (1+4+2*1i)%6+1, 2,
if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );

i++ ) {

2’
(void*) &data->G[1i]
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)
)

)i

)i

)i

)i

(void*) &data->GEnergy[i]
)i

)i

)i



/*********************************************************************
** endfPrintMF5LF7

* *

** print the LF 7 theta spectral information
* *

*/
void endfPrintMF5LF7( endfLine *1line, endfMF5LF7 *data )
{

int i;

int intzero = 0;

double doublezero = 0.0;

/*
** Print the Energy / Theta pairs
*/

endfNextLine ( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );

endfPutNumber ( line, 2, 2, (void*)&doublezero );

endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)é&intzero );

endfPutNumber ( line, 5, 1, (void*)&data->NumberOfThetaRegions );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfThetaPoints );
endfPrintLineToFile( *line );

for( i = 0; 1 < data->NumberOfThetaRegions; i++ ) {
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 1,
(void*) &data->NumberOfThetaPointsInRegion[i] );
endfPutNumber ( line, (1+4+2*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInThetaRegion[i] )
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );

for( i = 0; 1 < data->NumberOfThetaPoints; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 2, (void*)&data->ThetaEnergyl[i] );
endfPutNumber ( line, (1+2*1i)%6+1, 2, (void*)&data->Thetali] );
if( i % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 1!=0)
endfPrintLineToFile( *line );

/*********************************************************************

** endfPrintMF5LF9

* *

** print the LF 9 theta spectral information
* *

*/
void endfPrintMF5LF9( endfLine *line, endfMF5LF9 *data )
{

int i;

int intzero = 0;

double doublezero 0.0;
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/*
** Print the Energy / Theta pairs
*/

endfNextLine( line );

/* [ 0.0, 0.0, 0, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfThetaRegions );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfThetaPoints );
endfPrintLineToFile( *1line );
for( 1 = 0; i < data->NumberOfThetaRegions; i++ ) {

if( 1 % 3 == )

endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 1,

(void*) &data->NumberOfThetaPointsInRegion[i] );
endfPutNumber ( line, (1+2*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInThetaRegion[i] );
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if( 1% 3 !=0)
endfPrintLineToFile( *line );

for( i = 0; 1 < data->NumberOfThetaPoints; i++ ) {

if( 1 % 3 == )

endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 2, (void*)s&data->ThetaEnergy[i]
endfPutNumber ( line, (1+2*1i)%6+1, 2, (void*)&data->Thetali] );
if( 1 % 3 == )

endfPrintLineToFile( *line );

}
if( 1% 3 !=0)
endfPrintLineToFile( *line );

/*********************************************************************
** endfPrintMF5LF11

* *

** print the LF 11 theta spectral information
* *

*/
void endfPrintMF5LF11( endfLine *line, endfMF5LF11 *data )
{

int i;

int intzero = 0;

double doublezero = 0.0;

/*

** Print the Energy / A pairs

*/

endfNextLine ( line );
/* [ 0.0, 0.0, 0, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&intzero );

endfPutNumber ( line, 5, 1, (void*)&data->NumberOfARegions );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfAPoints );
endfPrintLineToFile( *line );
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for( 1 = 0; i < data->NumberOfARegions; i++ ) {

if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 1,

(void*) &data->NumberOfAPointsInRegion[i] );
endfPutNumber ( line, (1+2*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInARegion([i] );
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if(1 % 3 !=0)
endfPrintLineToFile( *line );

for( 1 = 0; i < data->NumberOfAPoints; i++ ) {
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 2, (void*) &data->AEnergy([i] );
endfPutNumber ( line, (1+2*1i)%6+1, 2, (void*)&data->A[i] );
if( i % 3 == )
endfPrintLineToFile( *line );
}
if(1 % 3 !=0)
endfPrintLineToFile( *1line );

/*
** Print the Energy / B pairs

*/

endfNextLine ( line );

/* [ 0.0, 0.0, O, O, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&intzero );

endfPutNumber ( line, 5, 1, (void*)&data->NumberOfBRegions );
endfPutNumber ( line, 6, 1, (void*)s&data->NumberOfBPoints );
endfPrintLineToFile( *line );

for( 1 = 0; i < data->NumberOfBRegions; i++ ) {

if( i % 3 == )
endfNextLine ( line );
endfPutNumber ( line, (1+2*1)%6, 1,
(void*) &data->NumberOfBPointsInRegion[i] );
endfPutNumber ( line, (1+42*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInBRegion[i] );
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if( i %3 !=0)
endfPrintLineToFile( *line );

for( i = 0; i < data->NumberOfBPoints; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 2, (void*)s&data->BEnergyl[i] );
endfPutNumber ( line, (14+2*1i)%6+1, 2, (void*)&data->B[i] )
if( 1 % 3 == )

endfPrintLineToFile( *line );

}
if( i %3 !=0)
endfPrintLineToFile( *line );

/*********************************************************************

** endfPrintMF5LF12

* *
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** print the LF 12 theta spectral information

* *

*/
void endfPrintMF5LF12( endfLine *line, endfMF5LF12 *data )
{
int i;
int intzero = 0;
double doublezero = 0.0;
/%
** Print the Energy / Maximum Temperature pairs
*/
endfNextLine( line );
/* [ 0.0, 0.0, O, O, NR, NP ] */
endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)&intzero );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfMTRegions );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfMTPoints );
endfPrintLineToFile( *1line );

i++ ) {

(void*) &data->NumberOfMTPointsInRegion[i] );

(void*) &data->InterpolationSchemeInMTRegion([i] );

for( 1 = 0; i < data->NumberOfMTRegions;
if( i % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*1)%6, 1,
endfPutNumber ( line, (1+42*1i)%6+1, 1,
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if(1 % 3 !=0)
endfPrintLineToFile( *line );

for( 1 = 0; i < data->NumberOfMTPoints; i++ ) {
if( 1 % 3 == )
endfNextLine ( line );
endfPutNumber ( line, (1+2*1i)%6, 2,
endfPutNumber ( line, (1+2*1i)%6+1, 2,
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if(1 % 3 !=0)
endfPrintLineToFile( *line );
}
endfMF6.h
#ifndef endfMF6 h
#define endfMF6_h
#include <stdio.h>
#include <stdlib.h>
#include "endfLine.h"
#include "endfNumber.h"
/*
** Structure: endfEmissionSpectrum
*/
typedef struct endfemissionspectrum ({
double IncidentEnergy; /*
int NumberOfDiscreteEmissions; /*
int NumberOfAngularParameters; /*
int NumberOfEntries; /*
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(void*) &data->MTEnergy[i] )
(void*) &data->MaximumTemperature[i] );

/* ENDF Parameter Name */
E */
ND */
NA */
NW */



int NumberOfEmissionEnergies; /* NEP */
double *EmissionEnergy;
double **Parameters;

} endfEmissionSpectrum;

/*
** Structure: endflLawl
*/
typedef struct endflawl { /* ENDF Parameter Name */
int AngularRepresentation; /* LANG */
int InterpolationSchemeForSecEnergy; /* LEP */
int NumberOfSecEnergyRegions; /* NR */
int NumberOfSecEnergyPoints; /* NE */
int *NumberOfSecEnergyPointsInRegion;
int *InterpolationSchemeInSecEnergyRegion;
endfEmissionSpectrum *ES;
} endfLawl;
/*
** Structure: endfSecondary
*/
typedef struct endfsecondary ({ /* ENDF Parameter Name */
double ParticleZA; /* ZAP */
double ParticleAWR; /* AWP */
int ProductModifier; /* LIP */
int ReactionLaw; /* LAW */
int NumberOfYieldRegions; /* NR */
int NumberOfYieldPoints; /* NP */
int *NumberOfYieldPointsInRegion;
int *InterpolationSchemeInYieldRegion;

double *YieldEnergy;
double *Yield;
void *LawData;

} endfSecondary;

/*
** Structure: endfMF6
*/
typedef struct endfmf6 { /* ENDF Parameter Name */
double TargetZA; /* ZA */
double TargetAWR; /* AWR */
int FrameOfReference; /* LCT */
int NumberOfSubsections; /* NK */
endfSecondary *Secondaries;
} endfMF6;
/*
** Function: endfReadMF6
*/
void endfReadMF6 ( endflLine *line, endfMF6 *data );
/*
** Function: endfReadMFé6Secondary
*/
void endfReadMF6Secondary( endflLine *line, endfSecondary *data );
/*
** Function: endfReadMFé6Lawl
*/
voilid endfReadMF6Lawl ( endfLine *line, endfLawl *data );
/*
** Function: endfReadMF6EmissionSpectrum
*/
void endfReadMF6EmissionSpectrum( endflLine *line, endfEmissionSpectrum *data );
/*
** Function: endfPrintMF6
*/

void endfPrintMF6( endflLine *line, endfMF6 *data );
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/*
** Function: endfPrintMF6Secondary
*/

void endfPrintMF6Secondary( endfline *line, endfSecondary *data );

/*
** Function: endfPrintMF6Lawl

*/

void endfPrintMFéLawl ( endfLine *1line, endflLawl *data );

/*
** Function: endfPrintMF6EmissionSpectrum
*/

void endfPrintMF6EmissionSpectrum( endflLine *line, endfEmissionSpectrum *data );

#endif

endfMF6.c

#include "endfMF6.h"

/*********************************************************************

** endfReadMF6

* *

** load the file 6 general information
* *

*/
void endfReadMF6 ( endflLine *line, endfMF6 *data )
{

int i;

/* [ zZA, AWR, 0, LCT, NK, 0 ] */

endfGetNumber ( *line, 1, 2, &data->TargetZA );
endfGetNumber ( *line, 2, 2, &data->TargetAWR );
endfGetNumber ( *line, 4, 1, &data->FrameOfReference );
endfGetNumber ( *line, 5, 1, &data->NumberOfSubsections );

data->Secondaries
= (endfSecondary*)calloc( data->NumberOfSubsections, sizeof( endfSecondary ) );

/*
** read the secondary subsections

*/

for( i = 0; i < data->NumberOfSubsections; i++ )

endfReadMF6Secondary( line, &data->Secondaries[i] );

/*
** error check on end of section

*/

endfReadLine ( line );

if( line->mf != 6 && line->mt != 0 ) {

printf ( "ERROR: expected end of section mf 6 mt 0: got mf '$d' mt '%d'\n",
line->mf, line->mt );

endfPrintLine( *line );

exit( -1 );

/*********************************************************************

** endfReadMF6Secondary

* *

** load the MF 6 secondary information
* *

*/
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void endfReadMF6Secondary( endflLine *line, endfSecondary *data )

{

int i;

endfReadLine( line );
/* [ ZAP, AWP, LIP, LAW, NR, NP ] */

endfGetNumber ( *line, 1, 2, &data->ParticleZA );
endfGetNumber ( *line, 2, 2, &data->ParticleAWR );
endfGetNumber ( *line, 3, 1, &data->ProductModifier );
endfGetNumber ( *line, 4, 1, &data->ReactionlLaw );
endfGetNumber ( *line, 5, 1, &data->NumberOfYieldRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfYieldPoints );

data->NumberOfYieldPointsInRegion

= (int*)calloc( data->NumberOfYieldRegions, sizeof( int ) );
data->InterpolationSchemeInYieldRegion

= (int*)calloc( data->NumberOfYieldRegions, sizeof( int ) );

for( 1 = 0; i < data->NumberOfYieldRegions; i++ ) {
if( 1 % 3 == )
endfReadLine ( line );

endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfYieldPointsInRegion[i] );

endfGetNumber ( *line, (142*1i)%6+1, 1,
&data->InterpolationSchemeInYieldRegion[i] );

}

data->YieldEnergy
= (double*)calloc( data->NumberOfYieldPoints, sizeof( double ) );
data->Yield

= (double*)calloc( data->NumberOfYieldPoints, sizeof( double ) );
for( i = 0; 1 < data->NumberOfYieldPoints; i++ ) {
if( 1 % 3 == )

endfReadLine ( line );
endfGetNumber ( *line, (1+2*i)%6, 2, &data->YieldEnergyl[i] );
endfGetNumber ( *line, (14+2*i)%6+1, 2, &data->Yield[i] ):;
}

switch( data->ReactionLaw ) {

case 1:
data->LawData = (endfLawl*)calloc( 1, sizeof( endfLawl ) );
endfReadMF6Lawl ( line, (endfLawl*)data->LawData );
break;

default:

printf ( "ERROR: don't know reaction law '%d'\n", data->ReactionLaw );
endfPrintLine( *line );
exit( -1 );

/*********************************************************************

** endfReadMF6Lawl

* *

** load the MF 6 secondary law information

* *

*/

void endfReadMF6Lawl ( endflLine *line, endflLawl *data )
{

int i;

endfReadLine ( line );
/* [ 0.0, 0.0, LANG, LEP, NR, NE ] */

endfGetNumber ( *line, 3, 1, &data->AngularRepresentation );
endfGetNumber ( *line, 4, 1, &data->InterpolationSchemeForSecEnergy );
endfGetNumber ( *line, 5, 1, &data->NumberOfSecEnergyRegions );
endfGetNumber ( *line, 6, 1, &data->NumberOfSecEnergyPoints );
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data->NumberOfSecEnergyPointsInRegion

= (int*)calloc( data->NumberOfSecEnergyRegions, sizeof( int ) );
data->InterpolationSchemeInSecEnergyRegion

= (int*)calloc( data->NumberOfSecEnergyRegions, sizeof( int ) );

for( i = 0; 1 < data->NumberOfSecEnergyRegions; i++ ) {
if( 1 % 3 == )
endfReadLine( line );
endfGetNumber ( *line, (1+2*i)%6, 1,
&data->NumberOfSecEnergyPointsInRegion[i] );
endfGetNumber ( *line, (1+2*1i)%6+1, 1,
&data->InterpolationSchemeInSecEnergyRegion[i] );

}

data->ES = (endfEmissionSpectrum*)calloc( data->NumberOfSecEnergyPoints,
sizeof ( endfEmissionSpectrum ) );

for( i = 0; 1 < data->NumberOfSecEnergyPoints; i++ )
endfReadMF6EmissionSpectrum( line, &data->ES[i] );

/*********************************************************************

** endfReadMF6EmissionSpectrum
* *

** load the MF 6 secondary emission spectrum information
* *

*/
void endfReadMF6EmissionSpectrum( endflLine *line, endfEmissionSpectrum *data )
{

int i;

int e; /* emission energy index */

int epe; /* entries per emission energy */

endfReadLine ( line );

/* [ 0.0, E, ND, NA, NW, NEP ] */

endfGetNumber ( *line, 2, 2, &data->IncidentEnergy );

endfGetNumber ( *line, 3, 1, &data->NumberOfDiscreteEmissions );

endfGetNumber ( *line, 4, 1, &data->NumberOfAngularParameters );

endfGetNumber ( *line, 5, 1, &data->NumberOfEntries );

endfGetNumber ( *line, 6, 1, &data->NumberOfEmissionEnergies );

data->EmissionEnergy = (double*)calloc( data->NumberOfEmissionEnergies,
sizeof ( double ) );

data->Parameters = (double**)calloc( data->NumberOfEmissionEnergies,

sizeof ( double* ) );
for( i = 0; 1 < data->NumberOfEmissionEnergies; i++ )
data->Parameters[i] = (double*)calloc( data->NumberOfAngularParameters + 1,

sizeof ( double ) );

e = -1; /* index get incremented to 0 on first pass before use */

epe = data->NumberOfAngularParameters + 2;

for( i = 0; i < data->NumberOfEntries; i++ ) {

if( 1 % 6 == )
endfReadLine ( line );

if( 1 % epe == 0 )
endfGetNumber ( *line, (i%6)+1, 2, &data->EmissionEnergyl[++e] );
else
endfGetNumber ( *line, (i%6)+1, 2, &data->Parameters[e][ (i%epe)-1]1 );

/*********************************************************************
RR R Rk kb b b kb ik b b b i

** endfPrintMF6
* %

** load the file 6 general information
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* %
*/
void endfPrintMF6( endflLine *line, endfMF6 *data )
{
int i;
int intzero = 0;
double doublezero = 0.0;

endfNextLine ( line );
/* [ ZA, BWR, 0, LCT, NK, 0 ] */

endfPutNumber ( line, 1, 2, (void*)&data->TargetZA );
endfPutNumber ( line, 2, 2, (void*)&data->TargetAWR );
endfPutNumber ( line, 3, 1, (void*)&intzero );

endfPutNumber ( line, 4, 1, (void*)&data->FrameOfReference );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfSubsections );
endfPutNumber ( line, 6, 1, (void*)é&intzero );
endfPrintLineToFile( *1line );

/*

** print the secondary subsections

*/

for( 1 = 0; i < data->NumberOfSubsections; i++ )
endfPrintMF6Secondary( line, &data->Secondaries[i] );

/*
** print end of record marker
*/

endfNextLine( line );

/* [ 0.0, 0.0, O, O, O, O 1 */

line->mt = 0;

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&intzero );
endfPutNumber ( line, 4, 1, (void*)é&intzero );
endfPutNumber ( line, 5, 1, (void*)&intzero );
endfPutNumber ( line, 6, 1, (void*)&intzero );
endfPrintLineToFile( *line );

/*********************************************************************

** endfPrintMFé6Secondary

* *

** load the MF 6 secondary information
* *

*/
void endfPrintMF6Secondary( endfline *line, endfSecondary *data )
{

int i;

int intzero = 0;
double doublezero = 0.0;
endfNextLine( line );

/* [ ZAP, AWP, LIP, LAW, NR, NP ] */

endfPutNumber ( line, 1, 2, (void*)&data->ParticleZA );
endfPutNumber ( line, 2, 2, (void*)&data->ParticleAWR );
endfPutNumber ( line, 3, 1, (void*)&data->ProductModifier );
endfPutNumber ( line, 4, 1, (void*)s&data->ReactionLaw );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfYieldRegions );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfYieldPoints );
endfPrintLineToFile( *line );

for( i = 0; 1 < data->NumberOfYieldRegions; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*i)%6, 1,

399



(void*) &data->NumberOfYieldPointsInRegion[i] );
endfPutNumber ( line, (1+2*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInYieldRegion[i] );
if( 1 % 3 == )
endfPrintLineToFile( *line );
}
if( 1% 3 !=0)
endfPrintLineToFile( *line );

for( 1 = 0; i < data->NumberOfYieldPoints; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+2*i)%6, 2, (void*)&data->YieldEnergyl[i] );
endfPutNumber ( line, (1+2*i)%6+1, 2, (void*)&data->Yield[i] );
if( 1 % 3 == )
endfPrintLineToFile( *1line );
}
if(1 % 3 !=0)
endfPrintLineToFile( *1line );

switch( data->ReactionLaw ) {

case 1:
endfPrintMF6Lawl ( line, (endflLawl*)data->LawData );
break;
default:
printf ( "ERROR: don't know reaction law '%d'\n", data->ReactionlLaw );
exit( -1 );

/*********************************************************************

** endfPrintMFé6Lawl

* *

** load the MF 6 secondary law information
* *

*/
void endfPrintMF6Lawl ( endfLine *line, endfLawl *data )
{

int i;

int intzero = 0;

double doublezero 0.0;

endfNextLine ( line );

/* [ 0.0, 0.0, LANG, LEP, NR, NE ] */
endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&doublezero );
endfPutNumber ( line, 3, 1, (void*)&data->AngularRepresentation );
endfPutNumber ( line, 4, 1, (void*)é&data->InterpolationSchemeForSecEnergy );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfSecEnergyRegions );

( )

endfPutNumber ( line, 6, 1, (void*
endfPrintLineToFile( *line );

&data->NumberOfSecEnergyPoints );

for( i = 0; 1 < data->NumberOfSecEnergyRegions; i++ ) {
if( 1 % 3 == )
endfNextLine( line );
endfPutNumber ( line, (1+4+2*1i)%6, 1,

(void*) &data->NumberOfSecEnergyPointsInRegion[i] );
endfPutNumber ( line, (1+2*1i)%6+1, 1,
(void*) &data->InterpolationSchemeInSecEnergyRegion[i] );
if( i1 % 3 == )
endfPrintLineToFile( *1line );
}
if( i %3 !=0)
endfPrintLineToFile( *1line );
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for( i = 0; 1 < data->NumberOfSecEnergyPoints; i++ )
endfPrintMF6EmissionSpectrum( line, &data->ES[i] );

/**********************************************k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*******

** endfPrintMF6EmissionSpectrum
* *

** load the MF 6 secondary emission spectrum information
* *

*/
void endfPrintMF6EmissionSpectrum( endfLine *line, endfEmissionSpectrum *data
{

int i;

int e; /* emission energy index */

int epe; /* entries per emission energy */

int intzero = 0;

double doublezero = 0.0;

endfNextLine( line );
/* [ 0.0, E, ND, NA, NW, NEP ] */

endfPutNumber ( line, 1, 2, (void*)&doublezero );
endfPutNumber ( line, 2, 2, (void*)&data->IncidentEnergy );
endfPutNumber ( line, 3, 1, (void*)&data->NumberOfDiscreteEmissions );
endfPutNumber ( line, 4, 1, (void*)&data->NumberOfAngularParameters );
endfPutNumber ( line, 5, 1, (void*)&data->NumberOfEntries );
endfPutNumber ( line, 6, 1, (void*)&data->NumberOfEmissionEnergies );
endfPrintLineToFile( *line );
e = -1; /* index get incremented to 0 on first pass before use */
epe = data->NumberOfAngularParameters + 2;
for( i = 0; i < data->NumberOfEntries; i++ ) {
if( 1 % 6 == )
endfNextLine( line );
if( 1 % epe == )
endfPutNumber ( line, (i%6)+1, 2, (void*)&data->EmissionEnergyl[++e] );
else
endfPutNumber ( line, (i%6)+1, 2, (void*)&data->Parameters[e] [ (i%epe)-1]
if( 1% == )

endfPrintLineToFile( *line );
}
if(1i % 6 !=0)
endfPrintLineToFile( *1line );

Makefile

CC=/opt/SUNWspro/bin/cc

CFLAGS = # -g -xsb

LIBS = -1m

SRCS = mkpnt.c \
\
acepnIO.c \
\

afeCreateNTableHeader.c \
afeCollectEnergies.c \
afeGetMTInformation.c \
afeGetMTNames.c \
afeGetMTProducts.c \
afeMakeNTable.c \
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afeverifyNTable.c

ENDF_SRCS = endf6.c \
endflLine.c \
endfNumber.c \
endfConvert.c \
endfMFl.c \
endfMF1MT451.c \
endfMF2.c \
endfMF3.
endfMF4 .
endfMF5.
endfMF6.

\
\
\

Q00

OBJS = ${SRCS:.c=.0}
ENDF_OBJS = ${ENDF_SRCS:.C:.O}

mkpnt: ${OBJS} S${ENDF OBJS}
${CC} -o mkpnt ${CFLAGS} ${INCLUDE} ${OBJS} ${ENDF_OBJS} ${LIBS}
endf: ${ENDF OBJS}

deps:
${CC} -xM1 ${SRCS} ${ENDF_SRCS}

test: test.o
${CC} -o test ${CFLAGS} test.o ${ENDF_OBJS} ${LIBS}

tar:
tar cvf mkpnt.tar *.c *.h mkpnt.wst Makefile
gzip mkpnt.tar
clean:
rm -f ${OBJS} mkpnt.o test.o mkpnt test
rmold:

rm -f *~

clobber: clean rmold
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APPENDIX C
PHOTONUCLEAR PATCH FILE

The following text is the photonuclear patch to the MCNP code. As per the

MCNP user manual on how to modify the code base, it is in the form of a PRPR patch

file. Instructions on how to build the modified version of the code are contained in the

first section of the file itself.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

RR Rk Ik kb b b b b b b b b b b b kb b b b b b b b b b b b b b b b bk b b b b b b b b b b b b b b b b b b b b b b b b b b bk b b b

Photonuclear patch to MCNP4B2

R R R R I I I I I I I I R I I E E E b I R b I I E I I I I h h E I b E I b b b b b i
The following set of changes is the frozen version of the
photonuclear patch to MCNP used for this dissertation work.

To build this version of the code, it is necessary to obtain the
CCC660 MCNP4B code package from the RSICC computer code center.
(http://www-rsicc.ornl.gov/rsic.html)

Once this has been done, follow the normal installation procedures
with the following exceptions:

(1) Copy this patch file into the directory where the executable
will be built, and

(2) stop the installation before execution of the makemcnp script
and add the lines labeled "New Line":

--— from makemcnp: lines removed ---
0ld Line: cp mcnpf.id codef

0ld Line: cp patchf patch

0ld Line: prpr

New Line: rm patch compile

New Line: mv newid codef

New Line: head -1 patchf > patch
New Line: cat patchf.pn >> patch
New Line: prpr

0ld Line: fsplit compile > clog

0ld Line: rm -f compile codef patch newid clog
--— from makemcnp: lines removed ---

This convolution is necessary as the photonuclear patch was built on
MCNP4B release 2 and the author did not want to reconcile the changes
in the install.fix file with the new patchf file.

R R R I I I I I I I R I S I E E b I b b b I E E I E b I I E b I h b E I I b I b b b i

Changes to zc

*ident zcPN

*/ KAk khkhhkhkhkh Ak A Ak hhhhhhhkhhhhhhhhhkhhhhhhhkhhhhhhhkhhhhhkhhkhhkhhhkhkhkhkhkhkhkhkrhkhkhkhhkhx
*/
*d, zcdb.1
parameter (kod='mcnp',ver='PN')
*i,zcdb.5
1 maxsec=8,mixs=12,
*/
*/ KAk khkhhkhkhkhhkhAhhkhhhhhkhhkhhhhhhhhhkhhhhhkhhkhhhhhkhhkhhkhhhkhhkhhkhhkhkhkkhkhkhkhkhkhkhrkhkhkhkhhkhx
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*/ Changes to vv
*ident vvPN
*/ KAk khkhhkhhkhhkhkhhkhhhhhhhkhhhhhhhhhhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhkhhkhkkhkhkhkhkhkhkhrkhkhkhkkhhkhx
*/
*d,vvda.3
2 jrwb (17,mipt),jsf (mjsf),mfiss (22),nvs (maxv),itty, jtty
*i,vvda.5
3 htn*9,
*i,vvda.l0
2 htn,
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhhkhkhkkhkhkhkhkhkhhhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to cm
*ident cmPN
*/ KAk khkhhkhhkhhkhhhkhhhhhhhkhhhhhhhhhkhhhhhhhkhhhhhhhkhhkhhh bk hkhkhkhkhkhkkhkhkhkhkhkhkhrkhkhkhkkhhkhx
*/
*d, cmdb.3
1 1fixcm=3*mxdt+mink+11*mipt+2*maxv+2*maxf+286)
*d,cmdb. 4
parameter (nvarcm=108*mipt+144,lvarcm=mipt* (1+8*mxdx)+mcpu+329)
*i,cm.36
4 ispn,
*i,cmd4b.19
7 lixs,lizn,llmn, lpnt,
*d,cm.63
1 osum2(3,3),pax(6,17,mipt),prn,rani, ranj, rdum(50), rijk, rkk,
*i,cm.69
8 npum,
*d, cmdb.49
1 colltc(mipt),deb,dti(mlgc),eacctc(2),eg0,ergace,paxtc(6,17,mipt),
*i,cm.175
2 totpn,
*i,cm.184
7 ntyr,
*d, cmdb.63,cmdb. 64
parameter (ntskcm=108*mipt+40* (mxlv+1l)+3*maxf+mlgc+105,
1 ltskcm=mipt* (2+8*mxdx)+5* (mxlv+1l)+2*mlgc+maxf+48, ltskpt=39)
*1,cmdb.75
7 pnt (1),
*i,cméb.80
3 izn(l),1lmn(1l),ixs (mixs,maxsec,1),
*d, cmdb.87
*if -def,pointer,11
*i,cmdb.91
4 pnt,
*1,cmdb.93
2 izn,lmn, ixs,
*d, cmdb. 97
*if def,pointer, 23
*1,cmdb.104
7 (kdy,pnt),
*i,cmdb.110
2 (kdy,izn), (kdy,lmn), (kdy,ixs),
*d,cmdb.120
2 pac(mipt,10,1),pan(3,8,1),pcc(3,1),pwb (mipt,21,1),rkpl(19,1),
*i,cméda.97
3 1xn(l),
*d,cord-2.16
*if -def,pointer,4
*i,cmé4a.98
3 1xn,
*d,cord-2.17
*if def,pointer, 6
*i,cmda.99
3 (kdy,1lxn),
*/
*/ Ak hkhkhkhkhkhkhkhkhhhkhkhkhkhkhhhkhkhkhkhkdhhhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkkhkhkhhkhkhkhkhhhhhkkhxkx
*/ Changes to blkdat
*ident bdPN

*/ R R R I I I I b I R I I E E R I R b I E E I I E E I E I b E I b b b b b i

*/
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*d,bd.37,bd.38

data jrwb/
1 o, 3, 4, 6, 17, 8, 9, 10, 11, 12,
1 0, 15, 1le, 17, 0, 0, 0,
2 o, 3, 4, 6, 7, 8, 9, 10, 11, 12,
2 o, 18, 19, o, 0, O, 20,
3 o, 3, 4, 6, 17, 8, 9, 10, 11, 12,
3 o, o0, o0, 0 0, 0, 0/

*i,bd.82
2 htn/'cdytpmgue'/,

*d,bd4b.3

3 hsd/'sequential', 'direct'/,ibin/'fdusmcet'/,loddat/'01/14/00"'/,
*
*k; KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhkhhhhhhhhhhhhkhhhhhhhhhkhkhhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkrkhkhkhkhhkhx
*/ Changes to jc
*ident jcPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhkhkhkhkhhhkhkhhkhkhkhhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhkkhxkx
*/
*d, jc4db.1
parameter (nkcd=89,ntalmx=100,mopts=6)
*i,jc4da.5b
2 1lxn,
*/
*/ KAk khkhhkhhkhhkhhhkhhhhhhhkhhhhh kb hhhhhhhkhhkhhhhhhhkhhkhhhhhkhhkhkhhkhkkhkhkhkhkhkhkhrkhkhkhhhkhx
*/ Changes to ibldat
*ident ibPN
*/ KAk khkhhkhhkhhkkhhhkhhhhhhhkhhhhkhhhkhhhhhhhkhhkhhhhdhhhhkhhhkhhkhhhkhhkhkkhkhkhkhkhkhkhrkhkhkhkkhhkhx
*/
*1,1ib4db.6
data cnm(89), (krq(i,89),i=1,7)/'mpn ',0,0, 0,0, 2, 0,0/
*d, ib4a.10
data hmopt/'gas', 'estep', 'nlib', 'plib', 'elib', 'pnlib'/
*
*; Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkhkhhhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to imcn
*ident imPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhkhhhhxkhxkx
*/
*d,im.26
if (ispn.ne.0.and.kpt (2) .eq.0) then
ispn=0
call erprnt(2,2,0,0,0,0,0,0,
1 '50hphotonuclear turned off. photons not on mode card.')
endif
if(ispn.ne.0)n=n+1
mxel=mix*max (1, n)
mxel=mxel+indt
*i,im4a.18
md4=ichar (' ')+256* (ichar (' ')+256*ichar('u'))
*d,imda.22
1xd (11xd+3,1)=m3
1xn (llxn+i)=m4
195 pnt (lpnt+i)=huge
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhkhkhkhkhhkhkhkhhkhkhkhhkhdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to newcdl
*ident nfPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhhkhkhkhkhhhhhkkhxkx
*/
*d,nf.70
2 9910,9920,9930, 110)ica-55
*d,nfdb.5
*d,nfdb.6
*/
*/ KAk khkhhkhhkhhkkhhhkhhhhhhhkhhkhhhhhhhkhhhhhhhkhhhhhhhkhhhhhkhhkhhkhhkkhkhkkhkhkhkhkhkhk ok hkhkhhkhx
*/ Changes to nexitl
*ident nxPN
*/ KAk khkhhkhhkhhkhkhhkhhhhhhhkhhhhhhhkhhhhhhhkhhkhhhhhhhkhhkhhhkhhkhhkhkhkhkrkhkhkhkhkhkhkrkhkhkhhhkhx
*/
*d, nx4b.2
go to( 10, 10, 10,250, 10, 10, 10, 10,255, 10,258, 10,259,260, 10,
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*d,nx.14
2 9910,9920,9930, 10)ica-55
*d,nx4a.127,nx4b.42

c want to count the number of zaids and atom fractions
c while ignoring material options.
c nwc is number of zaids plus atom fractions read so far
c (nwc is incremented automatically in routine items)
c mlc > 0 indicates already processing material option
c
c if already found zaid, count next atom fraction
170 if (mod(nwc,2).eq.0) return
c
c if processing material option, don't count "=" or option
if (mlc.ne.0) then
nwc=nwc-1
if (hitm.eqg.'=")return
mlc=0
return
endif
c
c count zaids while ignoring material options
do 175 i=1,mopts
if (hitm.eqg.hmopt(i)) then
mlc=1i
nwc=nwc-1
return
endif
175 continue
return
*i1,nx.121
c
c turn on photonuclear physics( + natural coll / - biased coll )

if(ngp(2) .ne.0.and.iitm.ne.0.and.nwc.eqg.4)ispn=iitm
*d,nx.123,nx.145
*/
*/ RR Rk kb b b b b b kb b b b b kb h b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b kb b b b b b ik b b i
*/ Changes to oldcdl
*ident olPN

*/ RR Rk Ik kb b b b b bk b b b b b b b b b b b b b b b b b b b kb b b kb b b b b b b b b b b b b b b b b b b b b b b b b b bk b b i

*/
*d,0l.16
2 9910,9920,9930, 10)ica-55
*d,0l4b.2,014b.19
c
c for each cell containing material, make space for nuclide summary
240 n=0

do 250 i=1,mxa
if (mat (lmat+i) .eqg.icn)n=n+1
250 continue
npn=npn+n*nwc/2

c

c increment the total number of isotopes seen so far
mix=mix+nwc/2

c

c update the maximum number of nuclides seen for any material
mnnm=max (mnnm, nwc/2)
return

*/

*/ R R R R I I I I I b I R I E I E E R I I I b E I E I I I b I E h E b b b b E I b b b b b i

*/ Changes to setdas

*ident sdPN

*/ R R R I I I I I I R I I E I b R R b I E I I I I b E b b E I I I b b dh b b i

*/

*d,sd.67
lpnt=lpmg+max (0, mcal-1) *igm*npn
lpru=lpnt+nmatl

*d,sd.96,sd.97
lixs=1ix1+3*mxel
liza=lixs+mixs*maxsec*mxel
lizn=liza+mix
ljar=lizn+mix
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*d,sd.118
llmn=1lme+mipt*mix
1lmt=1Imn+mix
*d, sd.147
lpcc=lpan+3*8*npn
*d,sd.149
lrkp=lpwb+mipt*21* (mxa+1l)
*d, sd4b.45,sd4b.46
2 18*mxa*mgww (mipt+1)+mipt*10*mxa+3*8*npn+3*mxa*kpt (2) +
3 mipt*21l*mxat+mxxs/2)*mt) *ndp2
*d,sd4a.20
1lxn=1lxd+mipt*nmatl
Imfm=11lxn+nmatl
*/
*/ RR R Ik kb b b b b b kb b b b b b b h b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b b
*/ Changes to newcrd

*ident nePN
*/ KAk khkhhkhhkhhkkhhhkhhhhhhhkhhhhhhhhhhhhhhhhkhhhhdhhhkhhkhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhhkhx

*/
*d,ne.9%4
2 9910, 9920, 9930, 660)ica-55
*i,nedb.30
c
c >>>>> photonuclear isotope override mpn
c if mpn has a corresonding m card, return and process card items
c mlc is set to the material number, ie when was it seen sequentially
c m2c is set to jmd(ljmd+mat), ie the index of the first entry in iza
c m3c is set to npg(lnpg+mat), ie the number of entries for mat in iza
c (note the implicit dependence that mX card comes before mpnX card)
c
660 continue
c
c mpn override card only legal if photonuclear physics is on
c
if (ispn.eq.0) then
call erprnt(2,2,0,0,0,0,0,0,
1 '50hmpn card ignored while photonuclear physics is off')
return
endif
c
c find the corresponding material card
do 670 i=1,nmat
if (icn.eqg.nmt (Ilnmt+i)) mlc=i
670 continue
c
c if corresponding material card exists, set pointers
if (mlc.ne.0) then
m2c=jmd (1jmd+mlc)
m3c=npqg (lnpg+mlc)
c
c if mpn card has no corresponding m card (or m card is after mpn)
c print warning to user to indicate card ignored
else
call erprnt(2,1,1,icn,0,0,0,0,
1 '13hmpn override ,i4,'//
2 '56h (has no/is before) corresponding m card and is ignored.')
endif
return
*/

*/ RR Rk Ik ik kb b b b b bk b b b b b kb b b b b h b b b b b b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b kb b b

*/ Changes to chekit
*ident cePN

*/ R R R I I I I R I I E b b I R b I E I I b I I b b E I I b b I dE b b i

*/

*d,cedb.1

2 1180,9910,9920,9930,1240) ica-55
*d,ceda.l153
c mlc > 0, already processing material option.

