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ABSTRACT

This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on
the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of
reinforced concrete flexural members and shear walls due to the loss of steel reinforcing arca and loss of concrete area
(cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by
corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of
uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of
reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility
modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk
and can lead to the development of probability-based degradation acceptance limits.

INTRODUCTION

All commercial nuclear power plants (NPPs) contain concrete structures whose performance and function are
necessary to protect the safety of plant operating personnel and the general public. Although these structures are passive
under normal operating conditions, they play a key role in mitigating the impact of extreme environmental events such as
carthquakes, high winds, and tornadoes. The past performance of reinforced concrete structures in NPPs has been good, with
the majority of the problems identified during construction and corrected at that time. However, as these structures age,
incidences of degradation due to various aging mechanisms are likely to increase the potential threat to their functionality
and durability. Some evidence of this has been reported in Ashar and Bagchi, 1995; Naus et al., 1999; and Braverman et al.,
2000. Incidences of degradation have been identified in intake structures/pumphouses, tendon galleries, masonry walls,
anchorages, containments, and other concrete stmctures often in areas exposed to water, aggressive chemicals, or freeze-
thaw cycling,

Concrete structural components, such as shear walls, slabs, beams and columns, that are found in the reactor building,
control or auxiliary building, and other balance-of-plant facilities, are designed and constructed in accordance with criteria
in ACI Standards 318, 349, and the NRC Standard Review Plan 3.8.4. Such components generally have substantial safety
margins when properly designed and constructed; however, the available margins for aged or degraded concrete structures
are not known. Aging can lead to changes in engineering properties and may affect the dynamic properties, structural
resistance/capacity, failure mode, and location of failure initiation. This paper discusses the research effort performed to
evaluate the effects of degradation of reinforced concrete flexural members and shear walls found in U.S. NPPs.

FRAGILITY METHODOLOGY -

Degradation effects can be quantified with fragility curves developed for both undegraded and degraded components.
Fragility analysis is a technique for assessing, in probabilistic terms, the capability of an engineered system to withstand a
specified event. Fragility modeling requires a focus on the behavior of the system as a whole and, specifically, on things that
can go wrong with the system. The fragility modeling process leads to a median-centered (or likely) estimate of system
performance, coupled with an estimate of the variability or uncertainty in performance. The fragility concept has found
widespread usage in the nuclear industry, where it has been used in scismic probabilistic safety and/or margin assessments
of safety-related plant systems (Kennedy and Ravindra, 1984).

The lognormal cumulative distribution function (CDF), is the most common model in structural fragility analysis. If
the structural capacity is described as the product of statisticaily independent random variables, the central limit theorem

. provides some justification for the lognormal model. The lognormal CDF is described by,

Fr x) = @ [In(x/m c)/Bc] @

in which Fg (x) is the probability of failure for an applied load equal to x, ¢ [ ] = standard normal probability integral, mc =
median capacity, and pc = logarithmic standard deviation, approximately equal to the coefficient of variation, V¢, when V¢
< 0.3. It should be emphasized that all sources of uncertainty known to impact structural performance should be included in
this model. These would include aleatory uncertainties, g (inherent variability in strength of concrete and reinforcing steel,
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dimensions, etc) and epistemic uncertainties, By (simplifying assumptions regarding structural mechanics, approxnmate
methods of analysis, limitations in data). There are a number of ways to distinguish between these sources of uncertainty in

the fragility assessment. In this study, we combine the aleatory and epistemic uncertainties as, g = ,/pk +py? inEq. (1).

A summary of available statistical data to describe the strength of reinforced concrete flexural members (beams and
slabs) and short concrete shear wall structures is provided in Tables 1 and 2, respectively. These are based on a
comprehensive review of published literature (Ellingwoed and Hwang, 1985; MacGregor et al., 1983) and additional data
from specific NPPs. The limit state for the beams considered herein is defined by the beam strength measured in terms of
uniform load capacity. Deformation-based limit states (peak displacement, maximum rotations, or ductility) usually are not
the limiting condition for flexural members in NPPs. Most loads acting on flexural members in power plants are static
gravity loads, with dynamic seismic loads constituting a small portion of the total load. Thus, static rather than dynamic

