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The primary objective of novelty detection is to examine a system’s dynamic response to determine if the system 
significantly deviates from an initial baseline condition. In reality, the system is often subject to changing environmental and 
operation conditions that affect its dynamic characteristics. Such variations include changes in loading, boundary conditions, 
temperature, and moisture. Most damage diagnosis techniques, however, generally neglect the effects of these changing 
ambient conditions. Here, a novelty detection technique is developed explicitly taking into account these natural variations of 
the system in order to minimize false positive indications of true system changes. Auto-associative neural networks are 
employed to discriminate system changes of interest such as structural deterioration and damage from the natural variations 
of the system.  
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Damage identification is a problem, which can be addressed at many levels. Stated in its most basic form, the objective is to 
ascertain simply if damage is present or not. One class of algorithms, which show considerable promise for this purpose, is 
grouped under the name novelty detection methods. The philosophy is simple; during the normal operation of a system or 
structure, measurements are recorded and features are extracted from data, which characterize the normal conditions. After 
training the diagnostic procedure in question, subsequent data can be examined to see if the features deviate significantly 
from the norm. That is, novelty detection is a technique for deciding if measurements from a system or structure indicate 
departure form previously established normal conditions. An alarm is signaled if the index value increased above a pre-
determined threshold. 

Unfortunately, matters are seldom as simple as this. In reality, structures will be subjected to changing environmental 
and operational states such as varying temperature, moisture, and loading conditions affecting the measured features and the 
normal condition. In this case, there may be a continuous range of normal conditions, and it is clearly undesirable for the 
novelty detector to signal damage simply because of a change in the environment or operation.  In fact, these changes can 
often mask more subtle structural changes caused by damage (Sohn et al., 2001). 

One approach to solving this problem is to measure parameters related to these environmental and operational conditions 
as well as the vibration features over a wild range of these varying conditions to characterize the normal conditions. The 
normal conditions can be then parameterized to reflect the different environmental and operational states. A novelty detector, 
which does not provide false indication of damage under changing environmental and operational conditions, is then built. 
On the other hand, there are cases where it is difficult to measure parameters related to the environmental and/or operational 
conditions. This paper addresses the later cases where no measurements are available for these natural variations.  

The idea is based on auto-associative neural networks where target outputs are simply inputs to the network. Using the 
measured features corresponding to the normal conditions, the auto-associative neural network is trained to characterize the 
underlying dependency of the measured features on the unmeasured environmental and operational variations by treating 
these environmental and operational conditions as hidden intrinsic variables in the neural network.  

The layout of this paper is as follows. In Section 2, a brief description of auto-associative neural network is given 
relating this network with Principal Component Analysis (PCA) and Nonlinear Principal Component Analysis (NLPCA). A 
measure of novelty or a novelty index is defined in Section 3 using the auto-associative network outputs. In Section 4, the 
applicability of the auto-associative neural network to damage diagnosis problems is demonstrated on synthetic data sets 
obtained from a simplified model of a computer hard disk. The paper concludes with a summary and discussions in Section 5.  
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PCA has been proven to facilitate many types of multivariate data analysis including data reduction and visualization, data 
validation, fault detection, and correlation analysis (Fukunaga and Koontz, 1970). Similar to PCA, NLPCA is used as an aid 
to multivariate data analysis. While PCA is restricted on mapping only linear correlations among variables, NLPCA can 
reveal the nonlinear correlations presented in data. If nonlinear correlations exist among variables in the original data,  
NLPCA can reproduce the original data with greater accuracy and/or with fewer factors than PCA.  This NLPCA can be 
realized by training a feedforward neural network to perform the identity mapping, where the network outputs are simply the 
reproduction of network inputs. For this reason, this special kind of neural network is named as an auto-associative neural 

network (See Figure 1). The network consists of an internal “bottleneck” layer and two additional hidden layers. The 
bottleneck layer contains fewer nodes than input or output layers forcing the network to develop a compact representation of 
the input data. The NLPCA presented in this paper is a general purpose feature extraction/data reduction algorithm 
discovering features that contain the maximum amount of information from the original data set.  In the following sections, 
PCA and NLPCA are briefly reviewed. More detailed discussions on PCA, NLPCA, and auto-associative networks can be 
found from Fukunaga (1990), Kramer (1991), Rumelhart and McClelland (1988), respectively. 
 

