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Abstract

Object-oriented analysis methods have been used in the computer science arena for a
number of years to model the behavior of computer-based systems. This report
documents how such methods can be applied to surety analysis. By embodying the
causality and behavior of a system in a common object-oriented analysis model, surety
analysts can make the assumptions that underlie their models explicit and thus better
communicate with system designers. Furthermore, given minor extensions to traditional

object-oriented analysis methods, it is possible to automatically derive a wide variety of
traditional risk and reliability analysis methods from a single common object model.
Automatic model extraction helps ensure consistency among analyses and enables the
surety analyst to examine a system ilom a wider variety of viewpoints in a shorter period
of time. Thus it provides a deeper understanding of a system’s behaviors and surety
requirements. This report documents the underlying philosophy behind the common
object model representation, the methods by which such common object models can be
constructed, and the rules required to interrogate the common object model for derivation
of traditional risk and reliability analysis models. The methodology is demonstrated in an
extensive example problem.
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The Use of Object-OrientedAnalysis

Methods in Surety Analysis

1 Introduction
During recent years there has been a dramatic increase in the complexity of technology
that is being used in everyday life. As complexity has increased, and as this complex
technology has been applied to systems that can cause unacceptable consequences when
they fail, there has been a corresponding increase in the number and severity of accidents
involving such systems. These consequences may involve financial losses, compromise
of information andlor security, environmental damage, injury, or the endangerment of
human life. For these reasons, the importance of understanding the risks of system
failure and ensuring correct system operation is increasing as well. Put most simply, the
overall objective is to produce systems that do what they are supposed to do and not what
they are not supposed to do; that is, build the right thing, build well, and protect it
appropriately. At Sandia National Laboratories, the term “surety” was developed in the
nuclear weapons program to convey this idea. Evaluating the surety of a system requires
a dynamic, whole system, a whole life cycle perspective. While one might define the
surety of the system in many different ways, surety often involves balancing five distinct
objectives:

. Utility – correctness, or fitness for a purpose

● Integrity – completeness, validity, authenticity

. Availability – reliable, accessible and usable when and where needed

. Access control-control of the persons, places, and times when a system maybe used;
confidentiality, privacy

● Safety – freedom from harm to persons, property, or the environment

One key element in establishing the surety of a system is to identi~ and mitigate the risks
of system ftilure. Such a goal requires a balance of potentkdly conflicting surety
objectives. For example, one may require that an emergency system be both available for
use at all times and yet accessible only to persons who are authorized to use it. A
restrictive access control for the system may render it unavailable for use during a critical
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time period. Risk is never zero for any system. Residual risk must be understood before
its importance can be judged and a decision can be made regarding what, if anything, to
do about it. An understanding of system risk will also guide assessments of how
available technologies may provide increased system surety.

Historically, designers and analysts have gone about ensuring the surety of a system by
examining it from many disparate perspectives using a wide variety of tools. These tools
include rigorous design principles, system simulations, probabilistic risk analysis,
destructive and nondestructive testing, and detailed quality assurance requirements. This
“shotgun” approach has yielded vely good results in certain vely restrictive high-
consequence environments such as aircraft, nuclear power plants, and nuclear weapons.
However, this approach is very time-consuming and expensive.

Clearly, if it is to become practical for analysts to use surety analysis techniques to
evaluate a wider array of systems, the approaches must be made more efficient and cost-
effective. One way to accomplish this would be to build a single surely analysis model
from which many analyses could be derived automatically. We have come to believe that
most of the traditional risk and reliability analysis methodologies (which form the
backbone of typical surety analyses) contain common, fundamental concepts which, if
appropriately captured in a single entity, could operate interchangeably from a common

object model. Furthermore, once this object model was constructed, one could extract
from it in an automated fhshion many of the traditional risk, security, and surety analysis
models, including fault trees, event trees, ftilure modes and effects analyses, as well as
discrete simulations and vital area analyses. The object model would instantiate in a
formal way the analyst’s understanding of the system because through the use of object-
oriented analysis techniques, the analyst would encapsulate into the model the behavior
and causality that make up the system.

The purpose of this report is to introduce the reader to the ways a common object model
can be used to perform a surety analysis of a “real” system. Such an analysis will make
use of techniques that are derived from traditional risk and reliability analysis methods.
Note that each such traditional method simply encapsulates certain aspects of the
behavior and causality embodied in the system using its own particular syntax and logic
rules. Therefore, if the system’s behavior and causality were to be embodied in a
properly constructed common object model, one could, in theory, extract any type of risk
or security model from the object model. This could be done automatically by
interrogating the object model and translating the appropriate aspects of its contents into
the syntax and logic rules required by the particular surety analysis method. In other

words, once system behavior and causality have been embodied in the object model, the
traditional risk and reliability analysis models can be obtained essentially~orfiee because
they are simply subsets of the object model that have been translated into another syntax.

In the fdl of 1996, Sandia began conducting a multidisciplinary intend research project
to create an extensible fiarnework capable of supporting a broad range of surety
assessment techniques. The project team was composed of members with backgrounds
in computer security itiormation surety, probabilistic risk and reliability assessment, and
object-oriented analysis methods. This report documents the results of that study.
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1.1 Historical Context

The concepts of system surety and surety analysis have only been developed during the
past few decades. Prior to the 1930s, there existed very few technologies that had the
potential to accidentally cause death or injury to a very large number of persons in a
single event. Since that time, however, we have seen the advent of nuclear power and

nuclear weapons, as well as large aircrafi complex chemical processing facilities, and
other very high-consequence systems. The surety of early high-consequence systems,
such as dams, was ensured by the overengineering. That is, engineering designs were
endowed with a very high stiety factor to ensure that catastrophic failures did not occur.
A sidar design philosophy was initially employed in the design of nuclear power
reactors. However, systems such as large aircraft could not be designed with such high
margins of safety because of significant weight restrictions (high safety margins often
add weight, which severely limits the ability of the system to fly). In addition, while
early systems often relied on passive stiety measures, these new technologies were often
forced to rely on active systems to provide safety. Obviously, active stiety systems must
be extremely reIiable if they are to perform their intended purpose in emergency
situations. Previous design and analysis methods could not provide adequate assurance
that these goals were being met. Thus system designers and analysts were forced to come
up with new techniques to ensure the safety of these systems in the absence of high safety
margins.

In response to these requirements, several new analysis techniques were developed.
Some of these methods relied on “brainstorming” to arrive at a representative list of
scenarios for which the safety of the system must be examined. Other, later, techniques

sought to be more systematic and exhaustive in the development of such scenarios. Fault
tree analysis was developed at Bell Laboratories in the 1950s. Failure modes and effects
analysis and hazards and operability analysis (HAZOP) were also developed to provide a
more rigorous fb.rnework in the search for potential accident scenarios. Other methods,
such as event tree and decision tree analysis, were devised to help the analyst better
understand how a system might respond to a given accident condition or operator
decision. The use of these methods did not become widespread until the mid-1970s,
when the U. S. NucIear Regulatory Commission sponsored the Reactor Safety Study,
which used fault tree and event tree analysis to consider the safety (surety) of U. S.
nuclear power plants. Throughout the 1970s and 1980s, the Nuclear Regulatory
Commission was a driving force behind the development and refinement of new risk and
reliability analysis methods, including the use of uncertainty ardysis for surety
processes. During the 1980s, analysts began to apply these same techniques in other
industries, with some success. Also during that time, regulators began to require system
designers and operators to perform these types of analyses for their high-consequence
systems. In some cases, such analyses became a condition for licensing or certification.
Similar types of requirements have been developed in the area of computer security, but
historically, the techniques that have been required for these analyses have relied more on
“best practices” and checklists than on the rigorous methods derived for other industries.

Also during the 1970s and 1980s, system design methodologies were becoming more
rigorous and automated. The nuclear power industry introduced the concept of “defense
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in depth,” under which the only way that the most severe consequences could occur
would require the failure of several sequential layers of defense, each of which was
designed with increasing levels of conservatism. Computer-aided software engineering
(CASE) tools and computerized design systems became common – especially for large
companies designing complex, high-consequence systems such as aircraft. Computerized
modeling and simulation began to augment and even replace system testing programs
because many of the tests that would be required of new, high-consequence systems were
either too expensive to pefiorm, or involved unacceptable risks to humans or the
environment. Meanwhile, the computer science field attempted several new methods to
increase the reliability of software embedded in high-consequence systems. Analysts
began to realize, however, that a large fraction of software errors came about, not as a
result of poor coding practice, but as a result of incomplete and/or erroneous software
specifications. Many of these issues are still the subject of intense research.

As we look at the evolution of design and analysis methods over the past few decades, we
see that both are becoming more detailed and more rigorous. We see a relatively
complete description of the system being specified in the CASE tools and computerized
design systems. A complementary and increasingly detailed description of the system is
also designed into the system simulation software. And the surety analyst incorporates
still another detailed description of the system into his or her models so that he or she can
consider whether the designed system meets all its surety objectives. Historically, each
of these descriptions has been embodied in a different computer system, a different
logical structure, and a different language. Communication among design, simulation,
and analysis groups has been handled by interviews and the sharing of paper documents,
which may be out of date before the itiormation is actually used. This leads to
inaccurate simulations, faulty surety analyses, and inadequate feedback to the design
team.

Clearly it would be advantageous, both in terms of time and accuracy, to have a single
up-to-date source of information regarding system design and requirements that is
complete enough to be useful to design, simulation, and analysis personnel. One
objective of this study was to determine the feasibility of developing such a repository
using object-oriented analysis techniques.

1.2 The Need for a New Approach

The key contribution of this project has been to demonstrate that many design,
simulation, and surety analysis models can be derived from a unified model if that model

is carefhlly designed to contain the appropriate information. We have found that while
each domain or technology tends to support its own specific set of design, simulation, and
analysis tools, most of these should be derivable from a single knowledge repository (a
unified model of the system). This unified model then would become a sort of “causal
graph” that makes explicit the causes and effects found within the system. Most
important, it would provide a link between those causes and effects and allow them to be
traced in many different ways, depending on the particular interests being served. This
causal graph could then be used as a sort of simulation tool that models the response of
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the system to given stimuli. It could also be used as a deductive logic tool with which an
analyst could search for the potential causes of a given system response. This would
indeed be a very powerfid modeling tool.

What would such a unified model look like? In short, it must make explicit everything
the analyst knows about the system. It must embody the purpose of the system – it must
be possible to use the model to determine whether the system is behaving in a proper or
improper manner, and if improper, it must provide a measure of the consequence of that
operation. It must also embody the physical composition of the system – the components
that make up the system, as well as the known failure modes and vulnerabilities of
individual components. It must detail how the system interacts with its environment –
both the normal, expected interactions, and the abnormal, potentially challenging
interactions. These interactions may be either natural or human-induced. If the system
changes over time, these changes must also be incorporated into the unified model.
Finally, in order to be truly complete, the model would have to examine how possible
failure modes or vulnerabilities might be introduced into the system at times other than

during normal operation (design, manufacture, construction, etc.). These five viewpoints
of the system are discussed in some detail later in this report. Obviously, designing such
a unified model that would be useful for design, simulation, and surety analysis is a very
challenging task. During this project, we have made substantial progress in this regard,
specifically in the areas of fimctionality, physical composition, and environment. The
long-term realization of this vision of a unified model would result in nothing less than a
revolution in the area of engineering design and analysis.

1.3 Overview of the Repoti

This report has nine chapters. Chapter 2 contains an overview of the historical
methodologies that have been used for surety analysis. These include probabilistic risk
and reliability analysis models, as well as object-oriented analysis models such as those
that are popular in the computer science community. This overview is deliberately broad
because we believe that most readers of this report are unlikely to be familiar with both
probabilistic risk and reliability analysis modeling methods and object-oriented analysis
methods. For this reason, Chapter 2 was written to enable persons who maybe familiar
with either of these methodologies to become reasonably conversant in the other so that
they can understand the remainder of the report.

Following this overview of historical methodologies, Chapter 3 provides background to
help one understand how they might go about ensuring the surety of a system. This
involves understanding a system in the context in which that system is supposed to
operate. One must understand a system from five separate viewpoints, including its “
functionality, its physical composition, the environment in which it is supposed to
operate, how the system changes over time, and the system’s life cycle. The concepts
embodied in these five viewpoints are discussed from an object-oriented analysis
perspective.

Chapters 4 and 5 provide the nuts and bolts of how one goes about building an object-
oriented risk analysis model. The theory of constructing an object model is presented in
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Chapter 4. This includes the basic methods by which one constructs an object-oriented
risk analysis model. Chapter 5 then expands on this theory to show how various surety
models can be extracted from an object model that is constructed using the techniques
described in Chapter 4. These methods are illustrated using example problems in Chapter
6, while Chapter 7 illustrates how these methods can be embodied in a software tool.
Finally, Chapters 8 and 9 describe the limitations that have been identified for this
method. They contain suggestions for Mure research as well as a summary and
conclusions of this study.
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2 Historical Methodologies
An important objective of this project has been to demonstrate that one can bring together
the previously disparate techniques used in probabilistic risk and reliability assessment
and those from the world of object-oriented software analysis and design. Thus this
document is intended for readers in both audiences, and it is unlikely that the reader will
be familiar with the techniques found in both of these rather large toolboxes. Therefore,

in order to place all readers on an equal footiig, this chapter provides basic background
on the tools used in both disciplines.

2.1 Risk and Reliability Analysis

If one were to survey all of the methods that are used to pefiorm what authors call “risk
and reliability analysis,” they would include simple parts testing and nondestructive
testing, system design and redundancy “best practices,” contingency planning, and
probabilistic model-based approaches. While the former methods provide useild
guidance in many situations, they will not be the focus of this discussion. In order to
model the reliability of and the risks associated with a complex system whose failure may
cause extreme consequences, one will likely need to employ probabilistic model-based
analysis tools. This section provides a basic overview of several techniques that fdl into
that category.

2.1.1 Failure Modes and Effects Analysis

The failure modes and effects analysis* (FM.EA)technique, along with its close cousins
failure modes, effects and criticality analysis (FMECA) and HA.ZOP~ are generally the

first systematic risk and reliability analysis techniques applied to a system. All of these
techniques can be classified as “inductive risk assessment methods” because they start
with the deftition of potential risk scenarios, and proceed to identi& any risks or
consequences that might occur as a result of that scenario. The potential risk scenarios
are identified through both formalized methodologies and imaginative thinking, and are
based on component failures, subsystem ftilures, human actions, ador natural and man-
made phenomena.

The purpose of a FMEA is to examine individual components and assess the effect of
their failure on the system in which they are used and on other systems and subsystems.
FMEA is a qualitative method that is typically documented in a tabular format. To
accomplish a FMEA, the analyst goes through the components of a system one by one,
and for each component considers every known failure mode individually. The analyst
writes down a description of the fkilure mode itselfi the method by which that failure
would be detected in the operating system, the effect of the failure on the system or
subsystem, and the expected response of operators or automatic controls to the situation.
Elucidating comments are also included in order to allow others to understand the full
scope and gravity of the situation caused by the component’s failure.
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The FMEA table is often extended by including extra information in the analysis table.
Typical extensions include a quantitative or qualitative estimate of the likelihood of each
assessed component’s ftilure, a qualitative categorization of the criticality of the effects
caused by the component failure, and the possible actions to reduce the failure rate or
effects. This is often called a FMECA. In such an analysis, one can rank the results in
terms of either the likelihood or the criticality of the component failure scenarios. A
more recent ranking method combines the likelihood and criticality descriptors to obtain
a “risk descriptor” that is low for improbable, low-criticality events, and increases as
either or both of the descriptors become large. These risk descriptors can then be used as
a basis for determining whether remedial action should be taken to reduce the likelihood
or criticali~ of the scenario.

A HAZOP study is related to a FMEA or FMECA in that it assesses predefmed scenarios
to determine their probable causes, consequences, and possible remediation actions. It
also typically includes qualitative ~assessmentsof criticality, likelihood, and risk similar to
those described above. However, while FMEA and FMECA studies focus on the effects
of individual component failures, the HAZOP method focuses on qualitative deviations
of key system operating parameters ilom their nominal, normal, or design values. The
fimdarnental philosophy here is that normal operations are inherently safe, and deviations
are the source of unrecognized problems. The scenarios that can lead to these deviations
are arrived at through a combination of systematic consideration, deductive logic (to
obtain probable causes for the parameter deviations), and imaginative thinking. The
objective is to find the “weak link” in the system, and to provide a basis for developing
procedural or engineering controls to reduce any risks so identified.

The most important limitations of these techniques are related to their reliance on a
“bottom-up” problem-solving method. By this we mean that the sources of risk are
identified at the beginning of the analysis, instead of being inferred by a systematic
deductive “top-down” analysis such as would occur in a fault tree analysis. If the risk
analyst does not think of a particular scenario, and the mechanics of the analysis or the
“best practice” checklist does not drive them to identi@ it, then that scenario is likely to
remain unanalyzed because the scenarios are the starting point of the analysis, not its
result. In addition, the one-by-one nature of parameter variation in a HAZOP study and
failure consideration in a FMEA or FMECA can neglect the ef13ectsof multiple
concurrent ftilures or variations, which may have both significant likelihood and high
criticality.

2.1.2 Event Tree Analysis

Event tree analysis3 (ETA) is an inductive risk and reliability assessment technique that -

seeks to represent an undesired occurrence as a sequence of events. Event trees are
similar in form to decision trees, and are used to represent the spectrum of possible
outcomes given a particular initial condition. The method is inductive in that it begins
with a particular set of initial conditions and uses inductive logic rather than deductive
logic to in5er its results. Each path through the event tree is constructed by selecting a
unique outcome for each event within the event tree model. Thus the path physically
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represents a unique sequence of events so that outcome OIP occurs for event 1, and

outcome02Poccursfor event2, and outcome03Poccursfor event3, and so forth. If the
event tree model is properly constructed, the set of all paths through the model represents
the complete set of possible outcomes that can occur as a result of the given initial
condition (but typiczdly only the outcomes relevant to the analyst’s needs).

The events within an event tree may include the status of physical systems, operator
actions, the activities of automated control systems, and random (stochastic) events both
internal and external to the system. The events may represent simple yes-or-no questions
(“binary events” such as, “Does the operator turn the system on?”), or they may involve
multiple possible outcomes (“multibranch events” such as, “Which of the five displays
does the operator check first’?”). The events may or may not be independent of one
another. If the events are not independent, then the dependencies between them are
explicitly included within the logical structure of the tree.

The results of an event tree analysis are initially qualitative in that each path defines a
scenario in terms of the outcomes for individual events. If, however, one assigns
conditional probabilities to the various outcomes such that P(02P) is actually the
conditional probability that 02P occurs given that Olp has already occurred, then one can

also obtain quantitative results consisting of the scenario (path) definition and its
probability of occurrence.

An event tree is by definition an acyclic graph. Since cycles are prohibited, it can be
difficult to represent the behavior of systems that embody feedback loops in an event tree
model.

2.1.3 Fault Tree Analysis

Fault tree analysis4 (FTA) is a risk and reliability assessment technique that uses
deductive reasoning, as expressed by graphical logic diagrams, to determine how a
particular undesired event can OCCW.The purpose of the graphical logic diagram is to
illustrate the individual steps in the deductive reasoning process so that others can
understand, not only the results (how and why things ftil), but also the method by which
those results were obtained (why these elements contribute to system failure). The logic
diagram is constructed using the method of immediate cause in which one finds the
immediate, necessary, and sufficient conditions for each deductive logical step to be
satisfied. This method, also known as the “rule of small steps;’ helps ensure the logical
completeness of the fault tree model by ensuring the completeness of the logic at each
small step. The premise is that by being logically complete at each small logical step,
and allowing the overall logic of the fault tree model to dictate the assembly of these
individual logical statements, one has some cordidence in the completeness of the overall

logical model.

Once the fault tree logic diagram is constructed, it is solved to find the minimal cut sets.
Each minimal cut set represents one set of necessary and sufficient conditions for the
occurrence of the undesired event that the fault tree was constructed to investigate
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(system failure, for example). It is, in essence, a definition of one scenario that results in
system failure. The overall group of minimal cut sets then represents the universe of
possible scenarios that will lead to this undesired event. These qualitative results can
then be used to provide quantitative insights because when a probability of occurrence is
associated with each basic event in each cut set, we can determine an overall probability
for each scenario and rank the scenarios accordingly. Furthermore, one can dissect the
cut set results using some simple mathematical manipulations to determine the
importance of individual basic events to the overall risk pefiormance of the system.

While FTA is a very structured and systematic way to assess a single system, it can also
accurately represent the interactions among multiple systems. It is not unusual to model
complex interactions among systems using event trees in which the causes for each event
in the event tree are determined using FTA. Such a combination of fault trees and event
trees also works well when an operator must pefiorm a procedure that initiates or
terminates the operation of more than one system. In each case, the event tree paths that

lead to undesired outcomes are used to construct logic that links the various system fault
trees together into a global fault tree model that embodies the dependencies between the
systems.

FTA is one of the few techniques that adequately treat common mode and common cause
failures. In addition, it allows the analyst to consider the effects of human operators and
automatic control systems on these individual ftilure scenarios through the application of
“recovery events” to cut sets on a case-by-case basis. The principal drawbacks to FTA
are that it often does a poor job of representing time-dependent scenarios, and that it can
be quite time consuming and expensive to apply. In addition, since a fault tree is by
definition an acyclic graph, it can be difficult to represent the behavior of systems that
embody feedback loops or other circular dependencies in a fault tree model.

Another method that is related to FTA is that of the reliability block diagram’ (RBD). An
analyst constructs an RBD by simply following a flow chart for a system from all inputs
to all outputs. The objective of such a reliability analysis is to determine all of the ways
that the flow of elements through a system can be disrupted. The analyst must be carefi.d
to ensure that the flow chart block diagram accurately represents all of the series and
parallel paths through the system. The flow chart can then be converted into a fault tree
by viewing every parallel path as a logical AND gate (all of the parallel paths must fail
simultaneously) and every series path as a logical OR gate (any single ftilure in the series
can disable that path). This process is more intuitive than FTA for persons who are not
experienced in probabilistic risk anclreliability techniques, and since it is logically
equivalent to FTA, produces the same types of results. Its biggest drawback compared
with FTA is that complex logical relationships that are easily expressed in FTA may be
difficult or impossible to represent clearly using the flow chart graphics implied by the
RBD method.
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2.1.4 Influence Diagrams

An influence diagram5 is an acyclic probabilistic network that consists of nodes and arcs.
The nodes can represent system states, decisions, or chance or deterministic occurrences,
while the arcs represent the conditional dependencies among these occurrences. The
nodes ultimately irdluence a “value node” that quantifies the consequences for each
possible combination of occurrences and system states. Conditional probabilities can be
applied within various nodes to represent the probability that a particular event happens
given particular conditions in the other nodes to which it is connected (i.e., states,
decisions, or events that influence this node). Thus an influence diagram consists of four

distinct parts: the nodes, the influences upon the nodes (the dependencies among the
nodes, as represented by the arcs), the conditional dependencies within each node upon
other nodes in “themodel, and the conditional probabilities themselves.

The influence diagram method is conceptually similar to the event tree, decision tree, and
fault tree methods described earlier. It can be applied as both an inductive and a
deductive modeling tooI in that one can begin either with the value node (the objective, as
is done with fault tree analysis) or with a suitable initial condition (as is done with event
tree and decision tree analysis). One could even begin with some of each and work both
inductively and deductively as necessary until the model is complete. In addition, the
method is not limited to simple binary events as is FTA. This flexibility makes the
influence diagram an important tool to the risk analyst.

Historically, the most important disadvantage to the use of influence diagrams is that the
traditional solution method does not show or even generate the detailed set of scenarios
or paths possible in the model. The ability to examine these paths in detail is a primary
advantage of the FTA and ETA methods: In addition, the traditional solution method
makes it difficult to determine which nodes are the most important for various aspects of
the results and hence to determine where one should look to improve the system. These
results are very important in both risk and reliability analyses. However, it has been
noted that there always exists a transformation from an influence diagram modeI into an

event tree model. When applied, this allows an analyst to use the advantages associated
with influence diagram construction to produce the more desirable results associated with
ETA. While this transformation is not yet automated, it is straightforward and amenable
to automation.

2.1.5 Markov Models

Markov modelsl are directed graphs that capture the concepts of system states and
probabilistic transitions between states. To build a Markov modeI, an analyst examines
every relevant configuration of a system – both functional and nonfictional
configurations – and defines them to be states of the system. The analyst then defines the
probability of transition from each state to every other state (as a fi.mction of time and
other factors) to complete the model. State transitions that are precluded for physical
reasons are assigned a transition probability of zero.
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Markov models provide a natural, direct representation, through the use of cycles, of
systems whose components are repairable and systems where component failures have
interactions. Recall that fault trees and event trees are acyclic graphs and hence do not
readily accommodate these system characteristics. The two basic forms of Markov
models are chains and processes. A Markov chain uses matrix multiplication in discrete

time to obtain state transition probabilities. A Markov process uses a set of differential
equations over continuous time. Relative to the other techniques discussed, Markov
processes require a more sophisticated understanding of mathematics for their solution.
In fact, most Markov models of real systems suffer from “state explosion” and hence are
difficult to solve, requiring simulation. Complete path or scenario information is not a
natural output of a Markov model.

2.2 Object-Oriented Analysis Methods

As will be described later, the assessment approach presented in this paper borrows
system modeling concepts from “object-oriented analysis” (OOA). This is a family of
system analysis methodologies used to identi~ system requirements and initial design
concepts. Objects are model constructs used to represent real-world entities that can
“communicate” with one another. This communication is considered to consist of
messages exchanged between objects and can represent the transfer of information,
materials, or energy. When an object receives a message, it responds by altering its
internal sfate (e.g., the contents of a pot on a stove get hotter as the burner delivers heat to
the pot) and/or by generating outbound messages (e.g., steam that is created as the pot’s

contents heat). The way in which the object responds to messages depends on its internal
processes and on its internal state.

While a number of 00A approaches exist, the two most popular are the Shlaer-Mellor
method and the Unified Modeling Language (UML).