. effects are considered for the beam. Since the principal loads acting on the flexural members are considered to be static, the
steel and concrete strengths presented are static strengths in-situ, i.e., the strength when loading to failure takes
approximately one hour. Mill tests of steel and concrete cylinder tests are conducted at a higher strain rate than is typical for
static structural loading, and must be adjusted to static conditions. The principal loads acting on shear walls, however, are
generally due to seismic so that dynamic concrete and steel properties are used. This accounts for the differences in the data
in Tables 1 and 2. The in-situ strength of concrete requires additional corrections to account for differences between
standard-cure cylinder strengths and field strengths that arise from field placement, consolidation, and curing conditions
(MacGregor, et al., 1983). Thus, the concrete strength statistics reflect 28-day in-situ strength under static load conditions
for the flexural members and under dynamic load conditions for the shear walls. There can be a significant gain in concrete
strength beyond the 28-day strength used as the basis for design. Such increases have only a nominal effect on flexural
strength of the under-reinforced beam, but may have a substantial impact on shear wall behavior, where the concrete
strength is more important. For conservatism, this strength increase is ignored in the current study.

Table 1 . : Table 2
Structural Resistance Statistics for Beams Structural Resistance Statistics for Shear Walls
Property : Mean Ve CDF -Property Mean Ve CD
» ) F
Concrete (4,000 psi) o Concrete (4.000 psi) '
Comp. Strength 3,552 psi 016 N Comp. Strength 4,400 psi 016 N
Splitting strength "~ 358 psi 018 N A Splitting strength 475 psi 018 N
Initial tangent modulus 3,800 ksi 0.18 . Initial tangent modulus - 3,834 ksi 0.18
Max comp. strain " 0.004 020 N Max comp. strain 0.004 - 020 N
Grade 60 reinforcement . _ Grade 60 reinforcement
Yield strength 66 ksi 0.10 1IN Yield strength 71 ksi 0.10 LN
Modulus of Elasticity . 29,000kst NA Modulus of Elasticity 29,000ksi NA ’
Placement of reinforcement Placement of reinforcement
Effective depth, d d (in) 05d N Effective depth, d d (in) 05d N
Analysis Flexure (By) 1.04 007 . N Analysis Shear (By,) . 1.00 014 N
Note: 1'in. = 25.4 mm; 1 psi = 6.895 kPa; 1 ksi = 6.895 MPa, Note: 1 in. = 25.4 mm; 1 psi = 6.895 kPa; 1 ksi = 6.895 MPa;
N = normal distribution; LN = lognormal distribution : N = normal distribution; LN = lognormal distribution

The factors B; and B,;, account for epistemic uncertainty in the analysis itself. This uncertainty arises from idealizations
of behavior in any analytical model of a structure. Refined structural models (e.g., nonlinear FEA) tend to be closer to
reality than design code models, and in such cases the means of By or By, will be close to 1 (unbiased).

The uncertainties are propagated through the analyses of the structural components using Latin Hypercube sampling, a
stratified sampling technique designed to reduce the variance in the estimator for small samples. Nineteen samples are used
for each analysis to facilitate probability plotting within approximately the center 90% range of the fragility curve.

FRAGILITY EVALUATION OF DEGRADED FLEXURAL MEMBERS

Degradation effects on the behavior of indeterminate flexural reinforced concrete members are determined using a
- specific example of a propped cantilever beam. Fragility curves for the undegraded beam and the beam with degraded
properties are calculated and compared for varying levels of degradation. Lognormal distributions for the important beam
properties are developed both for the undegraded and degraded conditions. These properties are then used to evaluate the
probability of failure for the beam. Extensive calculations arc performed with an analytical model of the beam (as
recommended in ACI 318) and these results are verified with a finite element model of the beam.



Beam Desngn and ACI Code Analysis

A propped cantilever beam with a 6.1 meter (20 ft) span is used as the sample problem. The beam is designed, using
the procedures in ACI 318-99, for a dead load of 14.6 kN/m (1 kip/ft) and a live load of 43.8 kN/m (3 kips/ft). The resulting
ultimate load on the beam (including load factors) is 94.9 kN/m (6.5 kips/ft). The design of the beam used compressive
strength of concrete (f ') at 27.6 MPa (4,000 psi) and Grade 60 reinforcement [yield strength f , = 414 MPa (60 ksi)].
Young's modulus for the concrete is 24.9 GPa (3,605 ksi). The design is shown in Fig. 1. The reinforcement ratios in the
negative and positive moment regions are 0.0145 and 0.0087, respectively. The balanced reinforcement ratio is 0.0285 so
that one expects the strength of the beam to be controlled by yielding of the reinforcement as required in the Code.