*d,ceda.l160,ceda.l163
if(mlc.eqg.3.and.index (' cdym',hitm(i+3:1+3)) .eq.0)
1 call erprnt(2,1,0,0,0,0,0,1,
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2 '49hdefault nuetron table set to wrong particle type.')
if (mlc.eqg.4.and.index (' pg',hitm(i+3:1i+3)) .eq.0)

1 call erprnt(2,1,0,0,0,0,0,1,

2 '53hdefault photoatomic table set to wrong particle type.')
if(mlc.eg.5.and.index (' e',hitm(i+3:1+3)) .eq.0)

1 call erprnt(2,1,0,0,0,0,0,1,

2 '50hdefault electron table set to wrong particle type.')
if(mlc.eg.6.and.index (' u',hitm(i+3:1+3)) .eq.0)

1 call erprnt(2,1,0,0,0,0,0,1,

2 '54hdefault photonuclear table set to wrong particle type.')

*d,ceda.l72

if(kpt(2).eqg.0.and.index('pgu',hitm(i+3:1+3)) .ne.0)
*i,ceda.l77
c
c check to ensure that cells do not contain none transort tables
*d,ce.383,ce.384

if (index (htn,ht(10:10)) .eq.0)call erprnt(2,1,0,0,0,0,0,1,

1 '49%hzaid must end in table class id (see Appendix F)')
*i,cedb.27

c

c >>>>> photonuclear isotope override card mpn

c

c entries have already been checked to ensure integer type

c ( from krqg(5,mpn) set to 2 in ibldat and check above)

c

c all entries must be positive integers or zero

c valid za's are range 1 to 999999

1240 if(iitm.1lt.0.or.iitm.gt.999999)

1 call erprnt(2,1,1,iitm,0,0,0,0,
2 '52hisotope override must be valid (non-negative) za not,i7'")
return

*
*; R R R R I I I R I I R I I I I b R I R b I E I I I E I E h E b E I I I b h b b i
*/ Changes to nextit
*ident nyPN
*/ RR Rk kb b b b b b kb b b b b kb h b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b kb b b b b b ik b b i
*/
*d,ny4b.1
2 1480,1490,1510,1620,9910,9920,9930,1660) ica-55
*d,ny4a.24,ny.389
c mlc > 0, already processing material option.
710 if (mlc.ne.0) then
nwc=nwc-1

if (hitm.eq.'="')return
c
c process material option
if (mlc.eg.l.and.nee.gt.0)emi (lemi+nmat)=ritm
if (mlc.eg.2.and.nee.gt.0)nsb (lnsb+nmat)=1iitm
c
c processing identifier value for default library.
if (mlc.ge.3.and.mlc.le.6) then
i=index (hitm, '.")
ht=hitm(i+1:i+3)
if(ht(l:1).eq."' ")ht(l:1)='0"
f(ht(2:2).eq.' ")ht(2:2)="0"
c
c content-free entry does not change system default.
if(ht(1:3).eq.'00 '.or.ht(1:3).eq.'000"')return
c
c set the appropriate default library

if (mlc.eq.3) then

if (ht(3:3).eq ') ht(3:3)='c
lxd(llxd+l,nmat) 1char(h (1:1))+256* (ichar (ht(2:2))+
1 256*ichar (ht (3:3)))
elseif (mlc.eqg.4) then
if (ht(3:3).eq." ") ht(3:3)='p"
1xd (11xd+2,nmat)=ichar (ht (1:1))+256* (ichar (ht(2:2))+
1 256*ichar (ht (3:3)))
elseif (mlc.eqg.5) then

if (ht(3:3).eq." ") ht(3:3)='e"
1xd (11xd+3,nmat)=ichar (ht(1:1))+256* (ichar (ht(2:2))+
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1 256*ichar (ht (3:3)))
elseif (mlc.eq.6) then

if (ht(3:3).eq.' ") (3:3)="u
lxn(llxn+nmat) 1char( t(l:1))+256* (ichar (ht (2:2))
1 +256*ichar (ht (3:3)))

endif
endif
mlc=0
return

endif
c
c else check for material option
do 715 i=1,mopts
if (hitm.eqg.hmopt(i)) then

mlc=1i

nwc=nwc-1

return
endif

715 continue
c
c else process zaid entry or fraction entry.
if (mod(nwc,2) .ne.0) then
mix=mix+1
ht= L} L}
if (index (hitm, '."').eq.0)hitm(nitm+l:nitm+l)="."
ht (8-index (hitm, '."') :10)=hitm

(ht (8:8).ne."' '.and.ht(9:9).egq.' "'")ht(9:9)='0"

(ht (8:10) .eq.'00 '.or.ht(8:10).eq.'000")ht(8:10)=" "
read(ht (1:6),"'(i6) ')iza(liza+mix)
izn(lizn+mix)=iza (liza+mix)
kmm (lkmm+mix)=ichar (ht (8:8))+256* (ichar (ht(9:9))+

1 256*ichar (ht (10:10)))
else
fme (1fme+mix)=ritm
if(ritm.eq.0.)mix=mix-1
endif
return
*i,ny4b.20
c
c >>>>> photonuclear isotope override mpn
c
c if mpn does not correspond to an m card, ignore all entries
c

1660 if (mlc.eq.0) return

c
c otherwise save entries in photonuclear isotope list izn

c mlc is the material index

c m2c is the first isotope index for the material

c m3c is the number of isotope entries for the material

c only save entries in this material space (ie check index)
c

if (nwc.le.m3c) izn(lizn+m2c+nwc-1)=iitm
return
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhkhkhkhkhhkhkhkhhkhkhkhhkhdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to oldcrd
*ident ocPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhhkhkhkhkhhhhhkkhxkx
*/
*d,oc.16
2 9910,9920,9930, 780)ica-55
*d,ocda.l4,o0cd4a.l5
do 395 m=jmd (ljmd+nmat), jmd (ljmd+nmat+1l) -2
do 395 i=m+1l, jmd(ljmd+nmat+1l)-1

*1,0cdb.37

c

c >>>>> photonuclear isotope override mpn
c

c if mlc is 0, there was no previously found corresponding m card
c and a warning was printed from routine newcrd

c
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780 if (mlc.eq.0) return

c
c if the number of mpn entries (nwc) was not equal to the number
c of m entries (m3c), reset the photonuclear isotopes (izn) to
c the corresonding material isotopes (iza) and print a warning
c
if (nwc.ne.m3c) then
do 790 i=m2c,m2c+m3c-1
izn(lizn+i)=iza (liza+i)
790 continue
call erprnt(2,1,3,icn,m3c,nwc,0,0,
1 '30hwrong number of entries on mpn,i4,8h wanted ,i3,'//
2 '7h found ,1i3")
c
c otherwise print warnings about the isotope overrides
c
else
do 800 i=m2c,m2c+m3c-1
if(izn(lizn+i) .ne.iza(liza+1i))
1 call erprnt(l,2,3,icn,izn(lizn+i),iza(liza+i),0,0,
2 'lhm, 1i5,28h:photonuclear event sees ZA=, i6,'//
3 '16h in place of ZA=, i6'")
800 continue
endif
return
*/

*/ RR R R Ik kb b b b b kb b b b b b b b b b b h b b b b b b b kb b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i

*/ Changes to iwtwnd
*ident iwPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhhkhkhkkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkkhhkhhkhkhkhkhkhhhhkhxkx
*/
*d,iwdb.16
15 b=b+abs (wwf (lwwf+i+mxa* (j-1l+mww (ip))))
*/
*/ KAk khkhhkhhkhhkhhhkhhhhhhhkhhhhhhhhhkhhhhhkhhkhhhhhhhkhhkhhhkhhkhhhkhkhkhkhkhkhkhkhkhkhrkhkhkhkhhkhx
*/ Changes to stuff
*ident stPN
*/ Ak hkhkhkhkhkhkhkhkhhhkhkhkhkhkdhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhdhhkhkhkhkhkhkkhhkhhkhkhkhkhhhhhkkhxkx
*/
*d,st.49,st.109

c
c R R R I i I R I I h E R I I b R b I E I I I E I I h b E I I b b b b b i
c set up the list of cross-section tables needed by the problem.
c
c ER R R R R R I b b b E I b b b I I h E E b b b b b b b b b b i
c first add the tables by particle type
c

mn=1

do 240 km=1,mix

if (km.ge.jmd (ljmd+mn+1)) mn=mn+1l
do 230 m=1,mipt
c
c R R R Rk ik kb Ik kb kb b b b b b b b b b b b b b b b b b b 3k b b b ik b b b b b b b b b b b b b b b b
c this section determines if the tabular data is needed
c (it should eventually be rewritten as a sequence
c of boolean function calls, e.g. needElectronTbl ())
c
c if not transporting this particle, do not load its tables
c special case: electron tables are needed if photon
c thick-target bremsstrahlung production is on
if (kpt(m).eqg.0.and.

1 (m.ne.3.o0r.ides.ne.0.or.kpt (2) .eq.0)) go to 230
c
c make sure that this material and table are really needed

do 120 i=1,mxa
if (mat (lmat+i) .eqg.mn.and. (fim(lfim+m, i) .ne.0..0r.m.eq.3
1 .and.kpt (3) .eqg.0.and.fim(1fim+2,1) .ne.0))go to 150
120 continue

do 140 i=1,nmfm,2
if (mfm(lmfm+i) .ne.nmt (lnmt+mn))go to 140
do 130 j=1,ntal
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130

135
140

Q

Q00000000

150

Q

Q

if (jptal (1jpt+l,3) .eq.mfm(Imfm+i+1) .and.
ktp (lktp+m,j) .ne.0)go to 150
continue
do 135 j=1,npert
k=mod (iptb (1lipb+2,3) /2** (m-1),2)
if (iptb (1lipb+1l,Jj) .eq.-mfm (lmfm+i+1)
.and.k.ne.0)go to 150
continue
continue
ignore table if not needed
go to 230

R R R I I I I b b b b b I I I I R I I I I I h IE E dh b b b IE b b dh b b b b i

if tabular data is requested, request a reasonable table

tabular data only exist for some particle types

currently only load tables for neutrons, photons,
electrons & protons

RER R R Rk kb b b b b b b b b b b b b b b b b b i

identify the requested table

1=kmm (1kmm+km)

write(ht(1:7),"'(i6,1h.) ")iza(liza+km)

ht (8:10)=char (mod(1,256)) //char (mod(1/256,256))
//char (1/65536)

R R R R I I I i i i

check neutron table
if (m.eqg.l) then

if (.not. (ht(8:10).ne."' '.and.
index (' cdym',ht(10:10)) .ne.0)) then
if not explicitly a neutron table, use the default.
1=1xd (11xd+1,mn)
ht (8:10)=char (mod(1,256))//char (mod(1/256,256))
//char (1/65536)
endif

if (mcal.ne.0) then
currently only allow type 'm' multigroup tables
ht (10:10)="m"

else

if (ht(10:10).eq.'y') then
ignore during this check sequence
routine chekit prevents 'y' table use in a cell
continue

else
reset invalid tables to default
if (index('cd',ht(10:10)).eqg.0) ht(10:10)="c"

process requests for discrete tables
if (kdr (lkdr+1l).1t.0) then
ht(10:10)="4d"
else
do 170 i=1,mxel

if (kdr (lkdr+i) .eq.iza(liza+km))ht (10:10)="d"

continue
endif
endif

endif
end of check neutron table
R R R R R R I I I b b b b b b b I i
check photoatomic table
elseif (m.eq.2) then

ht(4:6)="000"

if (index('pg',ht(10:10)) .eqg.0) then

if not explicitly a photoatomic table, use a default.

1=1xd (11xd+2,mn)
ht (8:10)=char (mod(1,256))//char (mod(1/256,256))
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1 //char (1/65536)
endif

Q

force correct table type for the problem type
c should add a warning to user if override request
if (mcal.ne.0) then

ht (10:10)="g"

else
ht (10:10)="p"'

endif
c end of check photoatomic table
c * ok k ok ok ok ok ok ok ok ok okkkkkkkkk
c check electron table

elseif (m.eq.3) then

ht(4:6)="000"

c

if(index('e',ht(10:10)) .eq.0) then
c if not explicitly an electron table, use a default.
1=1xd (11xd+3,mn)
ht (8:10)=char (mod(1,256))//char (mod(1/256,256))
1 //char (1/65536)
endif

force correct table type for the problem type
should add a warning to user if override request
NOTE: electron multigroup problems masquerade as neutron
problems using mode n and type 'm' tables; therefore
expire if multigroup problem regeusts electron table
if (mcal.ne.0) then
call expire (0,'stuff',
1 'multigroup electron problems must be run as '//
2 'neutron problem (see Manual)')
else
ht (10:10)="e"
endif

c end of check electron table
c Ak hkhkhkhkhkhkhkhkkhhkhkhkhkhkhkkhkhkhhkhkhkhkkhkhkdhhkhkhkhhkhkkhhkhkhkhkhkhkhhhkhxkhxkx

Q0a0aoaaQQ

else
go to 230
endif

R R R R R I I I S I I b b b b b b I I b E I I b b E I b h 3E b b b b i

c add the table to the list if it is not already there
do 210 i=1,mxe
call zaid(2,hs,ix1(1lix1l+1,1))
if (hs.eg.ht) then
lme (1lme+m, km) =1

Q

c use fortran90 do-exit construct when available
endif
210 continue
c

if (lme (llme+m, km) .eq.0) then
mxe=mxe+1
if (mxe.gt.mxel)call erprnt(l,1,0,0,0,0,0,0,
1 '33hmaterial (mxe) overflow in stuff.')
call zaid(l,ht,ix1(lixl+1,mxe))
lme (11lme+m, km) =mxe

endif
c
c RR R Rk kb b b b b b b b b b b b b b b b b b b b b b b b
c end of loop over particle types
230 continue
c end of loop over material entries

240 continue

R R R R R I I b b b I b b b E I b E I I b b i i

now add the supplemental tables

RR Rk kb b b b b b b b b b b b b b b b b b b b b b b b b kb b b b kb b b b b b b b b b b b b

add the photonuclear table names to the master list
note that photon transport is only photoatomic if ispn.eq.O

Q00000
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Q

Q

244

247

250

260

if

(ispn.ne.0) then
mn=1
do 247 km=1,mix
if (km.ge.jmd (ljmd+mn+1l)) mn=mn+1l

if (izn(lizn+km) .ne.0) then
write(ht(1:7),'(i6,1h.) ")izn(lizn+km)
1=kmm (1kmm+km)
ht (8:10)=char (mod(1,256))//char (mod(1/256,256))
//char (1/65536)

if (index('u',ht(10:10)).eqg.0) then
if not explicitly a photonuclear table, use a default.
1=1xn (1l1lxn+mn)
ht (8:10)=char (mod(1,256)) //char (mod(1/256,256))
//char (1/65536)
endif

do 244 i=1,mxe
call zaid(2,hs,ix1(1lix1+1,1))
if (hs.eg.ht) then
1Imn (1lmn+km) =1
use fortran90 do-exit construct when available and
endif
continue

if (lmn (llmn+km) .eq.0) then
mxe=mxe+1
if (mxe.gt.mxel)call erprnt(l,1,0,0,0,0,0,0,
'33hmaterial (mxe) overflow in stuff.')
call zaid(l,ht,ix1(lix1+1,1))
1mn (11lmn+km) =mxe
endif

endif
continue
endif

R R R Rk kb b kb b kb b b b b b b b b b b b b b b b b bk b b b ik b b b b b b b b b b b b b b b b

add the thermal s(a,b) table names to the master list
if (indt.ne.0) then
if (mcal.ne.0) then
call expire (0, 'stuff',
'cannot use thermal tables in a multigroup problem')
else
do 260 km=1,indt
call zaid(2,ht, kmt (lkmt+1, km))

force correct table type for thermal table
should add a warning to user if override request
ht(10:10)="t"

m=0
do 250 i=1,mxe
call zaid(2,hs,ix1(1lix1+1,1))
if (hs.eg.ht) then
m=1i
use fortran90 do-exit construct when available
endif
continue

add the table to the master list if it is new

if (m.eq.0) then
mxe=mxe+1
if (mxe.gt.mxel) call erprnt(1,1,0,0,0,0,0,0,

'33hmaterial (mxe) overflow in stuff.')

call zaid(l,ht,ix1(1lixl+1,mxe))

endif

continue
endif
endif
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c
c KAk khkhhkhhkhhkkhhhkhhkhhhkhhkhhhhhhhkhhhhhhhkhhkhhhhhhhkhhhhhkhhkhhkhkhhkhkkhhkhkhkhkhkhkkhkhkhkkhhkhx
*d,st.118
mt=index (htn,hs (10:10))
*d,st.120
nt=index (htn,ht (10:10))
*1i,st.132
if(ispn.eg.0)go to 300
do 295 i=1,mix
1=1mn (1lmn+i)
if(l.eqg.ie)lmn(llmn+i)=je
295 if(l.eqg.je)lmn(llmn+i)=ie
*
*; KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhkhhhhhhhhhhhhkhhhhhhhhhkhkhhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkrkhkhkhkhhkhx
*/ Changes to ixsdir
*ident ixPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhkhkhkhkhhhkhkhhkhkhkhhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhkkhxkx
*/
*d, ix.20
nt=index (htn, ha)
*d,cord-2.130
call expire (0, 'ixsdir',
1 'cannot continue without valid xsdir file')
*d, 1x4b.53
290 nty(lnty+je)=index (htn,ha)
*1,1x4b.95
do 435 m=1,mix
if (lmn (llmn+m) .eq.je) lmn (11lmn+m) =ie
435 if (lmn (llmn+m) .gt.je) lmn (1lmn+m)=1mn (11lmn+m) -1
*1,1x.205
call expire (0, 'ixsdir',
1 'cannot continue with missing cross-section table(s).'")
*
*; Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkhkhhhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to xact
*ident xaPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhkhhhhxkhxkx
*/
*d,xa.ll
10 if (nty(lnty+i) .eq.9)nt=nt+l
*
*; Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkkhhkhhkhkhkhkhkhhhhkkhxkx
*/ Changes to getxst
*ident gtPN

*/ R R R I I I I I I I R I I I E R I R e b I E I I I b b b I I b b E I I I b b i

*/

*d,gt.102
go to(140,140,140,200,290,310,310,301,360)nty(1lnty+iex)
*d,gt.106
140 if (nty(lnty+iex).ne.3)go to 145
c
c if secondary particle information exists, set up ixs
if (nxs (lnxs+7,1iex) .eq.0)go to 145
c
c if nxs(7).gt.maxsec, exit to avoid memory error
if (nxs (lnxs+7,1iex) .gt.maxsec)call expire (0, 'getxst',
1 'nxs(7) greater than maxsec for table '//ht(1:10)//'.")
c
c load ixs array.
do 142 i=1,10
do 142 j=1,nxs (lnxs+7,iex)
142 ixs (lixs+i,j,iex)=nint (xss(jxs(1ljxs+32,iex)+i+10*(j-1)-1))
c
c change locators by lp.
do 143 i=1,10
do 143 j=1,nxs (lnxs+7,iex)
143 if(ixs(lixs+i,j,iex) .ne.0)
1 ixs (lixs+i,j,iex)=1ixs (lixs+1i,j,iex)+1lp
c
c find parameter for dosimetry table

145 em=max (em, zero+xss (jxs (ljxs+l,iex)))
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C

c remove unneeded data from table
*d,gt.145
200 esa(lesatiex)=xss(jxs(ljxs+l,iex)+nint (xss(jxs(ljxs+l,iex))))
*d,gt.147
1 min(zero+xss (jxs (1jxs+4,1iex)+nint (xss(jxs(ljxs+4,iex)))),
*1i,gt.185
c
c >>>>> photonuclear table.
c
c if secondary particle information exists, set up ixs
301 if (nxs(lnxs+5,iex).eq.0)go to 306
c
c if nxs(5) .gt.maxsec, exit to avoid memory error
if (nxs (lnxs+5,1iex) .gt.maxsec)call expire (0, 'getxst',
1 'nxs(5) greater than maxsec for table '//ht(1:10)//'.")
c
c load ixs array.
do 303 i=1,mixs
do 303 j=1,nxs (lnxs+5,iex)
303 ixs(lixs+i,j,iex)=nint (xss(jxs(1ljxs+10,iex)+i+mixs* (j-1)-1))
c
c change locators by lp.
do 304 i=3,mixs
do 304 j=1,nxs (lnxs+5,iex)
304 if(ixs(lixs+i,j,iex) .ne.0)
1 ixs (lixs+i,j,iex)=1ixs (lixs+1i,j,iex)+1lp
c
c find minimum energy for each material
306 do 307 i=1,nmat
do 307 j=jmd (ljmd+i),jmd (1jmd+i+1)-1
307 if (iex.eqg.lmn (11lmn+j))
1 pnt (lpnt+i)=min (pnt (lpnt+i), xss(jxs (ljxs+l,iex)))
c
c remove unneeded data from table
call expgpn
c
c print table information
write (iuo,309)ht,nxs (lnxs+1l,iex),hk, hm,hd
309 format (1x,al0,1i8,2x,a70,4x,al0,4x,al0)
go to 380
*i,g9t.218
c
if (nty(lntyt+iex) .eqg.l.or.nty(lnty+iex) .eq.2)then
ms=1
me=10

ns=nxs (lnxs+7, iex)
else if (nty(lnty+iex) .eq.8)then
ms=3
me=12
ns=nxs (lnxs+5, iex)
else
ns=0
endif
do 395 j=1,ns
do 395 i=ms,me
395 if(ixs (lixs+i,J,iex) .ne.0)ixs (lixs+1i,j,iex)=1ixs(lixs+1i,]j,iex)+1xs
*
*; Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhhkhhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhkhkhkhkhkkhhkhhkhkhkhhhhhhxkhxkx
*/ Changes to sread
*ident srPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkkhkhkhkhkhkhhkhkhhhkhkhkhkhkhdhhkhkhkhkhkhkdhhkhkhkhkhkhkkhhkhhkhkhkhkhhhhhxkhxkx
*/
*d,sr.33,sr.34
if (nty(lnty+iex) .ne.9) read(iux, 70,err=200) (xss (lp+i),i=1,1y(3))
if(nty(lnty+iex) .eq.9)read(iux,70,err=200) (exs (lp+i),i=1,1y(3))
*d,sr.47,sr.48
if (k.ne.9)read(iux,rec=1ly(2)+i,err=200) (xss(3),J=31,32)
90 if(k.eqg.9)read(iux,rec=1ly(2)+i,err=200) (exs(J),3=31,32)
*/

*/ R R R I I I I R I I E I b R b I I E I I I E E h h E I b I R b b b 3 b i
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*/ Changes to utask
*ident utPN
*/ RR Rk ko kb b b b b b kb b b b b b b h b b b h b b b b b b b kb b bk b b e b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/
*d,ut.40,ut.43
kpan=kpac+mk*mipt*10*mxat+ktask*3*8*npn
kpcc=kpan+mk*3*8*npnt+ktask*3*mxa*kpt (2)
kpwb=kpcc+mk*3*mxa*kpt (2) tktask*mipt*21*mxa
kwns=kpwb+mk*mipt*21*mxa+ktask* (mxxs/2)
*
*k; RR Rk Ik kb b b b b b kb b b bk b b h b b h h b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/ Changes to vtask
*ident vtPN
*/ RR R R Ik ik kb b b b b b b b b b b b b b b b b b h b b b b b b b kb b bk b b b b b b b b bk b b b b b b b b b b kb b b b b b ik b b i
*/
*d,vt.13
do 30 j=1,17
*d,vt.81,vt.82
do 210 j=1,8
do 210 k=1,3
*d,vt.90
do 230 j=1,21
*/
*/ R R Ik kb b b b b Ik b b b b b b b b b b b h b b b b b b b kb b bk kb b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/ Changes to msgcon
*ident mePN
*/ RR R R Ik kb b b b b kb b b b b b b b b b b h b b b b b b b kb b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/
*d, me4da.2
*i,meda.4
*if def,multp
*i,medb.526
*endif
*d, meda.584
*/
*/ RR Rk kb b b b b b kb b b b b kb h b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b kb b b b b b ik b b i
*/ Changes to hstory
*ident hsPN
*/ RR Rk Ik kb b b b b bk b b b b b b b b b b b b b b b b b b b kb b b kb b b b b b b b b b b b b b b b b b b b b b b b b b bk b b i
*/
*i,hs.223
if(nter.eq.17)tmavtc(2,2)=tmavtc(2,2)+tme*wgt
*
*k; RR Rk Ik kb b b b b b kb b b b b b b b b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b bk b b b b b b b b b i
*/ Changes to dxtran
*ident dxPN
*/ RR Rk Ik kb b b b b b b b b b b b b b h b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b kb b b b b b ik b b b
*/
*d,dx4a.2,dx.25
go to( 130, 50, 80,130,130,130,130,130,
1 130,130,130, 80, 80, 80,130) ipsc-2
go to (130,130, 90, 80,100,130) ipsc-100
call expirx(l, 'dxtran', 'illegal value for ipsc.')

return
*1,dx4a.4
c ipsc=16 -- neutron from law 61 (tabulated energies / angles)and
*1i,dx.73
C Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdhhhkhkhkhkhkdhkhkhhkhkhkhkkhkhkdhhkhkhkhkhhkdkdxkxk
*d,dx.124

vel=slite*sqrt (erg* (erg+2.*gpt (ipt)))/ (erg+gpt (ipt))
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkkhkhkhkhkhkhhkhkhhhkhkhkhkhkhdhhkhkhkhkhkhkdhhkhkhkhkhkhkkhhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to acegam
*ident agPN
*/ KAk khkhhkhhkhhkkhhhkhhhhhhhkhhkhhhhhhhkhhhhhhhkhhhhhhhkhhhhhkhhkhhkhhkkhkhkkhkhkhkhkhkhk ok hkhkhhkhx
*/
*d,ag.113
200 if(ixre.eqg.nint(xss(jxs(ljxs+32,1iex)+2*1k-2)))go to 210
*d,ag.116,ag.117
220 1=jxs(ljxs+15,1iex)+nint (xss(jxs(ljxs+1l4,iex)+ixre-1))+1
if(nint (xss(1-2)).eq.13)go to 250
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*d,ag.123
ix=nint (xss(1-1))
*d,ag.129,ag4b.12
if(ix.gt.0)is=jxs (ljxs+7,1iex)+nint (xss(jxs(ljxs+6,iex)+ix-1))
ic=min (ktc (kktc+l,iex)-nint (xss(is-1))+1,nint (xss(is)))
*d,ag.132
ic=min (ic+1l,nint (xss(is)))
*d,agdb.14
250 ic=ktc (kktc+l,iex)-nint (xss(1-1))+1
*d,ag.141
if(ic.gt.nint (xss(l)))go to 290
*d,ag.144
260 if(ic.ge.nint(xss(l)))go to 290
*d,ag.166
310 ixre=nint (xss(jxs (ljxs+32,1iex)+ik*2-2))
*d,ag.186
mtp=nint (xss(jxs (1jxs+13, iex) +ixre-1))
ia=jxs (lixs+1l7,iex)
if(jxs(lixs+1l6,1iex) .ne.0) then
ka=nint (xss(jxs(ljxs+16,iex)+ixre-1))
else
ka=0
endif
id=9xs (1jxs+19, iex)
kd=nint (xss(jxs (1ljxs+18,iex)+ixre-1))
call acecas(1l,1,zero,ia,ka,id, kd)
*d,ag.188
if (ixcos.ne.0) ipsc=8

c if photon energy below cell cutoff, ignore it.
if (colout(l,1).1lt.elc(2))go to 450
*d,ag.191,ag.192
if (nint (xss(jxs (ljxs+13,iex)+ixre-1)).1t.18000)go to 390
if (nint (xss(jxs (ljxs+13,iex)+ixre-1)).gt.19999)go to 390
*d,ag.221,ag.223
pan (kpan+l, 6, kp) =pan (kpan+1, 6, kp) +1.
pan (kpan+l, 7, kp) =pan (kpan+1, 7, kp) +twgt
pan (kpan+1, 8, kp) =pan (kpan+1, 8, kp) +twgt*erg
*
*k; KAk hkkhkhhkhhkhhkhhhkhhhhhhhkhhhhhhhkhhhhhhhhhkhhhhhhhkhhkhhhhhkhhkhkhkhkhkkhkhkhkhkhkhkrkkhkhkhkkhhkhx
*/ Changes to acecol
*ident acPN
*/ KAk khkhhkhhkhhkhhhkhhkhhhhhkhhkhhhhhhhkhhhhhkhhkhhhhhhhkhhhhhkhhkhhkhkhkhkhkhkhkhkhkhkhkrkkhkhkhkhhkhx
*/
*d,ac.25
Jj=1+2+ktc (kktc+2,iex)-nint (xss (1))
*d,ac.46,ac.47
c=acecos (ixcos, jxs (1jxs+9,iex) ,nint (xss(jxs (1ljxs+8,iex))))
*d,ac.65
Jj=1+2+ktc (kktc+2,iex)-nint (xss (1))
*d,acdb.2
if(jg.ne.2.egv.nint (xss(jxs (ljxs+5,iex)+ixre-1)).eq.19)go to 120
*d,ac.75,ac.77
110 is=jxs(ljxs+7,iex)+nint (xss(jxs(ljxs+6,iex)+ixre-1))
ic=ktc (kktc+2,iex)+1-nint (xss(is-1))
if(ic.lt.l.or.ic.gt.nint(xss(is)).or.ic.eqg.nint (xss(is)) .and.
*d,ac.105
150 ntyn=nint (xss(jxs(ljxs+5,1iex)+ixre-1))
*1,acdb.4
g=xss (jxs (1ljxs+4,iex) +ixre-1)
ia=9xs (1ljxs+9, iex)
ka=nint (xss(jxs (ljxs+8,iex)+ixre))
id=jxs (ljxs+1ll,iex)
kd=nint (xss(jxs (1jxs+10,iex) +ixre-1))
*d,ac.109,ac.111
1=jxs (ljxs+1l,iex)+2+nint (xss(jxs (1ljxs+10,iex)+ixre-1))
ie=2*nint (xss (1)) +1
if (erg.le.xss(ie+2) .or.erg.ge.xss(ie+l+nint (xss(ie+l))))go to 180
*d,ac.119
call acecas(i,1l,q,1ia,ka,id, kd)
*d,acd4a.l5
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call acecas(i,1l,q,1ia,ka,id, kd)
*d,acd4a.59

call acecas(l,1,q,ia,ka,id, kd)
*/
*/ R R R I I I I b I R I I h b b E b e b I E b E I E I I h b E I I I b b dE b b i
*/ Changes to acecas
*ident asPN
*/ R R R I I I I I I I I b I R b I I I h E R b b b I E E b E I I h b E I b b b b h b b i
*/
*d,as.2,as.5
subroutine acecas(ls,ip,q,ia, ka,id, kd)

sample the emission parameters from the appropriate law data.

the subroutine takes in all the information necessary to
sample (or debug inability to sample) the emission
energy and scattering angle in the laboratory coordinate
system.

Preconditions:

explicitly passed in variables:

ls - the current particle index in the colout array

ip - the ipt particle type for the incident particle

g - the g value for the reaction being sampled

ia - the first word of the relevant AND block in the xss array
ka - the offset to the first word of the table in AND block

id - the first word of the relevant DLW block in the xss array
kd - the offset to the first word of the table in DLW block

implicitly uses variables:

awn (lawn+iex) - the awr of the current target isotope
colout(l,1ls) - the sampled emission energy
colout (2,1s) - the sampled emission scattering angle

erg - the incident particle energy in the lab system
gpt - array of particle awr's

iex - the table index of the current target isotope
ipsc - index to indicate what kind of law was sampled
ipt - the ipt particle type of the emitted particle
ixl - the ZAID storage array

ixre - the current reaction index being sampled

kdb - fatal error flag

mtp - the reaction mt number being sampled

ntyn - the coordinate system of the sampled parameters
tpd(1l,2) - storage for correlated energy/angle parameters
wgt - the weight of the emitted particle

xss - data array containing sampling distributions etc.

read only input variables:
ls, ip, g, ia, ka, id, kd, awn, erg, gpt, iex, ipt, ixl,
ixre, mtp, ntyn and all xss (i)

Postconditions:
returns the sample emission parameters in the lab system:
colout(l,1ls) - the emission energy

colout(2,1s) - the emission scattering angle

Law 4/44/61 makes use of a biased distribution which affects
the outgoing particle weight

kdb is set on fatal error (inability to sample reasonable
emission parameters) during call to expirx

modified variables: colout(l,1s), colout(2,1s), ipsc, kdb,
tpd and wgt

*QOo0oo0o0o0o0o00o00000000000000000000000000000000000000000000000a0a0

i,as.6
parameter (ep=0.000001)
*d,asd4a.l,asd4a.3
*i,as.8
C***********************************************************************
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*d,as.12,as.15
n=id+kd
go to 25
20 n=id+nint (xss(n-1))
25 if (nint (xss(n-1)).eq.0)go to 30
tl=tl-acefcn(n+2,erqg, 1n)
*d,as.18

C***********************************************************************

c use the selected law to sample the energy [and possibly angle].
c if law samples without error, go to sample angle or
c coordinate transform as appropriate

*d,as.20,as4a.9
lw=nint (xss (n))
iw=id-1+nint (xss(n+1l))
if(lw.eq.1l) go to 40

if(lw.eq.2) go to 60
if(lw.eq.3) go to 70
if(lw.eq.4) go to 80
if (lw.eq.5) go to 160
if(lw.eq.7) go to 170
if(lw.eq.9) go to 190
if(lw.eq.1ll)go to 210
if(lw.eq.22)go to 230
if(lw.eq.24)go to 242
if(lw.eq.33)go to 70
if(lw.eqg.44)go to 80
if (lw.eqg.61l)go to 80
if (lw.eq.66)go to 245
if(lw.eqg.67)go to 255
go to 300

*d,as.28,as.31

c >>>>> law 1 (From ENDF Law 1) -- tabular equi-probable energy bins.