2.2.1 The Shlaer-Mellor Method

Shlaer-Mellor is a methodology (as opposed to UML, which is a visual modeling
language). To model a system using the Shlaer-Mellor approach, the analyst begins by
identi~ing the objects that populate the system and by documenting the relationship
among these objects using an entity-relationship diagram (this establishes the
information structure of the system). For each of the objects identified, the analyst
determines whether the behavior of the object changes with time or is invariant. If it
changes, then the analyst documents these changes using a state transition diagram. This
diagram identifies ihe events that trigger changes in behavior and the behavior that the
object exhibits as it enters its new state. This behavior is described using action data
j?ow diagrams. To document interobject interactions, Shlaer-Mellor offers object
communication models and synchronous access models. For models that grow quite

large, the methodology supports tie notions of donzains that partition the model space
and bridges that specify how objects in different domains interact. Shlaer and Mellor
have intentionally structured their methodology’s language to limit the ways in which a
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given concept can be represented. Consequently, their methodology enables translation
of the analysis model into design.

2.2s2UML

Unified Modeling Language’ represents the synthesis of older methodologies by Booth,
Rumbaugh, and Jacobsen and is quickly becoming the de facto standard for visual
modeling languages in the systems analysis community. While it supports many of the
same modeling capabilities as Shlaer-Mellor, it currently lacks an “action language” that
permits detailed specification of how objects transform input messages into output
messages. At the same time, UML tends to be richer in other aspects of system
modeling. For example, instead of simple state transition diagrams, UML permits the use
of state charts. UML also provides multiple mechanisms for documenting object
interactions. In addition to allowing partitioning of object space, UML SUppOrtS mapping

of objects to underlying mechanisms, such as computers or processes.

UML is still a work in progress. A methodology that exploits the language is in the
works. The Object Management Group (an industry consortium dedicated to realizing
the vision of plug-and-play distributed-object computing) has adopted UML as their
modeling language and is currently working to extend it with an action language. Even
Project Technologies Inc., which owns the Shlaer-Mellor methodology, has endorsed
U’ML,with a few caveats, as the visual modeling language for the analysis community.

2.3 Simulation

One of the central issues in system assessment is the analyst’s understanding of the
system being assessed. While static models, such as those created using object-oriented
analysis techniques, are useful, they often do not provide the analyst with needed insight
without a significant amount of study. For this reason, some CASE tools permit the
analyst to create “executable specifications” and to then run these specifications to gain
insight into system dynamics. This simulation-based approach to analysis permits the
analyst to “tweak” one part of the system and to see how the rest of the system responds.
The underlying assumption in this approach is that humans are good at discerning
patterns in large volumes of Mormation and that by allowing the analyst to create “what
if’ situations with the simulation model, it becomes possible for the analyst to recognize
some of the anomalous behaviors in the system.
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3 Understanding the System and its Context
The central idea advanced by this research project is the value of an explicit system
model. This chapter explains the rationale behind model-based assessment and describes
the nature of the system model needed to support this approach.

3.1 The Value of Model-based Assessment

Figure 3-1 depicts the normal process used in the development and analysis of
assessment models. In this process, the analyst typically studies the system in question
and formulates a mental model of how the system is structured and how it behaves. From
this mental model, the analyst then constructs one or more assessment models (fault trees,
event trees, etc.) that address the questions of concern to the analyst. Each of these
models is then evaluated either by hand or with the aid of an automated tool to produce a

set of findings about the system.

–.@-.U-.$-.-.$.
Sources Human Analyst & Assessment Assessment Findings

of System Implicit Model Model
Data System Model Analyzer

Figure 3-1. How assessment is typically done.

This approach to assessment suflers from several shortcomings,lz in particular, the fact
that the analyst’s understanding about the system resides principally in the analyst’s
mind. This means that the analyst’s understanding cannot be assessed independently. If
elements are missing from the assessment models or are deemed to be incorrect by
independent analysts, it is often unclear whether the original analyst did not know certain
things about the system, knew about them but forgot them, knew about them but did not
consider them significant, or simply misunderstood or misrepresented certain facts about
the system. A second shortcoming is the fact that this approach requires the analyst to
hand tool one or more assessment models for each of the surety issues being considered
for the system. Since the assessment of most real-world systems requires that a number
of questions be addressed, the construction of the entire suite of assessment models
needed by the analyst proves to be a time-consuming activity. A third problem with this
approach is the issue of thoroughness. For lack of an explicit system model, the analyst
tends to overlook things that should find their way into the assessment model. Finally, as
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long as system assessment is based on the ability of humans to produce assessment
models, then the field of surety engineering will remain more craft than science.

Figure 3-2 depicts abetter approach to system assessment. Using the same information
sources as the first approach, the analyst focuses most of his or her effort on developing
“anexplicit system model. This model documents everything of relevance that the analyst
understands about the system. The analyst then provides this model and a set of surety
questions to be addressed to a software tool that automatically produces the assessment

models for each of the questions. Analysis of these models then proceeds as usual in
order to produce the findings.

1

Sources
of System

Data
Findings

. ~:., -
,,{y{; ..

Human Explicit
Analyst System Model

Figure 3-2.

Assessment Assessment Assessment
Model Model Model
Builder Analyzer

Model-based Assessment.

3.2 The Nature of the System Model

In surveying assessment techniques, it became apparent to the project team that most
techniques focus on either (or both) of two questions:

● “How could the system produce result X?” or

● “What happens if event Y happens in the system?

The first question typifies the kind of reasoning used in the construction of fault trees.
The second reflects the line of reasoning used in building event trees.

In answering these questions, an analyst will typically use some sort of system diagram
that documents the interrelationships between components in a system (such as the piping
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diagram in a chemical processing plant). To answer the “How could .. .“ question, the
analyst starts at the point of interest indicated by the question and then traces backward
against system flows to determine the possible immediate and long-term causes for the
problem being analyzed. In the case of the “What happens . . .“ question, the analyst
starts at the point associated with the event in question and traces forward, determining
what immediate and ultimate effects result fi-omY’s occurrence.

In both of these cases the primary concept being exploited is causality (i.e., the network
of cause-and-effect relationships in a system), and the mechanism being used to extract
this causality information is the system’s structure and the behavior of its individual
components. For this reason, the project team pursued a model that makes it easy for the
analyst to document this sort of idorrnation about a system.

In modeling a system using the approach developed in this project, the analyst specifies
the system’s composition and its context. The analyst explicitly identifies those
components that make up the system being assessed and those external to the system with
which the system interacts. The analyst then documents the flows of energy, materials,
and/or information that occur between these components. Given this specification of
flows into and out of each component, the analyst then documents how each component
transforms its input flows into output flows.

3.2.1 Model the “Normal System”

Figure 3-3 presents a notional view of the model used to describe system components.
Each component can have inputs, outputs, processes, and an internal state. Inputs and/or
the internal state drive the component’s processes which, in turn, produce the
component’s outputs and/or alter the component’s internal state.

Inputs

Current
State

Component

outputs

➤

Figure 3-3. Notional View of Component Model.
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3.2.2 Model Abnormal Component Behavior

Once this “normal” system model (i.e., the model that explains how the system is
intended to operate) is specified, the analyst extends it with information about the ways in
which individual components can fail and in which flows between components can be
altered. For each input flow and each element of a component’s state, the analyst
considers what deviations from “normal” are possible and what effect these deviations
have on the component’s outputs and on its processing. Similarly, for each output flow
and each element of the component’s state, the analyst identifies potential deviations and
traces these back to failed processes, deviations in the “cunent state,” and deviations in
the input.

3.2.3 Model Additional Cc)mponent Flows

In addition to evaluating aberrations in already identified flows, the analyst considers
whether each component is capable of generating or responding to other flows. For
example, a computer that receives a sufficiently large mechanical shock or that exists in
an excessively hot environment may cease to fimction. In identi~ing both these
additional flows and deviations in normal flows, the analyst expands the causes-and-
effects model for each component.

3.2.4 ModeI the Physical Aspects of the System

In the assessment of many systems, the issue of “place” is of critical importance. No
physical system exists in isolation; rather, its components occupy particular locations in
space. Computers can exist in racks and these racks reside in rooms in buildings. The
pipes in a chemical plant run through specific locations at the plant site. The plant site
itself can be important (e.g., whether it sits on a fault or in a location with a history of
flooding). For this reason, the analyst may expand the system model to include
buildings, sites, etc. that describe the system’s physical environment. In doing so, the
analyst may also describe the dimension, location, and orientation of both the
components that populate the system and those that constitute its context, as well as the
physical composition of these entities.

3.2.5 Identify Other Intercomponent Flows

At this point in the development of the system model, each component in the model
presents a number of capabilities to its outside world. Said differently, the component
says, “Here are all of the flows that I will respond to and here are all of the flows that I
can generate.” Given this, the analyst’s next job is to identifi other possible flows in this
system. To do this, the analyst considers whether any of the components in the model
can exchange flows in unanticipated ways (e.g., a leaking water pipe might be positioned
in such a way as to send water into a computer). The analyst also determines whether
other external entities not currently a part of the system model could interact with
components in the system. For example, a custodian with access to a computer room
might be able to hack a computer from its system console. If a building that houses the
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system being assessed sits at the end of a runway, an airplane crash might pose a threat to
the system’s ability to fimction.

For some external entities in the system, the analyst needs to identi& what other
relationships must exist if the entities are to deliver or respond to certain flows. For
example, the analyst may determine that a truck transporting nuclear materials between
two sites is vulnerable to attack by a team of terrorists equipped with certain tools and
specific pieces of knowledge (e.g., the truck’s exact itinerary and schedule).’ In this case,
the potential sources of these requisite elements become new entities in the system model
and the elements become flows (e.g., the computer used to plan and track shipments
would become anew entity in the system model, and the itinerary and schedule
information would become flows between the computer and the terrorist team).

3.2.6 Address Temporal Aspects of the System Model

By this point in the process, the analyst has built a well fleshed-out model of the system
being assessed. Even so, the model can be augmented in at least two other ways. First,
as described here, many aspects of the model, such as a component’s physical location in
its environment or the flows among certain components, are treated as though they were
static when they could actually be dynamic. For example, whether or not two mobile

patrols using line-of-sight communications can talk with one another depends on the
nature of the terrain that they are traversing and where each exists in that terrain. W’hiIe
this is an issue in real-world assessments, the project ended before significant results
could be obtained for this important aspect of system modeling.

3.2.7 Model the Life Cycles of System Components

In some systems, understanding a component’s life cycle (i.e., where it has been fi-omthe
time it is built until the time it reaches the junk pile) is an important issue. The reason for
this is that what happens to a component at one point of its life cycle can aflect its
behavior at a subsequent point. For instance, a computer’s built-in programmingg can be
altered during shipment from the factory to the operational site so that once the computer
is in operation, it is more easily subverted by a hacker. Similarly, whether or not a
hamburger is safe to eat depends on how its ingredients are handled at the various food
processing plants used to create the ground beef, the buns, and so on. To model this, the
analyst starts with the system under consideration and identifies the life cycle stages
associated with each of the system’s components. For each such stage, a system model
can be constructed in a manner similar to the total system model described previously in
order to assess whether the given component can be subverted prior to its inclusion in the
system. Similarly, subsequent life cycle stages can be modeled as needed to address
other issues, such as confidentiality (e.g., is secret information leaving the system by
means of a retired computer?) or environmental safety (e.g., has a storage tank been
decontaminated before going to the scrap metal dealer?).
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3.3 Deriving Assessment Models

Once the system model has been constructed, assessment models can be automatically
derived by software. In general, the process works as follows:

1.

2.

3.

4.

The analyst picks initial conditions for the system and a point within the system for
analysis. For example, the analyst can select a given flow and one or more of the
abnormal values that it can assume. The same could be done for the elements of a
component’s state or for the component’s processes.

The analyst then tells the software which way to propagate a graph from that starting
point.

If the analyst specifies propagation against the system flows, a deductive model such
as a fault tree will be built. To do this, the software traces backward against the flow
from its starting point and asks the entity from which the flow emanates how it could
produce that particular starting condition. The entity then examines itself to
determine which internal conditions could cause the queried condition. Any
information found is used to grow the fault tree. In addition, if the entity determines
that the queried condition could be created as a result of certain flows received from
other entities, then the entity passes this information onto the software. In like
fashion, the software asks these new entities how they could produce the conditions
specified by the previous entity and each then returns explanations rooted in internal
ftilures and in inputs received from other entities. In this way, the fault tree is built
bit by bit until the only entities left to be queried are those that exist outside of the
system boundary. The flows received from these outside entities (per the
specification of entities inside -thesystem) constitute primary events that populate the
leaves of the fault tree.

If the analyst specifies propagation with the system flows, then an inductive model
such as an event tree will be built. In this case, the software follows the initial flow

until it reaches an entity that receives the flow. The software then asks the entity
what it will do if the specified initial flow is received. The entity examines itself to
determine its failure modes, along with the associated outputs. These modes and
outputs are used to build that part of the event tree that corresponds to the queried
entity, and the outputs are used by the software to determine which entities to pursue
next. The software continues in this fii.shionuntil each output flow terminates in an
entity outside of the system. Of course, variations on this theme are possible. For
example, the analyst can specify a starting state for each entity in the system and ask
what happens under those conciitions. Also, the analyst can select two points in the
system (e.g., two flows and their associated states) and ask the system to find all paths
that link the initial point to the terminal point.

3.4 Other Aspects of !System Modeling

So fm in this chapter, the focus of the discussion has been on how to develop a model
that allows causal graphs to be automatically extracted by software. In order for these
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graphs to be used to produce “findings~’ some additional information needs to be added
to the models. In particular, information regarding the relative likelihood of occumence
for different events must be factored into the assessment models. For certain types of
systems, such as those based on physical devices and in which device failure represents
the primary surety issue, the methods for determining and using these likelihoods are
fairly well understood. For other systems, such as computer networks, specif@g the
likelihood of an event occurring (e.g., a given router being hacked) is much more
dii%cult, and alternative approaches to ranking findings are needed. In either case, these
sorts of issues were considered in the course of this project but were not the central focus
of this effort.
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4 The Nature of the System Models
Given the model-based approach to assessment described in the Chapter 3, the next

question to address is what these systems models are like and how they are constructed.
This chapter describes this modeling approach.

4.1 Overview

As already noted, the system model describes various aspects of the system being
assessed. These include:

● the system’s functionality

● its logical partitioning into components

. interactions between components

. the physical structure (form and material composition) of these components

. the system’s environment and how the system is situated in this environment

. how all of the above change with time

. the life cycles of each of the system’s components

Each of these aspects of the system is modeled by creating “views” of the system. Each
such view typically documents a limited but interrelated set of facts about the system. By
virtue of the fact that different views will address common elements in the system, the
views taken as a whole describe the system. Figure 4-1 illustrates this relationship
between views and the underlying system model.

4.2 Documenting the System’s Normal Behavior

The f~st step in modeling the system is to document its behavior. This consists of
identifying its blocks of functionality, and documenting how the blocks interact and how
they act within the context of these interactions.

4.2.1 The Functional Structure

To document the system’s fimctionality, the methodology described in this document
uses four types of views: a system structure diagram, a interaction diagram, a state
transition diagram, and a data flow diagram. The system structure diagram, presents the
“chti’ of functionality found in the system and specifies how these chunks relate to

one another (Figure 4-2). In Figure 4-2, each of the blocks (M through P) represents
some portion of the l%nctionality delivered by system A (which could itself be a
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component in some higher level system). When taken together, these blocks embody the
entire fimctionality of system A. Lines between any two blocks indicate that those blocks
interact with one another. As needed, each block in a diagram can be further subdivided.
This process of hierarchical decomposition of the system is carried as far as is needed for
the analyst to adequately document the fictional structure of a system.

View 1 View 2

.*.. . . . . .%............*””

System Model

Figure 4-11. Views Into a System Model

System A

El--Component M Component N

“- 3

Component O

nComponentP

Figure 4-2. A System Structure Diagram

4-2



4.2.2 Functional Interactions

A second view used to describe a system’s functionality is the interaction diagram, as
shown in Figure 4-3. This diagram’s function is to capture the dynamics of the system at
“black box” levels. Using the blocks produced in the system structure diagrams,
interaction diagrams show the “flows” that occur among various functional blocks in the
model. These flows can represent materials (i.e., tangible things), energy, or idorrnation.
Depending on the nature of the analysis to be done, the labels on the flows (e.g., A, B on
the upper left flow) will identi~ either attributes of the flows that occur between two
blocks or will represent objects that flow from block to block. For example, if
component N outputs a chemical and component O consumes it, then flow A might
specify attributes of the chemical that is flowing (e.g., the quantity of chemical, the
chemical’s temperature and composition). The result of this flow (as will be discussed
below) could be to change the internal attributes (e.g., the amount of the chemical that
each block stored) of components N and O. The concept here that is important from a
modeling point of view is that a flow occurred that resulted in changes in the attributes
associated with the components involved in the flow.

On the other hand, if the behavior of what is flowing is important, then the analyst may
choose to model the flow as an object. For example, component N might represent the
process that produces a sterile container of some sort. Flow B represents the containers
that flow from component N to component O, which documents the process by which the
containers are filled. In this case, the analyst may choose to model the containers as
objects that are described by a set of attributes (e.g., capacity, contents) and behaviors
(e.g., “accept contents” or “dispense contents”). Given this, a flow then becomes a
framework for describing how a given object (in this case, the containers) moves from
one relationship (i.e., with the process that creates it) to another (i.e., with the process in
which it is filled). Finally, since the analyst builds the system model by creating a series
of diagrams, a given fictional block maybe found in several different interaction
diagrams, indicating that this block participates in multiple transactions within the
system.

A,B
~

Component N Component O Component X
+ 4

E D

Figure 4-3. An Interaction Diagram

Before describing the next two diagrams, it is worth summarizing what the analyst has
done by developing the first two s~ti of diagrams. In creating the system structure
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diagrams, the analyst hierarchically decomposes the system into a set of independent
functional blocks (Figure 4-4). At any given level, each block in this treelike
decomposition structure is independent of every other block. In creating interaction
diagrams, the analyst knits these blocks together by showing all of the flows in and out of
each block (Figure 4-5). By following the “flowsat the lowest level of the diagram (the
graph shown at the bottom of the figure), the analyst is able to identify all of the potential
relationships that exist within the system. For example, flow P maybe influenced by

either flow C or D2, or by both. While this information is necessary for analysis, it is not
sufllcient. For this reason, the analyst uses two additional sets of diagrams that document
the specifics of how each functional block transforms its inputs into its outputs.

....? ...’. .,.. , : , ‘.

,., :. --. ,.. ...

Figure 4-4. A Hierarchical Decomposition of System Function

4.2.3 Transforming Flows

If one is to truly understand the behavior of a system, one must first understand how
flows are transformed within the system. This is accomplished through the use of several
types of diagrams, the first of which is the state transition diagram. Its purpose is to
document the operating states in which a given functional block can exist and to identify
the events that trigger changes in the block’s gross behavior (Figure 4-6). In this type of
diagram, the “states” (the rounded rectangles) represent points in the life cycle of the
functional block when the behavior consists of by the block consists of a unique set of
responses to stimuli. The “events” (the words in italicized letters) indicate what causes
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Figure 4-5. The Composite Interaction Diagrams

the functional block to transition from state to state. These maybe externally generated
(e.g., the arrival of a flow at a block) or internally generated (e.g., the block reaching a
given internal state or a given point in time being reached). The “transitions” speci~ to
which state a functional block moves if it receives a given event while in a given state. It
should be noted that any given functional block could have multiple state-transition
diagrams associated with it. The purpose of this modeling construct is to permit the
analyst to capture the fact that any fictional block may represent real-world processes in
which multiple things can happen at once. For example, in modeling the behavior of an
electrical device, one state transition diagram might be used to model the device’s
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purpose, while a second might be used to model its thermal interactions with its
environment, and a tlird used to model its interaction with its source of power.

Steady State

Figure 4-6. A State Transition Diagram

To describe how the functional block responds to inputs while in a given operating state,
the analyst uses a data flow diagram (Fig&e 4-7) co-mbined with one or m&e &u&tables
(Figure 4-8). As shown in the figure, the diagram consists of four elements. The circles
represent processes that transform flows. The lines represent the interconnections
between processes and carry the various flows, which are identified by labels. The flows
themselves are described as collections of attributes. The horizontal lines represent a
“store” which contains the attributes that document the current state of the fictional
block (e.g., a Ii,mctional block representing a chemical process might contain a store with
attributes that speci~ the current composition, temperature, quantity, etc. of the
chemicals in the process).

Request (Quantity)
Product

&-g

➤
~~

Dispense Request Rejection
P’roduct

Product

G

~>

Stock Levels
“Stock Depleted”

Monitor
Stock Levels

stock

Figure 4-7. A Data Flow Diagram
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Figure 4-8. A Truth Table

In implementing the truth tables, the central idea is to specify what values a given
attribute assumes when the input attributes on which the attribute depends assume various
combinations of values. It is a straightforward task to develop this specification when the
attributes all assume a finite set of values. When the attributes assume a continuous range
of values, the task is a little trickier. To address this issue, the research team borrowed
the notion of “landmark values” from the quaMzitivephysics community. In this
approach to modeling attribute values, the goal is to identi& key points in the attribute’s
range of values at which behavior somehow changes. For example, if the attribute under
consideration is the amount of fluid in a storage ta.rdGthen it is reasonable to assume that
the tank might exhibit three different behaviors corresponding to the tank’s being empty,
to the tank having some amount of liquid in it, and to the tank’s being fhll. Given this,
two landmark wdues would be assigned to the tank (i.e., “tank empty” and “tank fidl”).

Inmost cases, a given truth table will have a single output column that corresponds to a
single attribute on one of the output flows from a process and some number of input
columns (corresponding to some or all of the attributes on the input flows to a process).
In some cases (e.g., when the process involves a “test”), attribute flows are combined into
a single column, as shown in Figure 4-8. Also, as shown in this figure, multiple tables

may be combined for the sake of compactness if the logic of the tables being combined is
sufficiently simple.

4.2.4 An Example of Modeling Functionality

To illustrate the approach to modeling described in this section, consider the following .
example. A system being analyzed receives a series of messages from some external
source and stores them in an internal buffer until told by the some other entity to forward
the messages to that entity. The system is also to monitor the incoming messages for a
certain “signature” (i.e., a distinctive set of attributes in a message) and to automatically
forward messages matching this signature to a third entity upon detection. The top-level
system structure diagram for this example is shown in Figure 4-9. Figure 4-10 shows the
functional decomposition of the “smart btiering” block.
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Figure 4-9. The Top-level System Structure Diagram
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Figure 4-10. The System Structure Diagram for “Smart Buffering”

Figure 4-11 is the interaction diagram that corresponds to Figure 4-9. Figure 4-12 shows
the interactions within the “smart btiering” fictional block. Note that the flow “smart
buffer responses,” decomposes into two flows (“sensor messages” and “empty buffer
messages”) in the lower-level diagram.

Figure 4-13 is the state transition diagpn for the “message filtering” block of Figure
4-12. Normally this block is in the “idle” state, waiting for a message to arrive fi-omthe
“sensing”blcxk.Whenamessage arrives, the “message filtering” block moves to the

“evaluating message” state, generates either a standard “sensor message” or an “alarm
message,” and then transitions back to the “idle” state.
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i
1
1

1

4-9

. -—-— .—



----- .- —-. .—— ——.

Message

~-~&-.--

Identzjied

Fignre 4-13. The State Transition Diagram for``lWessage Filtering''

Fi~e4-14is ties~te timsition diagmfor fie``message btifefig'' block. Asin
Figure 4-13, this block spends most of its time in the “idle” state. When a sensor
message is received, the block moves to the “storing message” state and then returns to
“idle” once the message is stored. If the block receives a “buffer status query,” it moves
to the “processing query” state, where it counts the number of messages currently stored,
transmits this number to the “command processing” block, and then returns to “idle.” If
the block receives a “send message” command, the block transmits the oldest message in
its queue to the “sensor data processing” block, removes this message from the queue,
and then returns to “idle”.

blessage
Request Message

w:; :1’”.: ‘Message’ m

Received

Sent Buffered

Buffer Status Buffer Status
Query Received Message Sent

*
h

Processing
Query

J

Figure 4-14. The State Transition Diagram for “Message Buffering”

Figure 4-15 is the state transition diagram for the “command processing” block. While in
the “idle” state, this block waits for “message requests.” When one is received, the block-
queries the “message buflering” block to determine if any messages are currently queued
up. If they are, then the “command processing” block sends a message to the “message
buffering” block instructing it to forward a message to the “sensor data processing”
block. If no messages are currently queued up, then the “command processing” block
returns an “empty buffer” message to the “sensor data processing” block.
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Figure 4-15. The State Transition Diagram for “Command Processing”

At this point, the “smart bdering” model contains ten distinct states. Of these ten, the
three “idle” states per.tlorrnno actions and therefore have no associated data flow
diagrams. The data flow diagrams for the rest are found in Figure 4-16 through Figure
4-22.

Message

Alarm
Markers

Alarm
Profiles

Figure 4-16. Data Flow Diagram for “Evaluating Message”
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Figure 4-17. Data Flow Diagram for “Storing Message”
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Figure 4-18. Data Flow Diagram for “Processing Query”
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Figure 4-19.Data FlowDiagram for “Transmitting Message”

w
Figure 4-20. Data F1OWDiagram for “Querying Message Buffer”

Figure 4-21. Data Flow Diagram for “Triggering Transmission”
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Empi!y Message

Generate
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Message

Figure 4-22. Data F1OWDiagram for “Transmitting ‘Empty’ Message”

At this point in the modeling of the example, the analyst has created the fi.dlgraph for the
“smart buffering” block. All that is left is to supply the truth tables that bridge process
inputs and outputs. For the s’idceof brevity, only one of these will be supplied (as shown
in Figure 4-23). Before leaving the example, there are several points worth noting.
Chapter 5 will explain how an analysis algorithm traces a graph created in the way just
shown. While the main focus of this tracing will be the traversal processes, it is possible
that causal links also run through the “stores’?contained in data flow diagrams. Said
differently, since the state of an object’s internal attributes can affect that object’s
outputs, it is possible for one interaction to set the attributes of an object so that later
transactions are affected in a way that is of interest to the analyst. This phenomenon is at
the heart of life cycle modeling (as discussed later). Second, as can be seen from this
example, even relatively simple models can produce a significant number of views. For
this reason, doing this work by hand can be tedious. At the same time, automation
support is invaluable and simplifies much of the process by performing many of the
bookkeeping fictions needed to ensure consistency among model views. Third, even if
the modeling is not done to the point that assessment models can be automatically
derived from the system model, the exercise is still worthwhile because the system model
provides the analyst with a framework that encourages a structured evaluation of the
system under consideration.