The load-deflection behavior of the beam is evaluated using the procedures defined in ACI 318. When the loading is
small and before concrete cracking occurs, the stiffness of the beam is controlled by the gross section with negligible
contribution from the reinforcement. The bending moment causing cracking (M.,) is defined in the ACI code to occur when
the tensile flexural stress is f, = 7.5 [f ']'? = 474 psi (3.27 MPa). The value of M,; is 66.8 kN-m (49.3 ft-kips). The
maximum bendmg moment occurs at the fixed support and is equal to w L? / 8. Equating this moment to the cracking
moment results in the cracking load [w., = 14.4 kN/m (0.986 kips/ft)]. The ultimate moment capacities of the beam,
evaluated at the support and positive moment regions are M,” = 490 kN-m (361 ft-kips) and M,;* = 312 kN-m (230 ft-kips),
respectively. The first plastic hinge occurs at the support when the loading equals 105 kN/m (7.22 kips/ft). The second
plastic hinge occurs at 3.81 m (12.5 ft) from the fixed support when the load equals 114 kN/m (7.79 kips/ft). The magnitude
of this load is:

| We=2 My + ML/ (@-%)]/Lx | B
where x is the location of the second plastic hinge which is 3.81 m (12.5 ft) from the support.

lete Element Model

The results from the above closed form solutions are verified with a finite element model of the beam with solutions
obtained using the ANSYS computer code. The model used for the beam is shown in Fig. 2. The concrete is modeled with
element "SOLID65" of ANSYS. Cracking and crushing behavior of the concrete is considered in the solutions. The steel
reinforcement is modeled discretely with.spar elements having elastic-perfectly plastic material properties.

The uniform load on the beam is increased until convergence of the ANSYS solutions can no longer be achieved.
Cracking is calculated to occur at a load of 24.1 kN/m (1.65 kips/ft). The first plastic hinge (defined at the first yielding of
the reinforcement) forms at 103 kN/m (7.05 kips/ft) and the second plastic hinge forms at 115 kN/m (7.88 kips/ft). It should -
be recalled that the corresponding ACI code calculated values are 14.4 kN/m (0.986 kips/ft) for cracking, 105 kN/m (7.22
kips/ft) for the first plastic hinge, and 114 kN/m (7.79 kips/ft) for the second hinge. Plots of load versus deflection for the
beam are shown in Fig. 3 for both the finite element and hand calculation models. It can be seen that the agreement between
the two is quite good. Based on these results, the ACI 318 calculations are used to generate the beam fragility curves.

Fragility Results for Beams

Fragility curves are generated for the undegraded (benchmark mse) and degraded beams. The data presented in Table
1 are used to develop the fragility of the undegraded beam. Equation (3) is used to evaluate the beam strength for each of 19
Latin Hypercube samples. A standard statistical package is used to evaluate the 19 samples and the resulting mean strength
is found to be 126 kN/m (8.66 kips/ft) (compared to 114 kN/m (7.79 kips/ft) for the design case). The logarithmic standard
deviation, V¢, is found to be 0.11.

Based on published data, several levels of corrosion were identified for crack widths observed in concrete members. It
was found that crack (parallel to the reinforcement) widths on the order of 0.15 mm (0.0059 in.) correspond to the first stage
of corrosion with essentially no reduction in steel area or bond strength, while crack widths on the order of 9 mm (0.354 in.)
are associated with 20% loss in steel (cross-sectional) area and significant loss of bond strength. Since the 9 mm (0.354 in.)
crack would be readily observable during an inspection and would afford the opportunity to make repairs, it was decided to
consider steel area losses of 20% and 10% (treated as random variables). The 20% reduction in steel area is modeled with a
mean steel area of 4.05 cm? (0.628 sq. in.) (theongmalareaofthezs4mm[#8]barlsS 1 cm? [0.79 sq. m])wuhaCOV
in area equal to 0.07 while the 10% reduction in steel area is modeled with a mean steel area equal to 4.55 cm® (0.706 sq.
in.) and a COV equal to 0.05.