40 call acetbl (iw,ic,r,1ln)
nt=nint (xss (iw+ln))
iw=iw+ln+nt* (ic-1)
k=int (rang () * (nt-1)+1)
*d,as.46,as.48
c this law applies to photon production only and should
c not be used by any other emission particle type
60 if (ipt.ne.2)go to 300
colout (1, 1s)=xss (iw+1l)
if(nint (xss(iw)) .eqg.2)colout (1,1ls)=colout(l,1ls)+
1 erg*awn (lawn+iex)/ (awn (lawn+iex)+1.)

go to 260
*d,as.50
c >>>>> law 3 & 33 (From ENDF Law 3) -- level scattering.
*d,as.54,asd4a.1ll
c >>>>> law 4 (From ENDF Law 1) -- continuous erg tabular distribution
c >>>>> law 44 (From ENDF Law 1) -- Kalbach-87 correlated formalism
c >>>>> law 61 (From ENDF Law 1) -- correlated tab energy-angle dist

80 call acetbl (iw,ic,r,1ln)
nr=nint (xss(iw))
lb=iw-1+1ln+ic
lc=id+nint (xss (1b))

*d,asd4a.l4
c
c xss (lc,1d,1f) is an overloaded variable. 1t contains the
c number of points in the emission distribution and if part
c of the continuum has been expunged, it contains 0.5 times
c the cumulative probability of the portion expunged.
np=int (xss (lc) +ep)
*d,asda.l6
jj=nint (xss(lc-1))
*d,asd4a.l19

*d,asda.21,as4a.22
ld=id+nint (xss (1b+1))
mp=int (xss (1d) +ep)

*d,asda.28
jj=nint (xss(1d-1))

*d,asd4a.53

97 np=int (xss(1lf)+ep)
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*d,asd4a.58

ns=nint (xss (1£f-1))-33*10000
*d,as.80,as.89

call bnsrch(rl,ic,ib,iqg)

In=ic-2*np

fa=xss (1ln+np)

ea=xss (1ln)
*d,as.93

bb=(xss (ln+np+1)-fa)/ (xss (1ln+l) -ea)
*d,asda.064,asd4a.65

if (lw.ne.44)go to 150

fb=(t-xss (1ln))/ (xss(1ln+l)-xss(ln))
*d,asda.68

if (lw.ne.44)go to 150
*d,asda.72,asd4a.74
*d,asd4a.75,as4a.78

c
c don't scale for photons?? why not?!? this should be removed
c but is left in here in order to track the test suite
c it only affects test problem 11 (mcw 1/7/99)
150 if(r.ne.0..and.ipt.ne.2)t=tl+ (t-xss (lf+nd+1l))* (t2-tl)
1 /(xss(lf+np)-xss(lf+nd+1))
152 colout(l,1s)=t
if(lw.eqg.4)go to 260
if(lw.eqg.44)go to 153
if(lw.eqg.6l)go to 156
go to 295
*d,asda.80
c sample law 44 -- kalbach-87 angular systematics
*d,asd4a.82

153 if(ka.ne.-l.or.ntyn.ge.0)go to 295
*i,asda.91

c
c sample law 61 -- tabulated angular distribution
156 ipsc=16
c
c if jj=1 (i.e., histogram on e-primes) always use "ic."
c if jj=2 (lin-1lin on e-primes), use the distribution for
c the e-prime closest to "rl" (in cdf space).
lb=ic+np
if(jj.ne.l.and. (xss(ib)-rl.lt.rl-xss(ic)))lb=1b+1
c
c sample from appropriate distribution
c unlike the AND block, in law 61 only isotropic or tabular
c angular information is passed
if(nint (xss(lb)).gt.0)go to 157
ixcos=0
call angiso(colout(2,1s))
go to 280
157 ixcos=id-1+nint (xss(lb))
call anglw2 (ixcos,colout(2,1s))
ixcos=-ixcos
go to 280
*d,as.112,as.113
c >>>>> law 5 (From ENDF Law 5) -- general evaporation spectrum.
160 tl=acefcn(iw,erg,1ln)
i=iw+ln+l+int (rang () * (nint (xss (iw+ln))-1))
*d,as.117,as.118
c >>>>> law 7 (From ENDF Law 7) -- simple Maxwell fission spectrum.

170 tl=acefcn(iw,erg,1ln)
t3=erg-xss (iw+ln)
*d,as.129,as.130
c >>>>> law 9 (From ENDF Law 9) -- evaporation spectrum.
190 tl=acefcn(iw,erg,1ln)
t2=erg-xss (iw+ln)

*i1,as.133

c reject if outside range 0 ... e-u

*d,as.137,as.139

c >>>>> law 11 (From ENDF Law 11) -- energy dependent Watt spectrum.

210 tl=acefcn (iw,erg,1ln)
t2=acefcn (iw+ln,erqg, 1b)
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if(erg.le.xss (iw+ln+lb))go to 260
*d,as.146,as4a.93
c >>>>> law 22 (From UK Law 2) -- tabular linear functions.
230 call acetbl (iw,ic,r,1n)
ie=id-1+nint (xss (iw+ln+ic-1))
nf=nint (xss(ie))
*d,as.156,as4a.97
c >>>>> law 24 (From UK Law 6) -- tabular energy multipliers.
242 call acetbl (iw,ic,r,1n)
i=iw+ln+l+nint (xss (iw+ln)) * (ic-1)+int (rang() * (nint (xss (iw+1ln))-1))
*d,asd4a.100,as4a.101
c >>>>> law 66 (From ENDF Law 6) -- n-body phase space distribution.
245 nb=nint (xss(iw))
*i,asd4a.102
if (ipt.gt.2)ap=ap*gpt (1) /gpt (ipt)
*d,asd4a.l117,as4a.118
colout (1,1s)=t*((ap-1.)/ap)* (erg*aw/ (aw+l.)+q)
*d,asda.l126,as4a.127
255 call acetbl (iw,ic, r,1n)
cs=acecos (ixcos, ia, ka)
*d,asd4a.130
colout(l,1ls)=acecs6(0,id,iw,ic, r,cs)
*d,as4b.3,as.180
C***********************************************************************
c if not correlated energy-angle, calculate the cosine.
260 colout (2, 1s)=acecos (ixcos, ia, ka)
*i,as.181
C***********************************************************************
*d,as.185,as.189
c Formulas below are from p. 2 of X-6:RES-93-68.
These formulas assume two-body kinematics.
Seamon's formulas specify atomic weight ratios (to neutron)
For incident particle (a), AWR=GPT (IPT_INCIDENT)/GPT (1)
For exiting particle (b), AWR=GPT (IPT)/GPT (1)
For target (A), AWR=AWN (LAWN+IEX)
al=gpt (ip) /gpt (1)
a2=gpt (ipt) /gpt (1)
a3=awn (lawn+iex)
tl=colout (1,1s)
t2=erg*al*a2/ (a3+al) **2
t3=2.*sqgrt (a2*al*erg*colout (1l,1s)) *colout (2,1s)/ (a3+al)
t4=t1+t2+t3
sl=colout (2, 1s) *sqrt (colout (1,1s) /t4)
s2=sqrt (al*a2*erg/t4)/ (a3+al)
colout(1l,1s)=t4
colout (2,1s)=sl+s2
*i,asd4a.137
C***********************************************************************
*d,asd4a.139
290 if(colout(l,1ls).le.emx(ipt))return
*d,asda.l142
1 'energy of particle from inelastic collision > emx')
*i1,as.191
C***********************************************************************
*d,asd4a.145
295 colout (1, 1s)=huge
*d,as.195,as.196
write (iuo,310)ht,erg, ixre,mtp,ntyn, lw,colout (1,1s)
*d,as.203
1 'emission energy was negative.')
if (colout(l,1ls) .eg.huge)call expirx(l, 'acecas',
1 'faulty cross-section data.')
*d,as.205
1 'emission energy exceeds incident energy.')
*d,as.207,as.216
*/

*/ R R R I I I I I I I b I R I I I I I R I b b I E I I I E E e E I b b E I I b I h b b i

Q000

*/ Changes to acefcn

*ident aiPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkdhhhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkkhkhkhhkhkhkhkhhhhhkkhxkx

*/
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*d,ai.2,ai.54
function acefcn(it,eqg, 1ln)
interpolate value in table at xss(it) for energy eg

Preconditions:
xss (it) is the first word of an appropriate table
table data are in the format:
nr - number of regions
nbt (i=1..nr) - number of points in int. region i
int (i=1..nr) - interpolation scheme for region i
(nbt and int don't exist if nr is zero and a
linear-linear int. scheme is used across all points)
nf - number of energy points
e(j=1..nf) - energy values
f(j=1..nf) - function values on which to interpolate
the interpolation values are picked using energy value eg

it, eg and all xss (i) are read only variables

Postconditions:
returns value f(eg) appropriately interpolated
return value 1ln is the length of the table,
i.e. xss(it+ln-1) = f(ne)

if eg is not within the bounds of the table e (i)
i.e. bnsrch returns with a non-zero value of ig
the extreme edge boundary value is returned
e.g. erg < e(l) -> acefcn = f£(1)

In and acefcn are modified return values

*Oo00000000000000000000000000a0na0

call cm
c
c get key parameter values for table
nr=nint (xss(it))
ie=it+2*nr+l
nf=nint (xss(ie))
1In=2* (nr+nf+1)
c
c binary search for the location of eg in the table.
il=ie+l
ih=ie+nf
call bnsrch(eg,il, ih,iqg)
c
c set up the parameters for interpolation
ea=xss (il)
eb=xss (ih)
fa=xss(il+nf)
fb=xss (ih+nf)
c
c if outside bounds of table, use extreme edge value
if(ig.ne.0)go to 30
c
c find out which kind of interpolation should be used.
if(nr.eq.0)go to 40
do 10 n=1,nr
10 if(ih-ie.le.nint (xss(it+n)))go to 20
n=nr
c
c interpolate between table entries.
20 go to(30,40,50,60,70)nint (xss (it+nr+n))
c
c histogram interpolation
30 acefcn=fa
go to 80
c
c linear-linear interpolation
40 acefcn=fa+ (fb-fa) * (eg-ea)/ (eb-ea)
go to 80
c
c log-linear interpolation
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50 acefcn=fa+ (fb-fa)*log(eg/ea)/log(eb/ea)

go to 80
c
c linear-log interpolation
60 acefcn=fa* (fb/fa)** ((eg-ea) / (eb-ea))
go to 80
c
c log-log interpolation
70 acefcn=fa* (fb/fa)** (log(eg/ea)/log(eb/ea))
go to 80
c

80 return
*/
*/ RR R R Ik ik kb b b b b b b b b b b b b b b b b b h b b b b b b b kb b bk b b b b b b b b bk b b b b b b b b b b kb b b b b b ik b b i
*/ Changes to acetbl
*ident abPN
*/ R R R I R I I I I I b R I I E h E R I b I b I E I I I E I E b I b E I I I b I E b b i
*/
*d,ab.2,ab.42
subroutine acetbl(it,il, r,1n)
returns the interpolation parameters and table length

Preconditions:
xss(it) is the first word of an appropriate interpolated
energy region with data in the format:
nr - number of regions
nbt (i=1..nr) - number of points in int. region i
int (i=1..nr) - interpolation scheme for region i
(nbt and int don't exist if nr is zero and a
linear-linear int. scheme is used across all points)
nf - number of energy points
e(j=1..nf) - energy values
the interpolation values are picked using erg

it, erg and all xss (i) are read only variables

Postconditions:
return value il is the lower indice on which to interpolate
return value r is the interpolation factor such that
e(il) + r * ( e(ih) - e(il) ) = erg
acetbl ignores interpolation schemes other than
linear-linear or histogram
return value 1ln is the length of the table,
i.e. xss(it+ln-1) = e(ne)

if erg is not within the bounds of the table e (i)
i.e. bnsrch returns with a non-zero value of ig
the extreme edge boundary is returned in il
and the interpolation factor is returned as zero
e.g. erg < e(l) =-> ii =1 and r = 0.0

il, r and 1ln are modified return values

O 0000000000000 00000000000000000a0a0

call cm
c
nr=nint (xss(it))
ie=it+2*nr+l
nf=nint (xss(ie))
1n=2* (nr+1)+nf
r=0.
c
c binary search for the location of the energy in the table.
il=ie+l
ih=ie+nf
call bnsrch(erg,il,ih,iqg)
if(ig.ne.0)go to 40
c
c calculate interpolation fraction r
c use histogram interpolation if int(i) =1
c use linear-linear interpolation for all else

if(nr.eq.0)go to 30
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do 10 n=1,nr

10 if(ih-ie.le.nint (xss(it+n)))go to 20
n=nr

20 if(nint (xss(it+nr+n)).eqg.l)go to 40

30 if(erg-xss(il).lt.l.e-6*(xss(ih)-xss(il)))go to 40
r=(erg-xss(il))/ (xss(ih) -xss(il))

40 il=il-ie
return

*/
*/ KAk khkhhkhkhkhhkkhhhkhhhhhkhhkhhhhhhhkhhhhhhhkhhkhhhhhhhkhkhh kb bk hkhkhkhkhkhkkhkhkhkhkhkhkhrkhkhkhkkhhhx
*/ Changes to acecos
*ident aoPN
*/ KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhkhhhhhhhhhhhhkhhhhhhhhhkhkhhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkrkhkhkhkhhkhx
*/
*d,a0.2,a0.39
function acecos (it,ia, ka)

returns the scattering angle mu from a set of angular dist.

Preconditions:
xss(ia) is the first word of the appropriate AND block
if no AND block exists, ka must be set to zero
ka is the offset such that:
ka = 0 indicates an isotropic distribution OR
xss (iatka-1) is the first word of the appropriate dist.
the distribution always contains the following data:
nm, e(i=1..nm), lmu(i=1..nm), [mu data for non-zero lmu]
the table is picked using erg, the incident particle energy,
off the energy list e corresponding to the table offset 1lmu

Imu = 0 indicates isotropic distribution
Imu > 0 indicates Angular Law 1 binned data at xss(ia-1+lmu)
Imu < 0 indicates Angular Law 2 tabular data at xss(ia-1-1lmu)

ia, ka, erg and all xss (i) are read only input variables

Postconditions:
return value acecos is scattering angle mu in radians
mu value should be between -1.0 and 1.0 but isn't checked
it is the offset to the first word of the table sampled
it = 0 indicates an isotropic distribution sampled
it > 0 indicates a binned distribution sampled
it < 0 indicates a tabular distribution sampled
non-isotropic distribution are found at xss(abs(it))

it and acecos are modified return values

o000 0000000000000000000a0

*call cm

c

c handle case of no table data
if(ka.eq.0)go to 10

c

c find the cosine table by binary search on the energy table.
nm=nint (xss(iatka-1))
il=iat+ka
ih=il+nm-1
call bnsrch(erg,il,ih,iqg)

c

c sample between adjoining tables by interpolation fraction.
if(rang () * (xss(ih)-xss(il)) .lt.erg-xss(il))il=ih

c

c select appropriate sampling distribution
Im=nint (xss (il+nm))

c

c >>>>> Isotropic Angular Distribution
if (lm.ne.0)go to 20
10 call angiso(t)
it=0
go to 40
c
c >>>>> Law 1 Equiprobable Binned Angular Distribution
20 if(Im.1t.0)go to 30
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it=ia-1+1lm
call anglwl (it,t)
go to 40
c
c >>>>> Law 2 Tabular Probability Angular Distribution
30 it=ia-1-1m
call anglw2 (it,t)

it=-it
c
40 acecos=t
return
*/

*/ R R R i I I R I I R R I I b E b I b b I E I I I b E I I I b E I I I b b b b i

*/ Changes to acecsé6
*ident aePN
*/ R R R I I I I I I R b E I b dE R I b b b b E E E I I I b I I I I b E I I I b h dE b b i
*/
*d,aeda.?2

function acecs6(ii,id, iw,jc, r,cs)
*d,aeda.l0

save id0,iw0,ic0,rr0, rnb
*i,aeda.ll

ido=id
*d,aeda.l7,aed4a.19

10 jw=iwO+2*nint (xss (iw0))+1

ne=nint (xss (jw))

1x(1)=1id0+nint (xss (jw+ne+ic0)) -1
*d,aeda.24

1x(2)=1d0+nint (xss (jw+ne+ic0+1))-1
*d,aeda.31,aeda.32

mu=nint (xss(le))

nm=nint (xss(le+l))
*d,aeda.44,aeda.46

50 lb=id0+nint (xss(le+nm+ig+1l))

ji=nint (xss (1lb-1))

np=nint (xss (1lb))
*d,aeda.54,aeda.60

call bnsrch(rnb(ir),ic,ib,iqg)
*
*k; RR R Rk kb b b b b b kb b b b b b b h b b b h b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b kb b i
*/ Changes to photot
*ident ptPN
*/ RR Rk Ik kb b b b b kb b b b b b b b b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/
*i,pt.9
c
c if photonuclear physics is on, calculate photonuclear xs

if (ispn.ne.0) call pnctot (mk)
*
*; R R R I I I I I I I I I R R I I I E R I b I b I E I I I E I I I b E R I I h b i
*/ Changes to colidp
*ident cpPN
*/ RR R R Ik kb b b b b h b b b b b b b h b b b h b b b b b b b b b b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/
*d,cp.10,cp.11
*i,cp.1l2
c
C********************** photonuclear events R R R R R I I I I b b b I b b I i
c
c if photonuclear physics is on and the photon is above the pn.
c energy threshold for this material, totpn is non-zero
c and photonuclear secondary particles are sampled first

if (totpn.gt.zero) then

call coldpn
if (nter.ne.0O.or.kdb.ne.0) return

endif
c
C********************** photoatomic events RR R R Rk kb b b b b b b b b b b b b b b b b b b i
c
c reset default parameters

ntyn=0
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Jsu=0
*/
*/ KAk khkhhkhhkhhkhkhhkhhhhhhhkhhhhhhhhhhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhkhhkhkkhkhkhkhkhkhkhrkhkhkhkkhhkhx
*/ Changes to mgcoln
*ident gnPN
*/ KAk khkhhkhhkhhkhkhhkhhkhhhhhkhhhhhhhkhhhhhhhhhkhhhhhhhkhhhhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhrkhkhkhkhhkhx
*/
*d,gn4a.2,gn4a.3
pan (kpan+1l, 6, mpan) =pan (kpan+l, 6, mpan) +n
pan (kpan+l, 7, mpan) =pan (kpan+l, 7, mpan) +twgt*n
*d,gn4a.6
pan (kpan+1l, 8, mpan) =pan (kpan+l, 8, mpan) +twgt*erg
*/
*/ KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhkhhhhhhhhhhhhkhhhhhhhhhkhkhhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkrkhkhkhkhhkhx
*/ Changes to mgcolp
*ident gpPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhkhkhkhkhhhkhkhhkhkhkhhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhkkhxkx
*/
*d, gpda.’7
pan (kpan+l, 7, mpan)=pan (kpan+1l, 7, mpan) +twgt* (n-1)
*/
*/ KAk khkhhkhhkhhkhAhhkhhhhhhhkhhhhhhhkhhhhhhhkhhkhhhhhhhkhhkhhhkhhkhkhkhkhhkhkkhkhkhkhkhkhkhrkhkhkhkhhkhx
*/ Changes to tallyd
*ident tdPN
*/ Ak hkhkhkhkhkhkhkhkhkhhkhkhkhkhkkhhkhkhkhkhkhdhhhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhdhhkhkhkhkhkhkdkhkhhkhkhkhkhhhhhxkhxkx
*/
*d, td4a.2,td4a.3
go to( 110, 40, 70,110,110,110,110, 80,
1 110,110,110, 70, 70, 70,110) ipsc-2
go to(110,110,90,70,100,110) ipsc-100
call expirx(l,'tallyd','illegal value for ipsc.')

return
*i,td4a.5
c ipsc=16 -- neutron from law 61 (tabulated energies/angles) and
*i,td.100
c R Rk kb b b b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b i

*/

*/ Ak hkhkhkhkhkhkhkhkhhhkhkhkhkhkdhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhdhhkhkhkhkhkhkkhhkhhkhkhkhkhhhhhkkhxkx
*/ Changes to calcps

*ident ctPN

*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkhhhkhkhhkhkhkhkhkhhhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhhkhkhkhkhhhkhkkhxkx

*/

*d,ct4a.l
go to( 10, 20, 30,120,150,200,260,400,
1 540,580,590,800, 25, 26,900) ipsc-2
call expirx(l,'calcps','illegal value for ipsc.')
return
*d,ct.18

if(t3.le.0..and.tpd (1) **2.1t.abs (tpd(3)))go to 1000
*d,ct.20

if(tl.1t.0.)go to 1000
*d,ctda.5

erg=acecs6(1,0,0,0, zero,cs)
*i,ctda.’

c
c >>>>> 1ipsc=16 -- neutron from law 61 (tabulated energies / angles)
c
c if isotropic and lab system, can return (psc=0.5).
26 if(ixcos.eqg.0.and.ntyn.ge.0) return
c
c cs 1is laboratory cosine to next event estimator.
cs=uold (1) *uuut+uold (2) *vvv+uold (3) *www
c
c if lab system, but anisotropic, go to table lookup for psc.
c since we're in the lab system, erg for next-event direction
c is no different than erg in actual as-sampled direction.
if(ntyn.ge.0) goto 60
al=1l.+awn (lawn+iex)
c
c scattering distributions are in the cm system.
c
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c if pass the following test, then all lab cosines are possible.
c if fail, then must check on allowed lab cosines.
c check is from cases 2,3 on pp. 68,69 of carter and cashwell.
c ergace 1s previously-sampled cm energy. eg0 is incident energy.
if (ergace.gt.eg0/ (al**2)) goto 27
c
c to find valid lab cosines, start with eq. in case 3 of p. 69
c from carter and cashwell. substitute in for g based on
c their eq. 5.8. then wind up with following condition,
c which is identical to that used by hendricks later in
c this routine for ipsc=14. if t3 > cs**2, cannot scatter
c toward next-event position.
t3=1.-ergace*al**2/eg0
if (£3.gt.cs**2) goto 1000
c
c scattering is valid. calculate lab energy (erg) via following
c equation, from hendricks' ipsc=14 code. this equation is
c equivalent to eq. 5.14 of carter and cashwell.
27 tl=1./al
erg=eg0* (t1* (cs+sqgrt (cs**2-t3))) **2
c
c return if this energy is below particle's energy cutoff.
if (erg.lt.elc(ipt)) return
c
c now, we need to calculate the d-cm cosine by d-lab cosine
c and apply this factor to the psc. start with eq. 5.13 of
c carter and cashwell, which reduces to the following for
c psc (the extra 0.5 is a starting assumption of isotropy).
c formalism is identical to ipsc=14 and ipsc=5.
t2=sqrt (erg/ergace)
t4=tl*sqrt (eg0/erqg)
psc=0.5*t2/(1.-cs*t4)
c
c if isotropic in cm, return.
if (ixcos.eq.0) return
c
c otherwise, determine cm cosine (overwrite cs with it). start
c with eq. 5.10 of cashwell and carter. formalism is same as
c for ipsc=5 and ipsc=14.
cs=t2* (cs-t4)
c
c now (finally) go to table lookup to actually determine psc
c for scattering toward the next-event estimator.
goto 60
*d,ct.40
if(t3.g9t.0.)go to 1000
*d,ct.54
if(cs.lt.0.)go to 1000
*i,ct.67

’

updates to allow sampling of tabular angular distributions

updates are for mcnpx_2.1.4

written by rcl (june, 1998)

changes to subroutine calcps:
in two sections of calcps we have allowed for the
possibility of calculating the psc by looking up the
value in a tabulated cosine distribution. this is
an alternative to the "normal" manner of calculating
the psc from a table of 32 equally-likely cosine bins.
changes are made immediately below for neutron-induced
neutrons and in the ipsc=8 section for neutron-induced
photons. new capability is flagged via ixcos<O0.
factor of 2 in psc calculation below is to account for fact
that psc is initialized to 0.5 before calling calcps.
similar calculation for ipsc=8 does not need multiplier
because it does not have form of psc=psc*value.

also added a section for ipsc=16, which is for law=61
correlated tabular-energy, tabular cosine distributions.

o000 000000000000a0

60 if(ixcos.gt.0) then
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*d,ct.70,ct.79

ic=ixcos
ib=ixcos+32

70 if (ib-ic.eqg.1l)go to 90
ih=(ic+ib) /2
if (cs.lt.xss(ih))go to 80
ic=ih
go to 70

80 ib=ih
go to 70

90 psc=.0625*psc/ (xss (ib) -xss (ic))

c calculate psc from tabulated cosine distribution
else
ic=-ixcos
jj=nint (xss(ic))
np=nint (xss(ic+1))
if (xss(ic+2) .gt.cs.or.xss(ic+l+np).lt.cs) go to 1000
ic=ic+3
92 if(xss(ic) .gt.cs) go to 94
ic=ic+1
go to 92
94 if(jj.eq.l) then
psc=2.*psc*xss (ic+np-1)
else
psc=2.*psc* (xss (ic+np-1)+ (cs-xss(ic-1))*
1 (xss (ic+np) -xss (ic+np-1) )/ (xss(ic)-xss(ic-1)))
endif
endif
*d,ct.85
l=nint (xss(jxs(ljxs+l,iex)+nint (xss(jxs(ljxs+16,1iex)))+ixcos-2))
*d,ct.87,ct.88
J=jxs (ljxs+l,iex)+nint (xss(jxs (ljxs+17,1iex)))+1-2
if(cs.ge.xss(j+nxs (lnxs+3,iex)-1).or.cs.lt.xss(j))go to 1000
*d,ctda.9
if (t3.ge.vco(mcoh))go to 1000
*d,ct.128,ct.137
if (ixcos.gt.0) then
ic=ixcos
ib=1c+32
210 if (ib-ic.eqg.1l)go to 230
ih=(ic+ib) /2
if(cs.lt.xss(ih))go to 220
ic=ih
go to 210
220 ib=ih
go to 210
230 psc=.03125/ (xss (ib) -xss (ic))
else
ic=-ixcos
np=nint (xss(ic))
Jji=nint (xss(ic+1))
if (xss(ic+2) .gt.cs.or.xss(ic+l+np).lt.cs) go to 1000
ic=ic+3
192 if(xss(ic).gt.cs) go to 194
ic=ic+1
go to 192
194 if(jj.eq.l) then
psc=xss (ic+np-1)
else
psc=xss (ic+np-1)+ (cs-xss(ic-1))*
1 (xss (ic+np) -xss (ic+np-1))/ (xss(ic)-xss (ic-1))
endif
endif
*d,ct.141
240 n=nint (xss(jxs(ljxs+15,1iex)))
*d,ct.143
l=nint (xss(jxs(ljxs+1l,iex)+nint (xss(jxs (ljxs+16,iex)+1))+ixcos-2))
*d,ct.145,ct.146
J=jxs (ljxs+l,iex)+nint (xss(jxs (ljxs+17,iex)+1))+1-2
if(cs.ge.xss(j+n-1) .or.cs.lt.xss(j))go to 1000

428



*d,ct.156
if (ixcos.eq.0)go to 1000
*d,ct.160
if(cs.lt.xss(-ixcos) .or.cs.gt.xss(ll-ixcos))go to 1000
*d,ct.200
350 nc=nint (xss(jxs(ljxs+4,iet)))
*d,ct.223
if (cs*erg.lt.b0-db)go to 1000
*d,ct.243
if (am.lt.g(6).or.am.gt.g(7))go to 1000
*d,ct.252
go to 1000
*d,ct.303
if(b.1t.0.)go to 1000
*d,ct.311
if(r.gt.g(7)**2.0r.r.1t.g(6) **2)go to 1000
*d,ct.322
if(j.ne.0)go to 1000
*d,ct.336
go to 1000
*d,ctda.20
1 go to 1000
*d, ctdb.32
800 cs=uold(l) *uuutuold(2) *vvv+uold(3) *www
*d,ctda.31
if(t3.ge.cs**2)go to 1000
*d,ctda.4l
if(t5.1le.0.)go to 1000
*i,ctda.45

c
c >>>>> 1ipsc=17 -- photonuclear kalbach-87 endf/b-vi coupled energy-
c angle collision (law 44).

c kalbach-87 psc=(.5*a/sinh(a))* (cosh(a*cs)+r*sinh(a*cs))

c tpd(l)=r, tpd(2)=a

900 cs=uold(l) *uuutuold(2) *vvv+uold (3) *www
psc=.5*tpd (2) /sinh (tpd(2))
1 * (cosh (tpd (2) *cs) +tpd (1) *sinh (tpd (2) *cs))
return
*d,ct.351
1000 psc=0.
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkkhhkhhkhkhkhkhkhhhhkkhxkx
*/ Changes to eventp
*ident PN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhhhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhkkhxkx
*/
*d,etdb.1,etda.2
character ha*10,he(8)*9,hf (3)*15,hg*48,h1*20,hp(0:5) *3,hs (27) *9,
1 ht(17)*16,hz*10

*d,et.11
3 'dead fiss. or pp',3*' ', 'photoabsorption'/

*d,etdb.2
4 '(n,xf) mg','(n,xn) mg',"'(g,xg) mg','adj split', 'wwt split',
5 2%' ', ' (gamma,x) "'/

*/

*/ RR Rk Ik kb b b b b I b b b b b b b b b b b b h b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i

*/ Changes to kcalc
*ident kcPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhhkhhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhkhkhkhkhkkhhkhhkhkhkhhhhhhxkhxkx
*/
*d, kcdb.145
do 260 j=1,17
*d, kcdb.150
do 280 i=1,8
*d, kcd4b.153
do 290 i=1,21
*/
‘k/ KAk khkhhkhhkhhkhkhhkhhhhhhhkhhhhhhhkhhhhhhhkhhkhhhhhhhkhhkhhhkhhkhhkhkhkhkrkhkhkhkhkhkhkrkhkhkhhhkhx
*/ Changes to sumary
*ident egPN

*/ R R R I I I I R I I E I b R b I I E I I I E E h h E I b I R b b b 3 b i
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*/
*d,eqda.l

character ha(2)*26,hg*16,hp(2,7,mipt)*17,ht (4)*14,hw(2,10)*17,

*d,eq.6,eq.19

c
c common summary headers
data hw/
1 'source’', 'escape',
2 v, 'energy cutoff',
3 v, 'time cutoff',
4 'weight window', 'weight window',
5 'cell importance', 'cell importance',
6 'weight cutoff', 'weight cutoff',
7 'energy importance', 'energy importance',
8 'dxtran', 'dxtran',
9 'forced collisions', 'forced collisions',
1 'exp. transform', 'exp. transform'/
c
c neutron summary headers
data ((hp(l/]/l)11:112)/]:117)/
1 'upscattering’, 'downscattering',
2 v, 'capture’,
3 '(n,xn)"', 'loss to (n,xn)"',
4 'fission', 'loss to fission',
5 v l, v l,
6 v l, v l,
7 ' (gamma, xn) ', v/
c
c photon summary headers
data ((hp(lljlz)11:112)13:117)/
1 'from neutrons', 'compton scatter',
2 'bremsstrahlung’, 'capture’,
3 'p-annihilation', 'pair production',
4 'electron x-rays', v,
5 'lst fluorescence', ' ',
6 '2nd fluorescence', ' ',
7 ' (gamma, xgamma) ', 'loss to pn. abs.'/
c
c electron summary headers
data ((hp(i,3,3),1=1,2),3=1,7)/
1 'pair production', 'scattering',
2 'compton recoil', 'bremsstrahlung',
3 'photo-electric’, v,
4 'photon auger', v,
5 'electron auger', v,
6 'knock-on', v,
’7 L} l, L} l/
*d,eq.66
do 110 j=1,17
*d,eq.69
*i,eqda.22

if (ha(l) (1:1).eqgq."

