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Abstract- The Multi-spectral Thermal Imager (MTI) is a high-

performance remote-sensing satellite designed, owned and

operated by the U.S. Department of Energy, with a dual mission

in environmental studies and in nonproliferation.  It has

enhanced spatial and radiometric resolutions and state-of-the-

art calibration capabilities.  This instrumental development puts

a new burden on retrieval algorithm developers to pass this

accuracy on to the inferred geophysical parameters.  In

particular, the atmospheric correction scheme assumes the

intervening atmosphere will be modeled as a plane-parallel

horizontally-homogeneous medium.  A single dense-enough

cloud in view of the ground target can easily offset reality from

the calculations, hence the need for a reliable cloud-masking

algorithm.  Pixel-scale cloud detection relies on the simple facts

that clouds are generally whiter, brighter, and colder than the

ground below; spatially, dense clouds are generally large on

some scale.  This is a good basis for searching multispectral

datacubes for cloud signatures.  However, the resulting cloud

mask can be very sensitive to the choice of thresholds in

whiteness, brightness, temperature, and connectivity.  We have

used a genetic algorithm trained on  (MODIS Airborne

Simulator-based) simulated MTI data to design a cloud-mask.

Its performance is compared quantitatively to hand-drawn

training data and to the EOS/Terra MODIS cloud mask.

I. INTRODUCTION

To take full advantage of the advanced spatial and

radiometric resolutions and calibration capabilities of the

Multi-spectral Thermal Imager (MTI) spacecraft [1],

atmospheric effects such as water vapor absorption and

aerosol scattering must be estimated and removed, and

clouds, which limit seeing of the ground, must be identified

and masked out from the images. Efforts are underway to

develop algorithms to fully automate this processing.

Qualitative results on have been reported in [2].

The MODIS Airborne Simulator (MAS) [3] is a high

resolution scanning spectrometer mounted on an aircraft.  Its

primary objective is to support the MODerate resolution

Imaging Spectroradiometer (MODIS) instrument on the

EOS/Terra spacecraft.  In the present work, spectrally

resampled MAS data from the Smoke, Clouds, And Radiation

- Brazil (SCAR-B) campaign is used as a proxy for MTI

spacecraft data.  We are interested in comparing several

techniques for automatically masking out clouds, and will

present results for a genetic algorithm approach (using a

software package called GENIE) which attempts to evolve a

cloud mask achieving automation, robustness, and good

classification performance.

II. METHOD COMPARISON

Observationally, clouds are usually much brighter than

their background, caused by refraction by the ice crystals and

water droplets that make up the cloud.  Clouds usually appear

white when viewed from above.  Due to the altitude of the

clouds, they are cold, and when viewed from above they

often appear much colder than their background.  The MTI

cloud mask algorithm uses these three basic to determine a

pixel-scale cloud mask. MTI has 15 multi-spectral imagery

(MSI) bands, including three visible bands and one near

infrared (NIR) band each with a spatial resolution of 5m, and

four NIR, two short-wave infrared (SWIR), two mid-wave

infrared (MWIR) and three long-wave thermal IR bands each

with a resolution of 20m [4]. The MTI cloud mask algorithm

uses bands “C” (0.65µm visible red), “E” (0.88µm near IR),

and “N” (10.5µm thermal IR), as follows.   A normalized

difference vegetation index (NDVI) of  “C” and “E” is used

to determine whiteness; the “C” band alone determines

brightness; and the thermal “N” band is used to determine a

relative temperature, using simple-thresholds on each of

these.  While these codes are mostly automated, the routines

require that the thresholds be determined by hand, with a

human user selecting representative cloudy pixels and

thresholds in a false-color RGB display. These routine are

currently part of MTI’s Level 2 data processing for regular

data retrievals.

Ackerman et al., [5] describe a physics-based cloud mask

algorithm developed for the MODIS instrument using MAS

data. Their automated routine masks pixels that contain

optically thick aerosol, clouds, or shadow.  It returns a 48 bit

cloud mask which includes a two bit classification for the

likelihood that a given pixel is cloudy.  This algorithm uses

radiance values in seventeen MAS bands, plus extensive

ancillary data including instrument viewing geometry, a

land/water/ice map, and an ecosystem map (land-cover

classification for each pixel). While automated and quite

robust, this algorithm is computationally expensive to run,

and so we are interested in exploring a machine learning

approach to attempt to evolve a simpler, but still automated

and robust, alternative algorithm.



GENIE [6] is an evolutionary computation software system

that rapidly evolves automatic feature extraction (AFE) tools

for multi-spectral imagery (MSI). GENIE is designed for a

range of imagery analysis tasks, and is built to process and

combine data from a wide variety of imagery sources (MSI,

hyper-spectral imagery (HSI), and electro-optical (EO)

imagery; using visible through  thermal IR wavelengths).

GENIE, described at length elsewhere [7], uses a genetic

algorithm to assemble image-processing tools (retrieval

algorithms) from a collection of spatial, spectral, and spatio-

spectral image processing operators, including edge detectors,

texture measures, band math operations, thresholds, and

morphological filters. A population of candidate tools is

generated, ranked according to a fitness metric measuring

their performance on some user-provided training data, and

fit members of the population permitted to reproduce. Each

candidate tool in the population generates a number of

intermediate feature planes, which are then combined using a

supervised classifier backend (currently a Fisher discriminant

and optimal threshold which minimizes the classification

error) to generate a binary result mask. This process cycles

until the population converges to a solution, or the user

decides to accept the current best solution, or decides to

change the training data.