13uffer Control
Length F1OW

Zero
Does Not

Fire

Nonzero Fires

Figure 4-23. Truth Table “Test for Nonzero Buffer Length”
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4.3 Documenting Abnormal Component Behaviors

Given the norrmd system model developed as described above, the analyst begins the
process of considering how things can go wrong in this model. In general, problems fall
into two categories: problems with communications and problems with functional
mechanisms. An example of the first would be the inclusion of new message types under
the flow labeled “buffer commands” in Figure 4-12. As result of this, Figure 4-14 would
have to be modified as shown in Figure 4-24 to accommodate the possibility of erroneous
messages. Related to this is the corruption of “store” contents in a data flow diagram.
For example, if the “alarm markers” in Figure 4-16, were altered, then the detection
algorithm might fail to distinguish normal sensor messages from those that constitute
alarms. An adversary might use this fact either to thwart detection or to over-sensitize
the system so that it generated alarms when no alarm conditions existed. An example of
the second type of problem is shown in Figure 4-25. Here, the state transition diagram
shown in Figure 4-14 is updated to account for the fact that storage mechanisms are
always of finite capacity.

77
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Unrecognized ErrorMessage
Request Sent
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Message
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Transmitting
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Message 4 Message

L J Message Message L /
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Buffer Status
Query Received Message Sent

I Processing
Query I

Figure 4-24. Updated State Transition Diagram for “Message Buffering”
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Figure 4-25. Another State Transition Diagram Variation for “Message Buffering”

4.4 Documenting the “Physical” Model

As described so far, nothing that the analyst has done documents how the functional

blocks are aggregated into subsystems to be implemented. Given F@re 4-10, a system
designer might choose to divide the system as shown in Figure 4-26 or as shown in
Figure 4-27. This sort of partitioning would correspond to the kind of work done by a
system architect in the early design phases of a project.

As the project proceeds and decisions are made regarding the specific ways in which
fictional blocks will be rendered (e.g., “these will be hardware, these software, and
these fimctions will be performed by human operators”), the effect, from the viewpoint of
the system model, is to add additional fictional blocks to the model. For example,
suppose that some of the blocks in the system were to be rendered as digital hardware.
To the application-specific fimctionality already described in the system model, the
analyst would add those blocks that describe the functionality of the digital hardware,
independent of the specific tasks that the hardware is intended to accomplish. These
could include how the hardware relates to its power source, how it interacts with its
thermal environment, and how it behaves from a radio frequency viewpoint (i.e., whether
it radiates electromagnetic waves or is vulnerable to this sort of radiation). One way of
thinking about this is to consider that any given physical component is described by a set
of concurrent models (Figure 4-28). These models link both to models contained in other
external components and to one another within the scope of the component that they
represent. Given this, the functional blocks allocated to a given component can then be
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viewed as nothing more than additional models operating in parallel with and connected
to the models that are already a part of the physical component (Figure 4-29).
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z Sensing Message Message :
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Figure 4-26. One Partitioning of Figure 4-10
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Figure 4-27. An Alternative Partitioning of Figure 4-10
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Figure 4-28. A Physical Component in the System Model

Figure 4-29. The Physical Model of the Sensor Component in the System Model

4.5 Documenting the Spatial Aspects of the System
Model

Just as the last section described “physical” components from a logical perspective by
using the modeling constructs described in the start of this chapter, an analyst can use
these same constructs to model spatial regions in a system being assessed. Suppose, for
instance, that the system being assessed resides within a building that is located in the
middle of a fenced area. The model for this facility might be as shown in Figure 4-30. As
with the system structure diagrams shown earlier, each of the fictional blocks shown in
this diagram can be hierarchically decomposed. Flows can also be added to the
connections to show what moves within the facility and to describe how the facility
responds to these flows.
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Figure 4-30. Top-level System Structure Diagram of the Secure FacWy

Once the analyst completes this part of the model, mappings between the physical models
and the spatial models are established. These relationships generally take two forms. In
the first, the ‘%..mctionalblocks” that populate the physical model deliver “flows” to the
physical components contained in the regions represented by these blocks. For instance,
a physical model block representing a room could deliver an ambient temperature to the
hardware and people located in that room. In the second, the blocks in the two domains
deliver other “blocks” to one another. An example of this would include a secured room
presenting a computer to an “insider,” who then carries on a set of interactions with the
computer with the goal of subverting the computer in some way.

4.6 Documenting Component Life Cycles

Because the way in which a system component behaves in a given interaction can depend
on what has happened to the system before to this interaction, in some circumstances it is
important to document some part or all of the component’s life cycle. The primary
mechanism for this is a “life cycle diagram,” like that depicted in Figure 4-31. In this
diagram, each of the ellipses corresponds to a system stmcme dia~~ hat doc~ents .

the relationships in which the associated component participates at that point in its life
cycle. Because the component that is the focus of the diagram has a “state,” it is possible
for a component associated with this component in one life cycle stage to influence
another component associated with the main component at a later life cycle stage. It
should be noted that this state is not only those things represented by the component’s
internal attributes but also the fi.mctionality that the component brings to bear in any
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situation. Either is subject to change in one stage in such a way that subsequent stages
are fiected.

Figure 4-31. The State Transition Diagram for “Command Processing”

In creating this sort of diagram, it is important to distinguish between the product that is
being modeled and the elements used to create the product. For instance, a piece of
software and the design used to create the software are not the same thing. The first is
derived from the second, but the two are ordy related by means of a series of translation
steps, each of which may need to be understood in order for the system to be filly

assessed.

4.7 Conclusion

The goal of developing an explicit system model is to identi& what is understood about
the various dependencies that exist in the system being assessed. This includes
documenting how the system behaves, describing which mechanisms deliver that
functionality, identi&ng wherein space the components exist in relationship to the
environment and to each other, and capturing the relationships in which each system
component takes part. By documenting these dependencies, the analyst knits together a
graph that can explain the fidl set of cause-and-effect relationships within a system.
Given this graph, the analyst then can assess whether specific sets of events lead to
undesirable results or determine how certain undesirable events can be realized. This
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leads to a more complete assessment than is possible with the standard checklist-based
techniques in use today.
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5 Surety Evaluation Using Object Models
For the surety analyst, the object model is not an end in itself, but a means by which one

systematically embodies their understanding of the system. This embodiment is usefid
because it can be queried, searched, and probed by surety analysts as they search for
possible sources of vulnerability, unreliability, or risk. Therefore the purpose of this
chapter is to desctibe how an object model – constructed using methods fi-omthe
previous chapter – can be used to perform such a surety analysis.

Surety analysts use a wide variety of tools to assess systems, but these tools can be
broadly classified as inductive, deductive, and simulation models. This chapter will
examine examples from each of these classes and describe rules that can be used to
extract either the models themselves or the information that they produce from the object
model described in Chapter 4.

5.1 Inductive Surety Models

Inductive surety analysis models have the characteristic that one postulates a particular
set of system boundary conditions and then logically examines the system to determine
how it will respond to those conditions. These inductive models differ from simulation
models in that simulation models are generally based on what one might think of as
detailed “basic science” models, while inductive surety models are generally based on
logical conditions and constructions. Thus, inductive surety models are often higher-
level, fhst-running models that can be thought of as extrapolating from and interpolating
among the results of a number of simulation calculations. Inductive models are important
because they allow the surety analyst to consider a much wider array of scenarios than
would be computationally feasible using a simulation-based approach.

Two common inductive models – failure modes and effects analysis, and event tree
analysis – and how they can be obtained from the object model will be examined here.
These methods themselves were described briefly in Chapter 2. The patterns used to
extract the models for these two methods from the object models should provide insight
into how other inductive methods can make use of object models as well.

5.1.1 Failure Modes and Effects Analysis

Recall that the purpose of a FMEAl is to examine the individual components and assess
the effects of their ftilure on their systems and on other systems and subsystems. To
accomplish this, the analyst goes through the components of the system one by one, and
for each component considers every known failure mode individually. An automatic
processor can accomplish this task if one constructs an object model using the methods

described in Chapter 4.

The object model must contain two classes of information in order to automatically
produce a FMEA. First, it must be able to distinguish whether particular combinations of
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conditions and attribute values represent normal or failure conditions. Second, it must
contain a method for determining whether a particular condition of the system is
acceptable, undesired, or unacceptable. Given this information, it is a simple task to
select the individual failure conditions one at a time, and propagate the effects of that
failure through the rest of the object model. The model can then determine whether the
resulting system condition is acceptable. Furthermore, if the consequences of being in a
particular system condition can be quantified, and the likelihood of each failure condition
is known, the automated processor can easily determine the information necessay to
extend the FMEA into a failure modes, effects, and criticality analysis (FMECA). Thus,
to automate the performance of a FMECA, the object model must be able to (1)
propagate the effects of an arbitrary event or change in attribute value through a model to
determine how it affects the state of the system, (2) select all known ftilure modes for all
components of the system one by one for propagation through the object model, (3)
categorize the resultant system conditions to determine their acceptability and/or
consequences, and (4) combine this tiormation with a likelihood for the original failure
so that appropriate risk descriptors can be assigned to each.

The main characteristics that are required of the object model to petiorm a failure modes
and effects analysis are the ability to propagate the condition of the system from a failure
occurrence to the ultimate state of the system, and the ability to distinguish between the
normal and ftilure modes for individual components. The portion of this analysis that
cannot be automated, however, may include documenting the method by which a failure
would be detected in the operating system and suggesting and documenting possible
actions to reduce the failure rate or effects. Indeed, possible mitigators for component
ftilure are generally selected through the use of imaginative thinking that is informed by
the ranked risk results from this analysis. Since these mitigators will likely modi~ the
system conf@ration, they will require modifications to the system object model and
additional application of FMEA techniques to ensure that the mitigators themselves do
not introduce new failure modes.

The FMEA’s close cousin, the hazards and operability analysis2, can also be
automatically evaluated fi-oman object model. Recall that the HAZOP method focuses
on qualitative deviations of key system operating parameters from their normal, nominal,
or design values. These operating parameters are embodied within the object model in
the form of discrete attribute values. Thus, an automatic processor that was aware of
nominal vs. off-nominal values for discrete attribute values could systematically vary
those values one at a time in much the same manner as component failure modes were
considered for the FMEA analysis. This would enable the processor to link the causes of
consequences with their effects. What is not possible without additional logic is
HAZOP’S additional requirement to use deductive logic to obtain probable causes for the
parameter deviations. This could be done using the method of fault tree analysis, which
is described later in this chapter. This can, however, automate large portions of the
HAZOP analysis through the use of an object model.

The above description provides an overview of the method by which one could extract
either a HAZOP analysis or a ftilure modes and effects analysis from a common object
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model. Appendix A contains a more detailed description of the rules required to perform
this extraction.

5.1.2 Event Tree Analysis

A second inductive risk assessment technique that can be automated using an object
model is event tree analysis. 3 While FMEA considers a system with multiple sets of
initial conditions (based on individual component failures), an event tree begins with a
single initial condition for the system and examines the spectrum of possible outcomes
given that particular initial condition. Event tree construction begins with the selection of
the initial condition that must be propagated through the object model. However, unlike
a FMEA, which produces only a single system end state, an event tree produces many
system end states. The automated processor, as it traverses the object model, will come
to a number of subsystems, components, aucVorstates that maybe entered randomly, or
may be due to the effect of a component failure or external influence on the system. The
FMEA processor assumes that the condition of each subsystem and component remains

as it was initially unless forced to change as a result of the component’s ftilure. The
event tree processor, however, views each such potential change as a branch point in the
event tree model. Thus, it must remember the state of the system at that branch point and
choose one of the possible options to propagate through to a final system state. It must
then go back and pickup the saved system state, choose a different option, and propagate
that through to a final system state. Since there maybe several such possible branch
points, this process is recursive and is repeated until all such options are either exercised
or eliminated (on physical or probabilistic grounds). Each unique combination of branch
point choices and its associated final system state can be thought of as a path through a
traditional event tree or, alternatively, a system scenario.

An analyst may wish to select different types of branch points for different analyses,
depending on the eventual use of the analysis results. Three typical ways to determine
branch points are:

. specific points within the object model as defined only by the analyst @ossibly
including the effects of operator actions or external phenomena operating upon the
system)

. random events that are incorporated within the object model (mainly component

failures) or

. all points in the object model at which multiple discrete attribute values are physically
plausible

Obviously the last of these methods may result in an extremely large event tree model
that will produce huge numbers of scenarios. The object model must be capable of
representing all three of these types of branch points, and must provide a method by
which the analyst can select one of these for a particular event tree analysis.
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Note that in order for an event tree analysis to be able to rank these scenarios in a manner
that is useful to the surety analyst, the acceptability and/or consequence of the resultant
system state must be determined for each scenario. In addition, a traditional event tree
analysis determines the likelihood of each such scenario by multiplying together the
conditional probabilities associated with each of the branch points in the scenario. If
likelihoods are included in the object model for all of the object model events that can
become branch points, the automated event tree processor can easily perform a similar
computation for each scenario prociuced from the object model. If some of these
likelihoods are not incorporated in the object model, the scenario likelihood computations
can be carried out using the available data and then grouped according to the branches

chosen at those branch points for which likelihoods were not available (i.e., one could
perform assessments that are conditional upon a particular branch being chosen for these
unquantified branch points).

It is not unusual for event tree analyses to produce many thousands of possible scenarios
given a particular set of initial conditions. An analyst is generally unable to examine
such a large number of scenarios in the appropriate level of detail. Therefore, event tree
analysts often employ a method known as “binning.” In order to bin event tree scenarios,
an analyst decides which characteristics are important over all of the scenarios. These
characteristics are generally related to the consequences that will accrue to the system
due to this scenario. Once these characteristics are specified to the automated processor,
the processor then groups all scenarios that contain similar characteristics so that the
analyst can look for patterns among those scenarios. In essence, the analyst defines a
number of “bins,” each of which is defined so that the important characteristics of all
scenarios that fit that bin are similar. Using this process, the analyst can examine perhaps
a few dozens of bins instead of many thousands of individual scenarios.

The above description provides an overview of the method by which one could extract an
event tree analysis model from a common object model. A more detailed description of
the rules required to perform this extraction can be found in Appendix A.

5.2 Deductive Surety Models

While inductive analysis models determine the response of the system to particular
boundary conditions, deductive models begin by defining a condition or consequences to
be avoided. The analyst then uses deductive reasoning to determine how this event can
occur. The most commonly used deductive analysis method is fault tree analysis. While
deductive methods such as fault tree analysis are not as closely related to simulation
models as are their inductive model counterparts, it is still critically important that the
fault tree itself reflect a thorough understanding of the basic science involved in the ‘
system. However, while inductive methods seek to embody this basic science in a direct
manner, its application in deductive methods must be embodied in the logical conditions
and constructions that go into the fault tree or other model.

Since fault tree analysis is the most commonly used form of deductive model, this section
will concentrate on methods for the automatic derivation and solution of fault trees from
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the object models described in Chapter 4. We will also describe briefly the application of
the object model to influence diagrams and reliability block diagrams.

5.2.1 Fault Tree Analysis

The objective of fault tree analysis is to provide a formalized method to assist the analyst .
in reasoning through the causes for particular fhilures, and in documenting the steps
involved in that reasoning for the benefit of others. The basic premise of fault tree
analysis4 is that

. ~the analyst takes very small logical steps, and

● l~the analysis is logically complete at each of those small steps,

. Then one can be reasonably confident that the overall logical model is a complete
representation of the modes by which the system may fail.

In other words, one builds a fault tree by ensuring completeness at each small logical step
and allows the final assembly of the model (often by software) to bring out both the
large-scale and small-scale interactions among the parts of the system. The formal name
for this technique of exhaustive, small logical steps is “immediate cause.” A similar
concept exists in the world of object modeling: the object model must itself be a detailed
and complete representation of how the system works if one is to have confidence that
the model is an accurate representation of a system’s true behavior. Errors and omissions
typically come about because of a lack of rigor or the presence of unstated assumptions.

The object model embodies the detailed flow of da@ commodities, and stimuli through
the systemas a seriesof statemachinesandflowdiagrams. Theconstructionof a fault
tree from such a model requires four conceptual steps:

1.

2.

3.

4.

Specifying the initial conditions for the system to be analyzed

Specifying the condition that is to be avoided or ensured in terms of the states and
attribute values found in the object model

Tracing backward through the state machines and data flow diagrams to determine
the immediate cause of each such condition (this process occurs repeatedly in a
recursive manner)

Terminating the recursive tracing when all fundamental causes are identified

While step four may seem so obvious as to be discounted, it turns out to be one of the
more difficult parts of the fault tree extraction method. This is because, depending on the
purpose and the boundaries of the analysis, that which is a fundamental cause in one
analysis may require much firther elaboration in a different analysis. In yet another
analysis, this same fundamental cause may occur at a level of detail that overwhelms the

analyst’s capacity to understand it. In a traditional fault tree analysis, decisions about the

5-5



-—.-.— _——____.. . —— .—.- .—

analyst’scapacityto understandit. In a traditionalfault tree analysis,decisionsaboutthe
level of detail and termination are made in the mind of the risk analyst (faulty decisions
in this area often lead to fault tree analyses that are incomplete or otherwise deficient).
The challenge is to find an automated termination method that provides enhanced
flexibility for the analyst without fidling victim to these same issues of incompleteness.

It is easy to trace backward through the data flow diagram (or, as we are using it, the
process flow diagram) to determine the immediate, necessary, tandsufficient conditions
required to produce any set of conditions within that diagram. One simply looks at the
output of the diagram in terms of the process that created that output (this output will be
created by a truth table within the model). The truth table presents the complete set of
conditions that can immediately cause the required output. These conditions can be a
fimction of other processes within the flow diagram, processes in other objects, and
events from the state transition diagram of either this objector other objects in the model.
Since the flow diagram shows the source of the flows that are from within this object, one
need only trace backward through this causal graph to determine the causes of this
intermediate condition. If the flow can originate fi-omoutside of this object, then one
must take the additional step of searching the other objects in the model to determine all

possibleoriginsof the flow. Thissameprocesscannow be repeatedrecursivelyto defn-ie
the causes of these new intermediate conditions until the terminating conditions described
above are satisfied. This is key: the object model, and especially the data or process flow
diagram, acts as a deterministic causal graph that can be examined through automated
qualitative reasoning techniques to build a fault tree model based on any point in the
object model. The ability to trace backward through the flow diagrams (which is made
possible by the truth table logic) enables this to occur.

The deterministic nature of this model suits many systems well, although it obviously
cannot handle stochastic or nondeterministic systems very well. Nondeterrninism can be
an important factor in the operation of many computer systems. Additional research will
be required before fault tree analysis methods can be applied to such systems – either by
traditional risk assessment methods, or by the object-oriented methods described in this
report.

The description given here provides an overview of the method by which one could
extract a fault tree analysis model fi-oma common object model. Appendix A contains a
more detailed description of the rules required to pefiorm this extraction.

5.2.2 Influence Diagrams

While influence diagrams5 forma different and unique technique in the risk and
reliability analysis community, they are not really unique with respect to the common
object model. Recall that one of the principal advantages of the influence diagram
method for the analyst was the ability to simultaneously reason inductively and
deductively in a single model. This enables the analyst to initially state the objectives of
the analysis (much as one would do in a deductive fault tree model), as well as some of
the events and conditions that are expected to influence the system (similar to initial
conditions in an inductive event tree model). Using combinations of the inductive and
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deductive logic enables the analyst to develop the connections between them and to find
additional, possibly unexpected, influences on the system.

While this combination of inductive and deductive reasoning is a strong advantage for a
human analyst, it does not provide benefits when one is extracting itiormation from an
existing object model because that model, if properly constructed, has already identified
the expected and unexpected influences on the system. Therefore, the analyst will be
starting either with a set of initial conditions and seeking to inductively identi~ how they
might progress through the system (an event tree analysis), or with a set of resultant
conditions and seeking to deductively identifi how those conditions might come into
existence (a fault tree analysis). If one were concerned about how particular input
conditions might result in particular output conditions, one could specifi a fault tree
analysis and adjust the terminating conditions for the search to appropriately highlight the
input condhions of concern. For this reason, it would be of marginal utility to develop a
separate facility for producing an influence diagram model, given that the system is
already capable of producing both fault tree analysis and event tree analysis models.

Thus, while the research teamdidnot seekto identi~ rulesto producesucha model,it
may be beneficial in fhture research to construct such rules either as an academic
exercise, or, if justified by a fiture analysis need, for actual production use.

5.3 Discrete-Event Simulations

Previous sections in this chapter described how one would extract some of the traditional
risk and reliability analysis logic models from the common object model. While these
logic models can be very valuable in surety science, there is also a strong need to use
simple simulation techniques to help ensure the surety of the system. Since the aim of
the common object model is to embody all of the behavioral information about a system,
it is relatively simple to use that behavioral information as the basis for a simulation
methodology. Note that because of the requirement to extract logic models, we
embodied the system behavior in the object model in terms of only discrete state and
attribute values. For this reason, systems that must be described in terms of continuous
variables will be more difficult to simulate using this common object model than systems
that naturally operate in the discrete realm.

As with most object-oriented modeling methodologies, the method for petiorrning a
single simulation based on the object model is very simple.b One specifies the initial and
boundary conditions of the system in terms of the states and attribute values embodied in
the common object model. This may, for example, be the equilibrium state of the system
before it is perturbed by some outside influence. If the initial and boundary conditions
represent a nonequilibriurn system state, one simply propagates these conditions through
the object model using rules established for that particular object modeling methodology
to determine the response of the system to that set of initial and boundary conditions. If
the initial conditions represent an equilibrium state, one typically applies the perturbation
to the system at an appropriate point in time, and then, as before, propagates these
conditions through the object model using the rules of the object modeling methodology
to determine the system response. It is also possible, in time-dependent analyses, to
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apply additional perturbations to the system at later points in time to determine how these
affect the overall performance of the system. In all of these cases, the result is a
description of how the system perfimns given the stimuli that are applied to it. If events
within the object model are probabilistic in nature, the analyst must determine whether
particular outcomes for these events are to be selected a priori, or whether multiple
simulations are to be run to take into account these possible alternative outcomes. If
multiple simulations are run, the resultant muhipath simulation takes on characteristics of
an event analysis, as described previously.

Discrete-event simulations are valuable to the surety analyst because they provide
answers to very specific questions regarding the behavior of a system under specific
conditions that may be of pressing interest. This is in contrast to the event tree analysis
methodology, which seeks to understand the universe of possible outcomes given a set of
initial conditions. The discrete-event simulation methodology provides rapid (and
perhaps more detailed) assessment of a system’s specific behavior under specific
circumstances, while the event tree analysis methodology requires much more
computational effort and produces a statistical representation of the variety of possible
scenarios that may occur. Both of these perspectives are very usefi.d to surety analysts as
they seek to achieve a complete understanding of the cause-and-effect relationships that
drive the performance of a system.

5.4 Other Methods

A number of other analysis methods can be supported to varying degrees by the common
object modeling methodology described in this report. For ex~ample,while it was our
intention to embody location tiormation in the common object model, we were not able
to fully achieve that before the scheduled end of this project. However, it is still possible
to support location-based analyses using information derived from the common object
model in the following manner. One can extract a fault tree or other deductive logic
model from the common object model, and solve it using traditional analysis techniques
to obtain the resultant minimal cut sets.* Then, using techniques developed for vital area
analysis,7 one can associate the events in the cut sets with locations where a person could
deliberately accomplish the noted failure mode. Once this association is made, the cut
sets can be firt.her processed and reduced to produce location-based cut sets. Each
location-based cut set contains one minimal set of locations to which a person would
require access in order to cause the undesired event for which tie system was analyzed.
This information by itself is valuable to security practitioners because it can be subjected
to importance analysis to determine. those locations that are the most important to protect.
In addition, if the list of location-bwed cut sets is fi.u-therprocessed to obtain its
mathematical dual, one obtains what are called “protection sets.” Each protection set

* Briefly stated, an individual minimal cut set represents one set of events and component failures which,
were they all to occur at an appropriate time, would cause the undesired event for which the system is being
analyzed. The entire list of minimal cut sets represents the total catalog of ways by which the system can
be forced into this undesired state given the behavioral information embodied in the common object model.
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represents one combination of locations which, if all were completely protected, would
result in a system that had no vulnerability to the particular undesired event for which a
system was analyzed. Thus, the complete list of protection sets provides the security
analyst with a set of options that can be used to develop an optimal protection strategy.

Note that whilethis analysistechniquehas traditionallybeenappliedto physicalsecurity,
there is no reason that the locations have to be physical. In a computer network
environment, one could also use virtual locations to accomplish similar results.

The cuts sets produced by a fault tree analysis (as derived from the common object
model) can be used in a variety of other valuable ways. When these cut sets are
quantified, they produce an estimate of the likelihood that the system will be placed into
the undesired state for which it is being analyzed. Since likelihoods of individual ftilure
events within the cut sets are varied, the list of cut sets can be requantified to determine
new estimates of the likelihood that the system will be placed in this undesired state.
Since this likelihood is often important for either risk or reliability analyses, and since the
goal of such analyses is to identi~ which of a system’s components or procedures should
be modified in order to produce the greatest degree of system improvement, the
quantification of cuts sets can be used in the scoring (“utility”) fiction for an optirnality
algorithm. Genetic optimization is a particularly effective method for assessing a large
number of proposed changes and improvements to a system in order to determine which
combination of changes will be most cost-effective. In addition, if one considers the
mean time to repair a particular component, similar techniques can be used to determine
the optimal spare parts inventory and maintenance strategy for the system given a variety
of cost constraints. Thus, while these optimization results cannot be directly derived
from the common object model, the logic models derived from that common object
model are critical for the development of a reliability-based utility fimction for these
powerful optimization techniques.

Finally, a key component in most modem surety analyses is the assessment of
uncertainty. This project did not develop a unified method for performing uncertainty
analyses directly on the common object model. However, the methods for petiorming
Monte Carlo-based uncertainty analyses for both event trees and fault trees are well
known and have been embodied in separate software. Sandia’s Latin hypercube
sampling software (LHS9), fault tree analysis software (SABLE1° and TEMACll), and
event tree analysis software (SETAC*2) all embody this technology. In addition, it would
not be difficult to place the common object model within the uncertainty analysis
framework that is driven by the LHS software. Therefore, while uncertainly analysis was
not a specific focus of this project, the methods described here can be used to predict the
uncertainty in the surety results that are derived from the common object model.