*d,eq.97,eq.103
if(pax(5,1,1ip) .gt.zero) tpp (1l)=tmav (ip,1) /pax(5,1,ip)
if ((pax(5,12,1ip)+tpax(5,17,1ip)) .gt.zero)

'.and.ha(2) (1:1).eqg."' ')go to 110

1 tpp (2) =tmav (ip,2) / (pax (5,12, 1ip) +pax(5,17,1ip))
if ((pax(5,1,ip)+pax(5,12,ip)+pax(5,17,1ip)) .gt.zero)

1 tpp (3)=(tmav (ip, 1) +tmav (ip, 2))

2 /(pax(5,1,1ip)+pax (5,12, ip)+pax(5,17,1ip))

do 150 i=1,17
*d,eq.185,eq.186
if (npum.ne.0)write (iuo, 365)npum
365 format (/48h photonuclear production reaction mt loop failed,
1 i4,7h times.)
if (nppm.ne.0)write (iuo, 370) nppm
370 format (/49h neutron-induced photon production mt loop failed,
1 i4,7h times.)
*/
*/ RR Rk Ik kb b b b b b b b b b b kb h b b b h b b b b b b b b b b bk kb b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/ Changes to action
*ident azPN
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*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdkhkhhkhkhkhkhhhhhkkhxkx
*/
*d,az.5
*d,az.7
*i,azda.9
c
c print the repeated structure/lattice table.
*d,az.43,az.95
if (ink (130) .ne.0)call tbl130
*d,az.98,az.211
if (ink (140) .ne.0.and.mxe.gt.0)call tbl1140
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkdhhkhhkhkhhhkhhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhkhhhhkkhxkx
*/ Changes to disbug
*ident dbPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhhhkhkhkhkhhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhkkhxkx
*/
*d,db.2
*1,db.6
*if def,disspla
*i,db.40
*endif
*d,db.43
*/
*/ Ak hkhkhkhkhkhkhkhkhkhhkhkhkhkhkkhhkhkhkhkhkhdhhhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhdhhkhkhkhkhkhkdkhkhhkhkhkhkhhhhhxkhxkx
*/ Changes to ratspl
*ident rlPN
*/ KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhhhhhhhhhhhhhkhhkhhhhhhhkhhkhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhrkhkhkhkhhkhx
*/
*d,rl.2,rl.3
*i,rl.5
*if def,mcplot
*if def,disspla
*1,rl.20
*endif
*d,rl.23
*/
*/ Ak hkhkhkhkhkhkhkhkhhhkhkhkhkhkdhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhkhhkhkhkhkhkhdhhkhkhkhkhkhkkhhkhhkhkhkhkhhhhhkkhxkx
*/ Changes to plot3d
*ident pyPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkhhhkhkhhkhkhkhkhkhhhkhkhkhkhkhkhhkhkhkhkhkhkkhhkhhkhkhkhkhhhkhkkhxkx
*/
*d,py.2,py-.3
*1i,py.5
*if def,mcplot
*if def,disspla
*i,py.64
*endif
*d,py.67
*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhdhhhhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkkhhkhkhhkhkhkkhkhkhhkhkhkhkhkhhhhxkhxkx
*/ Changes to x3dmat
*ident xyPN
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhhkhkhkhhkhkhhhkhkhkhhkhkdhhkhkhkhkhkhdhhkhkhkhkhkhkdhhkhhkhkhkhhkhhhhxkhxkx
*/
*d, xy.2,xy.3
*i,xy.6
*if def,mcplot
*if def,disspla
*i,xy.16
*endif
*d,xy.19
*/
*/ KAk khkhhkhhkhhkkhhhkhhhhhkhhkhhhhhhhhhhhhhhkhhhhhhhhhkhhhhhhhkhhkhkhhkhkhkhkhkhkhkhkrkhkhkhhhkhx
*/ Changes to cgsdci
*ident gcPN
*/ Ak hkhkhkhkhkhkhkhkhhhkhkhkhkhkhhhkhkhkhkhkdhhhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkkhkhkhhkhkhkhkhhhhhkkhxkx
*/
*d,gc.2
*i,gc.6
*if def,cgs.or.disscgs

431



*i,gc.38

*endif

*d,gc.41

*/

*/ LRSS E S SR SRR SRS R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
*/ Changes to menrl

*ident mfPN

*/ IR SRS E S SRR ER SRS SRR S SRS R EEEEEEEEEEEESEEEEEEEEEEEEEEEEEE
*/

*d, mf4a.2

*i,mfda.4

*if def,multp

*i,mf4a.176

*endif

*d, mf4a.179

*/

*/ IR SRS S S SEEEE SRR SRR SRS EE SRR EEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEE
*/ Changes to getjdt

*ident gjPN

*/ IR SRS SRS SRS R SRS RS ES SRR R EEEEEEEEEEEESEEEEEEEEEEEEEEEEEE
*/

*d,gj.2

*1i,93.4

*if def,aix

*1,9j.6

*endif

*d,gj.9

*/

*/ IR SRS S S S SR SRR SRS SR SRR SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*/ Add new routines after deck za
*/ KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhhhhhhkhhkhhhhhhhkhhhhhhhkhhkhhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkrkhkhkhkhhkhx

*/

*addfile, za

*/

*/ KAk khkhhkhhkhhkhhhkhhhhhhhkhhhhhhhhhkhhhhhkhhkhhhhhhhkhhkhhhkhhkhhhkhkhkhkhkhkhkhkhkhkhrkhkhkhkhhkhx

*/ Add function acepxs
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhkhhhhxkhxkx

*/
*deck fx
function acepxs (it, kx,r,nt,1lb)
interpolate value at index kx in table at xss(it)

Preconditions:
xss(it) is the first word of an appropriate table
kx is the current index in the table
r is the linear interpolation factor, 0.0 to 1.0,

between values at index kx and kx+1

table data are in the format:

xss (it) ie - index of first value
xss (it+1) = nv - number of values given

ie+nv-1 = il - index of last value
xss (it+2..it+2+nv-1) = values(ie..il)

values are interpolated lin-1lin from the current table

nt is interpolation scheme for an index out of bounds:
(index out of bounds is kx < ie or kx > il)

nt = 0 - return zero for no value out of energy bounds
nt = 1 - return end point value for energy out of bounds
nt = -1 - return zero below and end point above bounds

it, kx, r, nt and all xss (i) are read only variables

Postconditions:

returns value acepxs (kx) appropriately interpolated

o000 000000000000000000000a0na0

returns lb for index error checking:
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c 1b = 0 - value interpolated within table bounds
c 1lb = 1 - value above table index bound
c 1lb = -1 - value below table index bound
c
c acepxs and lb are modified return values
c
*call cm
c
c default return value is zero
acepxs=0
c
c find table bounds and check incoming index
ie=nint (xss(it))
nv=nint (xss (it+1l))
il=ie+nv-1
c
c if index below table, return appropriate value
if (kx.lt.ie) then
if (nt.eqg.l) then
acepxs=xss (it+2)
endif
1b=-1
return
endif
c
c if index above table, return appropriate value
if (kx.gt.il .or. (kx.eqg.il .and. r.gt.0)) then
if (nt.eqg.l .or. nt.eq.-1) then
acepxs=xss (it+2+nv-1)
endif
1b=1
return
endif
c
c else interpolate the appropriate value from the table
if (r.eq.0.) then
acepxs=xss (it+2+kx-ie)
else
acepxs=xss (it+2+kx-ie) +r* (xss (it+2+kx-ie+l) -xss (it+2+kx-ie))
endif
1b=0
return
end
*/

*/ R R R I I I I I I I R I I I E R I R e b I E I I I b b b I I b b E I I I b b i

*/ Add subroutine angiso
*/ KAk khkhhkhhkhhkkhhhkhhkhhhhhkhhhhhhhkhhhhhhhhhkhhhhhhhkhhkhhhk kb hhkhkhhkhkkhkhkhkhkhkhkrkhkhkhhhkhx

*/
*deck a0
subroutine angiso(sa)
c returns the scattering angle from an isotropic dist.
c
c Preconditions:
[} None.
c
c Postconditions:
c return value sa 1is scattering angle mu in radians
c mu value is always between -1.0 and 1.0
c
c sa 1s a modified return value
c
*call cm
c

c >>>>> sample from isotropic cosine scattering angular distribution
sa=2.*rang()-1.
return
end

*/

*/ RR Rk Ik kb b b b b b b b b b b kb h b b b h b b b b b b b b b b bk kb b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i

*/ Add subroutine anglwl

*/ R R R I I I I R I I E I b R b I I E I I I E E h h E I b I R b b b 3 b i
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*/
*deck al
subroutine anglwl (1d, sa)
returns the scattering angle from an equiprobable binned dist.

Preconditions:
xss (1ld) is the first word of the appropriate distribution
32 bin equiprobable cosine scattering angle data in format:
mu(j=1..33) with mu(l)=-1.0 and mu(33)=1.0 and appropriately
spaced values in between to give equiprobability to each bin

1d and all xss (i) are read only variables
Postconditions:
return value sa is scattering angle mu in radians

mu value should be between -1.0 and 1.0 but isn't checked

sa is a modified return value

0000000000000 00aQn

call cm
c
c >>>>> sample from table of 32 equiprobable binned cosine scat. angles
rb=rang () *32.
kb=int (rb)
sa=xss (1ld+kb) + (rb-kb) * (xss (1d+kb+1) -xss (1d+kb) )
return
end
*/
*/ R R R I I I I I I R R I I I I h I b I R b I E I I b E I I I I b b b E I b b I h b b i
*/ Add subroutine anglw2
*/ RR Rk Ik kb b b b b b b b b b b b b h b b b h b b b b b b b kb b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b ik b ki
*/
*deck a2
subroutine anglw2 (1ld, sa)
returns the scattering angle from a tabular binned dist.

Preconditions:
xss(1ld) is the first word of the appropriate distribution
tabulated angular probability distribution data in format:
mu (j=1..2+3*np) contains

jj - interpolation flag for cosine distribution
jJj = 1 is for histogram interpolation
jj = 2 is for linear-linear interpolation

np - number of cosine points in distribution
cosine (k=1..np), pdf(k=1..np), cfd(k=1..np)

1d and all xss (i) are read only variables
Postconditions:
return value sa is scattering angle mu in radians

mu value should be between -1.0 and 1.0 but isn't checked

sa is a modified return value

OO0 o0o0o0000000000000a0a0

call cm
c
c >>>>> sample from tabular cosine scattering angular distribution
jj=nint (xss(1d))
np=nint (xss (1d+1))
k1=1d+2+2*np
kh=kl+np-1
rn=rang ()
call bnsrch(rn,kl,kh,iqg)
fa=xss (kl-np)
ca=xss (k1l-2*np)
if(jj.eq.l) go to 10
bb=(xss (kl-np+1)-fa)/ (xss (k1-2*np+1) -ca)
if (bb.eqg.0) go to 10
sa=ca+ (sqrt (max (zero, fa**2+2.*bb* (rn-xss(kl))))-fa) /bb
go to 20
10 sa=ca+ (rn-xss(kl))/fa
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20 return
end

*/
*/ Ak hkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdhkhhkhkhkhkhhhhhkkhxkx
*/ Add subroutine bnsrch
*/ KAk khkhhkhhkhhkhkhhkhhkhhhhhkhhhhhhhkhhhhhhhhhkhhhhhhhkhhhhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhrkhkhkhkhhkhx
*/
*deck bn
subroutine bnsrch(tv,il,ih,iqg)

find the value tv in the array slice xss(il..ih)

Preconditions:
tv is a real value within the array
xss(il..ih) is an numerically ascending ordered array list
il is the first word of the list (index low)
ih is the last word of the list (index high)

tv and all xss (i) are read only variables

Postconditions:
il/ih bracket the test value tv such that ih-il.eq.l and
xss(il) < tv < xss(ih)

Occasionally a value outside the array will be called for
and a reasonable value, the extreme edge of the array,
will be returned along with an non-zero error flag ig

ig = 0 is normal state - value found in array slice

ig = -1 is warning state - value below first array value

ig = 1 is warning state - value above last array value

ig = 2 is warning state - incoming indices equal tv=xss(il)

ig = -3 is warning state - incoming indices equal tv<xss(il)

ig = 3 is warning state - incoming indices equal tv>xss(il)
also il = ih = edge value for exit warning condition

il, ih and ig are modified return values

o000 00000000000000000a0

*call cm
c
c warning state - value below table
if(tv.lt.xss(il)) then
ig=-1
ih=1i1
c
c warning state - value above table
else if(tv.gt.xss(ih))then
ig=1
il=ih
c
c warning state - incoming indices are equal

else if(il.eg.ih)then

if(tv.eg.xss(il))then
ig=2

else if(tv.lt.xss(il))then
ig=-3

else
ig=3

endif

c else handle normal value within table
else

ig=0

10 if(ih-il.eqg.1l)return
im=(il+ih) /2
if (tv.lt.xss(im))go to 20
il=im
go to 10

20 ih=im
go to 10

c end of cases
endif
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*/

return
end

*/ R R R I R I I I b R R I I I E b R I b b b b I E b I E I E I b b E I I b h b b i

*/ Add subroutine coldpn

*/ RR Rk Ik Ik b b b b b b b b b b b b b b b b b b b b b b b b b b kb b bk b b b b b b b kb b b b b b b b b b b b b b b b b b b ik b b b

*/
*deck dn
subroutine coldpn
c generate and bank particles from a photonuclear collision
c
*call cm
c
c local character variable for printing warning about table fault
character ht*10
c
c
c RR R Rk ik Ik b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b kb b b b b b b b b b b b b b b b b b b b b b b
c sample photonuclear event
c R R R R I I I I I I b I I I I I R b I E b I b b I h I I b E b b b I b I I I b I i i
c
c R R R Rk ik kb b b b b b i e
c biased collision
if (ispn.lt.0) then
c
c compute photon weight lost to absorption
wg=totpn/totm*wgt
c
c save photoatomic portion of particle for further transport
wgt=wgt-wg
totm=totm-totpn
call savept
nt=0
c
c account for forced photoabsorption in summaries
tmavtc (2,2)=tmavtc (2,2) +tme*wg
tmavtc (2, 3)=tmavtc (2, 3) +tme*wg
paxtc(5,17,2)=paxtc(5,17,2)+wg
paxtc(6,17,2)=paxtc(6,17,2)+erg*wg
pwb (kpwb+2,20,1icl)=pwb (kpwb+2,20,1icl) -wg
c
c KAKKK KA KKK KKK KKK kK
c natural collision
else
c
c determine if collision is photonuclear
if (rang() *totm.lt.totpn) then
c
c and set parameters to indicate photoabsorption
c (summaries are updated all the way back in hstory)
call savept
nt=17
wg=wgt
else
c
c or account for non-sampled photonuclear event
c and return to colidp to sample photoatomic event
totm=totm-totpn
return
endif
c
endif
c
c RR R Rk kb bk b kb b b b b b b b b b I b b b b b b b b b b b b ik b b b kb b 2k b b b b b kb b b b b b b b b
c sample cumulative pn x-section to find the collision nuclide
c

im=mat (lmat+icl)

if (npg(lnpg+im).eqg.l) then
nn=jmd (1jmd+im)
iex=1lmn (11lmn+nn)

else
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mc=0
rt=rang () *totpn
do 20 nn=jmd (ljmd+im), jmd (ljmd+im+1) -1
iex=1lmn (11lmn+nn)
if (iex.eq.0) go to 20
rt=rt-rtc (krtc+2, iex) *fme (lfme+nn)
if (rt.lt.zero) then
nuclide nn is chosen for collision
go to 30
endif
continue

if problem sampling nuclide, print warning
call errprn(0,mc, 2, zero+nps, zero+nmt (lnmt+im), 'NPS', 'MAT',
'problem sampling collision nuclide. resampling.')

if (mc.1t.100) go to 10
if isotope still not found, exit complaining about data
call expirx(l, 'coldpn',
'contact nucldata@lanl.gov for assitance')
return
endif

continue

R R R R I I I E b b I b b b b b I b b I E b b h b bk i i i

update the nuclide collision summary
mpan=ipan (lipa+icl)+nn-jmd (1jmd+im)

pan (kpan+3,1,mpan)=pan (kpan+3,1,mpan)+1.0
pan (kpan+3, 2, mpan) =pan (kpan+3, 2, mpan) +wg

RR R R Rk bk bk b b b b b b b b b b b b b b b b b b b b b b b b b bk b b b 3
reset default parameters for new particle
ncp=0
Jsu=0

R R R I I I I E I I b I b b b b b b b b I b b i

save needed incident parameters

ei=erg

uold(l:3)=uuu,vvv,www of incident photon; set in colidp

R R R R I I I I I I I b I I b E I I b b b b b b b b i

sample from each species of emitted particle

get particle type and check for transport

ipt=ixs (lixs+1l, jp, iex)

if (kpt(ipt).eqg.0.o0r.fiml (ipt) .eqg.zero.or.ipt.gt.3)
go to 120

determine the total production cross-section for this particle

1b=0
tp=acepxs (ixs (lixs+3, jp,iex), ktc (kktc+l, iex),
rtc (krtc+l, iex), 0, 1b)

if outside valid range, try next particle type
if (lb.ne.0) go to 120

determine the average number of particles emitted
fp=tp/rtc(krtc+2, iex)
np=int (rang () +fp)

if no particles are sampled, try next particle type
if (np.eg.0) go to 120
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check to see if new particle is inside a dxtran sphere
1dx=0
do 40 nd=1,ndx (ipt)
ds= (xxx-dxx(ipt,1l,nd))**2+
(yyy-dxx (ipt, 2,nd)) **2+
(zzz-dxx (ipt,3,nd) ) **2
if (ds.lt.dxx(ipt,5,nd)) idx=nd
continue

reset the default weight
wgt=wg

use weight windows to control weight of emitted particles
works here only if there is a single weight-window
energy-group for the secondary particle
(otherwise, i.e. for multiple energy-groups,
check after sampling)
if (idx.eqg.0 .and. nww(ipt).eg.l .and.
(abs (wwp (ipt, 4)) .eqg.one.or.wwp (ipt,5) .1lt.zero)) then
ww=wwval (ipt,icl,1,1)
if (ww.lt.zero) then
negative weight window kills particle

paxtc(l,4,ipt)=paxtc(l,4,ipt)+1.0
paxtc(2,4,ipt)=paxtc(2,4,ipt) +twgt
paxtc(4,4,ipt)=paxtc(4,4,ipt)+1.0
paxtc (5,4, ipt)=paxtc (5,4, ipt) +twgt

go to 120
elseif (ww.eg.zero) then
zero weight window does nothing
continue
elseif (wgt.lt.ww) then
russian roulette particles below the weight window
ws=min (wgt*wwp (ipt, 3) , ww*wwp (ipt, 2))
mr=0
do 50 ir=1,np
if (rang() *ws.gt.wgt) mr=mr+l
continue
np=np-mr
wgt=ws
elseif (wgt.gt.wwp (ipt,1l) *ww) then
split particles above the weight window
nw=nint (min (wwp (ipt, 3) ,wgt/ (ww*wwp (ipt,2))))

wgt=wgt/nw
np=np*nw
endif

endif
if (np.eg.0) go to 120

sample emission parameters for each particle

do 110 ii=1,np

determine from which reaction to sample the particle
nr=ixs (lixs+2, jp, iex)
if (nr.eqg.l) then
ixre=1
else
generate a random production xs to sample too
mp=0
is=ixs (lixs+8, jp, iex)
rx=tp*rang ()

loop over the available reactions until xs fulfilled
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80

Q0000000 Q
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do 90

re
ks

ha

if

el

ha
el

ixre=1,nr

trieve the next yield block offset locator
=nint (xss(ixs (lixs+7,jp, iex)+ixre-1))

ndle the different reaction yield blocks by MFTYPE

(nint (xss (is+ks-1)).eq.6 .or.

nint (xss(is+ks-1)) .eq.12 .or.

nint (xss(is+ks-1)) .eq.16) then

MFTYPE 6, 12 or 16 - erg. dependent MT multiplier
data is in format:

xss (istks-1) = MFTYPE - reaction type indicator
xss (is+ks) = MTMULT - MT reaction applied to
xss (is+ks+...) std. energy/data table entries

NR, [NBT(i:i=1..NR), INT(i:i=1..NR),]
NV, E(i:i=1..NV), Y(i:i=1..NV)

get yield value for incident photon energy
yd=acefcn (is+ks+1l,ei, 1n)

look up pointer to MT reaction xs data
do 70 im=1,nxs (lnxs+4, iex)

if ( nint(xss(is+ks)) .eq.
nint (xss(jxs(ljxs+6,iex)+im-1)) ) then
go to 80
endif
continue

if fell through loop, exit complaining about data
im=0
call zaid(2,ht,ix1(1lix1l+1,iex))
call errprn(l,im,2,zerot+ixre, xss(is+ks),

'IXR', 'MT', 'cound not find mt for yield'

//'" multiplier. zaid = '//ht)
call expirx(l, 'coldpn',

'contact nucldata@lanl.gov for assitance')
return

look up reaction XS using MT index im found above
continue
ix=jxs (1ljxs+9,iex)
kx=nint (xss(jxs (1ljxs+8,iex)+im-1))
xs=acepxs (ix+kx-1, ktc (kktc+l, iex),

rtc(krtc+l, iex),0,1b)

compute partial prod xs from yield and reaction xs
px=yd*xs

seif (xss(istks).eq.13) then
MFTYPE 13 - Partial production cross section data
data is in format:

xss (is+ks) = MFTYPE - reaction type indicator
xss (istks+l) = ie - index of first value

xss (is+tks+2) = nv - number of values listed

xss (is+ks+3..is+ks+2+nv-1) = pxs(ie..ie+nv-1)

find the partial production xs for this reaction
px=acepxs (is+ks+1, ktc (kktc+l, iex),
rtc(krtc+l, iex),0,1b)

ndle an undefined reaction type MFTYPE
se
im=0
call zaid(2,ht,ix1(lix1l+1,iex))
call errprn(l,im, 2, zero+ixre,xss (is+ks-1),
'"IXR', '"MFT', 'cound not find MFTYPE.'
//' zaid = '//ht)
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call expirx(l, 'coldpn',
'contact nucldata@lanl.gov for assitance')
return
endif

if the partial XS has been fulfilled, use this rx
rX=rx-px
if (rx.1lt.0.) go to 100

if problem sampling reaction, print a warning
if (ixre.ne.ixs(lixs+2,jp,iex)) go to 90
call zaid(2,ht,ixl (1ixl+1,iex))
call errprn(l,mp,4,erqg,zero, 'ERG',"' ',
' reaction mt not found. collision resampled.'
//"' zaid = '//ht//'.")
npum=npum+1
if (mp.1t.100) go to 60

if reaction still not found,
exit complaining about data
call expirx(l,'coldpn',
'contact nucldata@lanl.gov for assitance')
return

end of loop over partial reactions

continue
endif

ixre now set to the sampled reaction
continue

set up pointers for call to acecas
erg=ei

ipsc=0

npa=1

mtp=nint (xss(ixs (lixs+5, jp,iex) +ixre-1))
ntyn=nint (xss (ixs (lixs+6, jp, iex) +ixre-1))
ia=ixs (lixs+10, jp, iex)

ka=nint (xss(ixs (lixs+9, jp, iex) +ixre-1))
id=ixs (lixs+12,jp, iex)

kd=nint (xss (ixs (lixs+11l, jp,iex) +ixre-1))

sample a new particle

call acecas(l1l,2,zero,ia,ka,id, kd)

erg=colout(1l,1)
vel=slite*sqgrt (erg* (erg+2.*gpt (ipt))) / (erg+gpt (ipt))
call rotas(colout(2,1),uold,uuu,lev,irt)

if (kdb.ne.0) return

update the various summary tables

update summary for particle creation
paxtc(l,17,ipt)=paxtc(l,17,ipt)+1.0
paxtc(2,17,1ipt)=paxtc(2,17,ipt) +wgt
paxtc(3,17,1ipt)=paxtc (3,17, ipt) +twgt*erg

update the particle creation weight balance for this cell
pwb (kpwb+ipt, 21, icl)=pwb (kpwb+ipt,21,icl)+wgt

update the nuclide activity summaries

if (ipt.eqg.1l) then
update photoneutron production summary
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pan (kpan+3, 6, mpan) =pan (kpan+3, 6, mpan) +1.0

pan (kpan+3, 7, mpan) =pan (kpan+3, 7, mpan) +wgt

pan (kpan+3, 8, mpan) =pan (kpan+3, 8, mpan) +twgt*erg
else if (ipt.eqg.2) then

update photophoton production summary

pan (kpan+3, 3, mpan) =pan (kpan+3, 3, mpan) +1.0

pan (kpan+3, 4, mpan) =pan (kpan+3, 4, mpan) +wgt

pan (kpan+3, 5, mpan) =pan (kpan+3, 5, mpan) +twgt*erg
endif

check for energy cutoff

if (erg.lt.elc(ipt)) then
paxtc(4,2,ipt)=paxtc(4,2,ipt)+1.0
paxtc(5,2,ipt)=paxtc(5,2,ipt) twgt
paxtc (6,2, ipt)=paxtc(6,2,ipt)+twgt*erg
pwb (kpwb+ipt, 4, icl) =pwb (kpwb+ipt, 4,icl) -wgt
go to 110

endif

force kalbach-chadwick or isotropic for calcps
as called in dxtran or tallyd
ipsc=999 will fatal error any other reaction
if (ipsc.eqg.14) then
ipsc=17
elseif (ixcos.eqg.0) then
ipsc=106
else
ipsc=999
endif

check for contribution to dxtran spheres

if (ndx(ipt) .ne.0) then
only if not in the sphere or more than one exists
if (ndx(ipt).gt.l.or.idx.eqg.0) call dxtran
if (kdb.ne.0) return

endif

check for contribution to detector tallies
if (ndet (ipt) .ne.0) then

call tallyd

if (kdb.ne.0) return
endif

use weight-windows to control weight of banked particles
only do this is there are multiple energy-groups for
this secondary particle type
if (idx.eq.0 .and. nww(ipt).gt.l .and.
(abs (wwp (ipt, 4)) .eqg.one.or.wwp (ipt,5) .1lt.zero)) then
ic=0
iw=nww (ipt)
if (iw-ic.ne.l) then
ih=(ic+iw) /2
if (erg.lt.wwe (lwwe+ih+mww (ipt))) then
iw=ih
else
ic=ih
endif
go to 1000
endif
ww=wwval (ipt,icl,iw, 1)
if (ww.lt.zero) then
negative weight window kills particle
update summaries to indicate weight window activity
paxtc(4,4,ipt)=paxtc(4,4,ipt)+1.0
paxtc (5,4, ipt)=paxtc (5,4, ipt) +twgt
paxtc (6,4, ipt)=paxtc (6,4, ipt)+twgt*erg
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pwb (kpwb+ipt, 6,icl) =pwb (kpwb+ipt, 6,1icl) -wgt
go to 110
elseif (ww.eqg.zero) then
zero weight window does nothing
continue
elseif (wgt.lt.ww) then
russian roulette particles below the weight window
ws=min (wgt*wwp (ipt, 3) , ww*wwp (ipt, 2))
rr=rang()
if (rr*ws.lt.wgt) then
paxtc(2,4,ipt)=paxtc(2,4,ipt)+ (ws-wgt)
paxtc (3,4, ipt)=paxtc(3,4,ipt)+ (ws-wgt) *erg
pwb (kpwb+ipt, 6, icl) =pwb (kpwb+ipt, 6,1icl) + (ws-wgt)
wgt=ws
else
paxtc (4,4, ipt)=paxtc(4,4,ipt)+1.0
paxtc (5,4, ipt)=paxtc (5,4, ipt) +twgt
paxtc(6,4,ipt)=paxtc(6,4,1ipt)+twgt*erg
pwb (kpwb+ipt, 6,icl) =pwb (kpwb+ipt, 6,1icl) -wgt
go to 110
endif
elseif (wgt.gt.wwp (ipt,1l) *ww) then
split particles above the weight window
npa=nint (min (wwp (ipt, 3) ,wgt/ (ww*wwp (ipt,2))))
paxtc (4,4, ipt)=paxtc(4,4,ipt)+ (npa-1.0)
wgt=wgt/npa
endif

endif

bank the new particle for transport
call bankit (27)

end of loop generate np particles of type ipt

end of loop over all particle emissions
RR R R Rk kI b b b b b b b b b b b b b b b b b b b b b b b b b b b b b i

continue

R R R R I I I I b I b I I I I R b I E E I b I b b E I b b b E b b b I I I I b I I i

retrieve incident photon and continue
KAk khkhhkhkhkhhkhhhkhhhhhhhkhhhhhhhhhkhhhhhhhkhhkhhh bk hhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhhkhx*k
call retrpt
nter=nt
return
end

*/ R R R I I I I R R I I I b E b I b b I E I I I I h I b E I I I b I b b i

*/ Add subroutine expgpn

*/ RR Rk Ik kb b b b b I b b b b b b b b b b b b h b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i

*/
*deck xu
subroutine expgpn
c remove unneeded data from table type u
c still to be written
*call cm
c
return
end
*/

*/ R R R I I I I I I I b I R I I I I I R I b b I E I I I E E e E I b b E I I b I h b b i

*/ Add subroutine pnctot

*/ RR Rk Ik kb b b b b b b b b b b kb h b b b h b b b b b b b b b b bk kb b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i

*/

*deck nt
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subroutine pnctot (mk)

c calculate the photonuclear cross section in material mk
c
c local variables: ii - isotope index, it - table index,
c ih - upper energy index, il - lower energy index,
c
c global variables:
c jmd - material isotope indices
c Imn - photonuclear isotope table indices
¢} erg - current photon energy
c pnt (mk) - the lowest photonuclear threshold in material mk
c ktc(l,table) - table index above current energy
c ktc(2,table) - flag to warn about energy out of table bounds
c rtc(l,table) - current linear table interpolation factor
c rtc(2,table) - current total cross section
c rtc(6,table) - current energy being interpolated
c
*call cm
c
totpn=zero
c
c if below photonuclear threshold for material, return
if (erg.le.pnt (lpnt+mk)) return
c
c calculate/accumulate the cross sections by nuclide in material
do 20 ii=jmd (ljmd+mk),jmd (ljmd+mk+1)-1
it=lmn (1lmn+ii)
if(it.eq.0)go to 20
if(erg.eqg.rtc(krtc+6,it))go to 10
rtc(krtc+6,it)=erg
c
c find index of current energy
il=9xs(ljxs+l,it)
ih=il+nxs (lnxs+3,it) -1
call bnsrch(erg,il,ih, ktc (kktc+2,it))
c
c if in the table range, store the values normally
if (ktc(kktc+2,it) .eq.0) then
ktc (kktc+l,it)=ih-jxs (1jxs+1l,1it)
rtc(krtc+l,it)=(erg-xss(il))/ (xss (ih)-xss (il))
k=ktc (kktc+l,it)+jxs(ljxs+2,1it)
rtc(krtc+2,it)=(xss (k) -xss(k-1))*rtc(krtc+l,it) +xss (k-1)
c
c if above last energy value, use boundary values
else if (ktc(kktc+2,1it).gt.0)then
ktc(kktc+l,it)=1i1-jxs(ljxs+1,it)
rtc(krtc+l,it)=0.0
rtc(krtc+2,it)=xss (jxs (ljxs+2,1it) +ktc (kktc+l,it))
c
c if below photonuclear threshold, use zero values
else
ktc(kktc+1l,1it)=0
rtc(krtc+l,it)=0.
rtc(krtc+2,it)=0.
endif
c
c accumulate the photonuclear microscopic xs for the material
10 continue
totpn=totpn+rtc (krtc+2,it) *fme (1fme+ii)
20 continue
c
c add totpn to totm for distance to collision calculations
totm=totm+totpn
return
end
*/

*/ R R R I I I I I I I b I R I I I I I R I b b I E I I I E E e E I b b E I I b I h b b i

*/ Add subroutine retrpt

*/ RR Rk Ik kb b b b b b b b b b b kb h b b b h b b b b b b b b b b bk kb b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i
*/
*deck gr
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*/

subroutine retrpt
retrieve the current particle parameters from the particle bank

cm

retrieve the integer variable parameters
do 10 i=1,1lpblcm

Jpblcm (i)=jpb9cm (npb, i)
continue

retrieve the real variable parameters
do 20 i=1,npblcm

gpblcm (i) =gpb9cm (npb, i)
continue

decrement the stack counter
npb=npb-1

return
end

*/ RR R R Ik kb b b b b kb b b b b b b b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b i

*/ Add subroutine savept
*/ KAk khkhhkhhkhhkhhhkhhhhhhhkhhhhh kb hhhhhhhkhhkhhhhhhhkhhkhhhhhkhhkhkhhkhkkhkhkhkhkhkhkhrkhkhkhhhkhx

*/

*deck gs
subroutine savept

c save the current particle parameters to the particle bank

c

*call cm

c

c increment the stack counter
npb=npb+1

c

c save the real variable parameters
do 10 i=1,npblcm

gpb9cm (npb, 1) =gpblcm (i)

10 continue

c

c save the integer variable parameters
do 20 i=1,lpblcm

Jpb9cm (npb, i) =jpblcm (i)

20 continue

c
return
end

*/

*/ RR R Rk kb b b b b b b b b b b b b b b b b b b b b b b b b kb b bk b b b b b b b b b b b b b b b b b b b b kb b b b b b ik b b i

*/ Add subroutine tbl130

*/ R R R I I I I I I I I I R R I I I E R I b I b I E I I I E I I I b E R I I h b i

*/
*deck t3
subroutine tb1l130
c print weight balance for each particle in each cell
*call cm
c
c RR R R Ik ke kb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b e b b b b b b b b b b b b b b b b b b b kb b
c print table 130 is the weight balance for each particle type
c in each cell such that one table exists for each particle
c
c the table consists of a set of header information, an external
c events section, a variance reduction event section, a
c physical events section and footer information for each cell
c print table 130 currently consists of:
c 1h = 3 lines of header information
c le = 9 lines of external event information
c 1v = 11 lines of variance reduction event information
c physical events are particle specific
dimension lp (mipt)
c lp(l) = 10 lines of neutron physical event information
c 1lp(2) = 13 lines of photon physical event information
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1p(3) = 10 lines of electron physical event information
1f 4 lines of footer information
max 40 total lines in the print matrix

data nr/40/

cells are printed across the page left to right with a total
over all cells being printed last; only x number of cell
columns can be printed per page and therefore multiple prints
of the table may be necessary to print all cells
standard row width is 132 char. columns
the row header is 16 characters (1 space and 15 chars.)
that leaves room for 9 12 char. data values to be written
this sets the max number of data column values, nc, to 9

data nc/9/

there are 3 subtotals and 1 total computed for each
column; these values are stored only per matrix print
*** make sure the 9 below matches nc above

dimension st (4,9)

the partial tables are constructed in a character variable
matrix containing the maximum number of cells; the partial
table is then dumped to output as needed when it is full
thus the total storage for the maximum entire matrix is
40 rows (check against nr above)

9 data columns (check against nc above)
row headers are printed into character variable hb
data values are printed into character variable ha
character ha(40,9)*12,hb (40) *15

RR R Rk kb b b b b b b b b b b b b b b b b b h b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

loop over each particle type
do 110 ip=1,mipt

skip particle type if not being transported
if (kpt(ip) .eq.0)go to 110

write the appropriate print table header

write (iuo,10)hnp (ip)

format (1hl,a8,28h weight balance in each cell, 80x,
15hprint table 130)

compute the total weight balance over all cells
do 20 j=1,21
pwb (lpwb+ip, j, mxa+1l)=zero
continue
do 30 j=1,21
do 30 k=1,mxa
the next line is needed to prevent partial weights (e.g.
weight entering zero importance cell) from being added
to the totals
if (fim(lfim+ip, k) .eqg.zero)go to 30
pwb (lpwb+ip, j, mxa+1)=pwb (lpwb+ip, j, mxa+1) +pwb (lpwb+ip, j, k)
continue

initialize the print matrix, sub/totals and column counter
do 40 i=1,nr
do 40 j=1,nc
ha(i,j)=""
hb(i)=" "
continue
do 50 i=1,4
do 50 j=1,nc
st (i,j)=zero
continue
kc=0

loop over all cells (and the total), printing the

matrix as it fills
do 100 ic=1,mxa+l
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Q00

skip any cells with
if(fim(1fim+ip,ic) .e
kc=kc+l

RR R Rk ok Ik Ik b b b b b b b b b i

a zero importance

g.zero.and.ic.ne.mxa+tl)go to 100

R R R R Rk ki ik kb b b i

write the table header information

1ls is the start line
1s=0
if (kc.eq.l) then
1lh is the number
1h=3
leave hb(ls+1l) Dbl
write (hb(1s+2), ' (
write (hb(1s+3), "' (
endif
the header is the in
if (ic.lt.mxa+1l) then
leave ha(ls+1, kc)

write (ha(ls+2,kc),
write (ha(ls+3,kc),

for this table section

of table header lines

ank
als) ")
als) ")

cell index'
cell number'

dex/name or total
blank

' (4x,15,3x) ") ic
'(4x,15,3x%x) ")ncl (1lncl+ic)

else
leave ha(ls+1l,kc) blank
leave ha(ls+2,kc) blank
write (ha(ls+3,kc), "' (4x,a5,3x)") "total"

g WwN

Q

endif

R R Rk kb b b b b kb b b b b kb b b b b b b b b b b b b b b b b b b b i

write the external event headers and data
ls=1s+1lh
if (kc.eq.l) then
le is the number of external event lines
le=9

leave hb(ls+1l) blank

write (hb(ls+2),"'(al5)"') 'external events'

write (hb(1s+3),"'(al5) ")’ entering'

write (hb(ls+4),"'(al5)")" source'

write (hb(ls+5),'(al5)')' energy cutoff'

write (hb(ls+6),"'(al5)")" time cutoff'

write (hb(ls+7),"'(al5)")" exiting'

write (hb(ls+8),'(al5)")" '

write (hb(1s+9),"' (al5)")" subtotal '
endif
leave ha(ls+1l,kc) blank
leave ha(ls+2,kc) blank
write (ha(1ls+3,kc), ' (1lpel2.4) ') pwb (lpwb+ip,1,ic)*fpi
write (ha(ls+4,kc), ' (1lpel2.4)"')pwb (lpwb+ip,2,1ic) *fpi
write (ha(1ls+5,kc), ' (1lpel2.4) ') pwb (lpwb+ip, 3,1ic) *fpi
write (ha(ls+6,kc), ' (1lpel2.4) "')pwb (lpwb+ip,4,1ic) *fpi
write (ha(ls+7,kc), ' (1lpel2.4) ') pwb (lpwb+ip,5,1ic) *fpi
write (ha(ls+8,kc),'(lal2)'")' —-————-————-
t(1l,kc)=fpi*(

pwb (lpwb+ip, 1,1ic)
pwb (lpwb+ip,2,ic)
pwb (lpwb+ip, 3,ic)
pwb (lpwb+ip, 4,1ic)
pwb (lpwb+ip, 5,1ic)

a(ls+9, kc) (1,kec)

write (h , " (lpel2.4)")st

RR R R E kb b b b kb b b b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b b

write the variance reduction headers and data
ls=1ls+le
if (kc.eqg.1l)then
lv is the number of variance reduction event lines
lv=11

leave hb(ls+1l) blank

write (hb(ls+2),"'(al5)"') 'var.red. events'
write (hb(1s+3),"'(al5)'")'"' weight window'
write (hb(ls+4),"'(al5)")" cell imp.'
write (hb(1ls+5),'(al5)"')' weight cutoff'
write (hb(ls+6),"'(al5)")" energy imp.'
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pwb (lpwb+ip, 10, ic
pwb (lpwb+ip,11, ic
pwb (lpwb+ip, 12, ic)
1s+11, kc),

write (hb(ls+7),"'(al5)")"'
write (hb(1s+8),'(al5)")"
write (hb(1s+9),"'(al5)")"'
leave hb(1s+10) blank
write (hb(ls+11),"'(al5)"')"
endif
leave ha(ls+1l,kc) blank
leave ha(ls+2,kc) blank
write (ha(1ls+3,kc), ' (1lpel2.4)"
write (ha(ls+4,kc), ' (1lpel2.4)"
write (ha(ls+5,kc), ' (1lpel2.4)"
write (ha(ls+6,kc), ' (1lpel2.4)"
write (ha(ls+7,kc), ' (lpel2.4)"
write (ha(1ls+8,kc), ' (1lpel2.4)"
write (ha(1ls+9,kc), ' (1lpel2.4)"
wr1te(ha(ls+10,kc),'(a12) ) !
t(2 kC) fpi*(
wb (lpwb+ip, 6,1ic) +
wb (lpwb+ip, 7,1ic) +
pwb lpwb+ip, 8,1ic) +
+
)
)