 

PCA is a linear transformation mapping multidimensional data into lower dimensions with minimum loss of information. Let 
 represent the original data with the size of nm × . Here, m is the number of variables and n is the number of data set. PCA 

can be viewed as a linear mapping of data from the original dimension m to a lower dimension d:  

=   (1) 

where  ( nd×ℜ∈ ) is called the scores matrix.  ( md×ℜ∈ ) is called the loading matrix and =T .  The loss of information 
in this mapping can be assessed by re-mapping the projected data back to the original space:  

Tˆ =   (2) 

Then, the reconstruction error (residual error) matrix E is defined as: 

ˆ−=   (3) 

The smaller the dimension of the projected space, the greater the resulting error. The loading matrix  can be found such that 
the Euclidean norm of the residual matrix, || ||, is minimized for the given size of d.  It can be shown that the columns of  
are the eigenvectors corresponding to the d largest eigenvalues of the covariance matrix of Y (Fukunaga, 1990).  
 

 

NLPCA generalizes the linear mapping by allowing arbitrary nonlinear functionalities.  Similar to Equation (1), NLPCA 
seeks a mapping in the following form: 

=   (4) 

where  is a nonlinear vector function and consists of d number of individual nonlinear functions:  = { }dGGG ,...,, 21 . By 

analogy to Equation (2), the inverse transformation, restoring the original dimensionality of the data, is implemented by a 
second nonlinear vector function : 

=ˆ   (5) 

The information lost is again measured by = ˆ− . Similar to PCA,  and  are computed to minimize the Euclidean 
norm of || || meaning minimum information loss in the same sense as PCA. NLPCA employs artificial neural networks to 
generate arbitrary nonlinear functions. Cybenko (1989) has shown that functions of the following form are capable of fitting 
any nonlinear function )(f=  to an arbitrary degree of precision: 
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where ky and ix  are the kth and ith components of  and , respectively. k

ijw  represents the weight connecting the ith node in 

the kth layer to the jth node in the (k+1)th layer, and jb  is a node bias. iN  is the number of nodes in each layer. )(xσ  is a 



monotonically increasing continuous function with the output range of 0 to 1 for an arbitrary input x. A sigmoid transfer 
function is often used in neural networks to realize this function.  

Note that, to fit arbitrary nonlinear functions, at least two layers of weighted connections are required, and the first 
hidden layer should be composed of sigmoidal functions. Therefore, the two nonlinear vector functions in Equations (4) and 
(5) should have the same architecture: one hidden layer with sigmoidal functions and one output layer. The output layer can 
have either linear or sigmoidal transfer functions without affecting the generality of the mapping. For instance, the first 
hidden layer of , which consists of 1M  nodes with sigmoidal functions, operates on the columns of  mapping m inputs to 

1M  node outputs. The output of the first hidden layer is projected into the bottleneck layer, which contains d nodes. In a 

similar fashion, the inverse mapping function  takes the columns of  as inputs relating d inputs to 2M  node outputs. The 

final output layer reconstructs the target output ˆ , and contains m nodes. This network architecture consisted of mapping 
and de-mapping  and  is shown in Figure 1. It should be noted that if the neural networks for  and  are to be trained 
separately, the target output  is unknown for the training of the  network. For the same reason, the input for the  network 
is not known. It is observed that  is both the output of  and the input of . Therefore, combining the two networks in 
series, where  feed directly into , results in a new network whose inputs and target outputs are not only known but also 
identical. Now, the supervised training can be applied to the combined network. 

The combined network contains three hidden layers; the mapping, the bottleneck, and de-mapping layers. The second 
hidden layer is referred to as the bottleneck layer because it has the smallest dimension among the three layers. Note that the 
nodes in the mapping and de-mapping layers must have nonlinear transfer functions to model arbitrary  and functions. 
However, nonlinear transfer functions are not necessary in the bottleneck layer. If the mapping and de-mapping layers were 
eliminated and only the linear bottleneck layer were left, this network would reduce to linear PCA as demonstrated by Sanger 
(1989). Typically 1M  and 2M  are selected to be larger than m and they are set to be equal ( 1M = 2M ). Hereafter, the 

dimensions of the mapping and de-mapping layers are collectively referred to as the dimension of the mapping layers and 
denoted as M . 