5.5 Summary

This section has described how a variety of common surety evaluation models can be

derived from the common object model described in previous chapters. This project
demonstrated that the common object model directly supports the development of
inductive surety models, including failure modes and effects analysis, hazards and
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operability analysis, and event tree analysis. We also demonstrated that the common
object model can be interrogated to produce the most common deductive surety model,
the fault tree analysis, and, with relatively simple extensions, should also support
influence diagrams. A variety of other techniques (which are not directly supported by
the common object model) can be exercised based on results that are derived nom the
common object model. These include vital area analysis, genetic optimization, and
uncertainty analysis. Finally, since the causality and behavior of the system are
embodied in the common object model, it is relatively trivial to exercise the common
object model as a discrete-event simulator. The results of such a simulator are very
important to surety analysts as they seek to explore the behavior of a system relative to
specific threats and stimuli.

From this discussion and the variety of methods supported by the common object model,
one can see the power of this object-based model for surety analysis. Without using a
common object model, one is required to construct and validate every instance of each of
these different types of models by hand – obviously a time-consuming and potentially
expensive process. However, by making use of a common object model that is created

once and interrogated many times, one can quickly generate many logic models without
going through a hand construction phase. This enables the surety analyst to either
pefiorrn current generation analyses much more quickly, or to generate a wider variety of
surety models for analysis under the current time constraints. This would enable the
analyst to develop a better understanding of a system, its reaction to stimuli, and its
vulnerabilities than would have been possible using previous methods. Clearly, both of
these are worthwhile objectives and valuable results from this project.
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6 Example Problem

6. f Construction of a Functional Common Object Model

Let us now apply the object modeling methodology described earlier to a simple
electromechanical system. Consider a system that would move water from a reservoir to
some destination where it would be put to beneficial use. Ideally, this system would only
provide water when instructed to do so by a human operator. The laws of physics being
what they are, the system would be required to make use of some power source in order
to move the water. In additio~ the system might, in a fault condition, move water from
the reservoir to some location other than its intended destination. This condition we will
call “spillage.” Figure 6-1 is a system structure diagram for a system that would meet
these fi.mctional specifications. The alert reader will notice that this diagram contains
information about abnormal behaviors, while the modeling methodology described in
Chapter 4 showed the analyst completing the normal behavior model before examining
abnormal behaviors. Both analytical methods are valid. The choice of incorporating
these behaviors initially or in the later specific search for abnormal behavior is largely a
matter of the analyst’s personal preference.

QOperator

v

System (WSS) ,

I

Figure 6-1. Structure Diagram of Water Supply System

At thk level of abstraction (i.e., a high-level purely functional model), the system

consists of only one fictional box-the water supply system itself. The other entities in
the diagram embody those external objects with which this system will be required to
interact. These represent the boundary conditions under which the water supply system
will be required to operate. The dynamics of this system as it interacts with its
environment can be embedded in an interaction diagram, as shown in Figure 6-2. In this
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figure we see the types of flows that move between the various objects inside and outside
the system. While the actual discrete values that will be used to represent these flows are
not shown in the interaction diagram, they are explicitly listed in Table 6-1. In some
object-oriented analysis methodologies, this table would be called the object
communication model. Note that this table contains two “random ftilure” events. These
embody mechanisms by which abnormal behavior can manifest itself within the system.

(7Operator

~ Comand

Figure 6-2. Interaction Diagram for the Water Supply System

The next step in constructing an object model for the water supply system is to develop a
state transition diagram for the system. Since this is a purely fictional representation of
the system (granted it does contain a few high-level abnormal behaviors), the state
transition diagram will reflect this high-level abstraction. Since no physical instantiation
of the system has yet been specified, all of the states and transitions in this diagram will
represent descriptions of different -functional configurations for the water supply system.
The state transition diagram will embody all of the events described in the interaction
diagram – even those “random” events that do not have an identified source within the
interaction diagram. One appropriate state transition diagram for the system is shown in

Figure 6-3. Note that, as with many logical modeling methodologies, it is sometimes
possible to describe the same system behaviors using more than one logical model. This
means that the various diagrams generated for this example problem are not necessarily
unique.

Each of the four states in this state transition diagram represents a particular body of
fi.mctionality that is active only when the system exists in that state. In other words, the
system responds to both event stimuli and the values of particular attributes in different
ways, depending on the system’s state when that input is received. The analyst must now
construct a data flow diagram (sometimes also referred to as a process flow diagram) to
describe the system’s behavior in each state. In addition, for every transformation found
in each data flow diagram, the analyst must speci~ a truth table that describes how that
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entity transforms its input values into output values. The combination of transformations,
truth tables, and state changes is unique for each state in the state transition diagram, and
embodies the behavior of the system when it is in that state.

Table 6-1. Message Values in the Water Supply System

From/To Type of Flow Name Characteristics (messages,
events)

3perator/WSS Command ON Binary, event

OFF Binary, event

XeservoirlWSS Water Available Binary, message

Unavailable Binary, message

iW%3/UsageSys. Water Flow O Multivalued,message

Flow LOW Multivalued,message

Flow adequate Multivalued,message

?owerlWSS Electricity Inadequate Multivalued,message
Inappropriate Multivalued,message
Available Multivalued,message

%age Sys.fWSS Blockage Accepting Multivalued,message

Rejecting Multivalued,message
Restricting Multivalued,message

WSS/Spillage Water Spillage O Multivalued,message

Spillage positive Multivalued,message

tRandom)/WSS Random failure Spill Event– Randomlygenerated

:Random/Intemal)/ Random or internal Broken Event– Randomlyor internally
Wss failure event generated

On spill

f
idle,

\
Delivering as

Functional
L

Figure 6-3. State Transition Diagram for the Water Supply System.
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The water supply system engages in trivial responses in two of the four states. In both
the “idle, functional” and the “idle, nonfunctional” states, the system simply receives the
event that causes the state transition and responds by setting the flow of water to the
usage system to zero. The system’s behavior in the “spilling” state is only slightly more
complicated: the system receives the “spill” event and responds by setting the flow of
water to the usage system to “flow low” and the flow of water to the spillage object to
“spillage positive.” This represents a view of the system in which a nontrivial leak will
still provide water to the usage system – albeit a reduced amount. Should such spillage
occur, we assume that it would not prevent the operator from manually turning off the
system, causing its transition to the “idle, nonfunctional” state. Such assumptions are
likely to be appropriate early in the design phase in the system. They must be revisited
later once a particular physical instantiation of the system is selected. The data flow
diagrams and truth tables for these three states are shown in Figure 6-4. In these truth
tables, the “True” designator simply implies that the transformation on this line of the
truth table applies every time this transformation is exercised regardless of the inputs
with which it is presented.

State: Idle, Functional

‘a= ““” ‘r’””’)

State: Idle, Non-Functional

State: Spilling

‘~-~~ “True .0..0. positive

Truth Table: Flow Rate (ouzj Spillage

Figure 6-4. Data Flow Diagrams and Truth Tables for the Three Simplest States.

The fourth state, “delivering as requested,” represents a more complex body of behavior.
Within this state, one must consider not only whether water and appropriate power are
available to the system, but also whether water is being accepted by the usage system.
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The output horn this state is the discrete attribute value for the flow rate of the water that
is delivered to the usage system. It is also assumed at this early design phase that the
application of “inappropriate” power to the system will in some way damage it so that it
is unable to supply any water to the usage system (e.g., inappropriate electrical power

may damage the electric motor for a pumping system). It is possible to embody the
behavior envisioned for this system state in a number of different ways. It could, for
example, be embodied in a single transformation that would receive inputs from the
power, reservoir, and usage system external objects and in a single truth table would
determine the flow rate out of the system and whether the “broken” event would be
generated. However, the logic of such a truth table would be more complex than
necessary. A second way to embody this behavior would be to create two
transformations: one that determines the maximum flow that the system can potentially
produce (“potential flow”), and a second that determines the actual flow produced by the
system after consideration of any possible blockage found in the usage system. We have
chosen to represent the system behavior for this state using this dual-transformation
approach both because it is simpler to understand and because it will enable us to
demonstrate more clearly how one applies deductive logic to such a mukipart data flow
diagram later in this chapter. Figure 6-5 shows the data flow diagram that embodies this
behavior. The truth tables that support this diagram are found in Table 6-2 and Table 6-3.

State: Delivering as Requested

LOn

Power Reservoir Usage

System

Figure 6-5. Data Flow Diagram for the “Delivering as Requested” State

Note that each of the truth tables in Table 6-2 and Table 6-3 takes into account all
possible combinations of the input flow attributes (even though some were handled
through a catchall “don’t care” designation). This should be characteristic of all well-
constructed transformation truth tables. Note also that these truth tables are completely
deterministic. There are no instances where an output designator can go to more than one
possible value based on a stochastic behavior found in some portion of the system. While

not seen in this example, such stochastic behavior can be embedded in the system and
utilized in the surety logic models that are derived from the object model.

6-5



—— —.

Table 6-2. Truth Table for the “System Potential” Transformation

Inadequate x I 0

Inappropriate x 0 Broken

x Not Available o

Note: X = “don’t care” (any and all values of this input satis& the condition).

Table 6-3. Truth Table for the “Delivery” Transformation

Potential Flow (input) I Usage System “Blockage” (input) [ Flow Rate (output)

Full I Accepting I Flow adequate

Full Restricting Flow 10W

Full Rejecting Flow O

0 I x I Flow O

Note: X = “don’t care” (any and all values of this input satisfy the condition).

We have now completed the development of the common object model for the high-level
description of the water supply system. The model is complete because each state in the
state transition diagram is now populated with a data flow diagram, and each
transformation in each data flow diagram is now populated with a truth table.

6.2 Etiraction of Fault Tree Models

Let us now extract a fault tree surety model from the common object model described in
Section 6-1. First, let us extract a fault tree to describe the condition in which the system
produces a flow rate that is nonzero but also inadequate for the needs of the usage
system. This corresponds to the single value of “flow low” for the flow rate attribute.
We will construct this fault tree in accordance with the methods and rules in Appendix A.

The frost step in fault tree development is to select a “normal” state for the system. We
will select “delivering as requested” as the normal state, with normal attribute values
being as follows: water from the reservoir is available, the flow rate of water to the usage
system is adequate, electricity is available, the usage system is accepting water, and the
spillage of water is zero. For this system, there are no states that are either impossible or
out of bounds as initial conditions.

The next step is to define the objective of the fault tree analysis. In this case, our
objective is to develop a fault tree that represents the ways that the system carI produce a
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flow rate that is nonzero but is also inadequate to supply the needs of the usage system.
This corresponds to the single discrete attribute value of “flow low” for the output of the
water supply system. This single attribute value will become the top event in the fault
tree. Since it is a single event, it is not necessary to fbrt.her process this description to
obtain “objective cuts sets.” According to our rules, the top event of the fault tree is
always an OR gate. This OR gate represents the first entry in the fault tree. The
completed fault tree is shown in Table 6-4. The reader will find it usefid to refer to this
table as the construction of the fault tree is described in the following paragraphs.

Table 6-4. Fault Tree for the “Flow Low” Condition

n FLOW-LOW – The WSS output flow rate is LOW.

[

LF-ABNORM-ST– LOW FLOWachievedfrom a non-normaloperatingstate.
b LF-SPILL-ST- LOWFLOWachievedinthespillingstate.

h SMF-TRANS – LOW FLOWoccursin the system malfunctiontransformation.
% SMF-LINEI - Conditionsfrom systemmalfunctiontransformationtruth table line 1

k
TRUE-1 - All conditionsin this truth table lead to the requiredoutput.
SP-ENTERED – The spillingstate has been entered.

k SPILL-The extemaIrandomevent SPILL occurs.
LF-NORMAL-ST– LOW FLOWachievedfrom normal operatingstate (deliveringas requested)

~ LF-DEL-TRANS– LOW FLOWoccursin the deliveringtransformation.
k DEL-LINE2- Conditionsfromthe deliveringtransformationtroth table line2

k
US-RESTRICT - Externalentityusage system attributevalue is restricting.
PF-FULL– VaIueof potentialflow is full flow

% SP-FULL – Full potentialflow value is output by systempotentialtransformation.
k SP-LINEI - Conditionsfrom systempotential transformationtruth table line 1

E

PWR-APPR – Externalentitypower attributeis appropriate.
RES-AVAIL– Externalentity reservoir attributeis available.
DAR-ENTERED- The deliveringas requestedstate is entered.

k TRUE-2 - State deliveringas requested is normal,alwaysassumedto occur

Given the top event of the fault tree, we must now interrogate the object model to
determine all of the behaviors and events that contribute to this top event. According to
the rules, this top event OR gate is expanded to include two inputs: one that represents
the achievement of the “flow low” condition from the normal operating state, and a
second that represents the achievement of that condition from any non-normal operating
state. Each of these inputs is embodied in the fault tree as an OR gate. Let us first
consider the non-normal operating states.

In this object model, the flow rate to the usage system manifests itself as a result from the
data flow diagrams for each of the system’s states. The truth tables for both of the
system’s idle states contain only the result “flow O,”but the truth table for the spilling
system state does contain the “flow low” result. Under the general rules, we add an OR
gate to indicate that the condition we are seeking can be produced in the “spilling” state,
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which could, in theory, produce th attribute as the result of more than one
transfonnation. In this case, only the “system malfunction” tmnsformation causes this
condition. It is represented by an OR gate in the fault tree because more than one logic
line in that transformation’s truth table might cause this outcome. Now each line in the
truth table that generates this result will be represented as an input to this OR gate. In
this case, there is only one such line, so the OR gate has only one input. While an OR
gate with the single input may seem wastefid and counterintuitive, it is retained in the
analysis as an aid in understanding the logic process used to generate the fault tree. We
now embody the logic from this line in the truth table as an AND gate. Since the logic in
this line of the truth table is simply “true,” the output we are seeking is generated every
time the system enters this state. Therefore the inputs to the AND gate are simply an
“always true” basic event (as a placeholder to represent the line of the truth table), and a
gate indicating that an event has occurred to cause the system to enter this state. This
gate will bean OR gate because it is possible, in a general situation, for several events to
cause this state transition, and each such event will cause the state transition by itself. In
this situation, the only event that can cause the state transition is the “spill” event. This
event is only randomly generated, and is not generated as a result of some other behavior
either inside or outside of the system. Thus it is represented as a primary event that
completes this section of the fault tree.

We apply similar rules to the normal operating state for the system. Here the flow rate to
the usage system manifests itself only as an output horn the delivery transformation. We
place an OR gate in the fault tree to represent the fact that it is found in the truth table for
this transformation. Each line in the truth table that results in a “flow low” output will be

an input to this OR gate. In thiscase,thereis onlyonesuchline. Again,it is represented
by an AND gate with inputs representing fidl potential flow and a restricting condition in
the usage system. Since the restricting condition in the usage system is generated by an
entity that is outside of the system, this condition is represented as a primary event in the
fault tree and is not expanded fi.uther. Potential flow, however, is itself the result of a
separate transformation ~’system potential”). This transformation is therefore
represented as an OR gate in the system because it represents the result of a truth table.
Only one line in the system potential truth table produces the result of fi.dlpotential flow.
The conditions from this line are embodied in an AND gate that forms the sole input to
this truth table’s OR gate. These conditions are: the system enters the “delivering as
requested” state, power is appropriate, and the reservoir is available. The power and
reservoir conditions are generated by entities that are outside of the system, so they are
represented as primary events in the fault tree. Entry into the “delivering as requested”
system state is represented as an 012 gate because it could, in theory, be caused by several
different events. However, since this state is the normal system state, we do not model
how the system might achieve this state – we simply assume that it occurs because it is
the normal state. Therefore, the input to this OR gate is an “always true” basic event,
which serves as a placeholder to note that this is part of the normal state.

We have now completed the fault tree because there are no longer any unresolved inputs
to any AND or OR gates in the model. This fault tree could be fed to traditional fault tree
analysis software for processing and analysis. While this is a trivial example, it provides
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a simple environment for demonstrating the rules of fault tree generation found in
Appendix A.

Let us now continuethis exampleby buildinga largerfaulttree. Wewill not describe the
construction of this fault tree in as much detail as the previous example, but rather will
highlight important points in the development. Once again, we will follow the rules for
fault tree development as stated in Appendix A. Assume that the system has the same
normal state as specified in the previous example, and that all states and conditions
defined for that analysis remain valid. With this being true, our first task is to develop a
definition of the objective for the fault tree. In this analysis, we will look for all of the
ways that the flow rate can be less than “adequate.” In other words, we will look for
situations where the output flow of water to the usage system is either “flow low” or
“flow zero.” This verbal logical expression can be directly transformed into the top event
of the fault tree as an OR gate with two inputs: flow low and flow zero. In order to
sirnpli~ the description of this problem and to take advantage of the previous example
analysis, we,note that the flow low criterion is in every way identical to the analysis that
developed the fault tree described previously (Table 6-4). While an automated fault tree
generation tool would explicitly construct this portion of the fault tree, the steps required
for its construction are identical to those described previously. Therefore we will
represent this portion of the fault tree only using a “developed event” symbol. This
indicates to the reader that the flow low portion of the tree is developed elsewhere. In
most fault tree analysis software packages, having the flow low portion of the fault tree
fromTable 6-4 present while the main fault tree is being solved will cause the software to
automatically append this small fault tree into the larger fault tree at the appropriate
point.

Let us now proceed with the development of a fault tree to represent the condhion of zero
water flow to the usage system. As in the previous example, we first subdivide the
problem between the normal and non-normal system states. This is accomplished using
an OR gate. The portion of the fault tree that assesses the non-normal system states can
be found in Table 6-5, while the portion that assesses the normal system state can be
found in Table 6-6. We note from the system diagram that there are two non-nomml
states that can result in zero flow: the idle, fi.mctional state and the idle, nonfictional
state. The development for the idle, functional state closely parallels that of the spilling
states from Table 6-4. The development for the idle, nonfictional state initially follows
a very similar course. We note that zero flow occurs in line 1 of the truth table for the
“disabling system” transformation. That line of the truth table is satisfied for all
conditions within the idle, nonfunctional state. Thus, the inputs to the AND gate
representing that line of the truth tabIe are an “always true” condition (related to
conditions within that state) and an OR gate to represent all of the different ways that the
idle, nonfunctional state can be entered. The inputs to this OR gate represent the point of
divergence between this state and the other states we have previously analyzed.
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IL
o Table 6–5. Fault Tree for the Zero Flow Condition, Part 1

INADEQ-FLOW- Inadequateflow is providedby the WSS to theusage system.
~ FLOW-LOW- The WSSoutput flow rate is LOW(see otherfaulttree)
L FLOW-ZERO– The WSSoutput flow rate isZERO.

+ FO-ABNORMAL- Zero flowrate achievedfrom a non-normaloperating state.

[

FO-IF-STATE- Zero flowrate achievedin the idle, functionalstate.
k SDS-TRANS - Zero flowrate occursin the shuttingdown system transformation,

k SDS-LINEI - Conditionsin shuttingdown systemtruth table line 1.

e
TRUE-3 - All conditionsin thistruth table leadto the desired outcome.
IF-ENTERED- The idle, fictional state wasentered.

% OFF – Externalentity operatorissues the OFFevent.
FO-INF- Zero flowrate achievedfromthe idle, non-fimctionalstate,

k DS-TRANS- Zero flowrate occursin the disablingsystem transformation,
k DS-LINEI - Conditionsin disablingsystem truthtableline 1.

t
TRUE-4 – All conditionsin thistruth table leadto the desired outcome.
INF-ENTERED- The idle,non-timctionalstateis entered.

k
OFF – Externalentity operatorissues the OFFevent.
BROKEN-REC- The eventBROKEN is received.

e
BROKEN- The externalrandom eventBROKEN occurs.
BROKEN-GEN- The BROKENeventisgenerated within the systemitself.

k DAR-BROKEN– Theevent BROKENoccurs as an output fromthe deliveringas requiredstate.
k SP-BROKEN - EventBROKENisgenerated in the systempotentialtransformation.

k SP-LINE3 - Conditionsfrom thesystem potential transformationtruth table line3.

k
PWR-INAPP- External entitypower attribute is inappropriate.
DAR-ENTERED- The deliveringas requestedstate is entered.

k TRUE-2 - Statedeliveringasrequested is normal, alwaysassumedto occur.
–An FO-NORMAL– Zero flow rateachievedfromnormal operatingstate (deliveringas requested).

i

I

I

1

I



In previous fault tree segments, there has generally been only one way for an event that
causes a state transition to be generated: some external or random entity acting on the
system. In this case, however, there are two different ways that the “broken” event can .
occur. It can occur either as a random event or as an event that is generated within the
system itself. Note that the “broken” event can be one of the outputs from the “delivering
as requested” state. Therefore there must be two inputs to the OR gate that represents

receipt of the “broken” event. The random “broken” event is represented as a primary
event in the fault tree. The receipt of an internally generated “broken” event is
represented as an OR gate, the inputs of which will be all states within the object model
that are capable of producing this event. In this case, only the “delivering as requested”
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state is capable of producing such an event. It is generally possible for an event to be
generated by more than one transformation within a state, so the fact that this state can
generate this event is represented as an OR gate with one input for each transformation
that is capable of producing the event. In this example, only one transformation is
capable of producing this event: the “system potential” transformation. Now, as before,
the fact that this transformation can produce the “broken” event is represented in the fault
tree as an OR gate because it is generally possible for more than one logical line in a
transformation’s truth table to cause this event. In reality, only line 3 of the system
potential truth table is capable of producing this event, so only one AND gate will be
required for this transformation. llJe can now trace back through this transformation as
before to develop inputs for the AND gate. This is done in the same manner as
demonstrated in previous parts of these examples. We would only note that since the
“delivering as requested” state is the normal state of the system, it is always assumed to
occur. Thus, the event that would cause transition to this state is represented by a simple
“always true” condition.

Let us now moveon to developthe faulttree that representsthe normaloperatingstateof
this system: the “delivering as requested” state. We have noted that zero flow to the
usage system is a possible output in this state. Since it is possible for more than one
transformation to produce this condition (although it does not occur in this case), we
represent zero flow from this state using an OR gate. The “delivering” transformation,
which can produce the zero flow rate condition, is represented’ by an OR gate because
more than one logic line in its truth table can (and, in fact, does) lead to this zero flow
condition. Each of these logical lines is represented by an AND gate. Truth table line 3
represents a situation where the usage system is rejecting flow even though fidl potential
flow is available. Since the details of the fi.dlpotential flow condition were expanded in
the previous fault tree (shown in Table 6-4), this condition is represented by a developed
event in this fault tree. The reader should refer to the “PF-FULL” events in that table to
review that fault tree segment.

The other truth table line in the delivering transformation that results in zero flow to the
usage system is line 4, which indicates that flow to the usage system is unavailable if the
value of zero is achieved for the potential flow attribute. This attribute is produced only
by the system potential transformation. Both the zero potential flow attribute and the
system potential transformation are represented as OR gates in the fault tree. The system

potential OR gate’s inputs are those lines in the system potential transformation truth
table that can result in zero potential flow line 2, line 3, and line 4. Each of these is
represented by an AND gate with the appropriate attributes from external entities as their
inputs. Here, as previously, entry to the “delivering as requested” state is represented by
an “always true” condition because it is the normal state of the system.

6.3 Extraction of Event Tree Models

We now turn our attention to the extraction of inductive logic models such as event trees
from the common object model described at the beginning of this chapter. For this
example, we will extract two different event tree models: one that models only the effects
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of random events on the system, and a second that models the effects of both random and
external deterministic events on the system. We will construct these event trees in
accordance with the methods and rules in Appendix A.

The first step in the development of an event tree for a system model is to speci~ the
initial state of that system model. This includes both the states of the various model
objects as well as values for all discrete attributes. As in the frost fault tree example, we
will select the “delivering as requested” state. The normal attribute values once again
will be as follows: water from the reservoir is available, electricity is available, the usage
system is accepting water, and the spillage of water is zero. Under these conditions, the
common object model dictates that the water supply system is delivering adequate flow
to the usage system. Again, for this system, there are no invalid states or conditions.

The next step in the development of an event tree is to select an initiating event for the
event tree. For this analysis, we will assume an initiating event of the system operating in
a normal steady state, which occurs immediately after the “ON” event is received by the

system from the operator.

The methodology described in Appendix A dictates that the next step in the event tree
construction process is to select a starting point for the event tree model. Since we are
starting from a steady state, we must determine which object is to be used for the starting
point of the event tree. For this simple model, the answer is obvious because the water
supply system is the only object in the model.

We now examine the object model to determine which events are to be included in the
event tree. We are considering only random events that can tiect the normal “delivering
as requested” state. Let us consider the messages that are available within this system as
found in Table 6-1. Here we see two randomly generated events: “spill” and “broken.”
According to the state transition diagram shown in Figure 6-3, either one of these events
will cause the system to transition out of the desired state. In other words, the system
will respond to both of these events in the “delivering as requested” state (neither of these
events is “ignored” by the system when it is in this state)(over) for addition at this point).
Therefore, these two events will form the branch points for the event tree, and will be
listed across the top of the event tree diagram, as seen in Figure 6-6. Since each of these
events is random (i.e., not generated within the system), the ordering of events in the
event tree is arbitrary.

The final step for generating an event tree is to follow the effects of the specified events
as they evolve into scenarios for the object model. The first branch point in the event tree
is the occurrence or nonoccurrence of the “broken” event. Let us first consider the
scenario where broken occurs. According to Figure 6-3, this event causes an immediate
transition to the state “idle, nonfunctional,” which is an absorbing state (i.e., no
transitions out of that state are possible). Therefore, under the assumptions of this
simplified model, it is irrelevant whether the “spill” event occurs once the broken event
has already occurred, so the event tree does not branch fhrther on that event. The data
flow diagram for the idle, nonfunctional state (found in Figure 6-4) indicates that the
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system is now producing zero flow to the usage system. This situation is represented as
the third path in Figure 6-6.

“ON” Event Received Random “Broken” Received Random “Spill” Received pa~ outcome StateTransition

Not Spilling
1 Flow Adequate None

NotBroken

Spilling
ON 2 Flow LOW To Spilling

Broken
3 flow o To Idle,Nonfunctional

Figure 6-6. Event Tree Model Using Only Random Events

The next scenario involves the nonoccumence of the broken event. Since nothing has yet
occurred to cause the system to vary from its initial state, everything in the system is still
set to its initial condition. We now consider the occurrence or nonoccurrence of the
“spil~’ event. According to Figure 6-3, this event causes an immediate transition of the
system into the “spilling” state. While spilling is not an absorbing state, there are no
random events that can cause the system to transition out of that state. Thus this path is
complete and leads to a system that is spilling its fluids and producing a low flow rate, as
described in the data flow diagram for the spilling systems state in Figure 6-4. The
second path in Figure 6-6 represents this scenario.