(
(
(

pwb (lpwb+ip, 9,ic)
( +
( +
( )
a(

write (h '(lpel2.4)

dxtran'
forced coll.'
exp. trans.'

subtotal '

lpwb+ip, 6,1ic) *fpi
lpwb+ip, 7,1ic) *fpi
lpwb+ip, 8, ic) *fpi
lpwb+ip, 9,1ic) *fpi
lpwb+ip,10,ic) *fpi
lpwb+ip,11,ic) *fpi
lpwb+ip,12,ic) *fpi

pwb

o]
=
o

"Yst (2, ke)

RR R Rk ik kb b b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 3

write the physical event section by particle type

write the neutron physical event header and data

if(ip.eqg.1l) then
ls=1ls+1lv
if (kc.eq.1l)then
lp(l) is the number of

1p(1)=10
leave hb(ls+1l) blank
write (hb(1s+2),"'(al5)")
write (hb(1s+3),"'(al5)")
write (hb(ls+4),"'(al5)")
write (hb(1s+5),"'(al5)")
write (hb(1ls+6),"'(al5)")
write (hb(ls+7),"'(al5)")"
write (hb(1s+8),'(al5)")"
leave hb(1ls+9) blank
write (hb(1ls+10), "' (alb)
endif
leave ha(ls+1l,kc) blank
leave ha(ls+2,kc) blank
write (ha(1ls+3,kc), ' (1lpel2.
write (ha(ls+4,kc), ' (1lpel2.
write (ha(ls+5,kc), ' (1lpel2.
write (ha(ls+6,kc), "' (lpel2.
write (ha(ls+7,kc), ' (1lpel2.
write (ha(1ls+8,kc), ' (1lpel2.
write (ha(ls+9,kc),"'(al2)")"
t (3, kc)=fpi*(

pwb (lpwb+ip, 13, ic) +
pwb (lpwb+ip, 14, ic) +
pwb (lpwb+ip, 15,1ic) +
pwb (lpwb+ip,16,ic) +
pwb (lpwb+ip,17,1ic) +
pwb (lpwb+ip, 21, 1ic))

a(

write (ha(ls+10, kc)

, " (lpel2.4) ")st

neutron physical event lines

'physical events'
(n,xn) "'

fission'
! capture'
' loss to (n,xn)’'
loss to fission'
(gamma, xn) '

" subtotal '

pwb
pwb
pwb
pwb

lpwb+ip,13,ic) *fpi
lpwb+ip,14,ic) *fpi
lpwb+ip,15,ic) *fpi
lpwb+ip,16,1ic) *fpi
pwb (lpwb+ip,17, ic) *fpi
pwb (lpwb+ip, 21, ic) *fpi

(3,kc)

write the photon physical event header and data

else if(ip.eqg.2)then
ls=1ls+lv
if (kc.eq.l) then

1p(2) is the number of photon physical event lines

1lp(2)=13
leave hb(ls+1l) blank

447



W o Jo Ul b WN -

oUW N

write (hb(ls+2), '(al5)"')"
write (hb(1ls+3), '(al5)')'
write (hb(ls+4), '(alb)"')
write (hb(1ls+5), '(a15)')
write (hb(ls+6), '(al5)"')"
write (hb(1ls+7), '(alb)')'
write (hb(1s+8), '(al5)"')' pe.
write (hb(1s+9), '(alb5)"')
write (hb(1ls+10),"'(al5)"')"
write (hb(ls+11), "' (alb)"')"
leave hb(ls+12) blank
write (hb(ls+13),"'(al5)")" subtotal
endif
leave ha(ls+1l,kc) blank
leave ha(ls+2,kc) blank
write (ha(1ls+3,kc), '(lpel2.4)')pwb
write (ha(ls+4,kc), '(lpel2.4)')pwb
write (ha(ls+5,kc), '(lpel2.4)"')pwb
write (ha(ls+6,kc), '(lpel2.4)')pwb
write (ha(ls+7,kc), '(lpel2.4)')pwb
write (ha(1ls+8,kc), '(lpel2.4)')pwb
write(ha(ls+9,kc), '(lpel2.4)"')pwb
write (ha(ls+10,kc), ' (1lpel2.4) ') pwb
write (ha(ls+11,kc), ' (1lpel2.4)")pwb
wr1te(ha(ls+12,kc) '(al2)'")' ————————-—
t (3, kc)=fpi*(
pwb (lpwb+ip, 13, 1ic) +
pwb (lpwb+ip, 14, 1ic) +
pwb(lpwb+ip,15,ic)+
pwb (lpwb+ip, 16, 1ic) +
pwb (lpwb+ip,17, ic) +
pwb (lpwb+ip, 18, ic) +
pwb (lpwb+ip, 19, ic) +
pwb (lpwb+ip, 20, 1ic) +
pwb (lpwb+ip,21,1ic))
write(ha(ls+13,kc), "' (lpel2.4)")st(3,kc)

physical events'
from neutrons'
' bremsstrahlung'
' p-annihilation’
electron x-rays'
flourescence'

'pair production’
pn. absorbtion’
(gamma, xgamma) '

lpwb+ip,13,ic) *fpi
lpwb+ip,14,ic) *fpi
lpwb+ip,15,1ic) *fpi
lpwb+ip,16,1ic) *fpi
lpwb+ip,17,ic) *fpi
lpwb+ip,18,ic) *fpi
lpwb+ip,19,ic) *fpi
lpwb+ip,20,1ic) *fpi
lpwb+ip,21,ic) *fpi
L}

write the electron physical event header and data

else if (ip.eqg.3)then
ls=1ls+1lv
if (kc.eqg.1l)then

1p(3) is the number of photon physical event lines

1p(3)=10

leave hb(ls+1l) blank

write (hb(1s+2), '(alb)'

write (hb(1s+3), '(alb5)')"

write (hb(ls+4), '(alb)')'

write (hb(ls+5), '(

write (hb(ls+6), '(alb)'

write (hb(ls+7), '(alb)"'

write (hb(1s+8), '(alb5)"')"

leave hb(1ls+9) blank

write (hb(1ls+10), "' (al5)"')"
endif
leave ha(ls+1,kc) blank
leave ha(ls+2,kc) blank
write(ha(ls+3,kc), "' (lpel2.4)")pwb (
write (ha(ls+4,kc), ' (1lpel2.4) ") pwb (
write (ha(ls+5,kc), ' (1lpel2.4) ") pwb (
write(ha(ls+6,kc), "' (lpel2.4)")pwb (
write (ha(ls+7,kc), "' (1lpel2.4) ") pwb(
write (ha(1ls+8,kc), ' (1lpel2.4) ") pwb (
write (ha(ls+9,kc),'(al2)'")' —-————-————- '
t (3, kc)=fpi*(

pwb (lpwb+ip, 13, ic) +
pwb (lpwb+ip, 14, ic) +
pwb (lpwb+ip, 15,1ic) +
pwb (lpwb+ip,16,ic) +
pwb (lpwb+ip,17, ic) +
pwb (lpwb+ip, 18, 1ic))

a(

write (ha(ls+10, kc),
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subtotal

'(lpel2.4) ")st (3,kc)

) ') 'physical events'
) ') 'pair production’
)')' compton recoil'
al5)')' photo-electric'
)" photon auger'
)') ' electron auger'
)"

lpwb+ip,15,ic
lpwb+ip, 16, ic
lpwb+ip,17,1ic) *fpi
lpwb+ip,18,ic) *fpi

lpwb+ip,13,ic) *fpi
lpwb+ip,14,ic) *fpi

*fpi

)
)
)
) *fpi
)
)
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*/

endif

khkhkkhkhhkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhhkhkhkhkhkkhkhrkhkhkhkkhhkx
write the table footer information
1s=1s+1p (ip)
if (kc.eq.l) then
1f is the number of table footer lines

1f=4
leave hb(ls+1l) blank
leave hb(ls+2) blank
write (hb(1s+3),"'(al5) ")’ total '
leave hb(ls+4) blank
endif

leave ha(ls+1l,kc) blank

write (ha(ls+2,kc),'(al2)")' -——-——-—--—- '
st (4,kc)=st (1,kc)+st(2,kec)+st (3, kc)

if (abs (st (4,kc)) .1lt.1le-10)st (4, kc)=zero
write(ha(ls+3,kc), "' (lpel2.4)")st(4,kc)
leave ha(ls+4,kc) blank

R R R R R I I b b b b b b I b E I I E b I ik I E I b b h E E b b b b i

if print matrix full or last cell reached, write the
print matrix to the output file and reinitialize
if(kc.eq.9.0r.ic.eqg.mxa+l) then
do 70 il=1,lh+le+lv+lp (ip)+1f
write (iuo,60)hb(il), (ha(il,i),i=1,9)
format (1x,al5,9%al2)
continue
do 80 i=1,nr
do 80 j=1,nc
ha(i,j)=""
continue
do 90 i=1,4
do 90 j=1,nc
st (i,j)=zero
continue
kc=0
endif

RR R R R Ik Ik kb b b b b b b b b b b b

end of loop over cells
continue

RR R R Rk kb kb b b b b b b b b b b b b b b b i

end of loop over particles
continue

return

end

*/ R R R I I I I I I I I I R R I I I E R I b I b I E I I I E I I I b E R I I h b i

*/ Add subroutine tbl140

*/ RR Rk Ik ik Ik b b b b b I b b b b b b b b h b b b h b b b b b b b kb b b kb b b b b b b b b b b b b b b b b b b b b b b b b b b ik b b b

*/

*deck t4

Q *xQ
Q
V1)
[
=

Q00000000000

subroutine tbl1140
print neutron/photon activity of each nuclide in each cell
cm

R R R R I I I I I b I I I R b I E E b I b I R I I b IE b b b I I b I b I i
print table 140 is the activity of each nuclide in each cell
for neutron and/or photon collision statistics
current nuclide table types are:
type 'c', 'd' & 'm' for neutron events
type 'p' & 'g' for photoatomic events
type 'u' for photonuclear events

R R R I I I I I I I I I I I I R R b I E I I b I I I I I IE b b E b b I I b I i

local variable declarations

array for holding sum totals
parameter (kt=9)
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dimension t (9)

character storage for cell headers
character hh(2)*6

character storage for current table name
character hn*10

character storage of common header labels
parameter (ka=4)
character ha(2,4)*12

data ha/

1 ' cell', ' index',

2 ' cell', ' name',

3 ! nuclides"', vy,

4 ! atom', ' fraction'/

character storage for neutron table header labels
parameter (kb=8)
character hb(2,8)*12

data hb/

1 ' total', ' <collisions',
2 ' collisions', ' * weight',
3 ! wgt. lost', ' to capture',
4 ! wgt. gain', ' by fission',
5 ' wgt. gain', ' by (n,xn)"',
6 ' tot p', ' produced',
7 ! wgt. of', ' p produced',
8 ! avg p', ' energy'/

character storage for photoatomic table header labels
parameter (kc=3)
character hc(2,3)*12

data hc/

1 ' total', ' <collisions',
2 ' collisions', ' * weight',
3 ! wgt. lost', ' to capture'/

character storage for photonuclear table header labels
parameter (kd=8)
character hd(2,8)*12

data hd/

1 ' total', ' <collisions',
2 ' collisions', ' * weight',
3 ' tot p', ' produced’,
4 ! wgt. of', ' p produced',
5 ! avg p', ' energy',
6 ' tot n', ' produced',
7 ' wgt. of', ' n produced',
8 ! avg n', ' energy'/

RR R Rk h kb bk b b b b b b b b b b b b b b h b b b b b b b b b b b b b b bk b b b b b b b b b b b b b b b b b b b b 3k b b

if there are no table nuclides in problem, don't print
if (mxe.eq.0)return

RR R Rk kb b b kb b b b b b I b b b b b b b h b b b b b b b b b b b b b b b b e kb b b b b b 3h b b b b b b b b b b b b b b

if neutrons are transported, print the neutron nuclide info
if (kpt(l).ne.0)then

RR R Rk Ik b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

neutron nuclide table header for print by cell
write (iuo, ' (1hl,a47,al9,50x,al5/)")

1 'neutron activity of each nuclide in each cell, ',
2 'per source particle',
3 'print table 140'
write (iuo, ' (1lx,2a6,all,a9,8al2)")
1 (ha(l,i),i=1,%ka), (hb(1,1i),1i=1,kb)
write (iuo, ' (1x,2a6,all,a9,8al2)")
1 (ha(2,1),1i=1,ka), (hb(2,1),1=1,kb)

initialize the sum totals
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do 10 i=1,kt
t(i)=zero
10 continue

c loop over all cells
do 20 ix=1,mxa
im=mat (lmat+ix)

c
c if void material or zero importance cell, go to next cell
if(im.eqg.0.or.fim(1fim+1,ix) .eq.0)go to 20
c
c set up for next cell print
write (iuo, ' (1x) ")
write(hh(1l),'(i6)")ix
write (hh(2),"'(i6)')ncl(lncl+ix)
ip=ipan (lipa+ix)
c
c loop over all nuclides
do 30 ii=jmd(ljmd+im), jmd (ljmd+im+1)-1
it=1lme (1llme+1,ii)
c
c if nuclide has no table, go to next nuclide
if(it.eq.0)go to 30
call zaid(2,hn,ix1l (1ixl+1,1it))
c
c print each nuclide in the cell with associated data
if (pan(lpan+l,7,1ip) .ne.zero) then
el=pan (lpan+l,8,ip) /pan (lpan+l,7,ip)
else
el=zero
endif
write (iuo, ' (1lx,2a6,1x,al0,1pe9.2,112,1p4del2.4,
1 i12,1p2el2.4) ')hh(1),hh(2),hn, fme (1fme+ii),
2 nint (pan (lpan+l,1,ip)),
3 fpi*pan(lpan+l,2,ip),
4 fpi*pan(lpan+l, 3,1ip),
5 fpi*pan(lpan+l,4,ip),
6 fpi*pan(lpan+l,5,ip),
7 nint (pan(lpan+l,6,1ip)),
8 fpi*pan(lpan+l,7,1ip),
9 el
c
c add components to sum total over all cells & nuclides
do 40 i=1,kb
t(i)=t(i)+pan(lpan+l,i,ip)
40 continue
c
c don't print cell info for remaining nuclides
hh(l)=" "
hh(2)=" "
ip=ip+1
c
c end loop over current nuclide
30 continue
c
c end loop over cells printing info by nuclide
20 continue
c
c print the total over all nuclides and all cells
if(t(7) .ne.zero)then
el=t (8)/t(7)
else
el=zero
endif
write (iuo, ' (/8x,5htotal,20x,112,1pdel2.4,i12,2e12.4)")
1 nint (t (1)), (fpi*t(i),i=2,5),nint (Lt (6)),
2 fpi*t(7),el
c
c RR R Rk ik kb Ik e b b b b b b b b b b b b b b b b b b b kb b b b kb b b b b b b b b b b b b b b b b b i
c compute and print the sum over all cells by nuclide
c
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c header for totals by nuclide
write (iuo, ' (//1x,a32,8al2)")

1 'total over all cells by nuclide',
2 (hb(1,1),1i=1,kb)
write (iuo, ' (33x,8al2/)")
1 (hb(2,1),1=1,kb)
c
c loop over each nuclide printing totals
do 50 in=1,mxe
call zaid(2,hn,ix1(lix1+1,1in))
c
c if not a neutron nuclide, go to next table
if(hn(10:10) .ne."'c'.and.
1 hn(10:10) .ne.'d"'.and.
2 hn(10:10) .ne.'m’' ygo to 50
c
c reinitialize the sum totals
do 60 i=1,kt
t(i)=zero
60 continue
c
c loop over all cells, summing this nuclide
do 70 ix=1,mxa
im=mat (lmat+ix)
ip=ipan (lipa+ix)
c
c if void material or zero importance cell, go to next cell
if(im.eqg.0.or.fim(1fim+1,ix) .eq.0)go to 70
c
c loop over all nuclides
do 80 ii=jmd(ljmd+im),jmd (ljmd+im+1)-1
it=1lme (llme+1,1ii)
c
c if not current nuclide, go to next nuclide
if(it.ne.in)go to 80
c
c add current cell total to nuclide sum
do 90 i=1,kb
t(i)=t(i)+pan(lpan+l,i,ip+ii-jmd (1jmd+im))
90 continue
c
c end of loop over nuclides in cell
80 continue
c
c end of loop over cells
70 continue
c
c print the nuclide information summed over all cells
if(t(7) .ne.zero)then
el=t(8)/t(7)
else
el=zero
endif
write (iuo, ' (14x,a10,9x%,112,1p4el2.4,112,2el12.4)")hn,
1 nint(t (1)), (fpi*t (i), i=2,5),nint (t(6)),
2 fpi*t (7),el
c
c end summation and print by nuclide over all cells
50 continue
endif
c
c R R R I I I I b I b I I I I I R b I I IE I b I b E I I IE b b dE I b I b I I i
c if photons are transported, print the photoatomic nuclide info
if (kpt(2) .ne.0) then
2 R R R R R I I b b b b b b b E E E E I b E b I E b b E E b I I i
c photoatomic nuclide table header for print by cell
write (iuo, ' (1hl,a51,al9,46x,al5/)")
1 'photoatomic activity of each nuclide in each cell, ',
2 'per source particle',
3 'print table 140'
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write (iuo, ' (1x,2a6,all,a9,3al2)")
(ha(l,1),i=1,ka), (hc(1l,1),1i=1,kc)
write (iuvo, ' (1x,2a6,all,a9,3al2)")
(

ha(2,1),1i=1,%ka), (hc(2,1),1i=1,kc)

initialize the sum totals
do 110 i=1,kt

t(i)=zero
continue

loop over all cells
do 120 ix=1,mxa
im=mat (lmat+ix)

if void material or zero importance cell, go to next cell
if(im.eq.0.or.fim(1fim+2,ix) .eq.0)go to 120

set up for next cell print
write (iuo, ' (1x)"'")
write(hh(1l),'(i6)"')ix
write(hh(2), "' (1i6) ')ncl (1lncl+ix)
ip=ipan (lipa+ix)

loop over all nuclides
do 130 ii=jmd(ljmd+im), jmd (1jmd+im+1)-1
it=1lme (1llme+2,1ii)

if nuclide has no table, go to next nuclide
if(it.eq.0)go to 130
call zaid(2,hn,ix1(1ix1+1,it))

print each nuclide in the cell with associated data
write (iuo, ' (1x,2a6,1x,a10,1pe9.2,112,1p3el2.4)")
hh(1l),hh(2),hn, fme (1fme+ii),
nint (pan(lpan+2,1,1ip)),
fpi*pan(lpan+2,2,1ip),
fpi*pan (lpant2,3,ip)

add components to sum total over all cells & nuclides
do 140 i=1,kc

t(i)=t(i)+pan(lpan+2,i,ip)
continue

don't print cell info for remaining nuclides
hh(1)=" "

hh(2)=" "

ip=ip+1

end loop over current nuclide
continue

end loop over cells printing info by nuclide
continue

print the total over all nuclides and all cells
write (iuo, ' (/8x,5htotal,20x,112,1p2el2.4)")
nint (t (1)), (fpi*t(i),i=2,3)

R R R R I I I I I b b I b b b I E E I I I I e E E b I b b b IE b b b b 3 b i

compute and print the sum over all cells by nuclide

header for totals by nuclide

write(iuo, ' (//1x,a32,3al2)")
'total over all cells by nuclide',
(hc(1,1),1=1,kc)

write (iuo, ' (33x,3al2/)")
(hc(2,1),1i=1,kc)

loop over each nuclide printing totals

do 150 in=1,mxe
call zaid(2,hn,ix1(1lix1+1,in))
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c if not a photoatomic nuclide, go to next table
if (hn(10:10) .ne.'p'.and.
1 hn(10:10) .ne.'qg" ygo to 150
c
c reinitialize the sum totals

do 160 i=1,kt
t(i)=zero
160 continue

c loop over all cells, summing this nuclide
do 170 ix=1,mxa
im=mat (lmat+ix)
ip=ipan (lipa+ix)

c
c if void material or zero importance cell, go to next cell
if(im.eq.0.or.fim(1fim+2,ix) .eq.0)go to 170
c
c loop over all nuclides
do 180 ii=jmd(ljmd+im), jmd (ljmd+im+1)-1
it=1lme (1llme+2,1ii)
c
c if not current nuclide, go to next nuclide
if(it.ne.in)go to 180
c
c add current cell total to nuclide sum
do 190 i=1,kc
t(i)=t(i)+pan(lpan+2,i,ip+ii-jmd (1jmd+im) )
190 continue
c
c end of loop over nuclides in cell
180 continue
c
c end of loop over cells
170 continue
c
c print the nuclide information summed over all cells
write (iuo, ' (14x,a10,9%,112,1p2el2.4)")hn,
1 nint (t (1)), (fpi*t(i),i=2,3)
c
c end summation and print by nuclide over all cells

150 continue

endif
c
c R R R I I I I I b I I I I I R b I I I I I I I I I I I IE b b b I I b I b I i
c if photons are transported and photonuclear physics is on,
c print the photonuclear nuclide info
if (kpt(2) .ne.0.and.ispn.ne.0) then
2 R R R R I I I I b I b b b b I E I E E E I I b I E b I h dh E b b b b b 3 b i
c photonuclear nuclide table header for print by cell
write (iuo, ' (1hl,a52,al19,45x%,al5/)")
1 'photonuclear activity of each nuclide in each cell, ',
2 'per source particle’',
3 'print table 140'
write (iuo, ' (1x,2a6,all,a9,8al2)")
1 (ha(l,1i),1i=1,%ka), (hd(1,1),1i=1,kd)
write (iuo, ' (1lx,2a6,all,a9,8al2)")
1 (ha(2,1i),1i=1,%ka), (hd(2,1),1i=1,kd)
c
c initialize the sum totals
do 210 i=1,kt
t(i)=zero
210 continue
c
c loop over all cells
do 220 ix=1,mxa
im=mat (lmat+ix)
c
c if void material or zero importance cell, go to next cell

if(im.eq.0.o0or.fim(1fim+2,ix) .eq.0)go to 220
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set up for next cell print

nl=1
write (hh(1),"'(i6)')ix
write(hh(2), "' (1i6) ')ncl (lncl+ix)

ip=ipan (lipa+ix)

loop over all nuclides
do 230 ii=jmd(ljmd+im), jmd (1jmd+im+1)-1
it=1lmn (1lmn+ii)

if nuclide has no table, go to next nuclide
if(it.eq.0)go to 230
call zaid(2,hn,ix1(lix1+1,1it))

print each nuclide in the cell with associated data
if (pan(lpan+3,4,ip) .ne.zero) then
el=pan(lpan+3,5,1ip) /pan(lpan+3,4,ip)
else
el=zero
endif
if (pan(lpan+3,7,ip) .ne.zero) then
e2=pan (lpan+3,8,ip) /pan (lpan+3,7,1ip)
else
e2=zero
endif
if (nl.ne.0) then
write (iuo, ' (1x)"'")
nl=0
endif
write (iuo, ' (1lx,2a6,1x,al0,1pe9.2,112,
el2.4,2(112,2el12.4))")
hh(1l),hh(2),hn, fme (1fme+ii),
nint (pan (lpan+3,1,ip)),
fpi*pan(lpan+3,2,ip),
nint (pan (lpan+3,3,1ip)),
fpi*pan(lpan+3,4,ip),
el,
nint (pan (lpan+3,6,1ip)),
fpi*pan(lpan+3,7,1ip),
e2

add components to sum total over all cells & nuclides
do 240 i=1,kd

t(i)=t(i)+pan(lpan+3,1i,ip)
continue

don't print cell info for remaining nuclides
if (nl.eq.0) then
hh(1l)=" "
hh(2)=" "
endif
ip=ip+1

end loop over current nuclide
continue

end loop over cells printing info by nuclide
continue

print the total over all nuclides and all cells

if(t(4) .ne.zero)then
el=t (5)/t(4)

else
el=zero

endif

if(t(7) .ne.zero)then
e2=t (8) /t(7)

else
e2=zero

endif
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write (iuo, ' (/8x,5htotal,20x,112,1pel2.4,2(112,2e12.4))")
1 nint (t (1)), fpi*t(2),
2 nint (£t (3)), fpi*t(4),el,
3 nint (t(6)), fpi*t(7),e2
c
c RR R Rk kb Ik b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b e b b b b b b 3k b b i
c compute and print the sum over all cells by nuclide
c
c header for totals by nuclide
write (iuo, ' (//1x,a32,8al2)")
1 'total over all cells by nuclide',
2 (hd(1,1i),1i=1,kd)
write (iuo, ' (33x,8al2/)")
1 (hd(2,1),1=1,kd)
c
c loop over each nuclide printing totals
do 250 in=1,mxe
call zaid(2,hn,ix1(lix1+1,1in))
c
c if not a photonuclear nuclide, go to next table
if(hn(10:10).ne.'u')go to 250
c
c reinitialize the sum totals
do 260 i=1,kt
t(i)=zero
260 continue
c
c loop over all cells, summing this nuclide
do 270 ix=1,mxa
im=mat (lmat+ix)
ip=ipan (lipa+ix)
c
c if void material or zero importance cell, go to next cell
if(im.eq.0.or.fim(1fim+2,ix) .eq.0)go to 270
c
c loop over all nuclides
do 280 ii=jmd(ljmd+im), jmd (ljmd+im+1)-1
it=lmn (llmn+ii)
c
c if not current nuclide, go to next nuclide
if(it.ne.in)go to 280
c
c add current cell total to nuclide sum
do 290 i=1,kd
t(i)=t(i)+pan(lpan+3,i,ip+ii-jmd (1jmd+im))
290 continue
c
c end of loop over nuclides in cell
280 continue
c
c end of loop over cells
270 continue
c
c print the nuclide information summed over all cells
if(t(4) .ne.zero)then
el=t (5)/t (4)
else
el=zero
endif
if(t(7) .ne.zero)then
e2=t (8) /t(7)
else
e2=zero
endif
write (iuo, ' (14x,al10,9x,112,1pel2.4,2(1i12,2e12.4)) ')hn,
1 nint(t (1)), fpi*t(2),
2 nint (t(3)), fpi*t(4),el,
3 nint (t(6)),fpi*t(7),e2
c
c end summation and print by nuclide over all cells
250 continue
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endif
return
end
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APPENDIX D
MISCELLANEOUS DATA FROM VALIDATION STUDIES

Introduction

This appendix contains the MCNP input decks and tabular listings of the
numerical data contained in Chapter 4. They are presented in the same order as the
figures in the text with one deck and table corresponding to each graph. The input deck
for each graph is shown at a particular incident electron energy corresponding to a single
point. The input decks for the remaining points are identical except for the value of the
source energy. The table lists the energy, reported value and calculated value for each
point on the corresponding graph.

The reported values come from the two reports discussed in Chapter 4. Swanson
reported his neutron yields per kilowatt second in tabular form. These numbers have
been converted to neutrons per electron. The reported values are listed as (value +
estimated error) with a 20 percent estimated error as given by Swanson. The Barber and
George results were reported as neutrons per electron but only graphically. Their figures
were digitized and the best estimate of energy-yield pairs is presented in the table.
Reported values are listed as above except the estimated error is 15 percent as given by
Barber and George. The calculations were performed using the prototype code version
MCNP4BPN as described in the text. The calculated values are listed as (value & one

sigma absolute error). Note that the calculated uncertainty is a measure of the precision
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of the Monte Carlo simulation. It does not include an estimate of the uncertainty in the
data or the model.

The last three input decks and tables contain the information used to study the
effects of variations in actual versus reported parameters for the Barber and George
study. The baseline case is the Ta-I target at the 28.3 MeV incident beam energy.
Incident beam energy, target thickness and beam radius were all varied over the range
+10 percent. For variations in beam radius and target thickness, change the appropriate

parameter to create the variations of the input deck.
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“Semi-infinite” Aluminum Target (Al-XX)

Neutron emissions per electron incident on an Al target.

1 1 -2.699 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0
1 px 0

2 px 177.9

11 py -177.9

12 py 177.9

21 pz -177.9

22 pz 177.9

mode e p n

ml 13027 1 elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=20 $ <-- Incident erg.
c

c

fcl:p 1 0

phys:p 33 -1

phys:n j 150

cut:p J  8.2721

cut:e j 8.2721

c

c

fl:n 1211 12 21 22 (1 2 11 12 21 22)

tfl 7

c

c

nps 2500000

ctme 200

print

Table D-1. Reported and calculated yields for a “semi-infinite” aluminum target.

Energy | Reported Yield | Reported Yield Calculated Yield Calc. Yield /
MeV) | (n/kW/5s) (n/e) (n/e) Rept. Yield
15% 4.5940’ (1.10+£0.22)407 | (5.3509+0.0701)407 | 4.85

20 8.5240° (2.73+0.55)407 | (3.7381+0.0478)40” | 1.37

25 5.0740" (2.03+0.41)40" | (2.1565+0.0151)40 | 1.06

34 1.6140" (8.77+1.75)40" | (8.9338+0.0313)40 | 1.02

50 3.1340" (2.51+0.50)407 | (2.5247+0.0048)40° | 1.01

100 5.1440" (8.24+1.65)407 | (8.2647+0.0083)40~ | 1.00

* In order to achieve acceptable statistics, it was necessary to run the 15 MeV case for
40,000,000 particles.
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

mode e p
ml 260
sdef pos
c

c

fcl:p
phys:p 3
phys:n
cut:p
cut:e

c

c

fl:n 1
tfl 7
c

c

nps 250
ctme 200
print

“Semi-infinite” Iron Target (Fe-XX)

emissions per electron incident on an Fe target.

-7.875 1 -2
-1: 2:

0
35.15
-35.15
35.15
-35.15
35.15

n

11 -12 21 =22
-11: 12: -21: 22

imp:e,n,p=1
imp:e,n,p=0

56 1 elib=0le plib=02p nlib=22c pnlib=03n

=0 0 0 sur=1 vec=1 0 0 dir=1 par=3 erg=1l5

1 0
3 -1

3 150

j 7.6142
3 7.6142

2 11 12 21 22

0000

(1 2 11 12 21 22)

$ <-- Incident erg.

Table D-2. Reported and calculated yields for a “semi-infinite” iron target.

Energy | Reported Yield | Reported Yield Calculated Yield Calc. Yield /
MeV) | (n/kW/5s) (n/e) (n/e) Rept. Yield
15 1.1340" (2.72+0.54)407 | (4.1825+0.0339)40° | 1.54

20 9.6540" (3.09+0.62)40™" | (4.3125+0.0160)40 | 1.39

25 2.4240" (9.69+1.94)40" | (1.2558+0.0030)40~ | 1.30

34 43140" (2.35+0.47)407 | (3.1284+0.0044)40° | 1.33

50 6.0240"! (4.82+0.96)407 | (6.4964+0.0058)40~ | 1.35

100 7.6240"! (1.22+0.24)407 | (1.6392+0.0010)402 | 1.34
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

mode e p
ml 290
sdef pos
c

c

fcl:p
phys:p 3
phys:n
cut:p
cut:e

c

c

fl:n 1
tfl 7
c

c

nps 250
ctme 200
print

“Semi-infinite” Copper Target (Cu-XX)

emissions per electron incident on a Cu target.

-8.96 1 -2
-1: 2:

0
28.
-28.
28.
-28.
28.

EUEENEENEEN N

n

11 -12 21 =22
-11: 12: -21: 22

imp:e,n,p=1
imp:e,n,p=0

63 1 elib=0le plib=02p nlib=22c pnlib=03n

=0 0 0 sur=1 vec=1l 0 0 dir=1 par=3 erg=1l5

1 0
3 -1

3 150

i 5.7775
j 5.7775

2 11 12 21 22

0000

(1 2 11 12 21 22)

$ <-- Incident erg.

Table D-3. Reported and calculated yields for a “semi-infinite” copper target.

Energy | Reported Yield | Reported Yield Calculated Yield Calc. Yield /
MeV) | (n/kW/5s) (n/e) (n/e) Rept. Yield
15 2.00%40" (4.81+0.96)407 | (4.5743+0.0389)40° | 0.95

20 1.5640" (5.00+1.00)40™" | (4.7199+0.0179)40 | 0.94

25 3.5440" (1.42+0.28)407 | (1.3070+0.0031)40~ | 0.92

34 6.3540" (3.46+0.69)40° | (3.1881+0.0045)40~ | 0.92

50 8.7640" (7.02+1.40)407 | (6.4424+0.0064)40° | 0.92

100 1.09%40" (1.75+0.35)407° | (1.5892+0.0010)40~ | 0.91
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

“Semi-infinite” Tantalum Target (Ta-XX)

emissions per electron incident on a Ta target.

-16.6 1 -2

-1: 2:

8.217
-8.217
8.217
-8.217
8.217

mode e p n

ml 731
sdef pos
c

c

fcl:p
phys:p 3
phys:n
cut:p
cut:e

c

c

fl:n 1
tfl 7
c

c

nps 250
ctme 200
print

81 1

=0 0 0

1 0

3 -1

3 150

i 7.5

i 7.5

2 11 12 21 22

0000

11 -12
-11:

21 =22

12: =21: 22

(1 2 11 12 21 22)

imp:e,n,p=1
imp:e,n,p=0

elib=0le plib=02p nlib=60c pnlib=03n
sur=1 vec=1 0 0 dir=1 par=3 erg=10

$ <-- Incident erg.

Table D-4. Reported and calculated yields for a “semi-infinite” tantalum target.

Energy | Reported Yield | Reported Yield Calculated Yield Calc. Yield /
MeV) | (n/kW/5s) (n/e) (n/e) Rept. Yield
10 1.0640" (1.70+0.34)407 | (1.8431+0.0162)40” | 1.09

15 3.0740" (7.38+1.48)40™" | (6.5321+0.0202)40 | 0.89

20 8.8040"" (2.82+0.56)407 | (2.6127+0.0047)40~ | 0.93

25 1.3240" (5.29+1.06)40° | (4.9969+0.0060)40° | 0.95

34 1.6840' (9.15+1.83)407 | (9.1243+0.0073)40~ | 1.00

50 1.9040" (1.52+0.30)407% | (1.5752+0.0009)40° | 1.03

100 2.0440" (3.27+0.65)407 | (3.4548+0.0014)407 | 1.06
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

“Semi-infinite” Tungsten Target (W-XX)

emissions per electron incident on a W target.

-19.3 1 -2

-1: 2:

7.005
-7.005
7.005
-7.005
7.005

mode e p n

ml 741
sdef pos
c

c

fcl:p
phys:p 3
phys:n
cut:p
cut:e

c

c

fl:n 1
tfl 7
c

c

nps 250
ctme 200
print

84 1
=000

1 0
3 -1

3 150
i 7.5
i 7.5

2 11 12 21 22

0000

11 -12
-11:

21 =22

12: =21: 22

(1 2 11 12 21 22)

imp:e,n,p=1
imp:e,n,p=0

elib=0le plib=02p nlib=22c pnlib=03n
sur=1 vec=1 0 0 dir=1 par=3 erg=10

$ <-- Incident erg.