In this study, the auto-associative network is employed to reveal the latent relationship between the measured features 
and the unmeasured intrinsic parameters causing the variations of the measured features. For example, the measured 
fundamental frequency of the Alamosa Canyon Bridge in New Mexico varied approximately 5% during a 24-hour test 
period, and the change of the fundamental frequency was correlated to the temperature difference across the bridge deck 
(Sohn et al., 1999). (Because the bridge is approximately aligned in the north and south direction, there is a large temperature 
gradient between the west and east sides of the bridge deck throughout the day.) The auto-associative neural network 
presented here can be trained to learn these correlations and reveal the inherent variables driving the changes. Then, assuming 
that the neural network is trained to capture the embedded relationships, the prediction error of the neural network will grow 
when an irrelevant data set, such as ones obtained from a damage state of the system, is fed to the network. Based on this 
assumption, the auto-associate network is incorporated with novelty detection, which is described in the following section. 
The objective of novelty detection is to observe a sequence of patterns and signal if one significantly differs from the rest of 
population. 
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Figure 1: A schematic presentation of an auto-associative neural network 

 



 

 
The objective of the present novelty detection is to eschew the physics-based model approaches such as finite element 
analysis, and therefore pave the way for signal-based techniques applicable to systems of arbitrary complexity. However, the 
present novelty detection provides an indication only about the presence of damage in a system of interest. This method does 
not give information about the location and extent of the damage. That is, the novelty detection only identifies if a new 
pattern differs from previously obtained patterns in some significant respect.  Although the damage assessment problem can 
be posed with several levels of complexity, the detection of damage presence is arguably the most important step. Once the 
existence of damage is confirmed, the system can be taken out of service and subjected to detailed inspection to locate and 
quantify damage.  The concept of novelty detection is not entirely new and applications in other fields can be found in 
literature (Bishop, 1994; Tarassenko et al., 2000; Worden et al., 2000).  

For the current specific application of our interest, the auto-associative neural network will be trained using features 
extracted from the healthy baseline system and the threshold value for the novelty index will be established accordingly. 
When damage occurs in the system, the damage will alter the dynamic characteristics of the system and consequently the 
novelty indicator will signal fault. One of the biggest challenges here is to identify significant system changes such as 
structural damage and degradation that cannot be attributed to natural fluctuations in the system responses caused by 
changing environmental and operation variations. As described above, the auto-associative neural network is forced to learn 
the underlying dependency of the extracted features on these natural variations. Therefore, when the auto-associative network 
is fed with the inputs obtained from an unprecedented state of the system, for example, a damage state of the system, the 
novelty index (NI), which is defined as the Euclidean distance between the target outputs and the outputs of the neural 
network, will increases (Worden, 1997): 

||ˆ||)( −=NI   (7) 

where  and ˆ  are each individual columns of  and ˆ in Equation (3). If the learning has been successful, ˆ≈  and 

0)( ≈NI  for all data in the training data set. However, if  were acquired after damage is introduced to the system, )(NI  

would noticeably departure from zero providing an indication of an abnormal condition of the system.  
The novelty index can be also defined using the Mahalanobis distance measure between the target outputs and the 

network outputs (Duda and Hart, 1973): 

)ˆ()ˆ()( 1T
−−=

−
NI   (8) 

where  is the sample covariance matrix of the training data. This covariance matrix can be calculated with or without the 
potential outlier in the sample depending upon whether inclusive or exclusive measures are preferred (Barnett and Lewis, 
1994). In this study, the first definition of the novelty index is employed. 
 
 

 

 

The proposed novelty detection technique is demonstrated using a simplified model of a computer hard disk (MathWorks, 
1998). Using Newton’s law, the second order differential equation for the read/write head shown in Figure 2 can be written as 
follows: 

iKK
dt
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θθ
2

2

 (9) 

where J is the inertia of the head assembly, C is the viscous damping coefficient of the bearings, K is the return rotational 
spring constant, iK  is the motor torque constant, θ  is the angular position of the head, and i is the input current. Although 

most of modern hard disks have closed-loop controllers to accurately position the read/write head, reduce the seek time of the 
hard disk, and stabilize the system, the feedback compensator of the hard disk is omitted in this example for simplicity.  