We must now consider the nonoccurrence of the spill event (the option that was not
chosen for the second scentio above). For this scenario path, we examine the situation
where neither the broken event nor the spill event occurs. Here nothing occurred to cause
the system to vary from its initial state. In addition, there are no more random events to
be considered in the analysis. Therefore, the system remains in its initial condition of
delivering adequate flow to the usage system without spilling. This can be seen in the
first path in Figure 6-6. Since there are no more random events to consider, and all path
options have been exhausted for the specified random events, the construction of the
event tree is complete.

Let us now consider an event tree model that examines the effects of both random and
deterministic influences on the system. We identified the random influences on the
system in the previous model: the broken event and the spill event. The deterministic
influences on this system consist of the discrete attribute values that can be achieved for
those entities that*are external to the system: the reservoir, the electric power system, and
the usage system. The reservoir communicates with the water supply system through the

*Note that for this analysiswe have neglectedthe effectof the operatorsince the operatorcommunicates
with the systemby issuingeventsrather than by changingdiscreteattributevalues. We could easily
includethis effectby placingthe operator’sevents (“on”and “off) in the event tree in the same manner
used for the brokenand spill events. However,this wouldhaveunnecessarilycomplicatedthe example
withoutprovidingsignificantnew insight.
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water attribute, which can have values of “available” and “unavailable.” The electric
power system communicates with the water supply system through the electricity
attribute, which takes on values of “available,” “inadequate,” and “inappropriate.”
Finally, the usage system communicates with the water supply system through the
“blockage” attribute, which can take on values of “accepting: “rejecting,” and
“restricting.” These flows andtheirpossiblevaluesare documentedin Table6-1.

We must now establish the order in which the various events in discrete attribute values
will be considered in the event tree model. Since the random events cause an immediate
transition of the system into a new state, they are placed first in the event tree. The
remaining elements – the discrete attribute values – should be placed in the tree in the
order in which they are encountered within the common object model. This can be
determined by examining the data flow diagram for the delivering-as-requested state (the
initial condition for this system), as shown in Figure 6-5. In that figure, the power system
and the reservoir contribute to the first transformation bubble, while the usage system
contributes to the second transformation. This implies that the effects of power and the
reservoir should be considered before the effects of the usage system. Since each
transformation within the system model is simply a truth table, where order is
unimportant, the discrete attribute values that contribute to each transformation can be
entered in the event tree in an arbitrary order. The ordering of events that was selected
for this analysis can be seen in the event tree solution in Figure 6-7.

We are now ready to generate the actual event tree by following the effects of the
specified events as they evolve into scenarios. The development of scenarios for the first

two events (the “random” events) proceeds in a manner identical to that of the previous
example. Again, the scenarios that result from receipt of the broken and spill events
cause transitions to other states for which the selected discrete attribute values have no
effect, This can be seen from the data flow diagrams in Figure 6-4. Therefore, these

‘scenarios experience no fiulher branching and proceed immediately to the end of the
model, where their outcomes are assessed. These scenarios are represented bypaths 7
and 8 in Figure 6-7.

We must now extend the path created by the nonoccurrence of both the spill and broken
events. This path is extended by considering the possible values for the discrete attribute
values imposed on the system by external entities. The first such entity to be considered
is power. Let us first consider the value” inadequate,” which becomes manifest in the
system potential transformation that is documented in Table 6-2. This situation provides
zero potential flow regardless of the reservoir condition, and, according to Table 6-3,
results in zero flow rate to the usage system regardless of the value of blockage. Thus the
path involving inadequate power experiences no further branching and results in zero
flow, as seen in path 6 in Figure 6-7. Similarly, a value of “inappropriate” for power
manifests itself not only in zero potential flow (regardless of reservoir conditions), but
also causes the generation of the broken event. According to Figure 6-3, this cause is an
immediate transition to the idle, nonfictional state. In this state, the system does not
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respond to reservoir or blockage conditions or to other events and always results in zero
flow. This scenario is represented by path 5 in Figure 6-7.

nitietingEvent ‘Bmk~-d#&~ed “Spll%%vadPower Status sewoir Status Blockagestatuspaw Outcome StateTransition

Accepting
1 Flow Adequate None

Available Resbicting
2 flow Low None

Availeble Rejeeting
3 Flow o None

Unm”lable
4

Notspilling
Flow o None

Ineppmpriate
5 flow o To idle, nonfunctional

NotBroken
Inadequate

6 Flow o None

ON SpilGng
7 flow Low Tospilling

Broken
8 Flow o To idle, nonfunctional

Figure 6-7. Event Tree Model Using Random and Deterministic Events

When the value “appropriate” is selected for power, Table 6-2 reveals that more than one
outcome is possible, depending on the state of the reservoir. Therefore, we step forward
assuming power is appropriate (or “available”) to consider the various discrete attribute
values associated with the reservoir. When the reservoir is “not available,” potential flow
is zero, and, according to Table 6-3, the only possible outcome for the flow rate delivered
to the usage system is also zero. Thus, no fhrther branching is possible based on
blockage. This results in the scenario described by path 4 of Figure 6-7.

Let us now stop to review our current position in the event tree analysis: the broken and
spill events have not been received, and power is available. We must now consider the
other possible value for reservoir: “available.” Table 6-2 tells us that appropriate power
and an available reservoir lead to fi~llpotential flow. However, in Table 6-3, fill
potential flow can lead to three difierent final results, depending on the value for
blockage. We will complete the event tree by considering these values. When blockage
takes on the value “rejecting,” the value for flow rate becomes zero. This is the end of
the data flow diagram, and all random events and discrete attribute values have been
considered. Therefore this path is complete. It is illustrated bypath 3 in Figure 6-7.
Similarly, when blockage takes on the value “restricting” or “accepting,” Table 6-3
indicates the results of “flow low” and “flow adequate,” respectively. These scenarios
are represented by paths 2 and 1 in Figure 6-7, respectively.

A variety of other event tree models – and, indeed, many other types of inductive
models – can be derived from the object model described at the beginning of this chapter.
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However, owing to space and time constraints, they are not developed in this report in
order that we may present the more important subjects of expanding the existing one-
object model into a multiobject model, and deriving logic models from that expanded
model.

6.4 Expansion of the Common Object Model

In Section 6.1, we constructed a fictional, object model for a simple water supply
system. That model was extremely shnple in that it consisted of a single object and
contained no physical components. Let us now expand that model to include a physical
instantiation for this system. Consider a water supply system composed of physical
components as shown in Figure 6-8. Notice that this system contains the same external
entities as the original water supply system: an operator, a power supply, a reservoir, a
usage system, and spillage. However, the previously posed simple fictional description
of the water supply system has now been replaced by physical components that include
two wires, two pipes, a switch, and a pump. This simple system will enable us to
demonstrate the applicability of the methods developed for this project to common object

modelscomposedof morethanone object.

Q-1Operator ~ ~

Actions

Power Wire 1 Wire 2
supply Switch

Pipe 2
Outlet

(Usage System)

Y2mY \spi’’age/
Figure 6-8. Expanded

\ r

compositionof the water supply system

The composition described in Figure 6-8 can be represented more formally in a system
structure diagram, as shown in Figure 6-9. Here we note which objects interact with
other objects and with entities from the outside world. Note that the external spillage
entity is now capable of receiving flows from all system components that carry water.

6-17



-—— . .——..— .—-. ———

This system structure diagram contains information about abnormal behaviors as did the
previous simple model. These abnormal behaviors are more concrete in this case because
of the physical instantiation of the system being modeled.

I
%.. .. .. . . . .. . . .. .. .. .. .. . .. .

t 4............................

&@
Figure 6-9. Structure Diiagram of Expanded Water Supply System

The system structure diagram from Figure 6-9 can be enhanced to represent the various
interactions within the expanded water supply system. These are represented by the
interaction diagram found in Figure 6-10 as well as the accompanying message values for
Table 6-7. This table is clearly much more detailed than the original message value table
(Table 6-l). This is because there are many more interactions taking place in this
expanded model than there were in the original simple model, and all interactions and
their discrete attribute values must be cataloged as part of the common object model.
Note also that there are many more failure events in this object model than were seen in
the original simple model. These ftilure events are tied to the physical instantiation of
individual components. For example, it is now possible for wires to experience open or
short circuits, for switches to experience hardware fhilure, and for pumps and pipes to
experience both plugging and leakage.

Speci&ing the interaction diagram and the message value table may seem to be an
overwhelming task for even this simple system. However, this does not have to be the
case. If one looks forward to the time when a system such as this might be in widespread
use, it is very easy to envision libraries of generic components such as pumps, pipes,
wires, switches, valves, computers, and so forth. Each of these generic components
would contain its own structure diagram and message value table that could be plugged
into the larger common object model once appropriate interfaces were specified. We
envision a time when a systems analyst could simply drag such components onto a
computer screen and connect them using graphical commands to quickly assemble an
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appropriate system model.. Obviously, such a library does not exist at this early point in
the development of the methodology, but assembling one would add a great deal of utility
to this methodology.

Electricity+

Electricity

Pipe 1

Blockage ::

Figure 6-10. Interaction Diagram for the Expanded Water Supply System

Table 6-7. Message Values in the Expanded Water Supply System Model

FromfTo lType of Flow lName Flow Characteristics
(messages, events)

Operator/Switch Command . On Eventjbinary
off Event,binary

Power/Wire1 Electricity Inadequate Multivaluedmessage
Inappropriate Multivaluedmessage
Available Multivaluedmessage

iVireI/Switch Electricity Inadequate Multivaluedmessage

Inappropriate Multivaluedmessage

Available Multivaluedmessage
5witchlWire2 Electric@ Inadequate Multivaluedmessage

Inappropriate Multivaluedmessage
Available Multivaluedmessage

Wire2/Pump Electricity Inadequate Multivaluedmessage
Inappropriate Multivaluedmessage
Available Multivaluedmessage

-..
Continuednextpage.
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h-oflo ]TypeofFlow lNarne lFlow Characteristics

Restricted Multivaluedmessage
Unavailable Multivaluedmessage

‘ump/Pipe2

‘ipe 2Nsage

~ystem

JsageSysternl
‘ipe 2

Water

Water

Blockage -

Available
Limited

Unavailable

!Flow O

Flow ]OW

Flow adequate

Accepting
Restricting
Rejecting

Multivaluedmessage
Multivaluedmessage

Multivaluedmessage

Multivaluedmessage
Multivaluedmessage
Multivaluedmessage

Multivaluedmessage
Multivaluedmessage
Multivaluedmessage

‘ipeI/Spillage Water Intact Binarymessage

bp/SpiI1age Water

‘ipe 2/Spillage Water -:

Random)/Pump

Random)/Pipe1, E
Spilling

l@ndom or Leakage
internalfailure No pumping

Pump burnout
Pumpplugged

Random Pipebroken

‘ipe2 Failure Pipe plugged

Random)/Switch Randomor SwitchO, FTC
internalfailure SwitchO, FTRO

SwitchC, FTC
SwitchO, FTRO

Binarymessage

Event– randomly generated
Event– randomly generated
Event– internallygenerated
Event– randomly generated

Event- randomlygenerated

Event– randomly generated
Event – randomly genemted

Event – randomly generated

Event – randomly generated

Event – randomlv zenerated

Random)/Wire1, Random Wire open Event– randomly generated
Mre 2 Failure Wireshorted Event– randomlv generated

We will now develop state transition diagrams and data flow diagrams for the various
classes of objects specified for this expanded water supply system. While it is possible to
develop a wide variety of types of object models for each of these components (with
varying focus and levels of detail), the object models were deliberately left simple for this
example in order to keep the development of logic models as straightforward as possible.
Clearly, much more detailed representations of objects such as pumps and switches are
possible. The reader is invited to consider such models in the light of the logic models
developed in the next section and to trace through the effects such changes would
produce in those models.
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Structure/Interaction Diagram

z-z
State Transition Diagram

Wire

Data Flow Diagrams
(with abbreviated truth tables)

State: Open
Wire

State: Shorted
Wire
Shorted

State: Conducting

Power

Figure 6-11. Object Model for Wires.

The first object model developed was for
the generic component of a wire. This
object is described by the diagrams
found in Figure 6-11. Note that this
object model is described using a short-
hand notation in order to make it easier
for the reader to visualize the entire
model at once. A verbal form of the
truth table has been incorporated directly
on each data flow diagram because each
truth table for this object is so simple.

Note that the wire can only exist in three
states: conducting, open, and shorted.
The events that cause transition from the
normal conducting state to the other two
states are random failure events. Once
the wire enters into either of these states,
recovery is impossible within the bounds
of this model, and the wire is incapable
of delivering adequate electricity to the
load.

A second basic object model was
developed for the generic component of
a pipe. The pipe is normally capable of
delivering liquids from a supplier to a
consumer (in this case, that liquid is
water). The pipe is also capable of
transmitting blockage back from the
consumer to the supplier, of being
blocked itself, and of leaking (or
“spilling”) its contents to some generic
spillage sink. This basic model is
embodied in the structure and interaction
diagram shown in Figure 6-12. In this
model, a pipe is capable of existing in
four different states: its normal
“transmitting” state, plugged, restricted,
or spilling. Transition fi-omthe normal
transmitting state to any of the other
three states occurs via a random failure
event. Each of these three states is
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Structure/Interaction Diagram

Watert Pipe
Water

+ ~a

Spillage
Blockage Wizter+

4- Blockage

c>

Water
Consumer

State Transition Diagri~m

I Plugged I 1 I sp~~ngI

Data Flow Diagrams
(with abbreviated truth tables)

State: Plugged

Water

PiDe

State: Spilling

B;oken

+ Blockage =Accepting
Water

* Unlesswatersupp~ is ‘Unavm”labIe,n
whichwoukiyield Flow= O,SpiU = O

Figure 6-12. Object Model Pipes,
Part 2

absorbing for the purposes of this model –
it is not possible to transition back from
from either plugged, spilling, or restricted
into the iidly transmitting state.

The data flow diagrams and the
associated simplified truth tables for two
of the states in the pipe object model are
also shown in Figure 6-12. The behavior
of a pipe in the plugged state is extremely
simple: a plugged pipe cannot pass flow
and rejects all liquids from suppliers. The
spilling state is similarly simple: the
model assumes that a significant
diversion of liquid occurs so that the pipe
is incapable of passing adequate flow.
The pipe does, however, accept all liquids
from suppliers.

The remainder of the data flow diagrams
are shown in Figure 6-13. In the restricted
state, the pipe is assumed to be incapable
of passing sufficient flow and is acting as
a restriction toward all suppliers. The
more complicated behavior occurs when

the pipe is in its normal transmitting state.
Here the pipe is assumed to be accepting
all flows fi-omsuppliers and not spilling
that supply. However, depending on the
availability of the liquid supply and the
presence of any downstream blocking, the
pipe is capable of presenting zero flow,
inadequate flow or adequate flow,
according to the truth table in Table 6-8.

The third generic object developed for this
example problem was for a switch. This
object model is shown graphically in
Figure 6-14. The switch responds to the
command of a human operator who issues
either an “ON or “OFF” event. Based on
these commands, the switch undergoes
transitions between open and closed states

if it is able to do so. The generic switch
object is also able to experience hardware failures. This model contains all four common
types of switch hardware failures: the switch can be open but fail to remain open even in
the absence of a command from the operator (O,FTRO); it can be open but fail to close
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Data Flow Diagrams (cont.)
{with abbreviated truth tables)

State: Restricted

Pipe

‘“:ri”:wmu”ci’t’
_ Restnctlng gl~~kage= Restricted

Spill = O
Water

* Unless watersupply k ‘UnavailabIG”

which wouldyield Flow= O.

State: Transmitting

DS Blocking

‘Zru.~J~e

Transrnittin Blockage– Accepting

.“
Water

Figure 6-13. Object Model Pipes, Part
2

given an appropriate command from
the operator (O,FTC); it can be closed
but fail to remain closed even in the
absence of a command from the
operator (C,FTRC); or it can be closed
but ftil to open given an appropriate
command from the operator (C,FTO).
Each of these events is a random failure
event in this object model. Note that
the switch could also be moved to the
wrong position – either accidentally or
intentionally – by a human operator,
but such an incident is properly handled
in the operator object instead of the
switch object.

Notice that there are two different open
states in this model and two different
closed states. It is assumed that the
fhilure states (ftil open and fail closed)
are unrecoverable. Thus they are
absorbing states in the state transition
diagram. The other two states (ok open
andok closed)representthe normal

operating states for the switch. The object model transitions freely between these two—
states based on commands fi-omthe operator.

Table 6-8. Data Flow Diagram for a Pipe in the Transmitting State.

Water Supply
Downstream

Blockage

Unavailable I x

x Rejecting

Inadequate
Restrictingor

accepting
1

Adequate Restricting

Adequate I Accepting

Blockage Output Flow Rate

Sameas downstream o

===++=-

+=+==
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Structure/Interaction Diagram

a

Operator

w *d
State Transition Diagram

on

O, FTR

Data Flow Diagrams
(with abbreviated truth tables)

Both “O~en” States

Of$ or—
O, FTC, or

Both “Closed” States

On, or
C, l?TO~or

‘F’’”m

Power

Since a switch fimctions identically in
both of the open states (it passes the
electrical current fi-oma source to a
sink), both open states are represented
by a single simplified data flow diagram
and truth table for this model. The same
is true for both of the closed states. This
accounts for the”compact notation used
in developing the data flow diagram and
truth tables for this generic object. The
observant reader may notice that the
switch model differs from the wire
model in that the potential for a short
circuit is neglected in the switch. This
was done for the sake of simplicity in the
switch object definition.

Thefourthand finalgenericobject
model in this example problem
represents a pump. The pump is a
complex electromechanical device.
Depending on the application, a surety
analyst may wish to evaluate an object
model containing a pump in a variety of
levels of detail, ranging from a simple
input/output model to a relatively
detailed treatment, including separate
models for the electrical and impeller
systems. The generic object model
developed here is relatively simple
because it considers only three
categories of flow (i.e., discrete attribute
values for the flow property): zero,
inadequate, or adequate. These three
levels are appropriate for this simple
system in order to help demonstrate the
object-oriented analysis methods that are
the focus of this report. The reader is
encouraged to construct more complex
pump object models and evaluate their
impact on the overall logic models to be
developed in the next section.

Figure 6-14. Object Model for a
Switch.

6-24



Structure/Interaction Diagram

m

eBlockage

Water
Supplier

Electrici

Water

State Transition Diagram
(simplified for the sake of the example)

I Damaged I

-“”””e
Pump

Blocks.i

I Restricted I

Figure 6-15. Simple Object Model for a Pump,
Part 1.

The object model for a pump
can be found in Figures 6-15
through 6-17. Figure 6-15
provides the structure and
interaction diagrams for the
pump object, as well as the
state transition diagram. The
reader will note that the
interaction diagram for the
pump is identical to that of
the pipe except for the
addition of a power supply.

The state transition diagram
for the pump is also very

similar to that of the pipe in
that it contains normal,
blocked, restricted, and
spilling states. These are
characteristic of a system that
is designed to carry liquids.
The simple pump model,
however, contains an
additional state related to the
fact that the electrical side of
the pump can become
damaged-in this case, we
assume by inappropriate
electrical power, but other
types of damage are also
possible. Because the pump
represents the translation of
electrical energy into a flow
in the liquid domain, it is

reasonable to expect its
object model to be more
complex than that of a
component that exists in only
a single domain.

Also, for the sake of this analysis, we assumed that the pump is not repairable within the
time flame of interest for the analysis. This assumption was made to .sirnpli& the
example problem. Because of this assumption, the damaged, blocked, restricted, and
spilling states in this model are all absorbing states. To convert this model to a repairable
pump, one would have to include events to transition the model back from these states
into the normal state based on the characteristics of a repair event.
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Data Flow Diagrams
(with abbreviated truth tables)

State: Normal

DS Blocking

—----L See Truth Table
Water

Power

State: Blocked

Water

State: Spilling
Pump

-:$%::g
Water

* Unlesswater supp~ is “Unavailable, n

which wouhiyield F1OW= O,Spill = O

Figure 6-16. Simple Object Model for a
Pump, Part 2

The data flow diagrams for most
states in the pump object model look
very similar to those used in the pipe
object model. There is particularly
close similarity in the models for the
blocked and spilling states. In
addition, the darnaged state is

assumed to behave very similarly to
the blocked state in that the pump is
assumed to prevent passage of liquid
– not just restrict it.

The behavior of the pump in the
normal and restricting states is
significantly more complex. The truth
table for the behavior of the pump in
the operating transformation (in the
normal state) is shown in Table 6-9.
Here we see how various logical
combinations of power availability,
water supply availability, and
downstream blockage combine to
tiect the output flow rate of the
pump as well as the blockage it
presents to upstream members. This
truth table also describes how the
pump object responds to inappropriate
power – it generates the “power
darnage” event that causes the pump
to transition into the damaged state.
Obviously, a more complex pump
model that included more levels of
output flow rate would require a more
complex truth table. While such a

truth table would be difficult to populate by hand, it could be constructed once and placed
in an object model library for later reuse in other analyses, thus lessening the analytical
burden for later analysts.

Now that we have ftished describing the generic object models for each of the physical
components in our water supply system, it is worthwhile to go back to the original “
interaction diagram (Figure 6-1O)and table of message values (Table 6-7) to see how
these objects interact with one another. This system accepts only two events from the
outside: the operator commands to turn the system on and off, which act on the system
through the switch object. All other communication with outside entities is handled
through the passing of discrete attribute values such as electrical power status, reservoir
status, and blockage within the usage system. ‘Ilk system also does not generate events
that are used by objects that are external to the system itself. It passes the results of its
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Data Flow Diagrams (cont.)
(with abbreviated truth tables)

State: Restricted
Pimp

“s”’:-’’’O’)’—F Restnct[n9 Block ge = Restricted

\ Spill=O

Water ~
Power

*If Power = Unavailable, then Flow= O
E&e, If Power =Availabk?, den Fbw = Inadequate.

State: Damaged

Power

Water

Figure 6-17. Simple Object Model for a Pump,
Part 3.

own transformation to the
outside world through the use
of discrete attribute values for
the spillage and for the flow
rate of water to the usage
system.

The reader should also be
aware of the consistency
requirements that must be
imposed between objects if
the overall collection of
objects is to accurately
represent a real system. In
this sample problem, the
pump, for example, has very

specific expectations about
the meaning of the power
messages it receives from the
wires, the switch, and the
original power supply. If any
of these objects has a
different definition for
“appropriate” or
“inappropriate” power, this
can cast serious doubt on the
validity of the entire resulting
object model and destroy the
usefidness of any logic

models derived therefrom. Therefore, in constructing an actual object model through the
use of generic object components, the object construction and analysis software must
verify two types of Worrnation: first, it must query the analyst for the specific
characteristics of each instantiation of a generic component within the model (in order to
customize the specific parameters of that instantiation), and second, it must check for
consistency in the definition of messages that are to be passed between the various
objects. In an early software implementation, these checks could be accomplished by
querying the analyst. We believe that later and more complete implementations of this
method will enable these consistency checks to be petiormed automatically within the
analysis software, with only occasional queries to the user.

We have now completed the development of a common object model for the more
detailed description of the water supply system. Again, the model is complete because
each object’s model is complete (as described at the end of Section 6.1), and because we
have checked the consistency of events, attributes, and messages between objects. This
common object model is now ready for use in a surely analysis.
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Table 6-9. Data F1OWDiagram for a Pump in the Normal State (a Truth Table for
the Operating Transformation)

Power
Downstream Event

Water Supply Blockage Output Flow
Blockage output Rate

x Unavailable x — Accepting o

x x Rejecting — Rejecting o

Unavailable x x — Rejecting o

Inappropriate x x Power
damage

Rejecting o

Available Inadequate Accepting — Accepting Inadequate

Available
Inadequate or

Restricting — Restricting Inadequateadequate

Available Adequate Accepting — Accepting Adequate

X = Don’t Care (Any value of this attribute satisfies the logical condition)

6.5 Extracting Fault Trees from the Expanded Model

One of the major advantages of developing a common object model for a system is that
one can extract many different surety analysis models from the single common object
model and do so with assured consistency and relatively little effort (assuming that

automation is available to interpret the common object model). Let us now examine the
common object model developed in Section 6.4 to determine some of the types of surety
models one might be able to extract fi-omit.

The method for developing fault trees, as documented in Appendix A, dictates that one
begin their development through the selection of the normal system state and the
definition of valid states and conditions. Once this is accomplished, the analyst defines
the objective of the fault tree analysis. This objective is written down in the form of a
logical combination of discrete attribute values ador states from within the common
object model. In the simple object model developed in Section 6.1, there were very few
discrete attribute values available to be part of a surety analysis objective. In the
expanded water supply system model, there are many resultant and intermediate
attributes that can be used as part of a fault tree objective statement. Consider once again
the interaction diagram shown in Figure 6-10. For the original simple object model, one
could ask questions about the delivery of water to the usage system or to the spillage
system. In the expanded model, one can ask, not only about these final outcome
attributes, but also about intermediate attributes such as the availability of water at the
pump or at the outlet of pipe 1, or the availability of electricity at the output of the switch
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or wire 1. Fault trees to examine such conditions are generally not done constructed
because doing so is time and labor intensive. The ability to generate several different
fault tree views of a system quickly and automatically can provide an analyst the
opportunity to come to a fa greater understanding of a system than would be possible
using traditional analysis techniques.

One can also conduct an event tree analysis that examines the effect of specific random
failure modes for specific components on the overall pefiormance of a system. This is
much better than what was possible in the simple model, where we were limited to just
two random failure events – and those were assumed into the system without a basis in
the actual system hardware. One could also conduct a failure modes and effects analysis
by triggering the identified ftilure events one at a time, or a HAZOP analysis by varying
the values of particular flows in the object model, again, one at a time. It is obvious,
then, that this single common object model can support a wide variety of types of surety
analyses, and that if software were available to automatically interrogate this common
object model, these widely divergent surety analyses could be done quickly and with
minimal additional effort. Contrast this with today’s methodologies, which require a
separate human-led model development effort for every type of analysis. In fact, inmost
cases, today one must engage in a separate human-led model development effort for each
model instance (analysis objective) of each model type because of the difficulties and
risks involved in sharing model fragments with unknown assumptions and pedigree.