Table D-5. Reported and calculated yields for a “semi-infinite” tungsten target.

Energy | Reported Yield | Reported Yield Calculated Yield Calc. Yield /
MeV) | (n/kW/5s) (n/e) (n/e) Rept. Yield
10 3.1240" (5.00+1.00)407 | (1.9389+0.0147)40° | 0.39

15 3.6140" (8.68+1.74)40™" | (6.5626+0.0203)40 | 0.76

20 1.0040" (3.20+0.64)407 | (2.7477+0.0049)40~ | 0.86

25 1.5040" (6.01+1.20)407 | (5.2763+0.0063)40° | 0.88

34 1.9240" (1.05+£0.21)4072 | (9.5910+0.0077)40~ | 0.92

50 2.1740" (1.74+0.35)407% | (1.6518+0.0010)407 | 0.95

100 2.3340" (3.73+0.75)407 | (3.6195+0.0014)407% | 0.97
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“Semi-infinite” Lead Target (Pb-XX)

imp:e,n,p=1
imp:e,n,p=0

Neutron emissions per electron incident on a Pb target.
1 1 -11.35 1 -2 11 -12 21 =22
2 0 -1: 2: -11: 12: -21: 22
1 px 0

2 px 11.22

11 py -11.22

12 py 11.22

21 pz -11.22

22 pz 11.22

mode e p n

ml 82206 24.1 82207 22.1 82208 52.4

elib=0le plib=02p nlib=22c pnlib=03n

sdef pos=0 0 0 sur=1 vec=1l 0 0 dir=1 par=3

c
c

fcl:p 1 0
phys:p 33 -1

phys:n j 150
cut:p j 6.5
cut:e j 6.5
c

c

fl:n 1 2 11 12 21 22
tfl 7

c

c

nps 2500000
ctme 200

print

(1 211 12 21 22)

erg=10

$ <-- Incident erg.

Table D-6. Reported and calculated yields for a “semi-infinite” lead target.

Energy | Reported Yield | Reported Yield Calculated Yield Calc. Yield /
MeV) | (n/kW/5s) (n/e) (n/e) Rept. Yield
10 2.0140" (3.22+0.64)407 | (2.8299+0.0175)407 | 0.88

15 4.0940" (9.83+1.97)40™* | (7.4992+0.0217)40* | 0.76

20 1.02x40" (3.27+0.65)407 | (2.7242+0.0044)40° | 0.83

25 1.43%0" (5.73+1.15)407 | (4.8769+0.0054)40° | 0.85

34 1.7740" (9.64+1.93)40° | (8.5571+0.0068)40~ | 0.89

50 1.9740" (1.58+0.32)4072 | (1.4505+0.0009)402 | 0.92

100 2.1040" (3.36+0.67)407% | (3.1491+0.0013)402 | 0.94
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

One Radiation-Length Thick Aluminum Target (Al-I)

emissions per electron incident on a Al target.

-2.699 1 -2

-1: 2: -11:

8.96
-5.715

5.715
-5.715

5.715

mode e p n

ml 13027 1
sdef pos=0

sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p J 0 8.2721
cut:e J  8.2721
c

c

fl:n 12 11 12 21 22
tfl

c

c

nps 2500000

ctme 90

print

11 -12

21 =22

12: =21: 22

elib=0le plib=02p nlib=22c pnlib=03n
0 0 sur=1 rad=dl vec=1] 0 0 dir=1 par=3 erg=22.2

(1 211 12 21 22)

imp:e,n,p=1
imp:e,n,p=0

$ <-- Incident erg.

Table D-7. Reported and calculated yields for an approximately one radiation-length
thick aluminum target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield
222 (4.60+0.69)407 | (3.80366+0.03537)40 | 0.83

28.3 (2.10+0.32)40™ | (1.64582+0.00823)40* | 0.78

343 (4.30+0.65)40™" | (3.40027+0.01122)40* | 0.79
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

One Radiation-Length Thick Copper Target (Cu-I)

emissions per electron incident on a Cu target.

1 -2
-1: 2:

-8.96
-11:

1.48
-5.715

5.715
-5.715

5.715

mode e p n

ml 29063 1
sdef pos=0

sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p 3 5.7775
cut:e 3 5.7775
c

c

fl:n 1 2 11 12 21 22
tfl

c

c

nps 2500000

ctme 90

print

11 -12

21 =22

12: =-21: 22

elib=0le plib=02p nlib=22c pnlib=03n
0 0 sur=1 rad=dl vec=1] 0 0 dir=1 par=3 erg=1l6.1

(1 211 12 21 22)

imp:e,n,p=1
imp:e,n,p=0

$ <-- Incident erg.

Table D-8. Reported and calculated yields for an approximately one radiation-length

thick copper target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield
16.1 (3.00+0.45)40° | (3.20974+0.02118)40° | 1.07

21.2 (2.60+0.39)40™ | (2.18209+0.00698)40* | 0.84

28.3 (8.20+1.23)40™ | (6.26824+0.01128)40* | 0.76

343 (1.2940.19)40 | (9.63159+0.01348)40* | 0.75

35.5 (1.39+0.21)40° | (1.01545+0.00132)40° | 0.73
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

Two Radiation-Length Thick Copper Target (Cu-II)

emissions per electron incident on a Cu target.

-8.96 1 -2

-1: 2: -11:

2.96
-5.715

5.715
-5.715

5.715

mode e p n

ml 29063 1
sdef pos=0

sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p 3 5.7775
cut:e 3 5.7775
c

c

fl:n 1 2 11 12 21 22
tfl

c

c

nps 2500000

ctme 90

print

11 -12

21 =22

12: =-21: 22

elib=0le plib=02p nlib=22c pnlib=03n
0 0 sur=1 rad=dl vec=1] 0 0 dir=1 par=3 erg=1l6.1

(1 211 12 21 22)

imp:e,n,p=1
imp:e,n,p=0

$ <-- Incident erg.

Table D-9. Reported and calculated yields for an approximately two radiation-length

thick copper target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield
16.1 (5.00+0.75)40° | (5.37943+0.03550)40° | 1.08

21.2 (4.30+0.65)40" | (3.73710+0.01196)40* | 0.87

28.3 (1.39+0.21)407 | (1.12271+0.00202)40~ | 0.81

343 (2.37£0.36)40” | (1.80496+0.00253)40° | 0.76
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Three Radiation-Length Thick Copper Target (Cu-III)

Neutron emissions per electron incident on a Cu target.
1 1 -8.96 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 4.45
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n

ml 29063 1 elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=16.1 $ <-- Incident erg.
sil 0.635

c
c

fcl:p 1 0
phys:p 33 -1

cut:n 23 0O
cut:p 3 5.7775
cut:e 3 5.7775
c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-10. Reported and calculated yields for an approximately three radiation-length
thick copper target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield
16.1 (7.00£1.05)407 | (6.76092+0.04462)40° | 0.97

21.2 (5.30+0.80)40 | (4.71127+0.01508)40* | 0.89

28.3 (1.80+£0.27)40° | (1.43027+0.00257)40° | 0.79

34.3 (2.93+0.44)40° | (2.32709+0.00326)40° | 0.79
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Neutron
1 1
2 0

1 px
2 px
11 py
12 py
21 pz
22 pz

Four Radiation-Length Thick Copper Target (Cu-1V)

emissions per electron incident on a Cu target.

-8.96 1 -2

-1: 2: -11:

5.93
-5.715

5.715
-5.715

5.715

mode e p n

ml 29063 1
sdef pos=0

sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p 3 5.7775
cut:e 3 5.7775
c

c

fl:n 12 11 12 21 22
tfl

c

c

nps 2500000

ctme 90

print

11 -12

21 =22

12: =21: 22

elib=0le plib=02p nlib=22c pnlib=03n
0 0 sur=1 rad=dl vec=1] 0 0 dir=1 par=3 erg=1l6.1

(1 211 12 21 22)

imp:e,n,p=1
imp:e,n,p=0

$ <-- Incident erg.

Table D-11. Reported and calculated yields for an approximately four radiation-length

thick copper target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield
16.1 (1.00£0.15)40° | (7.62722+0.05034)40° | 0.76

21.2 (6.00+0.90)40™ | (5.31440+0.01701)40* | 0.89

28.3 (2.13+£0.32)407 | (1.61939+0.00291)40~ | 0.76

343 (3.35£0.50)4 0 | (2.64744+0.00371)40° | 0.79
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One Radiation-Length Thick Tantalum Target (Ta-I)

Neutron emissions per electron incident on a Ta target.

1 1 -16.6 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 0.374
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n

ml 73181 1 elib=0le plib=02p nlib=60c pnlib=03n

sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=10.3 $ <-- Incident erg.
sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p j 7.5
cut:e j 7.5

c
c

fl:n 1211 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-12. Reported and calculated yields for an approximately one radiation-length
thick tantalum target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield

10.3 (8.00£1.20)407 (6.88482:0.05095)40° | 0.09

18.7 (5.20£0.78)40 | (5.20541£0.01041)40* | 1.00

28.3 (1.38£0.21)407 (1.39451£0.00153)40 | 1.01

343 (1.81£0.27)407° | (1.70717£0.00171)X07 | 0.94
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One Radiation-Length Thick Lead Target (Pb-I)

Neutron emissions per electron incident on a Pb target.

1 1 -11.35 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 0.518
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
ml 82206 24.1 82207 22.1 82208 52.4
elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
sil 0.635
c
c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p j 6.5
cut:e j 6.5

c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-13. Reported and calculated yields for an approximately one radiation-length
thick lead target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield

18.7 (7.30£1.10)40° | (5.627550.01126)40™ | 0.77

283 (1.69+0.25)407 | (1.33409+0.00160)407 | 0.79

34.5 (2.12+0.32)407 (1.60021£0.00160)407 | 0.75
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Two Radiation-Length Thick Lead Target (Pb-II)

Neutron emissions per electron incident on a Pb target.

1 1 -11.35 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 1.01
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
ml 82206 24.1 82207 22.1 82208 52.4
elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
sil 0.635
c
c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p j 6.5
cut:e j 6.5

c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-14. Reported and calculated yields for an approximately two radiation-length
thick lead target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield

18.7 (1.32£0.20)40° | (1.02040+0.00194)407 | 0.77

28.3 (3.45+0.52)407 | (2.78846+0.00279)x0 | 0.81

345 | (4.7240.71)407° | (3.66458+0.00293)40° | 0.78
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Three Radiation-Length Thick Lead Target (Pb-11I)

Neutron emissions per electron incident on a Pb target.

1 1 -11.35 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 1.52
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
ml 82206 24.1 82207 22.1 82208 52.4
elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
sil 0.635
c
c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p j 6.5
cut:e j 6.5

c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-15. Reported and calculated yields for an approximately three radiation-length
thick lead target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield

18.7 [ (1.77£0.27)40° | (1.34637+0.00256)40° | 0.76

283 [ (4.69+0.70)40° | (3.81410+0.00381)40" | 0.81

34.5 (6.46£0.97)407 | (5.14784+0.00412)407 | 0.80
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Four Radiation-Length Thick Lead Target (Pb-1V)

Neutron emissions per electron incident on a Pb target.

1 1 -11.35 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 2.02
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
ml 82206 24.1 82207 22.1 82208 52.4
elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
sil 0.635
c
c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p j 6.5
cut:e j 6.5

c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-16. Reported and calculated yields for an approximately four radiation-length
thick lead target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield

18.7 [ (2.10£0.32)40° | (1.56998+0.00283)40° | 0.75

28.3 (5.37+0.81)40° | (4.51358+0.00451)40° | 0.84

34.5 (7.77+1.17)407 | (6.16382+0.00493)x0° | 0.79
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Six Radiation-Length Thick Lead Target (Pb-VI)

Neutron emissions per electron incident on a Pb target.

1 1 -11.35 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: =-21: 22 imp:e,n,p=0
1 px 0

2 px 3.03
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n
ml 82206 24.1 82207 22.1 82208 52.4
elib=0le plib=02p nlib=22c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=18.7 $ <-- Incident erg.
sil 0.635
c
c

fcl:p 1 0
phys:p 33 -1
cut:n 23 0O
cut:p j 6.5
cut:e j 6.5

c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 90

print

Table D-17. Reported and calculated yields for an approximately six radiation-length
thick lead target.

Energy | Reported Yield Calculated Yield Calculated Yield /
(MeV) | (n/e) (n/e) Reported Yield

18.7 (2.50+0.38)407 | (1.84432+0.00332)40" | 0.74

28.3 (6.67£1.00)407 | (5.36690+0.00537)%0~ | 0.80

34.5 (9.00£1.35)407° | (7.40813+0.00593)%07 | 0.82
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Variation of Beam Energy

Neutron emissions per electron incident on a Ta target.

1 1 -16.6 1 -2 11 -12 21 =22 imp:e,n,p=1
2 0 -1: 2: -11: 12: -21: 22 imp:e,n,p=0
1 px 0

2 px 0.374
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n

ml 73181 1 elib=0le plib=02p nlib=60c pnlib=03n

sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=28.3 $ <-- Incident erg.
sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 O
cut:p J 7.
cut:e J 7.
c

c

fl:n 12 11 12 21 22 (1 2 11 12 21 22)
tfl 7

c

c

nps 2500000

ctme 50

print

0
5
5

Table D-18. Effect of changes in beam energy over a ten percent variation.

Energy | Energy Percent Calculated Yield Calculate Yield /
(MeV) | Variation (n/e) Baseline Yield
31.13 -10% (1.5599140.00203)¥40° | 1.11861
30.281 | -7% (1.515204+0.00182)40° | 1.08655
29.715 | -5% (1.48466+0.00178)40~ | 1.06465
29.149 | -3% (1.44717+0.00174)40 | 1.03776
28.866 | -2% (1.43089+0.00172)40° | 1.02609
28.583 | -1% (1.4144440.00170)40° | 1.01429

28.3 Baseline (1.39451£0.00153)407° | ---------
28.017 | +1% (1.3755440.00151)40° | 0.98640
27.734 | 2% (1.36208+0.00150)40° | 0.97674
27.451 | 3% (1.34194+0.00148)4 0 | 0.96230
26.885 | +5% (1.29716+0.00143)40° | 0.93019
26319 | +7% (1.25727+0.00138)¥ 0 | 0.90159

25.47 +10% (1.19254+0.00131)40 | 0.85517
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Neutron emissions per

1 1 -16.6
2 0

1 px 0

2 px 0.374
11 py -5.715
12 py 5.715
21 pz -5.715
22 pz 5.715

mode e p n

Variation of Target Thickness

electron incident on a Ta target.

1 -2 11 -12 21 =22 imp:e,n,p=1

-1: 2: -11: 12: =-21:

22 imp:e,n,p=0

$ <-- Target thickness

ml 73181 1 elib=0le plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=28.3

sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 O
cut:p J 7.
cut:e J 7.
c

c

0
5
5

fl:n 1211 12 21 22

tfl 7

c

c

nps 2500000
ctme 50
print

(1 211 12 21 22)

Table D-19. Effect of changes in target thickness over a ten percent variation.

Target Thickness | Thickness Percent | Calculated Yield Calculate Yield /
(cm) Variation (n/e) Baseline Yield
0.4114 -10% (1.57986+0.00190)40° | 1.13291
0.40018 -7% (1.52489+0.00183)40° | 1.09350
0.3927 -5% (1.48796+0.00179)40° | 1.06701
0.38522 -3% (1.45059+0.00174)40° | 1.04021
0.38148 -2% (1.43197+0.00172)40° | 1.02686
0.37774 -1% (1.41321+0.00155)40° | 1.01341

0.374 Baseline (1.39451£0.00153)40° | ---------
0.37026 +1% (1.37553+0.00151)40° | 0.98639
0.36652 +2% (1.35660+0.00149)40~ | 0.97281
0.36278 +3% (1.33756+0.00147)40° | 0.95916
0.3553 +5% (1.29953+0.00143)40° | 0.93189
0.34782 +7% (1.26117+0.00139)40° | 0.90438
0.3366 +10% (1.20330+0.00132)40° | 0.86288
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Neutron emissions per electron incident on a Ta target.
21 =22 imp:e,n,p=1
-21: 22 imp:e,n,p=0

1 1 -16.6
2 0

1 px 0

2 px 0.37
11 py -5.71
12 py 5.71
21 pz -5.71
22 pz 5.71

mode e p n
ml 73181 1

sil 0.635

c

c

fcl:p 1 0
phys:p 33 -1
cut:n 23 O
cut:p J 7.
cut:e J 7.
c

c

fl:n 1211 12 21 22

tfl 7

c

c

nps 2500000
ctme 50
print

4
5
5
5
5

$ <-- Beam radius

0
5
5

Variation of Beam Radius

1 -2 11 -12

-1: 2: -11:

elib=0le plib=02p nlib=60c pnlib=03n
sdef pos=0 0 0 sur=1 rad=dl vec=1 0 0 dir=1 par=3 erg=28.3

(1 211 12 21 22)

Table D-20. Effect of changes in beam radius over a ten percent variation.

Beam Radius | Radius Percent Calculated Yield Calculate Yield /
(cm) Variation (n/e) Baseline Yield
0.6985 -10% (1.39450+0.00153)40° | 0.99999
0.67945 -7% (1.39450+0.00153)40° | 0.99999
0.66675 -5% (1.39450+0.00153)40~ | 0.99999
0.65405 -3% (1.39450+0.00153)40~ | 0.99999
0.6477 -2% (1.39450+0.00153)40° | 0.99999
0.64135 -1% (1.39450+0.00153)40~ | 0.99999

0.635 Baseline (1.39451+0.00153)407 | ---------
0.62865 +1% (1.39451+0.00153)40° | 1.00000
0.6223 +2% (1.39451+0.00153)40° | 1.00000
0.61595 +3% (1.39451+0.00153)40~ | 1.00000
0.60325 +5% (1.39451+0.00153)40° | 1.00000
0.59055 +7% (1.39450+0.00153)40~ | 0.99999
0.5715 +10% (1.39450+0.00153)40~ | 0.99999
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APPENDIX E
MISCELLANEOUS DATA FROM APPLICATION STUDIES

Introduction

This chapter contains descriptions from the MCNP input decks used to perform
the applications studies. They are labeled according to their appropriate use. A full
listing of all input decks would duplicate many of these sub-sections therefore they are

listed individually.

Activation Calculations

Geometry With Block and Ingot

R R R I I I

c

c Cell Descriptions
c khkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkkx
c

c Target, Primary Collimator & Filters

¢ Tungsten/Rhenium electron target
101 11 -19.47 -101 202 =201

c Copper housing/cooling for electron target
111 12 -8.96 -101 209 -202
112 12 -8.96 101 =102 209 =201

c Air around target assembly
199 17 -0.001225 102 -121 209 =201

¢ Primary (tungsten) collimator
201 13 -18.78 311 -121 215 =209

¢ Aluminum hardening filter
c (within primary collimator)
211 14 -2.7 -311 211 -209

c Air above and below flattening filter

c (within primary collimator)
291 17 -0.001225 312 -311 214 =211
298 17 -0.001225 319 -313 215 =212
299 17 -0.001225 319 ~-121 219 =215

Q

Flattening filter
c (within primary collimator)
221 15 -7.9 -312 212

480



Q

Q

Q

Q

222 15 -7.9 -319
223 15 -7.9 313 -312
224 15 -7.9 312 -311

Flattening filter

301 15 -7.9 -321
302 15 -7.9 -111
303 15 -7.9 111 -112
304 15 -7.9 112 -113

215 -
215 -

233

239 -
239 -
239 -

Air surrounding flattening filter

391 17 -0.001225 321 -111
392 17 -0.001225 111 -112
393 17 -0.001225 112 -113
394 17 -0.001225 113 -121

233 -
231 -
232 -
239 -

Air surrounding target and filters

399 17 -0.001225 121
410 -412

Collimator Jaw Assembly

Positive Y collimator

401 16 -11.35 -480 481

402 17 -0.001225 ( 480:-481
(=239 400

Negative Y collimator

411 16 -11.35 -490 491

412 17 -0.001225 ( 490:-491
(=239 400

Positive X collimator

421 16 -11.35 -460 461

422 17 -0.001225 ( 460:-461
(-400 401

Negative X collimator

431 16 -11.35 -470 471

432 17 -0.001225 ( 470:-471
(=400 401

Area around isocenter

Gold ingot at isocenter

501 19 -19.32 -511 512

502 20 -1.12 -521 511

503 20 -1.12 -512 522

598 17 -0.001225
(=511 512

599 17 -0.001225 ( 521:-522
(=401 599

Ceiling slab

600 18 -2.35 620 -632
601 18 -2.35 622 -625

Concrete walls

239 -
420 -

482 -
-482:
411 -

-492
492:-
410 -

462 -
-462:
410 -

472 -
-472:
410 -

513 -
523 -
523 -
( -513:
523 -
-523:
410 -

-650 662
-653 660

212

212

214

233

231

232

219

219

219

219

201

422

483 484

483 : -484:

412 420

493 494

493 : -494:

411 420

463 464

463 : -464:

412 421

473 -474

473 : 474

412 420

514 515

524 525

524 525

514 : -515:

524 525

524 : -525:

412 420
-600 601
-601 602

481

-485
485
-422

-495
495
-422

-465
465
-422

475
:=475
-421

-516
-526
-526

516
-526

526
-422



602
603
604
605
606
607
608
609
610
611
612
613

614
615
616
617

Q

618
619
620
621
622

Q

640
641
642
643

Air

Q

644
645
646

Q

670
647

648
649
650
651
652
653
654
655

Air

Q

656
657
658
659
660
661

18
18
18
18
18
18
18
18
18
18
18
18

18
18
18
18

18
18
18
18
18

O O O O

-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35

-2.35
-2.35
-2.35
-2.35

Floor slabs

-2.35
-2.35
-2.35
-2.35
-2.35

Ground under slab

inside room

17 -0.001225
17 -0.001225
17 -0.001225

Ingot in maze

19 -19.32
17 -0.001225

17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
above
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.

O O O o

001225
001225
001225
001225
001225
001225
001225
001225

620 -621
621 -622
622 -625
625 -626
626 -628
627 -628
628 -631
631 -632
621 -622
622 -625
625 -629
629 -630
633 -623
623 -624
623 -624
624 -634
620 -623
623 -624
623 -624
624 -632
633 -634
(void)
620 -633
633 -634
633 -634
634 -632
630 -632
630 -631
628 -631
670 -671
(-670: 671:
( 628 -629
626 -629
626 -627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

-650
-650
-650
-650
-650
-655
-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658
-650
-663

-650
-650
-664
-650

-656
-654
-651

662
651
653
652
655
659
651
656
662
662
662
662

664
657
664
664

662
657
662
662
664

662
663
662
662

662
656
654

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604
-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

-601 603
-601 603
-601 603

672 -673 674
-672:
-654

-659
-655
-652
-653
-653
-658
-653
-651

661
659
661
660
657
660
660
661

673: -674:

659 -601

-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

pit and around accelerator/phantom

001225
001225
001225
001225
001225
001225

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-606
606 -600
606 -600

-657
-657
-657
-657
-410
-657

-620

658
658
658
412
658
658

632

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599

482

-675
675
603



99998 0
99999 0
c
c
c
c
c
c
c
c
c
c
c
c¢ Target,
c
c
101 cz
102 cz
c
111 cz
112 cz
113 cz
c
121 cz
c
201 pz
202 pz
209 pz
c
211 pz
212 pz
214 pz
215 pz
219 pz
c
231 pz
232 pz
233 pz
239 pz
c
311 kz
312 kz
313 kz
319 kz
c
321 kz
c
c
c
c
c
c
400 pz
401 pz
c
410 py
411 py
412 py
c
420 px
421 px
422  px
c
460 p
461 p
462 py
463 py
464 p
465 p

606 -600
606 -600

R R R R R R I I I b b b b b I

END Cell Descriptions

RR R R R kb kb b b b b b b b b b

RR R Rk kb bk b b b b b b b b b b b

Surface Descriptions
R R R R R I I I I b b b i

-632 620 -662

-632 620

Primary Collimator & Filters

N

10.

-0.
-0.
-1.

=7

-14.
-15.
-15.
-15.

-1. 0

.84 0.416
1
0

=7

-9.
-12.

-13.

.62
-10.
-11.
-11.
-12.

57
79

86
11
46
66
028 L0631

94
32

.653
.1914

-1
-1
-1
+1

26 1.83376736112 -1

650

Collimator opening set for a 10x10 field size

-38.
-51.

-50.
0.
50.

-50.
0.
50.

-4

0
0
0

.9937526E-02
-4.
-1.
1.
9.
9.

9937526E-02
1000000E+01
1000000E+01
9875234E-01
9875234E-01

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00

9.9875234E-01
9.9875234E-01

4.9937526E-02
4.9937526E-02

483

-4.0800000E+01
-5.0800000E+01

1.0000000E-03
1.5001000E+01



Q

Q

470
471
472
473
474
475

480
481
482
483
484
485

490
491
492
493
494
495

'O ‘s 'C T ‘T T
KK

'UE’U’U'U'U

X

'D ' 'O 'O ‘T 'O

.9937526E-02
.9937526E-02
.1000000E+01
.1000000E+01
.9875234E-01
.9875234E-01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

511
512
513
514
515
516

521
522
523
524
525
526

599

Z planes

600
601
602
201
599
603
604
605
606

X planes

620
621
622
623
422
421
420
624
625
626
627
628

pz
pz
px
px
Py
1%

pz
pz
px
px
Py
Py

pz
rz
Pz
Pz
pz
pz
Pz
Pz
pz

pPx
pPx
px
px
pPx
pPx
px
px
pPx
pPx
px
px

-99.
-100.
-1.

-2.

-92.
-108.
-15.
15.
-15.
15.

-130.

91819559
08180441
2

.2

05

.05

O OO O oo

-4.
-4.
.9875234E-01
.9875234E-01

© O

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00

9937526E-02
9937526E-02

.9937526E-02
.9937526E-02
.9875234E-01
.9875234E-01

for floor and ceiling locations

333

237.
135.
0.
-130.
-225.
-255.
-476.
-506.

.8
28
68
0
0
0
48
46
94

for walls

-495
-403

-190.
-95.
-50.

0.
50.
95.

190.
472.
518.
563.

.3
.86
5
25
0
0
0
25
5
44
16
88

-4.
-4.

484

.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01
.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01

9937526E-02
9937526E-02

-4.
-5.

-1.
-1.

-2.
-3.
.0000000E-03
.5001000E+01

-2.
-3.
-1.
-1.

0800000E+01
0800000E+01

0000000E-03
5001000E+01

7100000E+01
7100000E+01

7100000E+01
7100000E+01
0000000E-03
5001000E+01



C
C
C

Q

Q0000

629 px 723.9
630 px 830.58
631 px 990.6
632 px 1036.32
633 px -125.73
634 px 125.73

Y planes for walls

650 py 577.85
651 py 486.41
652 py 448.31
653 py 372.11
654 py 276.86
655 py 158.75
656 py 128.27
657 py 95.25
412 py 50.0

411 py 0.0

410 py -50.0

658 py -95.25
659 py -207.01
660 py -367.03
661 py -419.1

662 py =-525.78
663 py 125.73
664 py -125.73

670 px 564

671 px 564.163608812
672 py 30.95

673 py 35.05

674 pz -106.7

675 pz -104.3

RR R R Rk Ik bk kb b b b b b b b b b b b b b i

END Surface Descriptions
R R R R R I I I I b b b b b b b I i i

Geometry Without Block But With Ingot

Qa0

R R R R I I I I I I i

Cell Descriptions

RR R Rk Ik bk b bk b b b b b b b i

Target, Primary Collimator & Filters
Tungsten/Rhenium electron target

101 11 -19.47 -101 202 -201
Copper housing/cooling for electron target
111 12 -8.96 -101 209 -202

112 12 -8.96 101 -102 209 =201

Air around target assembly
199 17 -0.001225 102 -121 209 =201

Primary (tungsten) collimator
201 13 -18.78 311 -121 215 =209

Aluminum hardening filter
(within primary collimator)
211 14 -2.7 -311 211  -209
Air above and below flattening filter
(within primary collimator)

291 17 -0.001225 312 -311 214 -211
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Q

Q

Q

Q

-485
485
-422

-495
495
-422

-465
465
-422

475
:=475
-421

-516
516
-422

298 17 -0.001225 319 -313 215 =212

299 17 -0.001225 319 -121 219 =215

Flattening filter

(within primary collimator)

221 15 -7.9 -312 212

222 15 -7.9 -319 -212

223 15 -7.9 313 =312 215 =212

224 15 -7.9 312 -311 215 -214

Flattening filter

301 15 -7.9 -321 233

302 15 -7.9 -111 239 -233

303 15 -7.9 111 -112 239 =231

304 15 -7.9 112 -113 239 -232

Air surrounding flattening filter

391 17 -0.001225 321 ~-111 233 -219

392 17 -0.001225 111 ~-112 231 =219

393 17 -0.001225 112 -113 232 =219

394 17 -0.001225 113 =121 239 =219

Air surrounding target and filters

399 17 -0.001225 121 239 =201
410 -412 420 -422

Collimator Jaw Assembly

Positive Y collimator

401 16 -11.35 -480 481 482 -483 484

402 17 -0.001225 ( 480:-481 -482: 483 -484:
(=239 400 411 -412 420

Negative Y collimator

411 16 -11.35 -490 491 -492 493 494

412 17 -0.001225 ( 490:-491 492:-493 -494:
(=239 400 410 -411 420

Positive X collimator

421 16 -11.35 -460 461 462 -463 464

422 17 -0.001225 ( 460:-461 -462: 463 -464:
(=400 401 410 -412 421

Negative X collimator

431 16 -11.35 -470 471 472 =473 -474

432 17 -0.001225 ( 470:-471 -472: 473 474
(-400 401 410 -412 420

Area around isocenter

Gold ingot at isocenter

501 19 -19.32 -511 512 513 -514 515

599 17 -0.001225 ( 511:-512 -513: 514 -515:
(-401 599 410 -412 420

Room

Ceiling slab

600 18 -2.35 620 -632 -650 662 -600 601

601 18 -2.35 622 -625 -653 660 -601 602
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c Concrete walls

c
602
603
604
605
606
607
608
609
610
611
612
613

614
615
616
617

Q

618 18
619 18
620 18
621 18
622 18
c
c Ground
c
640 0
641 0
642 0
643 0
c
c Air
c
644
645
646

Q

670
647

648
649
650
651
652
653
654
655

Air

Q

656
657
658
659
660
661

18
18
18
18
18
18
18
18
18
18
18
18

18
18
18
18

under slab

-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35

-2.35
-2.35
-2.35
-2.35

Floor slabs

-2.35
-2.35
-2.35
-2.35
-2.35

inside room

17 -0.001225
17 -0.001225
17 -0.001225

Ingot in maze

19 -19.32
17 -0.001225

17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
above
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.

001225
001225
001225
001225
001225
001225
001225
001225

620 -621
621 -622
622 -625
625 -626
626 -628
627 -628
628 -631
631 -632
621 -622
622 -625
625 -629
629 -630
633 -623
623 -624
623 -624
624 -634
620 -623
623 -624
623 -624
624 -632
633 -634
(void)
620 -633
633 -634
633 -634
634 -632
630 -632
630 -631
628 -631
670 -671
(-670: 671:
( 628 -629
626 -629
626 —-627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

-650
-650
-650
-650
-650
-655
-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658
-650
-663

-650
-650
-664
-650

-656
-654
-651

662
651
653
652
655
659
651
656
662
662
662
662

664
657
664
664

662
657
662
662
664

662
663
662
662

662
656
654

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604
-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

-601 603
-601 603
-601 603

672 -673 674
-672:
-654

-659
-655
-652
-653
-653
-658
-653
-651

661
659
661
660
657
660
660
661

673: -674:

659 -601

-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

pit and around accelerator/phantom

001225
001225
001225
001225
001225
001225

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-606

-657
-657
-657
-657
-410
-657

658
658
658
412
658
658

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599

487

-675
675
603

)
)



99996

0
99997 0
99998 0
99999 0
c
c
c
c
c
c
c
c
c
c
c
c Target,
c
c
101 cz
102 cz
c
111 cz
112 cz
113 cz
c
121 cz
c
201 pz
202 pz
209 pz
c
211 pz
212 pz
214 pz
215 pz
219 pz
c
231 pz
232 pz
233 pz
239 pz
c
311 kz
312 kz
313 kz
319 kz
c
321 kz
c
c
c
c
c
c
400 pz
401 pz
c
410 py
411 py
412 py
c
420 px
421 px
422  px
c
460 p
461 p
462 py
463 py
464 p

606 -600
606 -600
606 -600
606 -600

RR R R R kb kb b b b b b b b b b

END Cell Descriptions
* ok ok ok ok ok ok ok ok ok ok okkkkkkkkkkkk

R R R R R I I I I b b b i

Surface Descriptions
RR R Rk kb bk b b b b b b b b b b b

-620
632

-632 620 -662

-632 620

Primary Collimator & Filters

N

10.

-0.
-0.
-1.

=7

-11

-14.
-15.
-15.
-15.

-1. 0

.84 0.416
1
0

=7

-9.
-12.

-13.

.62
-10.
-11.
.79
-12.

57

86
11
46
66

.0631

.653
.1914

-1
-1
-1
+1

26 1.83376736112 -1

650

Collimator opening set for a 10x10 field size

-38.
-51.

-50.
0.
50.

-50.
0.
50.

-4.
-4.
-1.
1.
9.

0
0
0

9937526E-02
9937526E-02
1000000E+01
1000000E+01
9875234E-01

0.0000000E+00
0.0000000E+00

0.0000000E+00

9.9875234E-01
9.9875234E-01

4.9937526E-02

488

-4.0800000E+01
-5.0800000E+01

1.0000000E-03



Q

Q

.9875234E-01

.9937526E-02
.9937526E-02
.1000000E+01
.1000000E+01
.9875234E-01
.9875234E-01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

465 p 9
470 p 4
471 p 4
472  py -1
473 py 1
474 p 9
475 p 9
480 p 0
481 p 0
482 p 0
483 p 0
484 px -1
485 px 1
490 p 0
491 p 0
492 p 0
493 p 0
494 px -1
495 px 1
Area around
511 pz -99
512 pz =100
513 px -1.
514 px 1
515 py -2.
516 py 2
599 pz -130.
Room

Z planes

600 pz 333
601 pz 237.
602 pz 135.
201 pz

599 pz -130.
603 pz -225.
604 pz -255.
605 pz -476.
606 pz -506.
X planes

620 px -495
621 px -403.
622 px -190.
623 px -95.
422  px -50.
421 px

420 px 50.
624 px 95.
625 px 190.
626 px 472.
627 px 518.
628 px 563.
629 px 723.
630 px 830.
631 px 990.
632 px 1036.
633 px -125.

.91819559
.08180441
2

.2

05

.05

0

-4.
-4.
.9875234E-01
.9875234E-01

© O B

.0000000E+00
.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00

9937526E-02
9937526E-02

.9937526E-02
.9937526E-02
.9875234E-01
.9875234E-01

for floor and ceiling locations

0.

.8
28
68
0
0
0
48
46
94

for walls

0.

.3
86
5
25
0
0
0
25
5
44
16
88
9
58
6
32
73

-4

[N =N e BiNe]

-4
-4.

489

.9937526E-02

.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01
.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01
.9937526E-02

9937526E-02

-4.
-5.

-1

-2.
-3.
.0000000E-03
.5001000E+01

-2.
-3.
.0000000E-03
-1.