In addition to loss of steel area, concrete spalling (resulting from either freeze thaw problems or steel corrosxon) is also
considered as a degradation mechanism in this study. Spalls in concrete beams usually occur outside of the steel cage. This
is modeled by reducing the effective depth of the beam section by subtracting the cover from the depth. The cover is defined
with a mean depth of 4.45 cm (1.75 in.) with a COV in depth equal to 0.36. Since corrosion can result in loss of steel and
concrete spalling, the combined case of both effects are considered in addition to the individual effects.

The fragility parameters for the degraded beam are summarized in Table 3. The distributions are also shown in Fig. 4.
The results indicate that there is about 4% probability of failure at the design ultimate capacity of 94.9 kN/m (6.5 kips/ft). It
can be seen (in the Table and Figure) that the V¢ is about the same for all cases and thus the fragilities are nearly parallel to



ane another. The strength of the beam is reduced by less than 18% for the worst cases. The most severe cases result from a
20% loss of steel area. It should be noted that this mechanism is associated with severe cracking of the concrete section
which could be readily observed during an inspection. It is believed that inspections of the facility would identify such
problem areas before serious degradatxon of strength occurs. The results for the beam evaluation have been expanded to
other beams and slabs and are presented in NUREG/CR-6715 (Braverman et al., 2001).

Table 3
Fragility Curve Statistics for Degraded and Undegraded Beam Case
Case Mean Capacity Ve
(kips/ft) (kN/m)

Undegraded 8.66 126 0.11
Bottom Spall 8.23 120 0.12
Top Spall 8.06 118 0.12
Top and Bottom Spall 7.89 115 0.13
10% Loss of Top and Bottom Steel 7.81 114 0.12
20% Loss of Top and Bottom Steel 7.29 106 0.13
20% Loss of Steel & Spall, Both at Bottom 7.11 104 0.12
20% Loss of Steel & Spall, Both at Top 7.45 109 0.12

FRAGILITY EVALUATION OF DEGRADED SHEAR WALLS

Validation of Analytical Code

A series of tests performed in Japan (Yamakawa, 1995) on shear walls are used to verify ANSYS models of shear
walls. The walls are 950 mm (37.4 in.) high, 800 mm (31.5 in.) wide, and 80 mm (3.15 in.) thick. The reinforcement
consists of two layers of 6 mm bars (0.236 in.) spaced at 100 mm (3.94 in.) in each direction. Thick (essentially rigid) edge
beams were placed at the top and bottom of the specimen. Static cyclic loading was applied .to the specimens. Both
undegraded and degraded (with various levels of steel corrosion) shear walls were tested; the verification is made for the
undegraded case.

The ANSYS model used for this verification study utilizes the finite element "SOLID65" which includes both cracking
and crushing of the concrete. The development of a crack at an mtegratxon point modifies the stress-strain relations by
introducing a plane of weakness. The post-cracking behavior is represented using a shear transfer coefficient which consists
of a shear strength reduction factor for subsequent loads which induce sliding (shear) across the crack face. The shear
transfer coefficient can range from 0.0 to 1.0. A value of 0.5 was selected for this study and varied by + 25% to evaluate its
impact. The sensitivity analyses indicated that the response of the model was not significantly affected by variation in ﬂus
parameter. The steel reinforcement is modeled with elastic-perfectly plastic spar elements.

A comparison of the load-deflection behavior and crack patterns from the test specimens and the ANSYS model
demonstrated that the ANSYS finite element modeling approach is suitable for predicting the behavior of reinforced
concrete shear walls for the purpose of this study.

Deterministic Analyses of a Representative Shear Wall

A specific shear wall with characteristics that are representative of those found in NPPs, illustrated in Fig. 5, was
selected to evaluate the effects of degradation on reinforced concrete walls. The wall is 6.1 m (20 £t) high by 6.1 m (20 ft)
wide and is 61 cm (2 ft) thick. The reinforcement consists of 15.9 mm (#5) bars spaced at 21.6 cm (8.5 in.) at each face in
each direction resulting in a horizontal and vertical reinforcing ratio equal to 0.003. The shear wall is assumed to be part of
an enclosure of a square room having similar shear walls on all sides and a ceiling with similar dimensions. The walls
normal to the shear wall under consideration act as flanges and provide moment resistance. The ceiling slab acts as a stiff
member to distribute the shear load uniformly across the wall. A vertical load resulting from gravity loads in the building is
included and selected to produce a uniform compressive stress in the wall equal to 2.07 MPa (300 psi). The specified
concrete strength is taken as 27.6 MPa (4 ksi) and grade 60 reinforcement is used. Several analytical methods are used to
calculate the ultimate capacities for comparison with the ANSYS solution.