Let us now extract one example fault tree horn the extended common object model
developed in Section 6.4. We will again focus on the condition where zero flow is
available to the usage system in order to enable the reader to more directly compare this
fault tree with the one developed from the simple common object model.

The fust step in fault tree development, according to the rules in Appendix A, is to select
the normal state for the system. In order to make this fault tree as comparable as possible
with the previous examples, we will select a normal system state in which the overall
water supply system is delivering water as requested to the usage system. This implies
that all pipes are in the transmitting state, that all wires are in the conducting state, that
the switch is in the OK closed state, and the pump is in the normal state. The entities
outside of the system are assumed to be behaving as follows: water is available from the
reservoir; electricity is available and appropriate; the usage system is accepting water;
and spillage of water from the system is zero. Given these conditions, the object model
determines that the flow rate of water to the usage system is adequate.

The second step in fault tree development is to define the set of valid system states and
conditions. For this system, there are no states that are either impossible or out of bounds
as initial conditions or as intermediate conditions.

The third step in fault tree development is to define the objective of the fault tree
analysis. In this case, the objective is to develop a fault tree that represents the ways the
system can produce zero flow to the usage system. This condition manifests itself at the
output of pipe 2 in the object model. Therefore, the top event of the fault tree is an OR
gate that examines the delivery of water from pipe 2 in the water supply system.
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The development of the fault tree continues according to the rules in Appendix A and

follows a pattern that is very similar to that seen in the two example problems in Section
6.2. The actual fault tree that was developed according to these rules and for this
condition can be found in eight tables beginning with Table 6-10. Note that this fault
tree had to be broken into several sections (designated by part numbers in order to fit into
this report. The fault tree printout is roughly organized according to a top-to-bottom flow
of the major fault tree sections, with smaller repeated sections of the tree reserved for the
end.

The fault tree begins by examining how pipe 2 can fail to provide flow – either in a
typical (normal) state or in an abnormal state. The only abnormal state that can provide
zero flow is the plugged state, which can only be entered as a result of a random ftilure
event. The normal state (transmitting) can cause zero flow rate based on two lines in its
truth table (see Table 6-8): in line 1, the water supply to the pipe is unavailable, and in
line 2, the element downstream of the pipe is rejecting flow. Since the downstream
system is the usage system, this branch of the fault tree consists simply of an external
event indicating that the usage system is rejecting flow.

Consider now the water supply to pipe 2. This pipe is supplied with water only by the
pump, and, on ex arnining the object model for the pump, one concludes that the pump
can provide zero flow either in its typical state (normal) or in two of its abnormal states
(blocked or damaged). Entry into the blocked and damaged states ultimately occurs only
as a result of state transitions, one of which is only caused by external random events; the
other is caused by inappropriate electrical power. If we apply the rules from Appendix
A, we trace back through the electrical components (wire 2, the switch, and wire 1) to

findthe fault subtreerepresentingthe methodsby which inappropriatepowercanarrive
at the pump. By consideration of the normal state, we determine that there are four
different conditions (truth table lines 1 through 4 – see Table 6-9) that can lead to failure
of the pump to supply water: the pump’s water supply is unavailable, the pump is unable
to deliver water because of a downstream blockage; the pump’s power is unavailable; or
the pump’s power is inappropriate. The rules compel us to examine each of these four
conditions – even though the inappropriate power branch will yield the same itiorrnation
that was found previously during examination of the damaged state. This is not a
problem because the fault tree analysis software will sort out this duplication as part of its
normal solution methodology.

The development of a fault tree model from the common object model produces an
additional and somewhat unexpected set of duplicate conditions. This duplication comes
about because of the behavior of the pipe and pump models in the common object model.
Recall that these models are capable of not only indicating whether they are themselves
blocked but also of transmitting to upstream components whether any downstream
components are blocked. With this in mind, let us now consider pipe segment 1, the fault
tree for which is found in Table 6-11. At first it seems as if everything is as expected, in
that zero flow can occur in pipe segment 1 because tie pipe is eitherin an abnormalstate
(plugged), or in the normalstate (transmitting).In the normalstate,two different
conditions can cause zero flow. These are found in lines 1 and 2 of the truth table found
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Table 6–10. Expanded Fault Tree forthe Zero Flow Condition, Partl

n FLOW-ZERO —The WSSflowrate is zero.

r

FO-P2-ABNORMAL— Zero flow rate achieved from a non-normal operating state.
LAO pz-pLUG-STATE — Pipe 2 is in the plugged state.

FO-P2-TYPICAL — Zero flow rate achieved from typical system operating state,
% FO-P2-TRANSMIT — Zero flow rate from pipe 2 in its typical transmitting state

% FO-P2-TRAN-TRANS — Zero flow rate achieved in the transmitting transformation for pipe 2,

t

P2-TRANS-L2 — Conditions at the pipe 2 transmitting truth table line 2.

k US-REJECT — External entity usage system attribute is rejecting,
P2-TRANS-LI — Conditions at the pipe 2 transmitting truth table line 1.

% P2-SUPP-O — The water supply attribute to pipe 2 from pump has attribute unavailable (0).
b FO-PUMP — Zero flow rate occurs at output of pump,

[

FO-PUMP-ABNORMAL — Zero flow rate from pump in a non-normal operating state.

r

PUMP-BLOCK-STATE — Zero flow achieved from pump in the blocked state.
% FO-PUMP-BNF-TRAN — Zero flow rate achieved in the pump B locked no flow transformation.

~A~ p. BNF-TRANS-Lq — Conditions at the pump blocked no flow transformation truth table Line 1.
PUMP-DAMAG-STATE — Zero flow achieved from pump in the damaged state.

% FO-PUMP-DNF-TRAN — Zero flow rate achieved in the pump damaged no flow transformation.
l+o p-DNF.TRAN&Ll — Conditions at the pump damaged no flow transformation truth table line 1.

FO-PUMP-TYPICAL — Zero flow rate from pump in its typical normal state.
b FO-PUMP-OP-TRANS — Zero flow rate achieved in the operating transformation for pump.

k

AOP-OP-TRANS-L4 — Conditions at pump operating transformation line 4.
An P-OP-TRANS-L3 — Conditions at pump operating transformation line 3,
AO P-OP-TRANs-L2 — Conditions at pump operating transformation line 2.

P-OP-TRANS-LI — Conditions at pump operating transformation line 1.
k PUMP-SUPP-O — The water supply attribute to pump from pipe 1 has attribute unavailable (0).

~AQ F()-pl — Zero flow rate occurs at output Of pipe 1.
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IQ Table 6–11. Expanded Fault Tree for the Zero Flow Condition, Part 2

A FO-PI
k FO-PI — Zero flow rate occurs at output of pipe 1.

[

FO-PI-ABNORMAL — Zero flow rate from pipe 1 in a non-normal operating state.
h PI -PLUG-STATE — Pipe PI is in the plugged state,

k PI -NOFLOW-TRANS — Zero flow rate achieve d in the no flow transformation,
h PI-NOFLOW-LI — Conditions at the pipe 1 no flow transformation truth table line 1

% PI -PLUGGED — The external random event pipe plugged occurs for pipe 1,
FO-PI -TYPICAL — Zero flow rate from pipe 1 in its typical system operating state.

k FO-PI -TRANSMIT — Zero flow rate from pipe #l in its typical transmitting state.
k i=o+l-IKAIWW?ANS

-.-—. . — Zero flow rate achieved in the transmitting transformation for pipe 1.

[

PI -TRANS-LI — Conditions at the pipe 1 transmitting truth table line 1.
h PI-SUPP-O — Water supply attribute to pipe 1 from reservoir has attribute unavailable (0).

% RESERVR-UNAVAIL — External entity reservoir attribute is unavailable.
PI -TRANS-L2 — Conditions at the pipe 1 transmitting truth table line 2.

% PUMP-REJECT — The Pump is object blockage attribute has value rejecting.

“[

REJ-PUMP-TYPICAL — Pump has attribute rejecting in its typical normal operating state.
k REJ-PUMP-OP-TRAN — Rejecting is achieved in the operating transformation for the pump.

E

AOP-Op-TRANS-L2 — Conditions at pump operating transformation line 2,
Ao P-OP-TRANS-L3 — Conditions at pump operating transformation line 3.
An P-OP-TRANS-L4 — Conditions at pump operating transformation line 4,

REJ-PUMP-ABNORM — Pump has attribute rejecting in a non-normal operating state.

r

REJ-PUMP-BLOK-ST — Pump has attribute rejecting in the blocked state.
b REJ-PUMP-BNF-TRA — Rejecting attribute set in the pump blocked no flow transformation.

~An P-BNF-TRANS-LI — Conditions at the pump blocked no flow transformation truth table line 1.

REJ-PUMP-DAM-ST — Pump has attribute rejecting in the damaged state.
% REJ-PUMP-DNF-TRA — Rejecting attribute set in the pump damaged no flow transformation.

~A~ P-DNF-TRANS-LI — Conditions at the pump Damaged No Flow Transformation truth table Line 1.

I
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A P-OP-TR/4NS-L3
L--o P-OP-TRANS-L3 — Conditions at pump operating transformation line 3.

k POWER-W2-UNAVAIL — Power attribute to pump from wire 2 is inadequate.
k PWRINAD-W2 — Inadequate power occurs at output of wire 2.

-( PWRINAD-W2-ABNOR — Inadequate power occurs at output of wire 2 in a non-normal operating state.

[

IP-W2-OPEN — Inadequate power achieved in the open operating state of wire 2.
% W2-OP-NOELEC-LI — Conditions at the wire 2 open no electricity truth table line 1.

b
TRUE3 — This truth table condition is always satisfied.
W2-OP-ENTERED — Wire 2 enters the open state.

% W2-OPEN-EV — The external random event wire open occurs for wire 2.
IP-W2-SHORT — Inadequate power achieved in the shorted operating state of wire 2.

k W2-SH-NOELEC-LI — Conditions at the wire 2 shorted no electricity truth table line 1.

h
TRUE4 — This truth table condition is always satisfied.
W2-SHORT-ENTERED — Wire 2 enters the shorted state.

L--o W2-SHORTED-EV — The external random event wire shorted occurs for wire 2.
-n PWRI NAD-W2-TYP — Inadequate power occurs at the output of wire 2 in its typical operating state.

k IP-W2-CONDUCTING — Inadequate power achieved in the conducting operating state of wire 2.
~ W2-COND-TRANS — Inadequate power achieved in the conducting transformation for wire 2.

% W2-COND-LI — Conditions at the wire 2 conducting truth table line 1.
% W2-PSUPP-INADEQ — The power supply attribute to wire 2 has attribute value inadequate.

LAO [NADEQ-SW — Inadequate attribute for power occurs at output Ofswitch.
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Table 6–13. Expanded Fault Tree for the Zero Flow Condition, Part 4

A INADEQ-SW
h INADEQ-SW — Inadequate attribute for power occurs at output of switch.

-n iNAD-SW-ABNORMAL — Inadequate power occurs at the output of switch in an abnormal operating state.

[

INAD-SW-OKOPEN — Inadequate power achieved in the OK open operating state of switch.
b IP-SW-OKOP-NOELE — Inadequate power achieved in OK open no electricity transformation for switch.

b SW-OKOP-NOEL!X1 — Switch OK open no electricity transformation truth table Line 1.

e
TRUEI — This truth table condition is always satisfied.
SW-OKOP-ENTERED — Switch OK open state entered.

% OFF — External entity operator issues the off event.
INAD-SW-FOPEN — Inadequate power achieved in the fail open operating state of switch.

% IP-SW-FOP-NOELEC — Inadequate power achieved in fail open no electricity transformation for switch.
h SW-FOP-NOELE-LI — Switch fails open no electricity transformation truth table Line 1.

e
TRUE2 — This truth table condition is always satisfied.
SW-FOP-ENTERED — Switch fail open state entered.

b
SW-OFTC — Random external event switch open, fails to close occurs.
SW-CFTRC — Random external event switch closed, fails to remain closed occurs.

-Af2 INAD-SW-TYPICAL — Inadequate power occurs at the output of switch in its typical operating state.



Table 6–14. Expanded Fault Tree for the Zero Flow Condition, Part 5

A INAD-SW-TYPICAL
% INAD-SW-TYPICAL — Inadequate power occurs at the output of switch in its typical operating state.

b INAD-SW-OKCLOSED — Inadequate power achieved in the OK closed operating state of switch.

% 1P-SW-CONDUCTING — Inadequate power achieved in the conducting transformation for switch. “
b SW-COND-LI — Conditions in the switch conducting truth table line 1.

% SW-PSUPP-INADEQ — The power supply attribute to switch has attribute value Inadequate,
1- INADEQ-WI — Inadequate attribute for power occurs at output of wire 1.

k INAD-WI-TYPICAL — Inadequate power occurs at the output of wire 1 in its typical operating state.
h 1P-WI-CONDUCTING — ~nade~uate Power achieved in the conducting operating state of wire 1.

b WI -COND-TRANS — Inadeq~ate ~ower achieved in the conducting transformation for wire 1.
% WI-COND-LI — Conditions at the wire 1 conducting truth table line 1.

k WI-PSUPP-INADEQ — The power supply attribute to wire 1 has attribute value inadequate.
% PWR-INADEQ — External entity power supply attribute is inadequate,

PWRINAD-WI-ABNOR — Inadequatepoweroccurs at output of wire 1 in a non-normal operating state.

[

1P-WI -OPEN — Inadequate power achieved in the open operating state of Wire 1,
b WI -OP-NOELEC-LI — Conditions at the wire 1 open No Electricity truth table Line 1.

e
TRUE5 — This truth table condition is always satisfied,
WI -OP-ENTERED — Wire 1 entersthe open state.

b WI-OPEN-EV — The external random event wire open occurs for wire 1,
1P-WI-SHORT — Inadequatepower achieved in the shorted operating state of wire 1.

k WI -SH-NOELEC-LI — Conditions at the wire 1 shorted no electricity truth table line 1.

e
TRUE6 — This truth table condition is always satisfied.
WI-SHORT-ENTERED — Wire 1enters the shorted state.

% WI-SHORTED-EV — The external random event wire shorted occurs for wire 1.



Table 6–15. Expanded Fault Tree for the Zero Flow Condition, Part 6

A F’-0p-Ti3ANs-L4
k P-OP-TRANS-L4 — Conditionsat pumpoperatingtransformation line 4,

% POWER-W2-INAPP — Powerattributereceivedfromwire2 is inappropriate.
k PWRINAPP-W2 — Inappropriatepoweroccursat outputof wire 2.

r

PWRINAPP-W2-ABN0 — Inappropriatepoweroccurs at output of wire 2 in a non-normaloperatingstate,
% FALSEI — This condition cannot occurin any non-normal operatingstate,

PWRINAPP-W2-TYP— Inappropriatepoweroccursat output of wire 2 in its typicaloperatingstate.
k INP-W2-CONDUCT— Inappropriatepowerachieved in the conductingoperatingstate of wire2.

% W2-iCOND-TRANS— inappropriatePowerachieved in the conductingtransformationforwire 2,
% W2-COND-L2— Conditionsat the wire2 conducting truth table line2,

k W2-PSUPP-iNAPP — The powersupplyattribute to wire2 has attributevalue Inappropriate.
% iNAPPR-SW— Inappropriateattributefor power occursat outputof switch,

-n iNAP-SW-TYPiCAL— Inappropriatepower occursat outputof switchin its typical operatingstate,
l-+ iNAP-SW-OKCLOSED— Inappropriate powerachievedin the OK closedoperatingstateof switch,

k iNP-SW-OKCL-COND— Inappropriate power in OKclosedconductingtransformationfor switch,
k SW-COND-L2— Conditions in the switchconductingtruth table line2.

‘An SW-PSUPP-iNAPP — The powersupply attributeto switchhas attributevalue inappropriate.
-n iNAP-SW-ABNORMAL— Inappropriate poweroccursat outputof switch in an abnormaloperatingstate.

% INAP-SW-FCLOSED— Inappropriate powerachievedin the fail closedoperatingstateof switch.
k INP-SW-FCL-COND— Inapprop. power achievedin fail closedconductingtransformationforswitch.

k SW-FCL-COND-L2— Switch fails closedconductingtransformationtruth table line 2.

L
AQ SW-PSUPP-INAPP — The power supplyattributeto switchhas attributevalue inappropriate.

SW-FCL-ENTERED— Switch fail closedopenstate entered,

k
SW-CFTO — Random external eventswitchclosed,failsto open occurs.
SW-OFTRO — Random external eventswitchopen, fails to remainopenoccurs.

I
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Table 6–16. Expanded Fault Tree for the Zero Flow Condition, Part 7

A SW-PSUPP4NAPP
k SW-PSUPP-INAPP — The power supply attribute to switch has attribute value Inappropriate.

% PWRINAPP-WI — Inappropriate attribute for power occurs at output of wire 1.

L

PWRINAPP-WI -ABNO — Inappropriate power occurs at output of wire 1 in a non-normal operating state.
% FALSE2 — This condition cannot occur in any non-normal operating state.

PWRINAP-WI -TYP — Inappropriate power occurs at output of wire 1 in its typical operating state.
b INP-WI-CONDUCT — Inappropriate power achieved in the conducting operating state of wire 1.

% WI-ICOND-TRANS — Inappropriate power achieved in the conducting transformation for wire 1.
% WI -COND-L2 — Conditions at the wire 1 conducting truth table line 2.

% WI -PSUPP-INAPP — The power supply attribute to wire 1 has attribute value inappropriate.
k PWR-INAPP — External entity power supply attribute is inappropriate.

A P-OP-TRANS-L2
b P-OP-TWNS-L2 -Conditions atpumpoperating transforInation line2.

b P2-BLK-REJECTING — Blockage attribute from pipe 2 has value rejecting.
t-A~ p2-pLIJG-STATE — Pipe 2 is in the plugged state.

A P2-PLUG-STATE
% P2-PLUG-STATE —Pipe2is inthe plugged state.

b P2-NOFLOW-TRANS — Zero flow rate achieved in the no flow transformation.
% P2-NOFLOW-LI — Conditions at the pipe 2 no flow transformation truth table line 1

k P2-PLUGGED — The external random event pipe plugged occurs for pipe 2.



Table 6-17. Expanded Fault Tree for the Zero Flow Condition, Part 8.

A P-BNF-TRANS-L1
k P-BNF-TRANS-L1 — Conditions at the pump blocked no flow transformation truth table line 1.

k
TRUE8 — This truth table condition is always satisfied.
P-BLK-ENTERED— The pump enters the blocked state.

% PUMP-BLOCKED— The external random event pump blocked occurs.

A P-DNF-TRANS-L1
k P-DNF-TRANS-L1 — Conditions at the pump damaged no flow transformation truth table line 1.

e
TRUE7— This truth table condition is always satisfied,
P-DAM-ENTERED— The pump enters the damaged state.

k PWRDAM-EVENT— The power damage event occurs,
b PDAM-EV-PUMP— Power damage event is generated by the pump object.

% PDAM-EV-PNORMAL— The power damage event is generated by the pump when it is in the normal state.
b PD-PUMP-OP-TRANS — Power damage event occurs from the operating transformation for the pump.

LA p.op.TRAN$L4 — Conditions at pump operatingtransformatiorl line 4,

I



in Table 6-8. As expected, one of these lines indicates that zero flow will occur if the
water supply to pipe segment 1 is unavailable. This is easily traced back to an external
event condition where the reservoir is unavailable. The second line of that truth table,
however, yields the unexpected results. It indicates that the flow rates through pipe
segment 1 will be zero if one or more of the entities that are downstream are rejecting
flow. The rules from Appendix A then push us to examine whether the pump is rejecting
flow, which in turn causes us to examine whether pipe segment 2 is rejecting flow, and
ultimately whether the usage system is rejecting flow. Recall that the usage system
rejecting flow was considered at the very beginning of the fault tree. If one were
developing a fault tree by hand, one would intuitively understand that these conditions
had already been examined in other areas of the fault tree and thus neglect them.
However, the “automated” construction of the fault tree from the common object model
caused this correct but unnecessary section of fault tree to be constructed. Again,
duplicate sections of a fault tree are not a problem (as long as they are not contradictory)
because the fault tree analysis software will sort out the duplication as part of its normal
solution methodology.

Let us examine this apparently duplicated section of the fault tree more closely and see
whether it is in fact unnecessary in all circumstances for the fault tree construction engine
to examine downstream blockages. Consider the situation where one is seeking to build a
fault tree that would examine the reasons for zero flow at the outlet of pipe segment 1.
One reason for zero flow at that point would, in reality, be the presence of downstream
blockages in the water supply system. Thus, if we programmed the fault tree
construction engine to neglect these downstream blockages (and other possibly similar
conditions), we would have missed a potentially important section of the fault tree for
this other situation. Therefore, it is not advisable to seek situations where fault tree
truncation might be employed during the fault tree construction process because this can
lead to situations where important parts of another fault tree are inadvertently neglected.
“Furthermore, there is no sure way of knowing from the results of the fault tree analysis
whether a portion of the fault tree was neglected. While it is never good to obtain
incomplete results in a surety analysis, it is even worse to obtain incomplete results
without having any indication that those results might be incomplete, as would be true in
this case.

This point bringsus backto oneof the reasonswhyanalystsdo not havemuch
confidencein reusingpiecesof faulttrees that weredevelopedby otheranalystsfor other
purposes. One can never be entirely sure of all of the assumptions that went into the
production of the original fault tree, and without knowing those assumptions, it is
impossible to determine whether a new application of that fault tree segment will violate

them. In fact, the original analyst may not have even realized that he was making some
of his assumptions, so simply asking the original analyst to document his assumptions
will not have the desired results. However, re-deriving the fault trees from an object-
based model that incorporates the behaviors and causes and effects within the system
alleviates this problem because the object-based model makes all of these assumptions
explicit.

6-39



...—— .-. —— -. . .—— —

It should be noted at this point that the fault tree development rules specified in Appendix
A may fail under certain specific circumstances because they do not make explicit
provision for breaking “logic loops.” A logic loop occurs when one seeks to build a fault
tree for two systems that are mutually interdependent. For example, if a diesel-powered
emergency electrical generator is cooled by an electrically powered cooling system, and
that cooling system draws its power from the emergency diesel generator, these two
systems are mutually interdependent. The generator can ftil because the cooling system
fails, but the cooling system can fail because the generator fails. Such a condition will

drive the fault tree developmentrules fromAppendixA into an infiniteloop condition. It
is relatively easy for a human to break such logical loops, and automated processes are
available. However, the fact that such logic was not incorporated into the rules in
Appendix A is an important limitation for that methodology that must be observed.

There is one common objection to the fault tree models produced by extraction from the
object model: they are much larger than a similar fault tree constructed by a human being
would be. The large size of the fault trees is in large part due to the presence of many
single input gates. This is, in fact, a valid criticism. However, it is important to realize
that this fault tree construction methodology thoroughly documents every small step in
logic as a gate in the fault tree. It is, in a sense, practicing the oft-preached art of
“immediate cause” in its fault tree development. 1 The net result is a fault tree that is easy
to txace because it contains documentation for every small logical step. While such a tree
is large, it presents only a minimal additional challenge to a fault tree solution software
package because such packages typically restructure fault trees to remove these
unnecessary gates before embarking on the ultimate solution. The fault tree restructuring
process represents only a minimal additional computational burden when it is compared
with the effort required to actually solve the fault tree. While such fault trees can be
burdensome to print, the documentation detail they contain provides valuable insight into
the construction process that canhelp the suretyanalystcheckthe validityof the resultant
fault tree.

&6 Summary

In this chapter we have constructed two common object models for a simple water supply
system: a simple fictional model and a component-based physical model. We
demonstrated how the rules provided in Appendix A can be applied to the common object
models to extract a variety of fault trees, event trees, and other surety models. We
explicitly extracted three fault trees and two event trees from the various object models.
We also discussed how the fault trees and event trees derived using these methods might
be somewhat different from those that would be generated by a human analyst. Provided
the causality and behavior embodied in the common object model are correct and
complete, the surety models that are automatically extracted from that common object
model should be more complete (or be based on fewer assumptions) than would a
comparable human-generated surety model. This is because the rules for automatic
model extraction intentionally examine all possible areas of the common object model,
while the human analyst will often truncate portions of the model that are unimportant for

the particular purposes of the analysis. While this usually leads to acceptable results for
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the surety analysis at hand, the presence of undocumented assumptions can make the
reuse of model fragments a difficult and chancy proposition.

The example problems constructed in this chapter should also provide an illustration of
how one might go about using this methodology in the presence of a fully functional
software tool. We described the vision of reusable generic component libraries that will
allow the rapid construction of the common object models. We also described the ease
and speed with which multiple suretymodelscanbe derived,andhowthe suretyanalyst
canusethesevariousviewsof the systemto obtainabetter andmorecomplete
understanding of the system being analyzed. Alternatively, the analyst should be able to
derive the same models that are currently being used much more quickly, resulting in cost
savings. Either way, this methodology provides a valuable step forward in the techniques
for performing surety analyses.
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7 Implementation in Software
One of the goals of this project was to develop a software application that would
demonstrate the methodolo~ developed by the project that applies risk and reliability
analysis to object-oriented (00) modeling of systems. A goal of the software
development was to use emerging 00 software technologies to implement the
application. Early ideas were to provide a distributed architecture for the tool, using an
object-oriented database (OODB) server, the common object request broker architecture
(CORBA) for distribution, and the Java progr amrning language to implement a client
user application. The software development efforts for the first year of the LDRD and
part of the second concentrated on learning these technologies and implementing
prototypes to prove their feasibility. Indeed a prototype was developed that demonstrated
a Java client application reading and writing objects to a Versant 00DB via CORBA. As
development of the methodology continued and time passed, it became clear that the
development of the tool needed to be reevaluated. In early 1999, this calendar year it was
decided to implement the tool as a stand-alone application on a PC platform without
using a database. The application would still use Java, and be designed with components
that could easily be migrated to create a distributed 00DB application in the fiture. The
desire was to create an application that could demonstrate the methodology in a manner
that could be extended as needed. The scope of the application was redefined in ways
that were felt would still meet the primary goals and make them achievable. It is
believed that this effort was successfid and has resulted in an application that is called the
object-oriented process for risk and reliability analysis (OPRIL4).