-1

.5001000E+01

0800000E+01
0800000E+01

.0000000E-03
-1.

5001000E+01

7100000E+01
7100000E+01

7100000E+01
7100000E+01

5001000E+01



634 px 125.73
c
c Y planes for walls
c
650 py 577.85
651 py 486.41
652 py 448.31
653 py 372.11
654 py 276.86
655 py 158.75
656 py 128.27
657 py 95.25
c 412 py 50.0
411 py 0.0
c 410 py -50.0
658 py -95.25
659 py -207.01
660 py -367.03
661 py -419.1
662 py =-525.78
663 py 125.73
664 py -125.73

Q

670 px 564

671 px 564.163608812
672 py 30.95

673 py 35.05

674 pz -106.7

675 pz -104.3

RR R Rk kb b kb b b b b b b b b b b b b b 3

END Surface Descriptions
Ak hkkhkhkhkhkhkkhkhkkhhkhkhkhkkhkhkhkhkhkkhkkhhxkx

Q0aQa0aQqQ

Geometry With Block But Without Ingot

R R R R I I I b i

Cell Descriptions
RR R Rk kb bk kb b bk b b b i

Qa0 aaQ

c Target, Primary Collimator & Filters

c
¢ Tungsten/Rhenium electron target
101 11 -19.47 -101 202 =201
c
c Copper housing/cooling for electron target
111 12 -8.96 -101 209 =202

112 12 -8.96 101 -102 209 =201

c Air around target assembly
199 17 -0.001225 102 -121 209 =201

¢ Primary (tungsten) collimator
201 13 -18.78 311 =121 215 =209

¢ Aluminum hardening filter

c (within primary collimator)
211 14 -2.7 -311 211  -209
c
c Air above and below flattening filter
c (within primary collimator)

291 17 -0.001225 312 -311 214 -211
298 17 -0.001225 319 -313 215 =212
299 17 -0.001225 319 -121 219 =215

Q

Flattening filter
c (within primary collimator)

490



Q

Q

Q

Q

221 15 -7.9
222 15 -7.9
223 15 -7.9 313
224 15 -7.9 312

Flattening filter

301 15 -7.9
302 15 -7.9
303 15 -7.9 111
304 15 -7.9 112
Air surrounding flatte
391 17 -0.001225 321
392 17 -0.001225 111
393 17 -0.001225 112
394 17 -0.001225 113
Air surrounding target
399 17 -0.001225
410
Collimator Jaw Assembl
Positive Y collimator
401 16 -11.35 -480
402 17 -0.001225 ( 480:
(=239
Negative Y collimator
411 16 -11.35 -490
412 17 -0.001225 ( 490:
(-239
Positive X collimator
421 16 -11.35 -460
422 17 -0.001225 ( 460:
(=400
Negative X collimator
431 16 -11.35 =470
432 17 -0.001225 ( 470:
(=400
Area around isocenter
A-150 plastic block at
501 20 -1.12 -521
599 17 -0.001225 ( 521:
(-401
Room
Ceiling slab
600 18 -2.35 620
601 18 -2.35 622
Concrete walls
602 18 -2.35 620
603 18 -2.35 621
604 18 -2.35 622

-312 212
-319 -
-312 215 -
-311 215 -
-321 233
-111 239 -
-112 239 -
-113 239 -
ning filter
-111 233 -
-112 231 -
-113 232 -
-121 239 -
and filters
121 239 -
-412 420 -
Y
481 482 -
-481 -482:
400 411 -
491 -492
-491 492: -
400 410 -
461 462 -
-461 -462:
401 410 -
471 472 -
-471 -472:
401 410 -
isocenter
522 523 -
-522 -523:
599 410 -
-632 -650 662
-625 -653 660
-621 -650 662
-622 -650 651
-625 -650 653

212

212

214

233

231

232

219

219

219

219

201

422

483 484

483 -484:

412 420

493 494

493 -494:

411 420

463 464

463 -464:

412 421

473 -474

473 474

412 420

524 525

524 -525:

412 420
-600 601
-601 602
-601 603
-601 603
-601 603

491

-485
485
-422

-495
495
-422

-465
465
-422

475
:=475
-421

-526
526
-422



Q

Q

Q

Q

605
606
607
608
609
610
611
612
613

614
615
616
617

18
18
18
18
18
18
18
18
18

18
18
18
18

-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35
-2.35

-2.35
-2.35
-2.35
-2.35

Floor slabs

618
619
620
621
622

Ground under slab

640
641
642
643

18
18
18
18
18

o O O o

-2.35
-2.35
-2.35
-2.35
-2.35

Air inside room

644
645
646
647

648
649
650
651
652
653
654
655

Air

656
657
658
659
660
661

17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
above
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.

001225
001225
001225
001225

001225
001225
001225
001225
001225
001225
001225
001225

625 -626
626 -628
627 -628
628 -631
631 -632
621 -622
622 -625
625 -629
629 -630
633 -623
623 -624
623 -624
624 -634
620 -623
623 -624
623 -624
624 -632
633 -634
(void)

620 -633
633 -634
633 -634
634 -632
630 -632
630 -631
628 -631
628 -629
626 -629
626 -627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

-650
-650
-655
-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658
-650
-663

-650
-650
-664
-650

-656
-654
-651
-654

-659
-655
-652
-653
-653
-658
-653
-651

652
655
659
651
656
662
662
662
662

664
657
664
664

662
657
662
662
664

662
663
662
662

662
656
654
659

661
659
661
660
657
660
660
661

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604
-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

-601 603
-601 603
-601 603
-601 603

-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

pit and around accelerator/phantom

001225
001225
001225
001225
001225
001225

99994
99995
99996
99997
99998
99999

C

Q0 a0

O OO O oo

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-606
606 -600
606 -600
606 -600
606 -600

ER R R R R Ik b I b b b b I

END Cell Descriptions
khkhkkhkhkhkkhkhkkhkhkkhkhkkhkkhkhkkhhkhhkkk*k

-657
-657
-657
-657
-410
-657

-620

-632
-632

658
658
658
412
658
658

632
620
620

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599

-662
650

492



Q0aQa0aQqQ

Q

RR R Rk kb bk b b b b b b b b b b b

Surface Descriptions
R R R R R I I I I b I i i

Primary Collimator & Filters

0.
1.

N

10.

-0.
-0.
-1.

=7.
-10.
-11.
-11.
-12.

-14.
-15.
-15.
-15.

-1.
=7.
-9.
-12.

-13.

2725
0

.85

.65

—

62

57
79

86
11
46

028 0.0631
84 0.416
94 1.653
32 0.1914

26 1.

83376736112

-1
-1
-1
+1

-1

Collimator opening set for a 10x10 field size

Target,
101 cz
102 cz
111 cz
112 cz
113 cz
121 cz
201 pz
202 pz
209 pz
211 pz
212 pz
214 pz
215 pz
219 pz
231 pz
232 pz
233 pz
239 pz
311 kz
312 kz
313 kz
319 kz
321 kz
400 pz
401 pz
410 py
411 py
412 py
420 px
421 px
422  px
460 p
461 p
462 py
463 py
464 p
465 p
470 p
471 p
472  py
473 py
474 p
475 p
480 p

-38.
-51.

-50.
0.
50.

-50.
0.
50.

-4.
.9937526E-02

-4

-1.
.1000000E+01
.9875234E-01
.9875234E-01

9937526E-02

1000000E+01

.9937526E-02
.9937526E-02
.1000000E+01
.1000000E+01
.9875234E-01
.9875234E-01

.0000000E+00

.0000000E+00
.0000000E+00

.0000000E+00

.0000000E+00

.0000000E+00

.0000000E+00

.0000000E+00

.0000000E+00

.9937526E-02

-4.
-4.

493

.9875234E-01
.9875234E-01

.9937526E-02

.9937526E-02

.9875234E-01
.9875234E-01

9937526E-02
9937526E-02

.9875234E-01

-4.
.0800000E+01

-5

-4.
-5.

-1.
-1.

0800000E+01

.0000000E-03
.5001000E+01

0800000E+01
0800000E+01

0000000E-03
5001000E+01

.7100000E+01



Q

Q

C

481
482
483
484
485

490
491
492
493
494
495

' 'O 'O 'O T
By

X

'D '8 'O 'O ‘T 'O

.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

521
522
523
524
525
526

599

Z planes

600
601
602
201
599
603
604
605
606

X planes

620
621
622
623
422
421
420
624
625
626
627
628
629
630
631
632
633
634

pz
pz
px
px
1%
1%

Pz
Pz
pz
pz
Pz
Pz
pz
pz
Pz

px
px
pPx
pPx
pPx
px
px
pPx
pPx
px
px
pPx
pPx
px
px
pPx
pPx
px

-92.
-108.
-15.
15.
-15.
15.

-130.

O

© O

.9937526E-02
.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02
.9875234E-01
.9875234E-01

for floor and ceiling locations

333

237.
135.
0.
-130.
-225.
-255.
-476.
-506.

.8
28
68
0
0
0
48
46
94

for walls

-495
-403

-190.
-95.
-50.

0.
50.
95.

190.
472.
518.
563.
723.
830.
990.
1036.
-125.

125

.3
.86
5
25
0
0
0
25
5
44
16
88
9
58
6
32
73
.73

c Y planes for walls

e}

650
651
652
653
654
655

Py
Py
1%
1%
Py
Py

577.
486.
448.
372.
276.
158.

85
41
31
11
86
75

N

-4.
-4.

494

.9875234E-01
.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01

9937526E-02
9937526E-02

-2

.7100000E+01
.0000000E-03
.5001000E+01

.7100000E+01
-3.
-1.
-1.

7100000E+01
0000000E-03
5001000E+01



656
657
c 412
411
c 410
658
659
660
661
662
663
664

Q

Q0aQa0aQqQ

Geometry Without Block or Ingot

Py
1%
1%
Py
Py
1%
1%
Py
Py
1%
1%
Py

128

95.
50.
0.
-50.
-95.
-207.
-367.
-419.
-525.
125.

-125

.27
25
0
0
0
25
01
03
1
78
73
.73

RR R Rk kb Ik kb b b b b b b b b b b b b b i

END Surface Descriptions
Ak hkkhkhkhkhkhkkhkhkkhhkhkhkhkkhkhkhkhkhkkhhkkhhxkx

R R R R I I i i

c
c Cell Descriptions
c RR Rk kb kb kb b bk b b b i
c
© m
c Target, Primary Collimator & Filters
C
c
¢ Tungsten/Rhenium electron target

101 11 -19.47 -101 202

c Copper housing/cooling for

-201

111 12 -8.96 -101 209 =202
112 12 -8.96 101 -102 209 =201
c
c Air around target assembly
199 17 -0.001225 102 ~-121 209 =201
c
¢ Primary (tungsten) collimator
201 13 -18.78 311 -121 215 =209
c
¢ Aluminum hardening filter
c (within primary collimator)
211 14 -2.7 -311 211 -209
c
c Air above and below flattening filter
c (within primary collimator)
291 17 -0.001225 312 -311 214 =211
298 17 -0.001225 319 -313 215 =212
299 17 -0.001225 319 -121 219 =215
c
¢ Flattening filter
c (within primary collimator)
221 15 -7.9 -312 212
222 15 -7.9 -319 -212
223 15 -7.9 313 -312 215 =212
224 15 -7.9 312 -311 215 =214
c
¢ Flattening filter
301 15 -7.9 -321 233
302 15 -7.9 -111 239 -233
303 15 -7.9 111 -112 239 =231
304 15 -7.9 112 -113 239 -232
c
c Air surrounding flattening filter
391 17 -0.001225 321 ~-111 233 -219
392 17 -0.001225 111 -112 231 =219
393 17 -0.001225 112 -113 232 =219
394 17 -0.001225 113 ~-121 239 -219

electron target

495



Q

Q

Q

Q

Q

Air surrounding target and filters

399 17 -0.001225
410

Positive Y collimator

401 16 -11.35 -480
402 17 -0.001225 ( 480
(-239

Negative Y collimator
411 16 -11.35 -490

412 17 -0.001225 ( 490:

(-239

Positive X collimator
421 16 -11.35 -460

422 17 -0.001225 ( 460:

(-400

Negative X collimator
431 16 -11.35 -470

432 17 -0.001225 ( 470:

(=400

599 17 -0.001225 -401

Ceiling slab

600 18 -2.35 620
601 18 -2.35 622

Concrete walls

602 18 -2.35 620
603 18 -2.35 621
604 18 -2.35 622
605 18 -2.35 625
606 18 -2.35 626
607 18 -2.35 627
608 18 -2.35 628
609 18 -2.35 631
610 18 -2.35 621
611 18 -2.35 622
612 18 -2.35 625
613 18 -2.35 629

614 18 -2.35 633
615 18 -2.35 623
616 18 -2.35 623
617 18 -2.35 624

Floor slabs
618 18 -2.35 620

619 18 -2.35 623
620 18 -2.35 623

121
-412

481
:—481
400

491
-491
400

461
-461
401

471
-471
401

599

-632
-625

-621
-622
-625
-626
-628
-628
-631
-632
-622
-625
-629
-630

-623
-624
-624
-634

-623
-624
-624

239
420

482 -
-482:
411 -

-492
492:-
410 -

462 -
-462:
410 -

472 -
-472:
410 -412 420

410 -412

-650
-653

-650
-650
-650
-650
-650
-655
-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658

662
660

662
651
653
652
655
659
651
656
662
662
662
662

664
657
664
664

662
657
662

201

422

483 484
483 : -484:
412 420
493 494
493 : -494:
411 420
463 464
463 : -464:
412 421
473 -474
473 : 474

420 -422

-600 601
-601 602

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604

496

-485
485
-422

-495
495
-422

-465
465
-422

475
:=475
-421



621 18
622 18
c
c Ground
c
640 0
641 0
642 0
643 0

Q

644
645
646
647
648
649
650
651
652
653
654
655

Air

Q

656
657
658
659
660
661

99999

17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
above
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.
17 -0.

O OO O oo

under slab

-2.35
-2.35

Air inside room

001225
001225
001225
001225
001225
001225
001225
001225
001225
001225
001225
001225

624 -632
633 -634
(void)

620 -633
633 -634
633 -634
634 -632
630 -632
630 -631
628 -631
628 -629
626 -629
626 —-627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

-650
-663

-650
-650
-664
-650

-656
-654
-651
-654
-659
-655
-652
-653
-653
-658
-653
-651

662
664

662
663
662
662

662
656
654
659
661
659
661
660
657
660
660
661

-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

pit and around accelerator/phantom

001225
001225
001225
001225
001225
001225

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-606
606 -600
606 -600
606 -600
606 -600

R R R R R I I kI b b b b b b b I

c
c END Cell Descriptions

c khkhkkhkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkkk*k
c

RR R R Rk kb kb b b b kb b b b b b b

R R R R R I I b I b b b i i

c
c
c Surface Descriptions
c
c

c Target,

101
102

111
112
113

201
202
209

Ccz

pz
pz
pz

-657
-657
-657
-657
-410
-657

-620

-632
-632

658
658
658
412
658
658

632
620
620

Primary Collimator & Filters

N
(=]

10.0

-0.0
-0.1
-1.5

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599

-662
650

497



211
212
214
215
219

231
232
233
239

311
312
313
319

321

pz
pz
Pz
Pz
pz

Pz
Pz
pz
pz

kz
kz
kz
kz

=7

-10.
-11.
-11.
-12.

-14.
-15.
-15.
-15.

-1.

=7

-9.
-12.

-13.

.62

57
79

86
11
46
66

028 0.0631
.84 0.416
94 1.653
32 0.1914

26 1.

83376736112

-1
-1
-1
+1

-1

Collimator opening set for a 10x10 field size

400
401

410
411
412

420
421
422

460
461
462
463
464
465

470
471
472
473
474
475

480
481
482
483
484
485

490
491
492
493
494
495

Pz
Pz

1%
Py
Py

px
px
px

'UE’U’U'U'U

X

' '8 'O 'O ‘T 'O

-38.
-51.

-50.
0.
50.

-50.
0.
50.

-4

-4.

.9937526E-02
9937526E-02
.1000000E+01
.1000000E+01
.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02
.1000000E+01
.1000000E+01
.9875234E-01
.9875234E-01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

599

Pz

-130.0

-4.
-4.
.9875234E-01
.9875234E-01

O O D

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00
.0000000E+00

.0000000E+00

.0000000E+00
.0000000E+00

9937526E-02
9937526E-02

.9937526E-02
.9937526E-02
.9875234E-01
.9875234E-01

O

-4.
.9937526E-02

E=N SN e Vo)

-4

498

.9875234E-01
.9875234E-01

.9937526E-02

.9937526E-02

.9875234E-01
.9875234E-01

9937526E-02

.9875234E-01
.9875234E-01
.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01
-4.
.9937526E-02

9937526E-02

-4

-4

-1.

-1

-2.
-3.
.0000000E-03
.5001000E+01

-2.
-3.
-1.
.5001000E+01

-1

.0800000E+01
-5.

0800000E+01

.0000000E-03
.5001000E+01

.0800000E+01
-5.

0800000E+01

0000000E-03

.5001000E+01

7100000E+01
7100000E+01

7100000E+01
7100000E+01
0000000E-03



Q

Z planes for floor and ceiling locations

600 pz 333.8
601 pz 237.28
602 pz 135.68
c 201 pz 0.0
c 599 pz -130.0
603 pz -225.0
604 pz -255.48
605 pz -476.46
606 pz -506.94

Q

X planes for walls

620 px -495.3
621 px -403.86
622 px -190.5
623 px -95.25
c 422 px -50.0
421 px 0.0
c 420 px 50.0
624  px 95.25
625 px 190.5
626 px 472 .44
627 px 518.16
628 px 563.88
629 px 723.9
630 px 830.58
631 px 990.6
632 px 1036.32
633 px -125.73
634 px 125.73

Q

Q

Y planes for walls

650 py 577.85
651 py 486.41
652 py 448.31
653 py 372.11
654 py 276.86
655 py 158.75
656 py 128.27
657 py 95.25
c 412 py 50.0
411 py 0.0
c 410 py -50.0
658 py -95.25
659 py -207.01
660 py -367.03
661 py -419.1
662 py -525.78
663 py 125.73
664 py -125.73

Q

RR R Rk kb Ik kb b b b b b b b bk b b b b i

END Surface Descriptions
R R R R R I I I I b b b b b b b b b b i i

Q000

Electron-Photoatomic Description of the Materials

mll plib=02p elib=03e
74000 -0.90 75000 -0.10
ml2 plib=02p elib=03e
29000 1
ml3 plib=02p elib=03e
74000 -0.95 28000 -0.035 29000 -0.015
ml4d plib=02p elib=03e

499



13027 1

ml5 plib=02p elib=03e
26000 -0.70 24000 -0.18 28000 -0.09
25000 -0.02 14000 -0.01

ml6 plib=02p elib=03e
82000 1
ml7 plib=02p elib=03e

7000 0.784403 8000 0.210747 18000 0.004691
6000 0.000159
ml8 plib=02p elib=03e
1000 -0.0055 8000 -0.4984 14000 -0.3157
20000 -0.0826 11000 -0.017 12000 -0.0026
13000 -0.0455 16000 -0.0013 19000 -0.0191
26000 -0.0123

ml9 plib=02p elib=03e
79000 1
m20 plib=02p elib=03e

6000 -0.768 1000 -0.102 8000 -0.059
7000 -0.036 20000 -0.018 9000 -0.017

Electron-Photon-Neutron Description of the Materials

mll nlib=60c plib=02p elib=0le pnlib=03u
74182 0.237294
74183 0.129157
74184 0.276674
74186 0.258020
75185 0.036972
75187 0.061883
mpnll 74184 5r
ml2 nlib=60c plib=02p elib=0le pnlib=03u

29063 0.6917
29065 0.3083
mpnl2 29063 1r

ml3 nlib=60c plib=02p elib=0le pnlib=03u
74182 0.226794
74183 0.123441
74184 0.264431
74186 0.246603
28058 0.067660
28060 0.026063
28061 0.001133
28062 0.003612
28064 0.000920
29063 0.027213
29065 0.012129
mpnl3 74184 3r 29063 6r
ml4 nlib=60c plib=02p elib=0le pnlib=03u
13027 1
ml5 nlib=60c plib=02p elib=0le pnlib=03u
26054 0.039836
26056 0.629963
26057 0.015110
26058 0.001923
24050 0.008242
24052 0.158937
24053 0.018022
24054 0.004486
28058 0.057199
28060 0.022033
28061 0.000958
28062 0.003053
28064 0.000778
25055 0.019948
14000 0.019510
mpnl5 26056 7r 29063 4r 26056 13027
ml6 nlib=60c plib=02p elib=0le pnlib=03u

82206 0.245667
82207 0.225666
82208 0.528667
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ml7 nlib=60c plib=02p elib=0le pnlib=03u

7014 0.781532
8016 0.210747
18000.35c 0.004691
7015 0.002871
6000 0.000159
mpnl?7 0 4r
ml8 nlib=60c plib=02p elib=0le pnlib=03u
1001 0.103128
8016 0.585223
14000 0.211247
20000 0.038705
11023 0.013912
12000 0.001974
13027 0.031709
16000 0.000748
19000 0.009203
26054 0.000245
26056 0.003812
26057 0.000095
mpnl8 0 0 13027 20040 0 0 13027 0 O 26056 2r
ml9 nlib=60c plib=02p elib=0le pnlib=03u
79197 1
mpnl9 0
m20 nlib=60c plib=02p elib=0le pnlib=03u
1001 0.585827
6000 0.370166
8016 0.021348
7014 0.014879
20000 0.002600

9019 0.005180
mpn20 0 3r 20040 O

Electron-Photoatomic Options For Tally Detectors

mode e p

phys:p 3J

cut:e J 5.7 0 0
cut:p j 5.7 0 0
print -85 -120

prdmp 33 3

Electron-Photoatomic Options For Volume Detectors

mode e p

phys:p 23 1

cut:e J 5.7 0 0
cut:p j 5.7 0 0
print -85 -120

prdmp 33 3

Electron-Photon-Neutron Options For Tally Detectors

mode e p n
phys:p 23 1 -1

cut:e j 5.7 0 0
cut:p j 5.7 0 0
cut:n j j 0 0
print -85 -120

prdmp 33 3

Electron-Photon-Neutron Options For Volume Detectors

mode e p n
phys:p 33 -1
cut:e j 5.7 0 0
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cut:p j 5.7 0 0

cut:n 3 Jj 0 0
print -85 -120
prdmp 3j 3

Weight-Windows for Electron-Photon Simulation With Block and Ingot

wwp:e,p 4 3 10 0O
wwe:e,p 1e20
wwnl:e,p 0.25 80r -1 5r

Weight-Windows for Electron-Photon Simulation With Block But Without Ingot

wwp:e,p 4 310 00
wwe:e,p 1e20
wwnl:e,p 0.25 76r -1 5r

Weight-Windows for Electron-Photon Simulation Without Block But With Ingot

wwp:e,p 4 310 00
wwe:e,p 1e20
wwnl:e,p 0.25 77r -1 5r

Weight-Windows for Electron-Photon Simulation Without Block or Ingot

wwp:e,p 4 3 10 0O
wwe:e,p 1e20
wwnl:e,p 0.25 75r -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation With Block and Ingot

wwp:e,p,n 4 3 10 0 O
wwe:e,p,n 1e20

wwnl:e,p 0.25 80r -1 5r
wwnl:n 0.002 80r -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation With Block But Without
Ingot

wwp:e,p,n 4 3 10 0 O
wwe:e,p,n 1e20

wwnl:e,p 0.25 76r -1 5r
wwnl:n 0.002 76xr -1 5r

Weight-Windows for Electron-Photon-Neutron Simulation Without Block But With
Ingot

wwp:e,p,n 4 3 10 0 O
wwe:e,p,n 1e20

wwnl:e,p 0.25 77r -1 5r
wwnl:n 0.002 77r -1 5=rx

Weight-Windows for Electron-Photon-Neutron Simulation Without Block or Ingot

wwp:e,p,n 4 3 10 0 O
wwe:e,p,n 1e20

wwnl:e,p 0.25 75r -1 5r
wwnl:n 0.002 75r -1 b5r
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Incident Electron Source — 19 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 O $ starting at the origin
sur 201 rad=dl $ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy

c
c Distribute particles uniformly within spot size 0.05

sil 0.05

c

c Gaussian in energy (About 19 MeV)

# si2 sp2

1 d

17.9 0.0054
18.0 0.0141
18.1 0.0335
18.2 0.0725
18.3 0.1433
18.4 0.2589
18.5 0.4268
18.6 0.6426
18.7 0.8833
18.8 1.1087
18.9 1.2707
19.0 1.3298
19.1 1.2707
19.2 1.1087
19.3 0.8833
19.4 0.6426
19.5 0.4268
19.6 0.2589
19.7 0.1433
19.8 0.0725
19.9 0.0335
20.0 0.0141
20.1 0.0054

Incident Electron Source — 20 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 O $ starting at the origin
sur 201 rad=dl $ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy

c
c Distribute particles uniformly within spot size 0.05

sil 0.05

c

c Gaussian in energy (About 20 MeV)

# si2 sp2

1 d

18.9 0.0054
19.0 0.0141
19.1 0.0335
19.2 0.0725
19.3 0.1433
19.4 0.2589
19.5 0.4268
19.6 0.6426
19.7 0.8833
19.8 1.1087
19.9 1.2707
20.0 1.3298
20.1 1.2707
20.2 1.1087
20.3 0.8833
20.4 0.6426
20.5 0.4268
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20.6 0.2589
20.7 0.1433
20.8 0.0725
20.9 0.0335
21.0 0.0141
21.1 0.0054

Incident Electron Source — 21 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 0 $ starting at the origin
sur 201 rad=dl $ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
sil 0.05
c
c Gaussian in energy (About 21 MeV)
# si2 sp2
1 d
19.9 0.0054
20.0 0.0141
20.1 0.0335
20.2 0.0725
20.3 0.1433
20.4 0.2589
20.5 0.4268
20.6 0.6426
20.7 0.8833
20.8 1.1087
20.9 1.2707
21.0 1.3298
21.1 1.2707
21.2 1.1087
21.3 0.8833
21.4 0.6426
21.5 0.4268
21.6 0.2589
21.7 0.1433
21.8 0.0725
21.9 0.0335
22.0 0.0141
22.1 0.0054

Incident Electron Source — 22 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 0 $ starting at the origin
sur 201 rad=dl $ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
sil 0.05
c
c Gaussian in energy (About 22 MeV)
# si2 sp2
1 d
20.9 0.0054
21.0 0.0141
21.1 0.0335
21.2 0.0725
21.3 0.1433
21.4 0.2589
21.5 0.4268
21.6 0.6426
21.7 0.8833
21.8 1.1087
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21.9 1.2707
22.0 1.3298
22.1 1.2707
22.2 1.1087
22.3 0.8833
22.4 0.6426
22.5 0.4268
22.6 0.2589
22.7 0.1433
22.8 0.0725
22.9 0.0335
23.0 0.0141
23.1 0.0054

Incident Electron Source — 23 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 O $ starting at the origin
sur 201 rad=dl $ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy

c
c Distribute particles uniformly within spot size 0.05

sil 0.05

c

c Gaussian in energy (About 23 MeV)

# si2 sp2

1 d

21.9 0.0054
22.0 0.0141
22.1 0.0335
22.2 0.0725
22.3 0.1433
22.4 0.2589
22.5 0.4268
22.6 0.6426
22.7 0.8833
22.8 1.1087
22.9 1.2707
23.0 1.3298
23.1 1.2707
23.2 1.1087
23.3 0.8833
23.4 0.6426
23.5 0.4268
23.6 0.2589
23.7 0.1433
23.8 0.0725
23.9 0.0335
24.0 0.0141
24.1 0.0054

Incident Electron Source — 24 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 O $ starting at the origin
sur 201 rad=dl $ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy

c
c Distribute particles uniformly within spot size 0.05

sil 0.05
c
c Gaussian in energy (About 24 MeV)
# si2 sp2
1 d

22.9 0.0054
23.0 0.0141
23.1 0.0335
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23.2 0.0725
23.3 0.1433
23.4 0.2589
23.5 0.4268
23.6 0.6426
23.7 0.8833
23.8 1.1087
23.9 1.2707
24.0 1.3298
24.1 1.2707
24.2 1.1087
24.3 0.8833
24.4 0.6426
24.5 0.4268
24.6 0.2589
24.7 0.1433
24.8 0.0725
24.9 0.0335
25.0 0.0141
25.1 0.0054

Incident Electron Source — 25 MeV Mean Energy

sdef par 3 $ electrons
pos 0 0 O $ starting at the origin
sur 201 rad=dl §$ distributed uniformly on the surface within a spot
vec 0 0 -1 dir=1 $ perpendicularly incident
erg d2 $ Gaussian in energy
c
c Distribute particles uniformly within spot size 0.05
sil 0.05
c
c Gaussian in energy (About 25 MeV)
# si2 sp2
1 d
23.9 0.0054
24.0 0.0141
24.1 0.0335
24.2 0.0725
24.3 0.1433
24.4 0.2589
24.5 0.4268
24.6 0.6426
24.7 0.8833
24.8 1.1087
24.9 1.2707
25.0 1.3298
25.1 1.2707
25.2 1.1087
25.3 0.8833
25.4 0.6426
25.5 0.4268
25.6 0.2589
25.7 0.1433
25.8 0.0725
25.9 0.0335
26.0 0.0141
26.1 0.0054

%6Au Production in Ingot 1

dxt:p 0 0 -100 2.5 r 0.1 0.0001
£204:p 501
e204 7.5 10 12.5 15 17.5 20 22.5 25 30
f214:p 501
fc214 Au-196 production in gold ingot at isocenter.
fm214 0.0595806783
de214 1lin
8.071 8.08 8.35 8.62 8.89
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9.16 9.44 9.71 9.98 10.25
10.52 10.8 11.07 11.34 11.61
11.88 12.16 12.43 12.7 12.97
13.24 13.52 13.79 14.06 14.33
14.6 14.88 15.42 15.69 15.96
16.24 16.51 16.78 17.05 17.32
17.6 17.87 18.14 18.41 18.68
18.96 19.23 19.5 19.77 26.1

df214 lin
0.0 0.0053 0.0223 0.0294 0.0399
0.0496 0.0537 0.0736 0.0944 0.0941
0.1117 0.1487 0.1741 0.2045 0.2636
0.3126 0.3556 0.4135 0.4644 0.5064
0.5249 0.5292 0.5268 0.5094 0.4961
0.457  0.4207 0.3252 0.2762 0.2317
0.1991 0.1662 0.1171 0.1031 0.0906
0.0795 0.0697 0.0613 0.0542 0.0483
0.0436 0.0399 0.037 0.035 0.0

196 A

Au Production in Ingot 2

dxt:p 0 0 -100 30 r 0.1 0.0001

£204:p 501

€204 7.5 10 12.5 15 17.5 20 22.5 25 30

f224:p 501

fc224 Au-196 production in gold ingot at isocenter with A-150 moderator block.

fm224 0.0595806783

de224 lin
8.071 8.08 8.35 8.62 8.89
9.16 9.44 9.71 9.98 10.25
10.52 10.8 11.07 11.34 11.61
11.88 12.16 12.43 12.7 12.97
13.24 13.52 13.79 14.06 14.33
14.6 14.88 15.42 15.69 15.96
16.24 16.51 16.78 17.05 17.32
17.6 17.87 18.14 18.41 18.68
18.96 19.23 19.5 19.77 26.1

df224 1lin

0.0 0.0053 0.0223 0.0294 0.0399
0.0496 0.0537 0.0736 0.0944 0.0941
0.1117 0.1487 0.1741 0.2045 0.2636
0.3126 0.3556 0.4135 0.4644 0.5064
0.5249 0.5292 0.5268 0.5094 0.4961
0.457 0.4207 0.3252 0.2762 0.2317
0.1991 0.1662 0.1171 0.1031 0.0906
0.0795 0.0697 0.0613 0.0542 0.0483
0.0436 0.0399 0.037 0.035 0.0

1% Au Production in Ingot 3

dxt:p 564.081804406 33 -105.5 2.5 r 1e-08 le-11
f204:p 501
e204 7.5 10 12.5 15 17.5 20 22.5 25 30
£234:p 670
fc234 Au-196 production in gold ingot in maze.
fm234 0.0595806783
de234 1lin
8.071 8.08 8.35 8.62 8.89
9.16 9.44 9.71 9.98 10.25
10.52 10.8 11.07 11.34 11.61
11.88 12.16 12.43 12.7 12.97
13.24 13.52 13.79 14.06 14.33
14.6 14.88 15.42 15.69 15.96
16.24 16.51 16.78 17.05 17.32
17.6 17.87 18.14 18.41 18.68
18.96 19.23 19.5 19.77 26.1
df234 1in
0.0 0.0053 0.0223 0.0294 0.0399
0.0496 0.0537 0.0736 0.0944 0.0941
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0.1117 0.1487 0.1741 0.2045 0.2636
0.3126 0.3556 0.4135 0.4644 0.50064
0.5249 0.5292 0.5268 0.5094 0.4961
0.457 0.4207 0.3252 0.2762 0.2317
0.1991 0.1662 0.1171 0.1031 0.0906
0.0795 0.0697 0.0613 0.0542 0.0483
0.0436 0.0399 0.037 0.035 0.0

" Au Production in Ingot 1

dxt:n 0 0 -100 2.5 r le-5 le-8

£104:n 501

el04 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
f114:n 501

fcll4 Au-198 production in gold ingot at isocenter.

fml114 0.0595806783 19 102
f124:n 501

fcl24 Au-196 production in gold ingot at isocenter.

fm124 0.0595806783 19 16

" Au Production in Ingot 2

dxt:n 0 0 -100 30 r le-4 le-7

f134:n 501

el34 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
fl144:n 501

fcl44 Au-198 production in gold ingot at isocenter with A-150 moderator block.

fml144 0.0595806783 19 102
£154:n 501

fcl54 Au-196 production in gold ingot at isocenter with A-150 moderator block.

fm154 0.0595806783 19 16

%8 Au Production in Ingot 3

dxt:n 564.081804406 33 -105.5 2.5 r le-7 le-10
fl64:n 670

el64 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30
f174:n 670

fcl74 Au-198 production in gold ingot in maze.
fml74 0.0595806783 19 102

£f184:n 670

fcl84 Au-196 production in gold ingot in maze.
fm184 0.0595806783 19 16

%6Au Production by Point Detectors

£205:p 0 0 -100 O
e205 7.5 10 12.5 15 17.5 20 22.5 25 30
f215:p 0 0 =100 O
fc215 Au-196 production (pt. est.) at isocenter
fm215 0.0595806783
de215 1lin
8.071 8.08 8.35 8.62 8.89
9.16 9.44 9.71 9.98 10.25
10.52 10.8 11.07 11.34 11.61
11.88 12.16 12.43 12.7 12.97
13.24 13.52 13.79 14.06 14.33
14.6 14.88 15.42 15.69 15.96
16.24 16.51 16.78 17.05 17.32
17.6 17.87 18.14 18.41 18.68
18.96 19.23 19.5 19.77 26.1
df215 1lin

0.0 0.0053 0.0223 0.0294 0.0399
0.0496 0.0537 0.0736 0.0944 0.0941
0.1117 0.1487 0.1741 0.2045 0.2636
0.3126 0.3556 0.4135 0.4644 0.5064
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0.5249 0.5292 0.5268 O©
0.457 0.4207 0.3252 0
0.1991 0.1662 0.1171 O
0.0795 0.0697 0.0613 O
0.0436 0.0399 0.037 0

£225:p 0 -3 -100 O

fc225 Au-196 production (pt. est.

fm225 0.0595806783

de225 1lin
8.071 8.08 8.35
9.16 9.44 9.71
10.52 10.8 11.07
11.88 12.16 12.43
13.24 13.52 13.79
14.6 14.88 15.42
16.24 16.51 16.78

17.6 17.87 18.14
18.96 19.23 19.5
df225 1lin

0.0 0.0053 0.0223 0
0.0496 0.0537 0.0736 O
0.1117 0.1487 0.1741 O
0.3126 0.3556 0.4135 O©
0.5249 0.5292 0.5268 O.
0.457 0.4207 0.3252 0
0.1991 0.1662 0.1171 O
0.0795 0.0697 0.0613 O
0.0436 0.0399 0.037 0

£235:p 0 -6 =100 O

fc235 Au-196 production (pt. est.

fm235 0.0595806783

de235 lin
8.071 8.08 8.35
9.16 9.44 9.71
10.52 10.8 11.07
11.88 12.16 12.43
13.24 13.52 13.79
14.6 14.88 15.42
16.24 16.51 16.78

17.6 17.87 18.14
18.96 19.23 19.5
df235 1lin

0.0 0.0053 0.0223 0
0.0496 0.0537 0.0736 O
0.1117 0.1487 0.1741 O
0.3126 0.3556 0.4135 O
0.5249 0.5292 0.5268 O.
0.457 0.4207 0.3252 0
0.1991 0.1662 0.1171 O
0.0795 0.0697 0.0613 O
0.0436 0.0399 0.037 0

£f245:p 0 -9 -100 O

fc245 Au-196 production (pt. est.

fm245 0.0595806783

de245 1lin
8.071 8.08 8.35
9.16 9.44 9.71
10.52 10.8 11.07
11.88 12.16 12.43
13.24 13.52 13.79
14.6 14.88 15.42
16.24 16.51 16.78

17.6 17.87 18.14
18.96 19.23 19.5
df245 1lin
0.0 0.0053 0.0223 0
0.0496 0.0537 0.0736 O
0.1117 0.1487 0.1741 O
0.3126 0.3556 0.4135 ©
0.5249 0.5292 0.5268 O
0.457 0.4207 0.3252 0
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0.1991
0.0795
0.0436

f255:p

0 -11

0.1662
0.0697
0.0399

fm255 0.0595806783
de255 lin

8.