ACI Design Code Methodology
Using ACI 318-99 the shear capacity of the wall can be calculated using the expression:

$Va=0[33(E'D"?hd+N,d/4L,+A,fd/s] @)
where, ¢ = capacity reduction factor, taken =1.0 (since true estimate of capacity is desired for fragility calculations)
h = wall thickness; d = 0.8 * wall width’
A, = area of horizontal steel within distance s,; - s, = spacing of horizontal reinforcement
N, =axialload=03 *h*L,; L., = wall width

~The resulting design capacity of the wall in shear is calculated to be 2,150 kips (9.56MN).
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Barda et al. Methodology
The ACI code is known to be conservative for low-risc walls. Barda et al. (1977) used experimental data (based on
tests of low-rise shear walls) to develop the following equation for the concrete contribution to the wall shear strength:

one = [83(F')"2-34(¢")?H/L,-05)+N,/(4hL,)]hd; where, H= wall height ©)

For fragility analyses in which the statistics of Vo, are required, the term f; / 6 (where f; = splitting strength) should
be substituted for (f ') “. This is necessary because the variability in the shear strength is incorrectly reduced when (f') * is
used in Eq. (5). To account for the contribution of vertical and horizontal reinforcement to wall strength, Wesley and

" Hashimoto (1981) developed the following equatlon for the shear strength developed from the horizontal and vertical

reinforcement ratios (py, and p,):

View=[apn+bp]f,hd ' 6)
where, a=1-b )
b=1forH/L,<0.5; =2(l-h/L,)for0.5<H/L, <l; =0; forH/Lw>1

The total shear wall capacity is calculated as the sum of equations (5) and (6). This results in a shear-capacity of 3,170
kips (14.1 MN), which is about 50% higher than the ACI code predicted capacity.

Evaluation of Shear Wall (Design Case) Using Finite Element Method

The ANSYS model used to evaluate the load-deflection characteristics of the example wall is shown in Fig. 6. The
same model characteristics are used as discussed above for the ANSYS validation except that the material properties reflect
. the design properties. The material properties used for this “design case™ are f'. = 27.6 MPa (4 ksi), f; = 3.09 MPa (448 psi),
E; (initial tangent modulus) = 26.4 GPa (3,834 ksi), and £, = 414 MPa (60 ksi). Sensitivity studies were made for various
solution parameters (load step size, number of iterations, and convergence criteria) to confirm the accuracy of the selected
values while minimizing the computer execution time. Several sensitivity studies were also conducted to determine the
importance of certain design and analysis parameters. The studies included variations on the concrete tensile strength and
the shear transfer coefficient used as input for the ANSY'S finite element when cracking occurs. Based on the results of these
studies and past experience, the values selected for these parameters would provide reasonable results for this model.

A load-deflection plot derived from the ANSYS solution is shown in Fig. 7. Straight lines are fit to the elastic and -
-inelastic portion of the design curve so that various characteristics of the curve may be established. This shows that the yield
load is about 2,550 kips (11.3 MN) and the corresponding yield deflection is 0.075 in. (1.91 mm) (drift ratio ='0.03%). The
limit state is defined as the drift ratio equal to four times the yield drift ratio, a point where significant damage to
attachments and penetrations may occur. Similar limiting deformation levels have been assumed in previous seismic PRAs
and margin studies of NPPs (e.g., Wesley and Hashimoto, 1981). For the “design case” shown in Fig. 7, the limit state is
calculated to be 0.3 in. (7.62 mm).

Recall that the ACI Code and Barda et al. methodology predicted wall strengths are 2,150 kips (9.56 MN) and 3, 170
kips (14.1 MN), respectively. These are shown in Fig. 7. It can be seen that the ACI Code predicted strength is about 83% of
the yield load while the Barda et al. methodology predlcted strength results in a deflection equal to approximately 0.18 in.
(4.57 mm) (2.3 times yield deflection).