There are many commercial and custom soilware applications available that could have
been used to create the tool. However, none of the tools we identified provided all of the
fimctionality that was needed. In addition, it was not realistic to attempt to create a single
application from scratch that would accomplish the goals. It was decided to develop an
application that provided the glue to bring several existing applications together for the
desired 11.mctionality. With limited time and resources to develop the tool, not a great
deal of time was spent examining various options for the development. Rather, decisions
were made fairly quickly on key features of the architecture of the tool, based on the
perception of whether it would be successfid.

The most important component needed was an application that would enter the 00
model data for the system to be analyzed. There are a number of commercial
applications available that are primarily designed for software development. This was a
stumbling block in that there were some notions developed for the system modeling that
did not translate well into the software development paradigm. Nevertheless, with some
compromises, one of these tools was adopted.

One of the key features of the methodology is to use action data flow diagrams (DFD) to
model the process for each state of the system. This was lacking in the available
commercial applications.

7-1



Access to the 00 data captured in an application was needed to translate it into a form
usable for risk and reliability analysis such as fault trees, event trees, etc. Since a
commercial tool was to be used to enter the 00 da~ it had to have a comprehensive
application programming intefiace (API).

Rational Rose is one of the premier PC-based applications for object-oriented software
development. Rational Rose 98 was released in early 1998. It did not provide a way to
capture DFDs, but it did provide much of the other fimctionality that was needed.
Consequently, it was chosen for our development.

The OPRRA application interfaces to Rose and can retrieve data that are stored in Rose
as needed. OPRR4 provides a graphical user interface (GUI) to enter the DFD for the
states defined in Rose. Sofhvare has been developed to generate fault trees. Data from
Rose and the OPRRA are used to create the fault tree. New risk and reliability analysis
methodscouldeasilybe addedto OPRRA. Thefaulttrees generatedby OPRRAare
written to a file in a format that can be used by the ArrTree application. &rTree is an
application used to manually create fault trees that can be further processed by other
existing Risk and Reliability Analysis software. These data can be processed by other
applications for additional analysis.

7.1 Application Overview

Rational Rose 98 is used for the primary 00 modeling of the system. Established
practices are used to model the system in the 00 paradigm. Rose supports several
different modeling notations. We chose to use the unified modeling language that is
rapidly being accepted as a standard notation.

Figure 7-1 shows the Rose screen with class diagram and state diagram windows. The
diagrams show a simple system model that was used during development. The Controller
class and the WaterSupplySystem class define two system objects. The other classes
shown are defined to provide further information to support the methodology. Notice
that thepnver attribute of WaterSupplySystem has a type of PowerType. The

PowerType class is defined in the model with the attributes APPROPRIATE,

INLAllEQUATE, and INAPPROPRIATE. These define the valid values for thepmver
attribute. The attributes of PowerType also have a type of DAVType. The DAVType
shows two attributes, NORMAL and ABNORMAL. The attributes of PowerType are
declared with an initial value that is one of these attributes. The initial value is used
during the processing to produce a fault tree. The remaining attributes for the system
classes are defined in a similar manner.

State models are defined for the two system objects. The state diagram for the Controller
class shows two states and the one for the WaterSupplySystem class shows three states.
The arrows define transitions between the states. Notice that the transitions in the
Controller state diagram are also labeled with a send action. The send action denotes that
the transition affects a transition in the state machine of another class. For example, the
On transition of the Controller state machine has a send action with the
WaterSupplySystem as the target class and On as the target transition. The
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WaterSupplySystem state diagram includes a transition named On. The state machine for
WaterSupplySystem transitions between the IdleFunctional and DeliveryingAsRequested
states when the On send action (i.e., event) is received.
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Figure 7-1. Rational Rose 98 Class and State Diagrams

Roseprovidesaway to extendits ownmenuswithcustommenus. A registry entry is
made on the user’s PC to specifi a custom menu file. The menu file is created using a
Rose-specific syntax. A menu file has been created for the 0PRIL4 application so that it
can be launched from Rose via the Tools menu.

Figure 7-2 shows a screen from the OPRRA application. It shows the process models
that were created for the Rose model shown in Figure 7-1. Notice that there is a separate
window for each process model, one for each state in the Rose model. The process
model is defined in terms of a DFD. DFDs are usually represented graphically as
bubbles, arrows, and boxes. However, in order to develop the application more quickly,
it was decided to represent the DFD textually in a table. Graphical representation of the
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DFD could be added in the fiture and should not change the underlying data structures.
It is probably easiest for a user to manually create DFD diagrams and then enter the
corresponding data in the OPRRA tables.

Figure 7-2. OPRRA Process Models.

The five main components of a DFD are process, data store, data flow, received event,
and generated event. 1 A process contains a description of how data input to the process is
transformed into data output from the process. The way this is done for our method is
unique and is described later in the document. The attributes of a class are available to
supply or receive data from a process. A data store is declared with a specified attribute,
to make it available to the process. A data flow is defined from a data store to a process
to show that the data store is an input to the process. The direction of the data flow
indicates whether the data store is an input or output to the process. A data flow may
also go from one process to another process. In this case the data flow carries a specified
attribute that is used as a variable between the two processes. A. received event contains
a transition (one coming into the state for the process model) and the process it is
destined for. Likewise, a generated event contains a transition (one leaving the state for
this process model) and the process it is coming from.
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List boxes are provided for data entry that give the user the valid selections for a
particular entry. Selections may come from data previously entered in OPRRA or in
Rose. For example, the figure shows a list of data flows for the deliveryingAs-Requested
state of the WaterSupplySystem class. The source of a data flow may be either a process
or a data store. The list box shows all of the processes and data stores that are defined for
this process model. Note that the user switches between the DFD elements by selecting a
tab.

For software development some form of pseudo-code is typically used to describe a
process. This is too loosely structured for our purposes, so the process description is

defined in terms of a process table. Each line of the process table is referred to as a
statement and the table is made up of a collection of statements. The inputs to the
Process table are the attributes of data stores connected to the process by data flows
coming into the process. The outputs of the process table are the attributes of data stores
connected to the process by data flows going out of the process. Each input and output
attribute is edited by selecting from a list of valid values. A statement is defined by
speci~ing a combination of input attribute values that result in a set of output attribute
values. A generated event may also be specified for each statement.

Figure 7-3 shows the dialog box used to enter the data for a process table. This box is
presented when the user selects a process row and selects Browse, Speczj?cation, fi-om the
menu. The Insert button is used to create new rows in the table and the Delete and Delete
All buttons remove rows. The columns for the table are predetermined by the data flows
that are inputs and outputs to the process. Since there are no generated events for this
process, a column for a generated event is not shown in the table.

When the user is satisfied that all model data are complete, a fault tree can be generated.
The user specifies the top event for the fault tree. This is expressed in the form of one or
more attribute value pairs. The user can specify whether the attribute should be equal to

the value or whether it should not be equal. A fault tree is generated, starting at the
specified class, by a procedure centered on the process table. Data flows maybe
followed from one process to another to develop branches of the fault tree. A received
event may come from another class in the model, in which case it is followed back to that
class to develop branches of the fault tree for that class as well. Multiple fault trees can
be generated for the same system model by speci&ng a new top event. The fault tree
data are written to two files ( set and .dct files) that make the data compatible with the
ArrTree application.2

Figure 7-4 shows the ArrTree application display of a fault tree that was generated by
OPRRA. The result is rather verbose and not immediately obvious. A gate in the fault
tree marks each step of the fault tree generation. This results in extraneous gates but
allows the user to validate the fault tree. The extra gates can be automatically removed
by subsequent analysis software. Also, the fault tree is stated strictly in terms of the
system object model and consequently may not be as readable as a fault tree manually
generated by a human.
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7.2 Open Standards

In the future, software applications will be much more flexible in how they are used
individually and with other applications. The beginning of this can be seen now in a
number of desktop applications. This trend should continue so that a user can configure
custom tools from components of existing tools, easily creating and adding new
components as needed. In this respect Java provides some fi,mdamental features that
enable this.

Javaclassesarepackagedin a mannerthatmakesthemeasyto reusein other
applications.A Java application is not compiled into one homogeneous application, but
exists as the set of classes used to create it. Each class is individually accessible for use
by an external application, to the extent that the class and class methods are exposed.
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Figure 7-4. ArrTree Application Fault Tree Display
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7.3 Overview of OPRRA Application Software Design

The OPRRA application software has been developed using 00 analysis and design
methods. The application exists as a collection of more or less independent classes that
work together to pefiorm the necessary Iimctions. The classes can be described by
dividing them into four categories. The main category contains the classes that provide
the basic fiarnework for the application. The Rose API intefiace category contains the
classes that interface to the Rose API. The process model category contains the classes
that capture the DFD for a process. The fault tree support category contains classes used
in generation of fault trees fromthe systemmodeldata.

7.3.1 Main Category

The main category consists of two classes named OPRRA and Desktop. The OPRRA
class contains the static main method that is called by the Java virtual machine to start the
application. The main method instantiates the OPRILA class, which starts up the
application displaying the main window and menus. An instance of the R.Application
class is created that establishes a connection to the Rose application. If Rose is not
already running, a new application is started. Classes from other categories are
instantiated as needed to support menu selections.

The 0PIR4 class provides methods that save and load data entered in the application.
Data are saved using class serialization. Serialization is a built-in feature of Java classes
that allows instances of a class to be written to an output stream, typically a file. The
structure of the class is saved as well as the data so that a class instance can be recreated
when it is de-serialized. When a ckass is serialized, all other classes that are referenced
by the class are also serialized. This is done in an intelligent way so that a class is only
serialized once even though it maybe referenced multiple times by other classes.

The Desktop class is serialized to save all of the OPRRA application data. OPRRA is
designed so that all of the classes that should be saved are children of Desktop. This
includes the classes that capture the process model data as well as the GUI components
that display the data. When Desktop is re-loade~ the data are restored and displayed in
the same manner as when they were saved.

7.3.2 Rose API Interface Category

The Rose application provides a comprehensive API that is called the Rose extensibility
interface (REI). The REI can be used with a scripting language or in the Microsoft 0L?2
automation environment. OPRRA uses the automation environment. The components of
Rose made available by the IWI are organized in an 00 manner. Figure 7-5 shows a
class diagram of the Rose REI. Each box in the diagram represents an interface that can
be used to manipulate the corresponding object in Rose. Typically each interface has a
set of properties and methods that can be used for this control. Properties reference the
attributes of the object that can be written and read by standard property methods. A
method of the interface petiorrns a process on the object. An inheritance hierarchy is
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used. For instance, many objects inherit from the element object. The element object has
a name attribute that is commonly used to identi~ instances of an object in Rose.
Different types of objects have this attribute since they inherit name from element.
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A file called a type library makes the REI available for use in the automation
environment. The type library provides a standard description of the interfaces that make
up the REI. The type library is used with a tool named JavaTLB to create a set of Java
wrapper classes for the interfaces of the RE13(JavaTLB is provided with Microsoft
Visual J++ 1.1, Java Development Environment). The REI intefiaces can then be
accessed from Java directly.

The classes in the Rose API interface category provide an intermediate intetiace between
the other OP~ classes and the Java wrapper classes. Other OPRRA application
classes that need information from Rose use these classes. The classes hide the details of
working with the REI objects and provide a layer of abstraction between 0PRlL4 and
Rose. Any changes to Rose in the future should affect only these classes. A tool different
from Rose could be used with OPRRA by adapting these classes to the new application.

Figure 7-6 shows the class diagram for the OPRRA application. The classes that make
up the Rose API interface category are Reapplication, RModel, RClass, RState,
RAttribute, and RTransition. These classes directly relate to the corresponding REI Java
wrapper classes IRoseApplication, IRoseModel, IRoseClass, IRoseState, IRoseAttribute,
and IRoseTransition. The interface clawes duplicate some of the itiormation in the REI
classes and add functionality. For instance, in Rose the user can define a transition that
takes an action external to its class by referring to a transition defined in the other class.
Wh%in Rose, the external transition information is entered as character strings. The
RTransition class maintains this reference but translates the strings into the corresponding
RTransition. For another example, as part of the methodology, a system object is
entered as a class, assigned an attribute, and a type class in the model defines the Iype of
the attribute. The attributes of the type class are the valid values of the referring attribute.
The RAttribute class understands this relationship and also keeps the valid values for the
attribute in the class.

OPRRA is used with a single running application of Rose. Consequently, OPPRA
creates a single instance of the Supplication class. In turn Reapplication contains a
single instance of RModel. However, there maybe a number of class, state, attribute, and
transition objects defined in the Rose model. There will be a corresponding interface
class instance createdin OPRRAfor eachof theseobjects. Theinterfaceclassesare
somewhat centered on RState. The RState class contains a reference to its parent class as
an RClass. The RClass contains the attributes defined for the class as RAttributes. The
RState also maintains collections of the transitions that are coming into the state and
those leaving the state as RTransitions. The ProcessModel class of OPRRA keeps a
reference to the RState that the process model belongs to.

Rose is used to model a system by including a state model for each class. The state
model defines a state machine that shows the states and the transitions between states for
the class. The user starts the OPRRA application and selects a state from the Rose
model. The user selects the 0PRIU4 menu item Browse, Process Model. When this
happens, the 0PIllU4 class uses IL4pplication to determine which state is selected on the
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state diagram in Rose. An instance of ProcessModel is created, with a new RState class
created for the selected state. When the new RState is created, data for the corresponding
state in the Rose model are retrieved and other interface classes related to RState are also
created. For instance, the state in Rose belongs to a class. Consequently, an RClass is
created corresponding to that class and a reference to the RClass is kept in RState. Also,
the state in Rose may have transitions associated with it. In this case, new RTransitions

are created, corresponding to each transition, and references to these are kept in the

RState. When the RClass is created, it finds the attributes in Rose for the corresponding
class and creates new RAttributes, one for each of the attributes. In this way the classes
in the Rose model are mirrored in the interface classes of OPRRA.

7.3.3Process Model Category

The majority of the classes for the 0PlUL4 application are used to capture the process
model for states in the Rose model. The process model is defined by a DFD. The five
main elements of a DFD are process, data store, data flow, received event, and generated
event. A process contains a collection of statements that define the procedure for a
process.

There are corresponding classes in this category for each of the DFD elements, which are
named Process, DataStore, DataFlow, ReceivedEvent, GeneratedEvent, and Statement.
As the user creates new instances of the process model elements, new instances of these
classes are created and stored in collections. The ProcessModel class contains collections
for Processes, DataStores, DataFlows, ReceivedEvents, and GeneratedEvents. The
Process class contains a collection for statements.

There are also classes to display the contents of the collections for each of the DFD
elements. These are named ProcessTable, DataStoreTable, DataFlowTable,
ReceivedEventTable, GeneratedEventTable, and StatementTable. The collections are
displayed in a table format. Each column of the table corresponds to an attribute of the
class and each row of the table corresponds to one of the classes in the collection. For
instance, a DataFlow has three attributes; the source of the DataFlow, the attribute that is
carried by the DataFlow, and the destination of the DataFlow. Consequently, the table
has a column for source, attribute, and destination. If the DataFlow collection in the
ProcessModel contains three DataFlows, the table will have three rows, each one
displaying the data contents of the corresponding DataFlow.

The ProcessModel contains the ProcessTable, DataStoreTable, DataFlowTable,
ReceivedEventTable, and GeneratedEventTable. The ProcessModel class extends
(inherits) an internal frame GUI component. The tables for the ProcessModel are
displayed in tabbed panes contained by the internal fi-ame. The l?rocessSpec class
contains the StatementTable. ProcessSpec is a modal dialog box that is Popped zip by
process to allow a user to enter statement data.

Several other classes are included in this category to process tiorrnation. The
DataStoreProcessVector is a class that is a collection of all DataStores and Processes that
are defined for the ProcessModel. This is used by the DataFlowTable to display a list of
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valid sources and destinations for a DataFlow. The ProcessDataFlowVector is a class
that is a collection of DataFlows that have a specified process as either the source or
destination. This is used by Process to create two collections of DataFlows, one for the
DataFlows that are comingintothe processandonefor those that are leavingthe process.
TheProcessGeneratedEventVectoris similarin that it is a class that is a collectionof
GeneratedEventsthathave a specifiedprocessas the sourceof the GeneratedEvent.This
is alsousedby Processto createa collectionof GeneratedEventsthat are leavingthe
process.

7.3.4 Fault Tree Support Category

There are five classes that support the generation of a fault tree, which are named
FaultTreeDCT, FaultTreeSet, FaultTreeTag, FaultTreeGate, and FaultTreeObjective. In
addition, there are methods in the Desktop, ProcessModel, and Process classes that are
used to generate the parts of the fault tree for data contained in these classes.

The fault tree data can be rendered as two separate files to make it compatible with the
ArrTree application. The two files are the Set file (set extension) and the DCZ’file (.dct
extension). The Set file contains a list of gates that describe the fault tree. The gates are
logic gates such as AND and OR gates as well as special gates defined for risk and
reliability analysis. A gate contains references to the other gates that are an input to the
gate or an output of the gate. The gate also contains a descriptor. The descriptor for the
gate varies with the gate’s location in the fault tree and is stored in the DCT file. For

instance,agate that is createdfor a statewill speci~ the stateand onecreatedfor a
process will specifi the process.

The FaultTreeGate class encapsulates the information for a gate. A FaultTreeGate is
created by speci~ing the type of the gate and the descriptor for the gate. Input and
output gates can be added to the gate using methods provided by the class. The gate
descriptor is specified in terms of the FaultTreeTag class. Methods that generate fault
tree data (e.g. in Desktop) create new instances of FaultTreeTag and FaultTreeGate as
needed. The new instances are added to a collection of the classes kept by the
FaultTreeDCT and FaultTreeSet classes respectively. When the fault tree is complete,
methods are called to FaultTreeDCT and FaultTreeSet to write the data stored in the class
to their respective files.

7.4 SoWare Availability

Interested persons within Sandia National Laboratories can examine the software
described in this chapter directly from Sandia’s Internal Restricted Network. Rational
Rose 98 and OPRRA applications are available on a server named F21AServer3in the
Sandia Domain. The subdirectories containing the applications are shared on the server;
however, you must be on the access list for the subdirectories before you can use them.

RationalRose98 is in the Rose98Entsubdirectoryand OPRRAis in the OPRRA1l
subdirectory. Both of these subdirectories contain a subdirectory named aaaSetup Info
that has a Word document providing installation instructions. To use the applications, the
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two subdirectories are connected to your PC as network drives. The installation
instructions create registry entries on your machine to run the applications from the
network.

In the OPR.RAIIlsamples subdirectory, you will find a Rose model file, an OPRRA
serialization file, and Set and DCT files containing a fault tree generated from the
corresponding model data. In the OPRRA 11Idoclapi subdirectory is the documentation
for the classes used in the OPRRA application. These files are EITML files that are
generated by the Jizvadoc tool directly from the source code (Javadoc comes with the Sun
Java Development Kit). The source code for the OPRRA classes can be found in the file
named src.zip in OPRRAI1. The file must be unzipped to view the source code. The
source code is placed in a subdirectory named sandialoprra under the directory from
which the file is unzipped.

Users on the Sandia National Laboratories Internal Restricted Network can also
download the risk and reliability analysis tool used in this chapter. ArrTree is available

by itself or as part of the SABLE/ARRAMIS2y4 package from the URL:

ht@://~.csu821. sandia.gov/organizatiotidiv6OOO/ch64OO/pra64I2/

Users outside of Sandia National Laboratories can obtain ArrTree, SABLE, and
ARRAMIS software under a licensing agreement that can be arranged through Sandia’s
Partnering and Licensing Department. Note that it is a violation of copyright agreements
as well as both Department of Energy and Sandia intellectual property policies to provide
this software to persons outside of Sandia National Laboratories without obtaining a
signed license agreement jkst.

7.5 Intetiacing with Commercia/ Surety Analysis
Software

There are currently many software packages available to perform varying portions of the
surety analysis problem fi-om both commercial and noncommercial entities such as
Sandia National Laboratories. It is neither desirable nor efficient to try to recreate the
capabilities of those codes within the OPRRA application. Rather, it is our desire to
construct a framework under which an intermediate layer of sofiware could extract the

surety analysis models required by those other software products. This is the approach
that has already been used in the area of fault tree analysis: a Java interface was
constructed to extract fault tree logic from the common object model and translate it into
a format used by the SABLE fault tree analysis software (found in the ARRAMIS risk
and reliability analysis workstation). This section notes some of the requirements that
will likely have to be imposed in order to make the cooperation between OPRIU and
such other software products both possible and convenient.
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7.5.1 Characteristics of Surety Information Extraction Software

Since the OPRRA application framework represents the embodiment of new research
concepts (a fiarnework for using object-oriented analysis methodology to construct a
variety of risk and reliability analysis models), there is likely to be no way for an existing
surety analysis soilware product to interface directly with OPRRA. In addition, since the
traditional surety analysis models are not explicit, but are encapsulated within the
behavioral models developed in OPRRA, it is not possible to have current versions of
these traditional surety analysis products directly translate the OPRRA database into an
appropriate surety model. For this reason, we believe that the most efficient way to gain
utilization of the methods found in OPRRA is to build small software modules that
extract traditional surety analysis models from the OPRRA database and translate those
models into the format used by each particular traditional surety analysis software
product. These small sohvare modules will not be as simple as, say, a file format
translator because they must embody a rule set that will construct appropriate queries for
the OPRRA database, interpret the results of those queries, and then translate those
results into the appropriate model and file format. The rule set in particular maybe non-
trivial. Appendix A contains an example rule set for the extraction of fault trees from the
OPIUL4 database. The rules for extracting other types of surety models will likely be at
least as complex as those found in the appendix.

The first such software module to embody such rules extracted fault trees from the
OPRRA database for analysis by the SABLE software. The characteristics of this
module are described elsewhere in this chapter. However, the general characteristics of
this module will likely serve as a model for other such modules. These characteristics
include operation in the Microsoft Windows NT environment, the ability to speci~ the
goals for which a particular surety model is to be generated, the embodiment of the rules
required for generating the model, and the ability to make the appropriate application
program interface calls in order to access the OPRRA database as managed by the
Rational Rose object-oriented analysis software. While it is certainly possible to build
the module as a separate application (a separate Java application was developed for
extraction of the SABLE fault tree model), it would be highly desirable if this module
were built into the surety analysis software product because it would eliminate potentially
confusing steps for the user/surety analyst. If the module were incorporated into the
surety analysis product, the analyst would simply open the surety analysis product and
speci& the goal for which a surety analysis was being sought, as well as the Rational

Rose object model database that contained the appropriate common object model. Once
this was specified, the module could be invoked to automatically extract the model, and
the model could be inserted directly into the software’s internal database. The software
could also query the user for any special cases or unresolved conditions relative to the
requested analysis, if necessary. It would then be a seamless transition from model
importation to model solution and the expression of surety results.

7.5.2 Surety Analysis Software Requirements

Section 7-ldescribed a method for enabling existing surety analysis software to make use
of the common object model paradigm as implemented in the OPRRA demonstration
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software. The long-range goal would be to enable the integration of currently disparate
surety analysis software into a single coupled entity that would behave as an integrated
surety analysis workstation. In order for such a vision to be realized, it would require
significant modifications to the existing surety analysis tools to make them compatible
with the OPRRA framework. In the short term, while OPRRA is operating in a strictly
PCIMicrosoft Windows NT environment, this would mean converting the existing surety
analysis software into callable modules (for example, dynamic link libraries or OLE
objects) that could be called from under an integrated user interface. In the long run,
should OPRRA be modified to run as a network-based clientiserver application, it would

be more beneficial to convert individual tools into CORBA objects that could be accessed
through a network environment. The incremental benefits of such an integrated
environment over a well-integrated but stand-alone tool (as described in the previous
section) may not be large enough to justifi conversion for the strictly PC/Microsofi
Windows NT environment unless a significant core of regular users has been assembled.
The exact tasks to be accomplished to make such a conversion would be highly specific
to the individual surety analysis tool, so fhrther description of this process is beyond the
scope of this report.

Z 6 Realizing the Vision of Integrated Surety Analysis

The current OPRRA application should be considered aproof of concept. It demonstrates
some of the basic fi.mctionality, but is by no means complete. However, it is felt that the
basic approach is sound and can be built upon.

?’.6.1 Improvements

More work needs to be done to make sure that Rational Rose is a good foundation for
modeling a physical system in ways that are desired for risk and reliability analysis.
Some of the ideas that were encountered as the methodology developed did not seem to
be well suited for a tool that is primarily used for software development. This may
warrant replacement of Rose with a more suitable tool, or the development of a custom
tool to replace Rose. This will have some impact on OPRW%but it is hoped that many of
the classes can be reused.

The fault tree generation needs more testing and refinement to make it more usable. We
discussed and did some preliminary work on implementing other data generators for
methods such as event trees and FMEA. It was felt that these methods were reasonable
to implemen~ however, there was not enough time or resources to do these.

7.6.2 Client-Server Architecture

If usefulness and user support warrant, the tool could be evolved to a distributed type of
application that would allow multiple users to more easily collaborate on analysis. This
would involve moving to a client-server architecture. This might be done in a way that
would support Unix workstations as well as PCs.
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A database should be used to organize data and provide positive control of the data
among multiple users. The database would run on the server and store modeling data as
well as analysis results. Since Rose and OPRRA are designed using 00, methods it
would be best to use an object-oriented database (OODB). Earlier in the project we did
some prototype development work using the Versant 00DB. Versant provides an easy
way to convert existing classes so that the data of the class are persistent and available in
the database.

Away to communicatebetweenclientand servermaybe needed. Giventhe 00 nature
of the application, the best technical solution is to use CORBA. CORBA provides away
for classes to interact across a network without regard for which machine the class is
actually running on. CORBA would be used as needed where a class on the client needs
to cooperate with a class on the server to perform some fimction. Databases such a
Versant already provide a client-server architecture, so it may be possible to create a
solution where CORBA is not needed.

The fust major problem would be how to adapt Rational Rose. In fact, this might be a
big enough problem that it would warrant using a different modeling tool. Rose is not
designed as a distributed application and does not use a database. Data we maintained in
the application and saved to a file in a custom format. One could probably write an
application that would pull all of the data out of Rose via the REI and store it in
corresponding objects in the database. To load a saved model, the application would
have to petiorm the reverse process, using REI to set all of the classes in Rose to the
saved data from the database. Another way might be to interpret the Rose model file to
create the objects in the database. This would require knowledge of how the Rose model
file is formatted, which maybe proprietary. The model file could be saved in the
database as well, so that it can be accessed when loading a saved model. With this

method, only the subset of the Rose data that is really needed would be interpreted and
saved in the database.