9.
10.
11.
13.
14.
16.
17.
18.

df255 1lin

0.

O OO OO o oo

£265:p

0

071
16
52
88
24
6
24
6
96

.0496
L1117
.3126
.5249
.457

L1991
.0795
.0436

0 -14.5 =100 O
fc265 Au-196 production

O OO O OO Oooo

8
9

10.
12.
13.
14.
16.
17.
19.

.5 =100 0
fc255 Au-196 production

.08
.44
8

16
52
88
51
87
23

.0053
.0537
.1487
.3556
.5292
.4207
.1662
.0697
.0399

fm265 0.0595806783

de265 1lin
8.071 8.08
9.16 9.44

10.52 10.8
11.88 12.16
13.24 13.52
14.6 14.88
16.24 16.51
17.6 17.87
18.96 19.23

df265 1lin
0.0 0.0053
0.0496 0.0537
0.1117 0.1487
0.3126 0.3556
0.5249 0.5292
0.457 0.4207
0.1991 0.1662
0.0795 0.0697
0.0436 0.0399

f275:p 564.081804406 3

fc275 Au-196 production

fm275 0.0595806783

de275 1i

df275 1i

0.

O OO OO oo

n

8.

9.
10.
11.
13.
14.
16.
17.
18.

n
0

071
16
52
88
24
6
24
6
96

.0496
L1117
.3126
.5249
.457

.1991
.0795

O OO OO o oo

8
9

10.
12.
13.
14.
16.
17.
19.

.08
.44
8

16
52
88
51
87
23

.0053
.0537
.1487
.3556
.5292
.4207
.1662
.0697

0.1171 0.1031 0.0906
0.0613 0.0542 0.0483
0.037 0.035 0.0
(pt. est.) at radius 11.5 cm
8.35 8.62 8.89
9.71 9.98 10.25
11.07 11.34 11.61
12.43 12.7 12.97
13.79 14.06 14.33
15.42 15.69 15.96
16.78 17.05 17.32
18.14 18.41 18.68
19.5 19.77 26.1
0.0223 0.0294 0.0399
0.0736 0.0944 0.0941
0.1741 0.2045 0.2636
0.4135 0.4644 0.5064
0.5268 0.5094 0.4961
0.3252 0.2762 0.2317
0.1171 0.1031 0.0906
0.0613 0.0542 0.0483
0.037 0.035 0.0
(pt. est.) at radius 14.5 cm
8.35 8.62 8.89
9.71 9.98 10.25
11.07 11.34 11.61
12.43 12.7 12.97
13.79 14.06 14.33
15.42 15.69 15.96
16.78 17.05 17.32
18.14 18.41 18.68
19.5 19.77 26.1
0.0223 0.0294 0.0399
0.0736 0.0944 0.0941
0.1741 0.2045 0.2636
0.4135 0.4644 0.50064
0.5268 0.5094 0.4961
0.3252 0.2762 0.2317
0.1171 0.1031 0.0906
0.0613 0.0542 0.0483
0.037 0.035 0.0
3 -105.5 0
(pt. est.) in maze
8.35 8.62 8.89
9.71 9.98 10.25
11.07 11.34 11.61
12.43 12.7 12.97
13.79 14.06 14.33
15.42 15.69 15.96
16.78 17.05 17.32
18.14 18.41 18.68
19.5 19.77 26.1
0.0223 0.0294 0.0399
0.0736 0.0944 0.0941
0.1741 0.2045 0.2636
0.4135 0.4644 0.5064
0.5268 0.5094 0.4961
0.3252 0.2762 0.2317
0.1171 0.1031 0.0906
0.0613 0.0542 0.0483

510

(cross-plane)

(cross-plane)



0.0436 0.0399 0.037 0.035 0.

%8 Au Production by Point Detectors

£105:n 0 0 -100 O

el05 0.01 0.05 0.1 0.25 0.5 0.75 1 2.5 5 10 15 30

£115:n 0 0 -100 O

fcll5 Au-198 production (pt. est.) at isocenter

fm115 0.0595806783 19 102
£125:n 0 -3 -100 O

fcl25 Au-198 production (pt. est.) at radius 3 cm (cross-plane)

fm125 0.0595806783 19 102
£135:n 0 -6 -100 O

fcl135 Au-198 production (pt. est.) at radius 6 cm (cross-plane)

fm135 0.0595806783 19 102
£145:n 0 -9 -100 O

fcl45 Au-198 production (pt. est.) at radius 9 cm (cross-plane)

fm145 0.0595806783 19 102
£155:n 0 -11.5 -100 O

fcl55 Au-198 production (pt. est.) at radius 11.5 cm (cross-plane)

fm155 0.0595806783 19 102
£f165:n 0 -14.5 -100 O

fcl65 Au-198 production (pt. est.) at radius 14.5 cm (cross-plane)

fml165 0.0595806783 19 102
£175:n 564.081804406 33 -105.5 0

fcl75 Au-198 production (pt. est.) in maze

fm175 0.0595806783 19 102

Dose Calculations

Geometry For 5x5 Photon Field

R R R R I I I b i

Cell Descriptions
RR R Rk b bk bk kb b b b b b b i

Qa0 aaQ

c Target, Primary Collimator & Filters

¢ Tungsten/Rhenium electron target

101 11 -19.47 -101 202 -201

c Copper housing/cooling for electron target

111 12 -8.96 -101 209 -202
112 12 -8.96 101 -102 209 =201

c Air around target assembly

199 0 102 -121 209 =201

¢ Primary (tungsten) collimator

201 13 -18.78 311 -121 215 -209

c
¢ Aluminum hardening filter
c (within primary collimator)
211 14 -2.7 -311 211  -209
c
c Air above and below flattening filter
c (within primary collimator)
291 0 312 -311 214 =211
298 0 319 -313 215 =212
299 0 319 -121 219 =215
c
c Flattening filter
c (within primary collimator)

511



Q

Q

Q

Q

212
212
214
233
231
232
219
219
219
219
201
422
483 484
483 : -484:
412 420
493 494
493 : -494:
411 420
463 464
463 : -464:
412 421
473 -474
473 : 474

410 -412 420

221 15 -7.9 -312 212
222 15 -7.9 -319 -
223 15 -7.9 313 =312 215 -
224 15 -7.9 312 -311 215 -
Flattening filter
301 15 -7.9 -321 233
302 15 -7.9 -111 239 -
303 15 -7.9 111 -112 239 -
304 15 -7.9 112 -113 239 -
Air surrounding flattening filter
391 0 321 -111 233 -
392 0 111 -112 231 -
393 0 112 -113 232 -
394 0 113 -121 239 -
Air surrounding target and filters
399 0 121 239 -
410 -412 420 -
Collimator Jaw Assembly
Positive Y collimator
401 16 -11.35 -480 481 482 -
402 0 ( 480:-481 -482:
(=239 400 411 -
Negative Y collimator
411 16 -11.35 -490 491 -492
412 0 (490:-491 492:-
(=239 400 410 -
Positive X collimator
421 16 -11.35 -460 461 462 -
422 0 ( 460:-461 -462:
(=400 401 410 -
Negative X collimator
431 16 -11.35 -470 471 472 -
432 0 (470:-471 -472:
(-400 401
Area around isocenter
599 0 -401 599 410 -412
Room
Ceiling slab
600 18 -2.35 620 -632 -650 662
601 18 -2.35 622 -625 -653 660
Concrete walls
602 18 -2.35 620 -621 -650 662
603 18 -2.35 621 -622 -650 651
604 18 -2.35 622 -625 -650 653
605 18 -2.35 625 -626 -650 652
606 18 -2.35 626 -628 -650 655
607 18 -2.35 627 -628 -655 659

420 -422

-600 601
-601 602

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

512

-485
485
-422

-495
495
-422

-465
465
-422

475
:=475
-421



608
609
610
611
612
613

614
615
616
617

Q

618 18
619 18
620 18
621 18
622 18
c
c Ground
c
640 0
641 0
642 0
643 0

Q

644
645
646
647
648
649
650
651
652
653
654
655

Q

656
657
658
659
660
661

99999

18
18
18
18
18
18

18
18
18
18

OO O o oo OO OO OO OOOoOo oo

O OO O oo

-2.35
-2.35
-2.35
-2.35
-2.35
-2.35

-2.35
-2.35
-2.35
-2.35

Floor slabs

-2.35
-2.35
-2.35
-2.35
-2.35

under slab

Air inside room

628 -631
631 -632
621 -622
622 -625
625 -629
629 -630
633 -623
623 -624
623 -624
624 -634
620 -623
623 -624
623 -624
624 -632
633 -634
(void)

620 -633
633 -634
633 -634
634 -632
630 -632
630 -631
628 -631
628 -629
626 -629
626 —-627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-606
606 -600
606 -600
606 -600
606 -600

ER R R R R R I I I b I b b b b b I

END Cell Descriptions
khkhkkhkhkhkkhkhkkhkhkkhkhkkhkkhkhkkhhkhhkkk*k

Surface Descriptions
R R R R R I b I I b i i

C
c RR R R Rk kb kb b b b b b b b b b b b
C
C

-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658
-650
-663

-650
-650
-664
-650

-656
-654
-651
-654
-659
-655
-652
-653
-653
-658
-653
-651

-657
-657
-657
-657
-410
-657

-620

-632
-632

651
656
662
662
662
662

664
657
664
664

662
657
662
662
664

662
663
662
662

662
656
654
659
661
659
661
660
657
660
660
661

658
658
658
412
658
658

632
620
620

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604
-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

Air above pit and around accelerator/phantom

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599

-662
650

513



Target,
101 cz
102 cz
111 cz
112 cz
113 cz
121 cz
201 pz
202 pz
209 pz
211 pz
212 pz
214 pz
215 pz
219 pz
231 pz
232 pz
233 pz
239 pz
311 kz
312 kz
313 kz
319 kz
321 kz

Primary Collimator & Filters

N

10.

-0.
-0.
-1.

=7

-14.
-15.
-15.
-15.

-1. 0
.84 0.
1
0

=7

-9.
-12.

-13.

.62
-10.
-11.
-11.
-12.

57
79

86
11
46
66
028 L0631
416
.653
.1914

94
32

26 1.

83376736112

-1
-1
-1
+1

-1

Collimator opening set for a 05x05 field size

400
401

410
411
412

420
421
422

460
461
462
463
464
465

470
471
472
473
474
475

480
481
482
483
484

Pz
pz

Py
Py
1%

pPx
px
px

-38.
-51.

-50.
0.
50.

-50.
0.
50.

-2

.4992258E-02
-2.
-1.
.1000000E+01
.9968764E-01
.9968764E-01

4992258E-02
1000000E+01

.4992258E-02
.4992258E-02
.1000000E+01
.1000000E+01
.9968764E-01
.9968764E-01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01

-2.
-2.
.9968764E-01
.9968764E-01

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00
.0000000E+00

.0000000E+00

.0000000E+00
.0000000E+00

4992258E-02
4992258E-02

O

-2.

NN OO

514

.9968764E-01
.9968764E-01

.4992258E-02

.4992258E-02

.9968764E-01
.9968764E-01

4992258E-02

.4992258E-02

.9968764E-01
.9968764E-01
.4992258E-02
.4992258E-02

-4

-4

-1.

-1

-2.
-3.
.0000000E-03
.5001000E+01

.0800000E+01
-5.

0800000E+01

.0000000E-03
.5001000E+01

.0800000E+01
-5.

0800000E+01

0000000E-03

.5001000E+01

7100000E+01
7100000E+01



Q

Q

Q

Q

490
491
492
493
494
495

.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

599 pz
Room
Z planes
600 pz
601 pz
602 pz
201 pz
599 pz
603 pz
604 pz
605 pz
606 pz
X planes
620 px
621 px
622 px
623 px
422  px
421 px
420 px
624 px
625 px
626 px
627 px
628 px
629 px
630 px
631 px
632 px
633 px
634 px

2.4992258E-02
2.4992258E-02
9.9968764E-01
9.9968764E-01

for floor and ceiling locations

333

237.
135.
0.
-130.
-225.
-255.
-476.
-506.

.8
28
68
0
0
0
48
46
94

for walls

-495
-403

-190.
-95.
-50.

0.
50.
95.

190.
472.
518.
563.
723.
830.
990.
1036.
-125.

125

.3
.86
5
25
0
0
0
25
5
44
16
88
9
58
6
32
73
.73

Y planes for walls

650
651
652
653
654
655
656
657
412
411
410
658
659
660
661
662
663

Py
1%
1%
Py
Py
1%
1%
Py
Py
1%
1%
Py
Py
1%
1%
Py
Py

577.
486.
448.
372.
276.
158.
128.
95.
50.
0.
-50.
-95.
-207.
-367.
-419.
-525.
125.

85
41
31
11
86
75
27
25
0

0

0

25
01
03
1

78
73

9.9968764E-01
9.9968764E-01
-2.4992258E-02
-2.4992258E-02

515

-2.7100000E+01
-3.7100000E+01
-1.0000000E-03
-1.5001000E+01



664

Q000

Geometry For 10x10 Photon Field

Py

-125.73

c R R R I I I i i

c Cell Descriptions

c RR R Rk kb kb kb b b b b b b i

RR R R Rk kb Ik kb b b b b b b b bk b b b b 3

END Surface Descriptions
R R R R R I I I I b b b b b b I

-201

electron target

-202
-201

-201

-209

-209

-211
-212
-215

-212
-212
-214

-233
-231
-232

-219
-219
-219
-219

-201
-422

-483

c

C

c Target, Primary Collimator & Filters

C

c

¢ Tungsten/Rhenium electron target
101 11 -19.47 -101 202

c

c Copper housing/cooling for
111 12 -8.96 -101 209
112 12 -8.96 101 -102 209

c

¢ Air around target assembly
199 0 102 -121 209

c

¢ Primary (tungsten) collimator
201 13 -18.78 311 -121 215

c

¢ Aluminum hardening filter

c (within primary collimator)
211 14 -2.7 -311 211

c

c Air above and below flattening filter

c (within primary collimator)
291 0 312 -311 214
298 0 319 =313 215
299 0 319 -121 219

c

c Flattening filter

c (within primary collimator)
221 15 -7.9 -312 212
222 15 -7.9 -319
223 15 -7.9 313 =312 215
224 15 -7.9 312 -311 215

c

c Flattening filter
301 15 -7.9 -321 233
302 15 -7.9 -111 239
303 15 -7.9 111 -112 239
304 15 -7.9 112 -113 239

c

c Air surrounding flattening filter
391 0 321 -111 233
392 0 111 -112 231
393 0 112 -113 232
394 0 113 -121 239

c

¢ Air surrounding target and filters
399 0 121 239

410 -412 420

c

C mmmm

c Collimator Jaw Assembly

C m

c

c Positive Y collimator
401 16 -11.35 -480 481 482
402 0 ( 480:-481 -482:

483

484 -485

-484:

516
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Q Q

Q

Q

Q

Q

Q

Q

(-239

Negative Y collimator

411 16 -11.35 -490
412 0 (490:
(-239

Positive X collimator

421 16 -11.35 -460
422 0 ( 460:
(=400

Negative X collimator

431 16 -11.35 =470
432 0 (470:
(-400

Ceiling slab

600 18 -2.35 620
601 18 -2.35 622

Concrete walls

602 18 -2.35 620
603 18 -2.35 621
604 18 -2.35 622
605 18 -2.35 625
606 18 -2.35 626
607 18 -2.35 627
608 18 -2.35 628
609 18 -2.35 631
610 18 -2.35 621
611 18 -2.35 622
612 18 -2.35 625
613 18 -2.35 629

614 18 -2.35 633
615 18 -2.35 623
616 18 -2.35 623
617 18 -2.35 624

Floor slabs

618 18 -2.35 620
619 18 -2.35 623
620 18 -2.35 623
621 18 -2.35 624
622 18 -2.35 633

Ground under slab (voi
640 0 620
641 0 633
642 0 633
643 0 634

Air inside room

400

491
-491
400

461
-461
401

471
-471
401

599

-632
-625

-621
-622
-625
-626
-628
-628
-631
-632
-622
-625
-629
-630

-623
-624
-624
-634

-623
-624
-624
-632
-634

d)

-633
-634
-634
-632

411 -412 420

-492
492:-
410 -

462 -
-462:
410 -

472 -
-472:
410 -412 420

410 -412

-650
-653

-650
-650
-650
-650
-650
-655
-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658
-650
-663

-650
-650
-664
-650

662
660

662
651
653
652
655
659
651
656
662
662
662
662

664
657
664
664

662
657
662
662
664

662
663
662
662

493 494
493 : -494:
411 420
463 464
463 : -464:
412 421
473 -474
473 474

420 -422

-600 601
-601 602

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604
-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

517

-422

-495
495
-422

-465
465
-422

475
:=475
-421



0
645 0
646 0
647 0
648 0
649 0
650 0
651 0
652 0
653 0
654 0
655 0
c
c
c
656 0
657 0
658 0
659 0
660 0
661 0
c
c
c
c
c
99994 0
99995 0
99996 0
99997 0
99998 0
99999 0
c
c
c
c
c
c
c
c
c
c
c
c Target,
c
c
101 cz
102 cz
c
111 cz
112 cz
113 cz
c
121 cz
c
201 pz
202 pz
209 pz
c
211 pz
212 pz
214 pz
215 pz
219 pz
c
231 pz
232 pz
233 pz
239 pz

644

630 -632
630 -631
628 -631
628 -629
626 -629
626 -627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

-656
-654
-651
-654
-659
-655
-652
-653
-653
-658
-653
-651

662
656
654
659
661
659
661
660
657
660
660
661

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

Air above pit and around accelerator/phantom

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-606
606 -600
606 -600
606 -600
606 -600

RR R R R Ik kb b b b b b b b b b b i

END Cell Descriptions
* ok ok ok kkkokkokkokkkokkokkokkkkk

R R R R R R I b b I I i i i

Surface Descriptions
RR R R Rk kb kb b b b b b b b b b b

-657
-657
-657
-657
-410
-657

-620

-632
-632

658
658
658
412
658
658

632
620
620

Primary Collimator & Filters

N

10.

-0.
-0.
-1.

=7

-11

-14.
-15.
-15.
-15.

.62
-10.
-11.
.79
-12.

57

86
11
46
66

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599

-662
650

518



311
312
313
319

321

kz
kz
kz
kz

-1
=7.
-9.
-12.

-13.

.028 0.0631 -1
84 0.416 -1
94 1.653 -1
32 0.1914 +1
26 1.83376736112 -1

Collimator opening set for a 10x10 field size

400
401

410
411
412

420
421
422

460
461
462
463
464
465

470
471
472
473
474
475

480
481
482
483
484
485

490
491
492
493
494
495

pz
pz

Py
1%
1%

px
pPx
pPx

i

B’U'U'U’U’U

' 'O 'O "0 T 'O

-38.
-51.

-50.
0.
50.

-50.
0.
50.

-4.
-4.
-1.

9937526E-02
9937526E-02
1000000E+01

.1000000E+01
.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02
.1000000E+01
.1000000E+01
.9875234E-01
.9875234E-01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

Z planes

600
601
602
201
599
603
604

Pz
pz
pz
Pz
Pz
pz
pz

-4.
-4.
.9875234E-01
.9875234E-01

© O

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00
.0000000E+00

.0000000E+00

.0000000E+00
.0000000E+00

9937526E-02
9937526E-02

.9937526E-02
.9937526E-02
.9875234E-01
.9875234E-01

for floor and ceiling locations

333.
237.
135.
0.
-130.
-225.
-255.

-4

=N =N e BiNe]

-4
-4.

519

.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01

.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01
.9937526E-02
.9937526E-02

.9875234E-01
.9875234E-01
.9937526E-02

9937526E-02

-4.
-5.

-4.
-5.

-1

-2.
-3.
.0000000E-03
.5001000E+01

-2.
-3.
.0000000E-03
-1.

-1

0800000E+01
0800000E+01

.0000000E-03
.5001000E+01

0800000E+01
0800000E+01

.0000000E-03
-1.

5001000E+01

7100000E+01
7100000E+01

7100000E+01
7100000E+01

5001000E+01



Q

Q Q

C
C
C

Q QQ

Q0000

Geometry For 30x30 Photon Field

605 pz -476.46
606 pz -506.94

X planes for walls

620 px -495.3
621 px -403.86
622 px =-190.5
623 px -95.25
422  px -50.0
421 px 0.0
420 px 50.0
624 px 95.25
625 px 190.5
626 px 472 .44
627 px 518.16
628 px 563.88
629 px 723.9
630 px 830.58
631 px 990.6
632 px 1036.32
633 px -125.73
634 px 125.73

Y planes for walls

650 py 577.85
651 py 486.41
652 py 448.31
653 py 372.11
654 py 276.86
655 py 158.75
656 py 128.27
657 py 95.25
412  py 50.0

411 py 0.0

410 py -50.0

658 py -95.25
659 py -207.01
660 py -367.03
661 py -419.1

662 py =-525.78
663 py 125.73
664 py -125.73

R R R R R I I I b b b b b b b I b i 3

END Surface Descriptions
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RR Rk kI b kb b bk b b b i

Cell Descriptions
R R R I I I I I i

Target, Primary Collimator & Filters

Tungsten/Rhenium electron target

101 11 -19.47 -101

Copper housing/cooling for
111 12 -8.96 -101
112 12 -8.96 101 -102

Air around target assembly
199 0 102 -121

202

-201

electron target

209
209

209

-202
-201

-201
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Q

Q

Q

Q

Primary (tungsten) collimator
201 13 -18.78 311 =121 215 =209

Aluminum hardening filter
(within primary collimator)
211 14 -2.7 -311 211 -209
Air above and below flattening filter
(within primary collimator)
291 0 312 =311 214 =211
298 0 319 -313 215 =212
299 0 319 -121 219 =215
Flattening filter
(within primary collimator)

221 15 -7.9 -312 212

222 15 -7.9 -319 -212
223 15 -7.9 313 -312 215 =212
224 15 -7.9 312 =311 215 -214

Flattening filter

301 15 -7.9 -321 233

302 15 -7.9 -111 239 -233
303 15 -7.9 111 -112 239 =231
304 15 -7.9 112 -113 239 -232

Air surrounding flattening filter

391 0 321 -111 233 -219
392 0 111 -112 231 =219
393 0 112 -113 232 =219
394 0 113 -121 239 =219

Air surrounding target and filters
399 0 121 239 =201
410 -412 420 -422

Collimator Jaw Assembly

Positive Y collimator

401 16 -11.35 -480 481 482 -483 484

402 0 ( 480:-481 : -482: 483 -484:
(=239 400 411 -412 420

Negative Y collimator

411 16 -11.35 -490 491 -492 493 494

412 0 (490:-491 : 492:-493 -494:
(=239 400 410 -411 420

Positive X collimator

421 16 -11.35 -460 461 462 -463 464

422 0 ( 460:-461 : -462: 463 -464:
(-400 401 410 -412 421

Negative X collimator

431 16 -11.35 -470 471 472 -473 -474

432 0 ( 470:-471 : -472: 473 474
(=400 401 410 -412 420

Area around isocenter

599 0 -401 599 410 -412 420 -422
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465
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c Ceiling slab

600 18 -2.35
601 18 -2.35

Concrete walls

Q

602 18 -2.35
603 18 -2.35
604 18 -2.35
605 18 -2.35
606 18 -2.35
607 18 -2.35
608 18 -2.35
609 18 -2.35
610 18 -2.35
611 18 -2.35
612 18 -2.35
613 18 -2.35

614 18 -2.35
615 18 -2.35
616 18 -2.35
617 18 -2.35

Floor slabs

Q

618 18 -2.35
619 18 -2.35
620 18 -2.35
621 18 -2.35
622 18 -2.35

Ground under slab

Q

640
641
642
643

O O O o

Air inside room

Q

644
645
646
647
648
649
650
651
652
653
654
655

OO OO OO OOOoooo

Q

656
657
658
659
660
661

O OO O oo

99994 0

620 -632
622 -625
620 -621
621 -622
622 -625
625 -626
626 -628
627 -628
628 -631
631 -632
621 -622
622 -625
625 -629
629 -630
633 -623
623 -624
623 -624
624 -634
620 -623
623 -624
623 -624
624 -632
633 -634
(void)

620 -633
633 -634
633 -634
634 -632
630 -632
630 -631
628 -631
628 -629
626 -629
626 -627
625 -626
624 -625
623 -624
623 -624
622 -623
621 -622

623 -624
623 -624
422 -624
420 -422
420 -422
623 -420
600

-650
-653

-650
-650
-650
-650
-650
-655
-650
-650
-661
-660
-661
-654

-663
-663
-658
-663

-650
-650
-658
-650
-663

-650
-650
-664
-650

-656
-654
-651
-654
-659
-655
-652
-653
-653
-658
-653
-651

-657
-657
-657
-657
-410
-657

662
660

662
651
653
652
655
659
651
656
662
662
662
662

664
657
664
664

662
657
662
662
664

662
663
662
662

662
656
654
659
661
659
661
660
657
660
660
661

658
658
658
412
658
658

-600 601
-601 602

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603

-604 605
-604 605
-604 605
-604 605

-603 604
-603 604
-603 604
-603 604
-605 606

-604 606
-604 606
-604 606
-604 606

-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-601 603
-602 603
-602 603
-602 603
-602 603
-601 603

Air above pit and around accelerator/phantom

-602 201
-599 605
-201 599
-201 599
-201 599
-201 599
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650

9.8893626E-01
9.8893626E-01

99995 0 -606
99996 0 606 -600 -620
99997 0 606 -600 632
99998 0 606 -600 -632 620 -662
99999 0 606 -600 -632 620
c
c RR R R R Ik kb b b b b b b b b b b b
c END Cell Descriptions
c ER R R R R R I I I b b b b b b I
c
c
c ER R R R R R I I b I b i i
c Surface Descriptions
c RR R R Rk kb bk b b bk b b b b b b b
c
C
c Target, Primary Collimator & Filters
C
c
101 cz 0.2725
102 cz 1.0
c
111 cz 3.85
112 cz 4.0
113 cz 4.65
c
121 cz 10.0
c
201 pz -0.0
202 pz -0.1
209 pz -1.5
c
211 pz -7.62
212 pz ~-10.6
214 pz -11.57
215 pz -11.79
219 pz -12.4
c
231 pz -14.86
232 pz -15.11
233 pz -15.46
239 pz -15.66
c
311 kz -1.028 0.0631 -1
312 kz -7.84 0.416 -1
313 kz -9.94 1.653 -1
319 kz -12.32 0.1914 +1
c
321 kz -13.26 1.83376736112 -1
c
C m
c Collimator Jaw Assembly
€ —— =
c Collimator opening set for a 30x30 field size
c
400 pz -38.0
401 pz -51.0
c
410 py -50.0
411 py 0.0
412 py 50.0
c
420 px -50.0
421 px 0.0
422  px 50.0
c
460 p -1.4834105E-01 0.0000000E+00
461 p -1.4834105E-01 0.0000000E+00
462 py -1.1000000E+01
463 py 1.1000000E+01
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Q

Q

C

464
465

470
471
472
473
474
475

480
481
482
483
484
485

490
491
492
493
494
495

' ' 'C 'O ‘T 'O
KK

'UB’U'U'U’U

X

' ‘s 'O T ' 'O

.8893626E-01
.8893626E-01

.4834105E-01
.4834105E-01
.1000000E+01
.1000000E+01
.8893626E-01
.8893626E-01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

.0000000E+00
.0000000E+00
.0000000E+00
.0000000E+00
.1000000E+01
.1000000E+01

599 pz
Room

Z planes
600 pz
601 pz
602 pz
201 pz
599 pz
603 pz
604 pz
605 pz
606 pz
X planes
620 px
621 px
622 px
623 px
422 px
421 px
420 px
624  px
625 px
626 px
627 px
628 px
629 px
630 px
631 px
632 px
633 px
634 px

-1.
-1.
.8893626E-01
.8893626E-01

o o~

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00

.0000000E+00
.0000000E+00

4834105E-01
4834105E-01

.4834105E-01
.4834105E-01
.8893626E-01
.8893626E-01

for floor and ceiling locations

333

237.
135.
0.
-130.
-225.
-255.
-476.
-506.

.8
28
68
0
0
0
48
46
94

for walls

-495
-403

-190.
-95.
-50.

0.
50.
95.

190.
472.
518.
563.
723.
830.
990.
1036.
-125.

125

.3
.86
5
25
0
0
0
25
5
44
16
88
9
58
6
32
73
.73

c Y planes for walls

e}

650
651

Py
Py

577
486

.85
.41

-1.
-1.
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.4834105E-01
.4834105E-01

.8893626E-01
.8893626E-01

.4834105E-01
.4834105E-01

.8893626E-01
.8893626E-01
.4834105E-01
.4834105E-01

.8893626E-01
.8893626E-01

4834105E-01
4834105E-01

-4.
-5.

-1.
-1.

-2.
-3.
.0000000E-03
.5001000E+01

-2.
-3.
-1.
-1.

.0000000E-03
.5001000E+01

0800000E+01
0800000E+01

0000000E-03
5001000E+01

7100000E+01
7100000E+01

7100000E+01
7100000E+01
0000000E-03
5001000E+01



652 py 448.31
653 py 372.11
654 py 276.86
655 py 158.75
656 py 128.27
657 py 95.25
c 412 py 50.0
411 py 0.0
c 410 py -50.0
658 py -95.25
659 py -207.01
660 py -367.03
661 py -419.1
662 py -525.78
663 py 125.73
664 py -125.73

Q

RR R Rk kb Ik kb b b b b b b b b b b b b b 3

END Surface Descriptions
Ak hkkhkhkhkhkhkkhkhkkhhkhkhkhkkhkhkkhkhkhkkhkkhxkx

Q0aQa0aQqQ

Materials for Electron-Photon Simulation

mll plib=02p elib=03e
74000 -0.90 75000 -0.10
ml2 plib=02p elib=03e
29000 1
ml3 plib=02p elib=03e
74000 -0.95 28000 -0.035 29000 -0.015
ml4 plib=02p elib=03e
13027 1
ml5 plib=02p elib=03e

26000 -0.70 24000 -0.18 28000 -0.09
25000 -0.02 14000 -0.01

ml6 plib=02p elib=03e
82000 1
ml8 plib=02p elib=03e

1000 -0.0055 8000 -0.4984 14000 -0.3157
20000 -0.0826 11000 -0.017 12000 -0.0026
13000 -0.0455 16000 -0.0013 19000 -0.0191
26000 -0.0123

Materials for Electron-Photon-Neutron Simulation

mll nlib=60c plib=02p elib=0le pnlib=03u
74182 0.237294
74183 0.129157
74184 0.276674
74186 0.258020
75185 0.036972
75187 0.061883
mpnll 74184 5r
ml2 nlib=60c plib=02p elib=0le pnlib=03u

29063 0.6917
29065 0.3083
mpnl2 29063 1r

ml3 nlib=60c plib=02p elib=0le pnlib=03u
74182 0.226794
74183 0.123441
74184 0.264431
74186 0.246603
28058 0.067660
28060 0.026063
28061 0.001133
28062 0.003612
28064 0.000920
29063 0.027213
29065 0.012129
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mpnl3 74184 3r 29063 6r

ml4 nlib=60c plib=02p elib=0le pnlib=03u
13027 1
ml5 nlib=60c plib=02p elib=0le pnlib=03u
26054 0.039836
26056 0.629963
26057 0.015110
26058 0.001923
24050 0.008242
24052 0.158937
24053 0.018022
24054 0.004486
28058 0.057199
28060 0.022033
28061 0.000958
28062 0.003053
28064 0.000778
25055 0.019948
14000 0.019510
mpnl5 26056 7r 29063 4r 26056 13027
ml6 nlib=60c plib=02p elib=0le pnlib=03u

82206 0.245667
82207 0.225666
82208 0.528667

ml8 nlib=60c plib=02p elib=0le pnlib=03u

1001 0.103128

8016 0.585223
14000 0.211247
20000 0.038705
11023 0.013912
12000 0.001974
13027 0.031709
16000 0.000748
19000 0.009203
26054 0.000245
26056 0.003812
26057 0.000095

mpnl8 0 0 13027 20040 0 0 13027 0 0 26056 2r

Options for Electron-Photon Simulation

mode e p

phys:p 23 1
cut:e j 0.5 0 0
cut:p j 0.1 0 0
print -85
prdmp 3j 3

Options for Electron-Photon-Neutron Simulation

mode e p n
phys:p 23 1 -1

cut:e j 5.7 0 0
cut:p j 5.7 0 0
cut:n j j 0 0
print -85
prdmp 3j 3

Weight-Windows for Electron-Photon Simulation

wwp:e,p 5310 00
wwe:e,p 1e20
wwnl:e,p 0.2 75r -1 b5r
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Weight-Windows for Electron-Photon-Neutron Simulation

wwp:e,p,n 5 310 0 O
wwe:e,p,n 1e20

wwnl:e,p 0.2 75r -1 5r
wwnl:n 0.002 75r -1 b5«r

Energy Specification for 10 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 10
sil 0.05

Energy Specification for 15 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 15
sil 0.05

Energy Specification for 20 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 20
sil 0.05

Energy Specification for 25 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 25
sil 0.05

Energy Specification for 30 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 30
sil 0.05

Energy Specification for 40 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 40
sil 0.05

Energy Specification for 50 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 50
sil 0.05

Energy Specification for 75 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 75
sil 0.05

Energy Specification for 100 MeV

sdef par 3 pos 0 0 0 sur 201 rad dl vec 0 0 -1 dir=1 erg 100
sil 0.05
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