Fragility Results for Shear Walls

The same shear wall model shown in Fig. 6 is used to develop fragility curves for evaluation of the effect of
degradation. The data shown in Table 2 are used to develop fragility data for the shear wall. A horizontal lateral (in plane)
load is applied to the top of the wall for each case and increased until large plastic deformations occur. The wall is evaluated
using an equivalent static lateral force method of analysis, making the process of evaluation of wall capacity similar to a
nonlinear pushover analysis of the type often used in recent years to evaluate buildings for earthquake resistance. The
objective of the study is to develop the relative fragilities for undegraded and degraded concrete members. It is likely that
dynamic effects play similar roles in modifying the fragilities for both conditions, and therefore the ratio of the degraded to
undegraded fragility would be about the same in ecither case. Load-deflection curves are calculated for the 19 sample data for
the undegraded case and each degraded condition. For each curve, straight lines are fitted to the elastic and plastic portions
of the curve (similar to those shown in Fig. 7 for the design case). Then the load corresponding to 4 times the design yield
drift is read off the curve, '

Solutions are obtained for both the undegraded wall and for degradation of the wall with a 20% loss of steel area and
complete spalling of the concrete cover. The solutions for the undegraded case indicate a mean strength of 16.3 MN (3,655
kips) with a V¢ of 0.15. Solutions for the 20% steel area loss indicate a mean strength of 16.2 MN (3,634 kips) with a V¢
equal to 0.16. Considering a 20% loss of steel area in combination with concrete spalling, the mean strength is reduced
further to 15.3 MN (3, 446 kips) with a coefficient of variation equal to 0.15. A plot of the fragility curves is given in
Fig. 8. For this case, the 20% loss of steel area was considered only for the shear wall (i.e., not the flange walls).



To confirm the fragility results for the shear wall by analytical means is difficult. It is known that applying the ACI
code methodology to low rise shear walls leads to very conservative (i.e. low) estimates of ultimate shear load capacity.
Therefore, the Barda et al. methodology is used to determine the effect of degradation on the ultimate capacity (not the
deformation-related limit state as defined previously for this study). For the configuration and design studied in this paper,
the resulting mean strength (ultimate shear capacities) for the undegraded case is calculated to be 16.7 MN (3,751 kips). For
the 20% loss of steel area the means strength is 15.8 MN (3,545 kips) and for the combined loss of steel area and concrete
spalling the mean strength drops to 14.4 MN (3,244 kips). These results, as well as the finite element evaluation, indicate
that the effect of degradation due to loss of stecl (up to 20%) is small. This occurs because of the relatively low steel ratio
for the sample shear wall problem. Evaluation of the wall for other variations in degradation and design parameters (e.g.,
different reinforcement ratios and aspect ratios) are presented in NUREG/CR-6715.

CONCLUSIONS

The evaluation of degraded reinforced concrete flexural mémbers and shear walls considered in this research has lead to
the following conclusions:

1. For a 20% loss of steel cross-sectional area (without concrete spalling) or complete spalling of concrete cover (without
loss of steel area) the strength of degraded beams decreases by less than 20%. For the case of loss of steel area in
combination with complete concrete spalling, the loss of steel area must be restricted to be less than 20% in order to
maintain the same level of reduction in fragility curves.

2. Beam fragility curves shift to lower values of strength and remain almost parallel to each other as the beam properties
degrade. This implies that the effects of degradation on beam strength at any given conditional probability of failure can
be estimated, to first approximation, by considering the impact of degradation on its median capacity, determined by
assuming all parameters take on their median values.

3. Finite element results for the shear wall, having an aspect ratio of 1.0 and a steel ratio of 0.003, indicate that the effect of
a 20% loss of steel area in combination with spalling of concrete results in a reduction of the mean wall strength of
approximately 6%. The effects of steel degradation increase for higher steel ratios and larger aspect ratios.

4. As in the case of flexural members, the wall fragility curves shift to lower values of strength and remain nearly parallel
when degradation occurs. Therefore, the effects of degradation can be estimated, to first order, by determining the .
median capacity from the medians of the individual variables, and anchoring the reduced fragility curves at the 50"
percentile.

5. The research effort also assessed the potential effects of degradation on plant risk and developed probability-based
degradation acceptance limits. Details of this are presented in NUREG/CR-6715.
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