Rose would have to be installed on each client machine. This can be simplified by
providing an application server on which software actually resides and that the client
attaches to by using a shared drive.

Since Rose must be installed, OPIUM might as well be left as an application. If
circumstances were different, it would be quite easy to convert OPRRA to an applet that
could be loaded from a web server. An attempt was made to separate the classes in
OPRRA that store data fi-omthe classes that display the data. It should be fairly
straightforward to modi& the data classes to put them in the database. Some additional
work may be needed on OPRRA to better separate the data classes from the display
classes.
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in the database. Thiswouldbe handledby addingnewmethodsto the faulttree classesto
generate the desired format from existing data.

Existing and new applications would need to interface to the database to work with the

Rose and OPRRA data. They might interface directly to the database, or an intermediate
application could be written that interfaces to the database and translates data into a
format that is compatible with the application.

7.6.3 Interface to System Design Tools

The final – and most long-term – vision for the products of this project would involve the
integration of the successors to the surety analysis tools described in this section with
current- or next-generation computer-aided system design tools. While the reasons for
this proposed merger of tools are clear, the task of performing such integration would be
immense. For that reason, this section will focus on the vision for the integrated product
and provide only a limited description of the tasks that maybe required to achieve it.

The current method for pefiorming surety analyses has been referred to by some as the
“volleyball method.” In this method, the design team develops a candidate design in
isolation from the surety analysis team. This candidate design is then “tossed over the
net” to the surety analysis team, who makes assumptions and analyzes the candidate
design. These recommendations are then once again tossed over the net for consideration
by the design team. During this time, however, the design team has been assessing the
candidate design and making their own revisions (in the absence of input from the surety
team). Thus, it is not unusual for the design team to already have recognized and
corrected some of the flaws in the candidate design before they receive input from the
surety team. Furthermore, each time the candidate design is revised by the design team,
the surety analysis team must discover for themselves the differences between the new
and old candidate designs, and then assess the relevance of these design changes to the
surety issues. As a result, the surety analysis team is rarely assessing the most current
design – they are ahnost always at least one generation out of date. This is often a cause
for tension between the design and analysis teams, and it is obviously a source of
considerable inefficiency. The key problems are caused by the fact that a human must
examine each new design and translate that design into the relevant surety models. The
constant repetition of this step is costly and inefficient, and we believe unnecessary,
given an appropriate design and analysis environment.

The ultimate vision for our surety analysis system would be to eliminate this volleyball
approach and replace it with a system in which the surely analysis tools could look

directly into the databases generated by the computer-aided system design tools and

abstract from them a reasonable common object model for surety analysis. In such a
system, the surety analysis tool would be able to look into the design database and
identi~ the types of components that are being used as well as the logical and physical
interconnections between them. The design tool may also contain information about the
boundary conditions of the system (expected and extreme operating conditions,
fi.mctional requirements and specifications, etc.) that could be directly translated into
logical statements for which surety analyses could be performed. The surety tool would
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draw entries from its predefmed library of generic objects that represent the particular

components found in the design database and connect them according to the physical and
logical connections seen therein. The analyst would then select the types of surety
analyses to be performed on this new model (most likely focusing on areas that have
changed since the previous iteration). As the results of these analyses are generated and
validated, they could quickly be fed back to the design team. In this way, the surety
analyst would always be assessing the most current candidate system design and be able
to provide feedback to the design team in a timely manner, potentially reducing or
eliminating many of the designhedesign cycles experienced by current design engineers.

The convergence of surety analysis tools and system design tools as envisioned here
would be an extraordinarily ambitious undertaking. It would require negotiations
between surety and design engineers (as well as their software developers) to agree on
not only the format of such a design database, but even on such issues as the data to be
contained in it, which data can be modified by designers versus surety analysts,
ownership and quality assurance of design and surety daa whether designers would be
required to enter large amounts of data that are not currently required, and so forth. It
would require the development of new levels of trust between these two disciplines,
which have at times experienced hostile relations in the past (with designers viewing
surety analysts as independent auditors or enforcers).

Thus the achievement of this vision requires not only huge technical advances, but also
political will and possibly cultural changes. As such, it is not possible to predict the exact
sequence of tasks or steps that would be required to achieve its ultimate success with any
certainty. However, we believe that it is a logical ultimate goal given the inefficiencies,
errors, and communication problems that plague the current design and surety analysis
paradigm. As surety analysis techniques become more common in industrial applications,
design and analysis software makers may conclude that there would be a significant
market for such a product if it were to be introduced.

7.7 Summary

A software application named OPRRA has been developed to demonstrate the
fundamentals of a methodology to apply object-oriented analysis to systems for risk and
reliability analysis. It provides a capability to enter action data flow diagrams that model
the process for object states and to generate fault trees fi-oman object-oriented system
model. Improvements are needed and enhancements would be usefid to make the
application more capable; however, the application can be used as the basis for fhrther
development.
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8 Limitationsof the Method
During the course of this research we discovered a number of potential limitations for this
method. Some of these appear to be inherent in the object-oriented methodology and/or
the risk assessment methodologies that it is intended to support. Others maybe resolved
through additional research.

8.1Inherent Limitations

The riskandreliability analysismethodsthatareusedtosupporttheobject-oriented
analysis methodology are inherently limited to systems that can be described in terms of
discrete states. Thus systems that can only be described in terms of a continuous
modeling space will be difficult to represent in a meaningful manner using this
methodology. Granted, one could go to finer and finer discretization of the continuous
space to simulate the use of continuous variables, but this would cause the discrete
modeling space to become extremely large and potentially intractable. Since one of the
fi.mdarnental assumptions of the underlying risk and reliability analysis methods
(especially fault tree and event tree analysis) is that of the discrete-event space, we
believe that other analysis methods will likely provide better results for systems that defj
discretization.

A second limitation that may also be inherent to the methodology is related to the concept
of nondetenninism. A significant number of systems — especially multitasking
computer systems — exhibit nondeterministic behavior. The nondeterrninism stems from
the fact that a particular process may exhibit different delay characteristics, depending
upon what other processes are executing on the computer at the same time and how the
computer’s resources are divided among those processes. Thus one cannot always be
sure that two processes will be completed in the same order. This is particularly true for
interrupt-driven systems. Some object-oriented analysis methodologies contain elements
that allow one to consider such nondeterminism. However, nondeterminism is difficult to
map in the space of risk assessment models. Some nondeterminism can be incorporated
into the model through the use of random events. These events can then be incorporated
into fault tree and event tree analysis models. But, in general, the qualitative reasoning
concepts that are required in order to extract risk analysis models require that a large
degree of determinism be present. Thus systems that are highly nondeterministic will be
very difficult to model using the methodologies described in this report. It should be
noted, however, that the subject of nondeterminism is a very active research area that is
by no means completely resolved — even when the requirements of the risk analysis
methodologies are not present.

8.2 Recommended Future Research

8-1
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from the object-oriented model. A reasonable next step for research would be to take
other commonly used risk and reliability analysis methodologies and determine a rule
base by which those models could be derived from an object model such as the one

described in this report. While it is believed that these methods can be supported with

relatively minor additions to the object-oriented modeling methodology, that fact remains
to be demonstrated through tier research.

The constraints of time also limited this project largely to two of the five “views of the
systems” that are required to appropriately understand all aspects of the system (the
functional and physical views). While consideration was given to the environmental,
temporal, and life cycle views, they did not receive the attention that would be required to
claim that they have been fidly demonstrated or implemented in this method. Further
research to understand the mappings and special details that are required for those three
additional views would help complete this work.

The concepts of qualitative reasoning were embodied in the object methodology through
the use of state transition diagrams, data flow diagrams, and truth tables. This
implementation is adequate for many of the risk and reliability analysis models that were
postulated. It is believed, however, that these constructs may not be appropriate to model
some classes of systems – particularly those that maybe characterized by more
continuous variables (as described in Section 8.1). The theory of qualitative differential
equations may provide valuable insights into these systems and may eventually be found

compatible with the fault tree and event tree methodologies that we have described in this

report. *
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9 Summary and

9.1 Conclusions

Conclusions

This report documents the work conducted by a multidisciplinary intenml research
project to create an extensible framework capable of supporting abroad range of surety
assessment techniques based on concepts from object-oriented analysis. As a result of
this work we concluded several things:

There is a great deal of similarity in the information required by system designers,
simulators, and surety analysts. However, under current practice, each discipline –
indeed each technological domain – stores this same information in very different
forms.

Concepts derived from object-oriented analysis can be used to form an excellent
common language (and hence the basis for a common knowledge repository) for the
information required by all of these disciplines.

Models required to perform surety analyses (especially risk and reliability analysis
models) can be derived from the object-oriented analysis methodology provided that

the concepts embodied in the object models support both inductive and deductive

qualitative reasoning. The surety analysis models that are derived from such common
object models are self-consistent.

Object models that embody state transition diagrams, events, process flow diagrams
(similar to data flow diagrams), and two-way qualitative transfer fimctions (such as
our truth tables) are adequate for the derivation of many surety analysis models,
including failure modes and effects analysis, HAZOP, event trees, and fault trees.
These surety models can be derived from an appropriate object model using an
automated query engine that embodies relatively simple logical rules.

When the UML language is extended to incorporate data flow diagrams, the major
elements of this modeling methodology will be representable in a standardized
language for which commercial off-the-shelf software is already available.

Object models can embody not only the physical composition of a system but also its
interactions with its environment and its fimctionality (its “purpose for existence”).
This can lead a surety analyst directly to an assessment of the consequences of a
system behavior in terms of the states in attributes found within a modeled scenario.
This can automate the ranking of scenarios developed in the failure modes and effects
analysis, HAZOP, and event tree modeling methodologies.

While this research did not directly address issues of the temporal and life cycle
views of a system, a conceptual methodology was developed to map those issues back
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into the object model. The details of that mapping would be the subject of fiture
research.

More advanced qualitative reasoning engines, such as qualitative differential
equations, may provide the basis for even better surety analysis models and
reasonable simulation tools based on the object modeling methodology.

Because of the requirement that this modeling methodology support both inductive
and deductive reasoning, it is unlikely that it will adequately support the analysis of
nondeterministic systems. It should be noted, however, that most object-oriented
modeling methodologies – and indeed most risk and reliability analysis
methodologies – also produce inadequate results for nondetenninistic systems.

The most important result from this study is the conclusion that it is reasonable to work
toward a repositioning of cornrnon knowledge that can be used by system designers,
simulators, and surety analysts which embodies, in abstract form, the detailed behavior of
a system. Such a knowledge repository would not only aid communication among
different engineering disciplines but would also relieve the surety analyst of the need to
interpret and recreate much of the design information for incorporation into the risk and
reliability analysis models. The fact that such models can be derived directly and
automatically from an appropriately constructed common knowledge repository will
enable the surety analyst to spend much more time assessing the strengths and

weaknesses of a system, and correspondingly less time in the nonproductive details of
constructing the syntax of his models. In other words, the surety analyst will be enabled
to ask fm more “What if?” questions about a system in a shorter time than ever before.
This will result in either a more detailed analysis of the system, a faster turnaround time
for the surety analysis, or both. It should also enable surety analysis techniques to be
performed on new systems for which they would have previously been prohibitively
costly, resulting in stiety improvements for a wide variety of products.

9.2 Summary

The purpose of this report has been to introduce the reader to the ways to use a common
object model to perform a surety analysis of a “real” system. Such a surety analysis uses
techniques derived from traditional risk and reliability analysis methods. It is based on
the premise that an analyst makes explicit his knowledge of the performance and
behavior of a system in an appropriate object-oriented model. Such a model can draw
fi-om a knowledge base of existing, similar objects so that the analyst can incorporate the
known failure modes and vulnerabilities of those objects with minimal effort. Since the
model supports both inductive and cieductive qualitative reasoning, it is possible to

automatically derive many types of surety analysis models based on a single common
object model. The automatic creation of these surety models enables a system analyst to
petiorm a greater number of analyses of a more consistent quality than would ever be
possible under the current “hand-tooled” model development methods. It also provides a
way to improve communication among system designers, simulators, and surety analysts.
While the ultimate development of a comprehensive tool to embody this method in a
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production environment may be sometime away, the concepts proved under this project
form a logical basis for a major and beneficial change in basic engineering design and
analysis methodology.
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AppendixA Rules for Extracting Logic Models from
the Common Object Model

A. 1 Fault Tree Development Rides

Note: This set of rules is applicable for those properties that are expressed as a series of mutually
exclusive discrete attributes for which order cannot be expressed. It will also put out a
reasonable result for those properties that represent discretizations of continuous ranges (where
one can make statements such as “less than” or “greater than” a value). However, additional
modifications to these rules would be desirable in order to produce more optimal trees that use
those criteria implied by ordering of the discrete values for those parameters.

1. Select a “normal” state for the system model.

a. Which state is normal

b. Which attribute values are normal

2. Define the valid states and conditions.

a. Valid versus invalid conditions

i. List any states that are impossible or out of bounds as initial conditions.

ii. List any combinations of discrete attribute values (DAVS) that are impossible or
out of bounds as initial conditions.

b. Consider both initial conditions and operational conditions.

3. Define the objective.

a, Develop a verbal definition of the objective.

i. If the objective is stated negatively (i.e., these conditions must not occur), it should
not be embodied in the “normal” state described in (1)

ii. If the objective is stated positively (i.e., ensure that these conditions occur), it

should include, but not necessarily be limited to, the “normal” state

b. Translate the verbal objective definition into a logical statement in terms of DAVs
and/or states.
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4.

c. If necessary, expand and minimize this logical statement to obtain “objective cut sets.”
Each objective cut set represents one unique combination of conditions that must either
be avoided (for negative objectives) or ensured (for positive objectives).

d. Examine the objective cut sets and remove any that are physically inconsistent (e.g., a
cut set that requires the system to be in two incompatible states at the same time).

Develop the top event of the fault tree

a. Thetop eventis an ORgate.

b. Inputs to this gate consist of one or more OR gates — one for each objective cut set
developed above.

c. In addition to this, one must also deal with the “normal” state.

i. For positive objectives, this should already be included in the objective cut sets
because the objective should include the normal state.

ii. For negative objectives, one must place an additional input to the top event: an OR
gate that represents “fhilure to achieve the normal operating state.”

5. Examine object model for instances of the objective cut sets.

a. If an objective cut set contains a state as one of its constituent elements, look only in
that state to see if the requisite DAVS can occur (as results of truth tables or as inputs
that are external to that object).

i. If it cannot occur, place the FALSE basic event as the only input to the OR gate
that represents this objective cut set.

ii. If it can occur within that state, then each condition under which it can occur (as
defined by the truth tables for that state) must be represented by an AND gate that
forms an input to this objective cut set’s OR gate.

b. If an objective cut set does not contain a state, look at all states within the object to see
if the requisite DAVS can occur (as results of truth tables or as inputs that are external to
that object).

i. If it cannot occur in any state within the object, place the FALSE basic event as the
only input to the OR gate for this objective cut set.

ii. Otherwise, make a list of all states within the object where these conditions can
occur. Each such state becomes its own OR gate that is an input to the objective
cut set’s OR gate.

iii. Furthermore, each condition under which these conditions can occur (as defined by
the truth tables for that state) must be represented by an AND gate that forms an
input to this objective cut set’s OR gate.
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6. Normal branch of the tree (for negative objectives — assuming only 1 normal state)

a. Examine the normal state and from the truth tables for that state, list those DAVS that
come from outside of the object that are required in order to attain the normal state.

i. EachsuchDAVis representedas an ORgatethat is an inputto the “failureto
achieve the normal operating state” OR gate.

ii. The OR gate represents “ftilure to attain the correct DAV in order to obtain the
normal state.” Its inputs are all DAVS for that attribute other than the one that
leads to the normal state.*

b. Search all states in the object to determine any events that cause the object to transition
into the state associated with “normal.”

i. Each pair (an event that can cause transition to normal, a state that is being
transitioned from) represents an AND gate that is an input to the “failure to
achieve the normal operating state” OR gate.

ii. The AND gate represents “failure to transition from this state to the normal state.”
Its inputs are:

(1) Object is in this state, AND

(2) Event to cause transition does not occur

7. Expand the fault tree: The following process is applied recursively until stopping criteria are
met for all “leaf nodes” of the tree.

a. Withina particularstate,eacheventor DAVthat is representedby a gate inputwithin
the fault tree is resolved into its immediate causes.

i.

ii.

.. .
111.

If internally generated, its causes are found by examination of the truth table from
which it comes. The truth table itself is represented by an OR gate; each line in the
truth table that produces this DAV is represented by an AND gate with inputs that
are the entries on the input portion of that line in the table.

If externally generated, its source(s) are noted (a DFD from another state in this
objec~ another object; and./or external to the system). The event or DAV itself
becomes an OR gate and each possible source represents an input to this gate.
Resolving this event requires tracking through state and object transitions.

If the DAV or event can be generated both internally and externally, follow a
combination of(i) and (ii) above. The event or DAV itself becomes an OR gate,
and each possible source represents an input to this gate. The internal truth table is

*Note that this assumes only one normal configuration. Extensions to this rule are required if
multiple combinations of DAVS can lead to the normal state.
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an additional input to this OR gate and is itself an OR gate as described in (i)
above. The remainder of(i) is then carried out to resolve the truth table.

b. If a state itself is a direct input to a gate within the fault tree, the way that the object can
enter that state must be resolved into its immediate causes.

i.

ii.

...
111.

Search all states in the object to determine the sources of any events that cause the
object to transition into the named state.

Search all external entities (e.g., other objects) to determine the sources of any
events that cause the object to transition into the named state.

Each pair (an event that can cause transition to the state, and a state that is being
transtiioned from) represents an AND gate that is an input to the state’s gate. The
AND gate represents “transition from the previous state to this state.” Its inputs
are:

(1) Object is in previous state, AND

(2) Event to cause transition occurs

c. If an inputto a gatewithinthe faulttree is an eventor DAVthat canbe generatedby
another object, all of the above rules apply.

d. As each fault tree gate is constructed, the algorithm shoukl seek to determine whether
the inputs to that gate would require the system to be in an invalid state (e.g., a

physicallyimpossiblecombinationof DAVsand./orstatesand/oreventswouldbe
required). If such a situation can be identified, ~n all of the inputs to this gate can be
removed and replaced by a single FALSE event.

8. Stop the recursive fault tree expansion process whenever any of the following criteria are
met:

a. Stop if the event or DAV is generated outside of the system being analyzed (place that
external event in the fault tree and stop fi.u-therdevelopment).

b. Stop if adding the next event or DAV will cause a logical loop (i.e., if one can travel
directly up toward the top of the fault tree and encounter that same logical event).

i. Place a “developed event” there for the loop behavior

ii. Warn the analyst**

*Note that it may be difllcult identifi such situations a priori because portions of the impossible
combination may appear in another branch of the fault tree. That is why this method suggests
that the cut sets be examined for physical consistency before being accepted and quantified.

●*Rules for dealing with logical loops will be developed at a later time
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c. For a negative objective, stop if the logical condition found (i.e., truth table line) is
identified as part of the “normal” state of operations (recall that “failure to achieve
normal status” was handled explicitly at the top of the tree).

i. Place a developed event in the fault tree to represent this situation, with its logical
value set to TRUE.

ii. Provide the analyst the option to continue expansion beyond this point if desired.

d. For a positive objective, stop if the logical condition found (i.e., truth table line) is not
part of the “normal” state of operations

i. Place a developed event in the fault tree to represent this situation, with its logical
value set to FALSE.

ii. Provide the analyst the option to continue expansion beyond this point if desired.

9. Fault Tree Solution: The fault tree is solved using traditional tools such as SABLE. If

quantification and/or quantitative truncation of the cut sets is to be performed, then the
quantitative data must be exported (in addition to the fault tree itself) in an appropriate
format for use by the solver.

10. Cut Set Examination

a. Until we have extensive validation experience on the fauh trees and cut sets produced
by this modeling technique, each cut set should be examined to ensure that it is in fact
(1) an actual failure mode of the system, and (2) achievable without violating
consistency requirements imposed by the object model.

b. The cut sets can be ranked quantitatively and/or qualitatively to provide insights to the
analyst.

i. Qualitative: rank by number of basic events in each cut set

ii. Quantitatively: rank by relative probability or frequency of the cut sets

iii. Consequences: rank by the relative consequences that would be expected to occur if
the cut set were to occur

iv. Risk: traditionally, risk is represented by frequency times consequences, although
modern studies may represent risk as a nonlinear fhnction of frequency and
consequences that is appropriate to the situation at hand.

c. Thecut setscanbe processedquantitativelyto determinethe relativeimportanceof
each basic event to the overall consequences, risk, etc., using the traditional importance
measures (risk increase, risk reduction, partial derivative, Fussel-Vessley, etc.).

d. All of the above rankings and importance computations can be pefiormed as part of an
uncertainty analysis in which the probabilities and other parameters are sampled using
Monte Carlo techniques to obtain statistical distributions for each measure (except,
obviously, the qualitative ranking).
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A.2 Event Tree Development Rules

1. Speci& an initial state for the system model.

a. State of each object in the model

b. All discrete attribute values

2. Define any invalid states a.dor conditions.

a. List any states that are impossible or out of bounds.

b. List any combinations of DAVs that are impossible or out of bounds.

3. Select one of the following for an initiating event for the event tree.*

a. The system is in a normal steady state.

b. An event occurs.

i. External influence on the system

ii. An event is generated within the system — either by a “known cause” or simply a
“postulated event” (i.e., unknown or unspecified cause)

c. One or more DAVS change

i. External influence on the system

ii. An event is generated within the system — either by a “known cause” or simply a
“postulated event” (i.e., unknown or unspecified cause)

4. Select a starting point for the event tree model.

a. If starting from a steady state, ask the analyst which object is to be used for the starting
point of the event tree. The analyst must realize that any objects that are solely
upstream of this point in the model will not be included in the event tree model.

b. Otherwise, the event tree begins with the object where the event or changed DAVS first
enter the system.

*If the event or DAV changes affect more than one object in the model, then additional rules
must be developed to determine how the event tree begins and progresses. This is a subject for
later development.
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5. Propagate tieconditions tioughtie object model todevelop meventtiee.

a. Method l:llando meventsonly

i. Examine the initial object model state for the object identified as the event tree
model’s starting point. If any random events can affect this object (the DFD for the
initial state of this object), split* at that point.

ii. Apply the initiating event to the object model. Propagate the flow of the system
into new states as appropriate. As each new state is entered, examine its DFD to
determine if any random events can affect its flow, and if so, split at that point.

iii. As each new object is entered, apply the above two steps to that object and split as
necessary. Examine the path to see whether it remains within the restrictions
specified in the list of valid states and conditions. If the path is found to be invalid,
truncate it.

iv. The model cannot form a logical loop by going through the same object and state

morethanonce.**Considerthecasewherethemodelrequiresthepathtopass
through an object a second time, and the object would be in a previously visited
state were it not for the action of an event that induces a state transition. In this
case, the “Examine the initial object model state” step can be neglected because its
results have already been incorporated in the event tree model.

v. A path is complete when

(1) All objects in the system have completed responding to the system stimulus
(initiating event), or

(2) The model reaches a logical loop (here we must warn the analyst that a loop
condition has been reached)

vi. As each path is completed and its results recorded, the algorithm then recursively
returns to complete the analysis of unfinished paths (generated by “splits”) until all
paths are complete.

b. Method 2: All events and DAVS; this method is the same as Method 1, except:

i. In each instance wherein method 1 the technique looked for random events and
split paths on that basis, method 2 also looks for any nonrandom events and DAVS
that are external to the object and can affect the object (through the DFD). The

● Here “split” means the event in question becomes a top event (“question”) in the event tree.

The system trajectory path to that point becomes two separate paths, each of which must be
resolved to completion in order for the event tree model to be complete.

●“ l%is method does not presently consider logical loops. Rules for dealing with such loops will
be developed at a later time
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ii.

.. .
111.

iv.

v.

method splits paths based upon each of these, in the order in which they are
encountered in the model.

Note thatattributes are not required to be binary, but a single attribute may make
use of several DAVS. Thus when the path is split based upon DAVS that can affect
the object through the DFD, the path is split n ways at that point, where n is the
number of DAVS associated with that attribute. Previously, for events, the path
was split only two ways.

Examine the path to see whether it remains within the restrictions specified in the
list of valid states and conditions. If the path is found to be invalid, truncate it.
This step is especially important in method 2 because invalid conditions are often
defined in terms of physically incompatible combinations of DAVs.

As each new object and/or state is entered, the same steps (from method 1, as
modified above) are applied to that objector state. Paths are split as necessary.

All rules regarding logical loops, stop criteri~ and the completion of unfinished
paths are unchanged from method 1 when applied in this method.

c. Method 3: Split only based on specified events ardor attributes

i. This method is identical to method 2 except that the analyst specifies that the
analysis is to perform path splitting only for particular events a.dor attributes. All
other events and attributes are held at their initial values unless those values are
required to change by the operation of the model during the simulation of a path.

ii. All rules regarding path validity, logical loops, stop criteri~ and the completion of
unfinished paths are unchanged from method 2 when applied in this method.
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A.3 FMEA and FMECA Development Rules

1. Speci@ an initial state for the system model.

a. State of each object in the model

b. All discrete attribute values

2. Define any invalid states and/or conditions.

a. Valid versus invalid conditions

i. List any states that are impossible or out of bounds.

ii. List any combinations of DAVs that are impossible or out of bounds.

b. Consider both invalid initial conditions and physically unrealistic operational
conditions.

3. Forma list of scenarios (events and./or DAV changes) that are to be assessed in this analysis.
Each should consist of a single event or DAV change that will be assessed by the tool one at
a time.

a. Include all model events that are classified as “component failure” — especially
“random” events.

b. Include all external events and/or attribute influences that cotdd pose a threat to the

system.

c. Other events and/or DAV changes can be included at the analyst’s discretion
(“postulated scenarios”).

d. Ensure that each scenario does not initially place the system model into one of the
invalid states and/or conditions defined above. If it does, drop the scenario.

4. For each scenario in the list constructed above:

a. Setup the system model in the specified initial condition.

b. Apply the condition(s) specified in the scenario.

c. “Run” the object model based upon these conditions and stimuli until it reaches
equilibrium.

A-9
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d. Compare the trajectory and results produced by this run of the object model with the
physically unrealistic operational conditions defined above. If it is physically
unrealistic, drop the scenario.

e. If possible, compute consequences for the scenario.

f. Place the scenario definition, results, and consequences in a table for display.
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