III. EVOLVING A SPATIO-SPECTRAL CLOUD MASK

The MODIS cloud mask was run on part of a scene from

the MAS SCAR-B flight series (95-163, track 7). Training

data for GENIE was provided by manual mark-up of the

scene.  This is a straight-forward procedure for dense,

optically-thick clouds, and not every pixel needs to be

marked.  More careful mark-up techniques would be needed

to provide accurate training data for optically-thin clouds.

Test data was produced by two techniques: manual

classification of a complete MAS flight track, and the output

of the MODIS cloud-mask, which is taken to be a “gold

standard” for this problem.

A population of 50 candidate tools, each consisting of 20

primitive image processing steps, was evolved for 30

generations.  This evolution required approximately 11

minutes of wall-clock time running on a dual-processor

Linux/PC workstation. The best algorithm evolved produced

a cloud mask with an excellent match to the hand-drawn

training data.  Table I presents detection and false alarm rates

and the chromosome fitness score (GENIE’s internal measure

of fitness, a floating-point number scaled from 0 to 1000) for

the training case and several test cases, which we now

describe. The training scene comprises part (a contiguous

segment) of SCARB flight 95-163 track 7 with training data

(i.e., pixel-scale cloud classification) provided by manual

photo-interpretation.  Test 1 comprises all of track 7, again

with manually marked-up training data. Test 2 comprises all

of track 7 using the MODIS algorithm for training data.  Test

3 comprises all of flight 95-163 track 1 using a binary cloud

mask  produced by the MODIS algorithm for training data.

As an extreme test of robustness, we also tested the algorithm

on a  scene from the TARFOX campaign, and the result was

qualitatively very good, which we find encouraging for the

future use of this machine learning technique.

The evolved algorithm works as follows: (A) a linear

combination of MAS bands 1 (0.546µm visible green/yellow)

and 48 (13.24µm thermal IR), spectrally equivalent to

MODIS bands 4 and 33 (respectively), and close to MTI

bands “B” (0.55µm visible green/yellow) and “N”, are

linearly combined to form the first intermediate feature plane.

On inspection, this does a qualitatively good job of extracting

the interiors of optically-thick clouds.  (B) MAS band 2

(0.653µm visible red), equivalent to MODIS band 1 and

MTI band “C”, undergoes an amplitude band-pass filter

equivalent to a brightness test, which on inspection extracts

the edges of bright clouds. (C) Finally, MAS band 7

(0.865µm near IR), equivalent to MODIS band 2 and MTI

band “E”, undergoes local gradient spatial processing,

equivalent to the difference of the standard morphological

filtering operations of grayscale dilate and erode.  This acts to

extract the edges of clouds.  A linear combination of these

intermediate feature planes is then formed, with a vector of

coefficients (3.90,0.57,1.89) determined by the Fisher

discriminant using the training data.  The float-valued

grayscale answer plane is then  thresholded at a value 244.0,

to produce a binary cloud mask, part of which is shown (for

case Test 1, outside the training region) in Fig.1, right panel.

The noticeably higher false alarm rate in Test 2 deserves

further comment.  At its most pessimistic setting, the MODIS

cloud mask tends to over-estimate the occurrence of clouds,

relative to the human-specified simple-threshold algorithm.

This is particularly noticeable at the edges of the MAS scenes

(where geometric distortion of the image is quite visible, due

to the large field-of-view of the MAS).  The somewhat higher

false alarm rate in this test case is due to the GENIE-evolved

algorithm producing a result which does not show this effect,

and which is closer to the simple-threshold method.

IV. DISCUSSION AND CONCLUSIONS

The algorithm evolved by GENIE for this particular cloud

mask application uses a thermal infrared band, a near IR

TABLE I

EVOLVED CLOUD MASK PERFORMANCE

Detection False Alarm Fitness

Rate [%] Rate [%]

Training 99.8 0.38 997

Test 1 99.5 0.0 997

Test 2 93.2 14 895

Test 3 98.3 8.1 980



band, and visible green/yellow and red bands.  This is very

similar to the method used with the human-specified

simple−thresholds, though the band choices are not identical

(GENIE also chooses to use MAS band 1 in intermediate

feature plane A).

Fig.1 shows a portion of the cloud image from the SCAR-B

flight 95−163 track 7 data set.  The left panel shows the

clouds in the image using a near infrared band (similar to

MTI band “E”) from the MAS data (band 7).  The right panel

shows the cloud mask determined by GENIE. The MODIS

and human-specified simple−threshold cloud masks are very

similar to the GENIE result, and are not shown.  Importantly,

after training, the algorithm evolved by GENIE is fully

automated relative to the simple-threshold technique, and

executes in approximately 10 seconds on a complete MAS

flight track, compared to a few minutes for the MODIS

algorithm, using the same computer, though we should also

take into account GENIE’s initial training time (a few

minutes to mark up the scene and 11 minutes of runtime, in

this case).

We plan to continue the quantitative comparison of GENIE

and the MODIS and MTI cloud masks in future work.  Also,

we plan to use both GENIE and the MTI cloud mask on a

regular basis in detection products for the MTI spacecraft
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Fig. 1.  A part of MAS band 7 of the training scene (left) is compared with the GENIE cloud mask algorithm result (right).
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