Note that although the example presented in this study is simple, the proposed method has much wider applicability than 
this simulation because the method presented does not assume any physics-based modeling. For instance, when detecting 
faults in a composite plate, the complexity of the geometry, boundary conditions, and the lay-up make it difficult to model 
the baseline structure. Furthermore, the modeling of damage such as fiber pullout, fiber fracture, matrix fracture, and 
delamination could be even more difficult (Worden, 1997). The proposed method combining the auto-associative network 
and novelty index only requires a sequence of measurements corresponding to the normal conditions of the system. 
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Figure 2: A computer hard disk drive 

 
To simulate an operational variation of the system, it is assumed that the values of K, iK , J, and C are a function of an 

ambient temperature, T, as shown in Figure 3. For example, the nominal values of K, iK , J, and C are 10 Nm/rad, 0.047 

Nm/rad, 0.01 Kg-m, 0.0 Nm/(rad/sec), respectively, at T= oC15 . For the temperature range of ( oC15− , oC45 ), K, iK , and 

J values vary about %20±  from this nominal values at T= oC15 . C is simply changed from 004.0−  to +0.004 although the 

negative damping value does not have any physical meaning. The explicit expressions for these temperature dependent 
variables are assigned as follows: 
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The temperature dependencies of these variables are arbitrarily assumed without any physical understandings of the actual 
system. 

Taking the Laplace transform of Equation (9) and discretizing the continuous transfer function, the discrete transfer 
function, )(zH , from i to θ is obtained: 
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The coefficients of the transfer function in Equation (14) are chosen as features for the subsequent network training. Here, 
feature extraction refers to identifying the salient features of data to facilitate its use in a subsequent analysis, in the current 
case, the novelty detection. That is, features are a set of variables derived from the original data set and they are supposed to 
capture the relevant information contained in the original data. Because of the underlying dependencies of K, iK , J, and C on 

T, the 1a , 2a , 1b , and 2b  parameters also become temperature dependent variables as shown in Figure 4. These coefficients 

can be often estimated by using time series analyses (Box et al., 1994) or system identification techniques (Ljung, 1999). 
The superficial dimensionality of data, or the number of observations, is often much larger than the intrinsic 

dimensionality, or the number of independent variable causing the underlying variations in the observations. This condition is 
also true in the current example because four parameters ( 1a , 2a , 1b , 2b ) are extracted and there is only one intrinsic variable 

(T) driving the changes of these four parameters. The auto-associative neural network should be able to capture these 
nonlinear/linear dependencies of the transfer function coefficients on the temperature.  
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Figure 3: Temperature variation of K, iK , J, C 
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Figure 4: Temperature variation of 1a , 2a , 1b , 2b  



 

In order to train the neural network, the coefficients of the transfer function, 1a , 2a , 1b , 2b  are specified as inputs to the 

auto-associated neural network. Assuming a uniform distribution of temperature in the range of ( oC15− , oC45 ), K, iK , J, 

and C values are computed at randomly selected 600 temperature values according Equations (10)-(13). Then, the associated 

1a , 2a , 1b , 2b  coefficients are obtained, corrupted with Gaussian noises with 1% magnitude of the coefficients values in a 

RMS sense, and used as the training data set. That is, the data set consists of 600 observations with 4 input variables (m=4 
and n=600). The data set was scaled so that each variable ranges from –1 to 1. This scaling weighs all four variables equally 
important and is similar to the division of data set by standard deviation often used in the preparation of data for PCA. It 
should be noted that temperature, T, is only one underlying parameter driving the changes of these coefficients. Therefore, 
the auto-associative neural network with only one node in the bottleneck layer should be able to reproduce this training data 
set (see Figure 5).  

The auto-associative neural networks with different dimensions in the mapping and de-mapping layers are applied to this 
training data to determine the best network architecture. In general, the number of nodes in the mapping and de-mapping 
layers is set to be larger than that of the bottleneck layer ( 1M , 2M > d). However, there are no definitive rules for deciding 

the dimensions of the mapping and de-mapping layers. The complexity of the nonlinear functions, which the neural network 
represents, primary controls the number of nodes in the mapping and de-mapping layers. If too few nodes are specified in the 
mapping layers, the accuracy of the neural network might be poor. On the other hand, if too many mapping nodes are 
provided, the network will be prone to overfitting learning the stochastic nature of the data rather than the underlying 
functionalities. In practice, the available data might impose constraints on the number of nodes in the hidden layers if the 
number of training data sets is limited. Otherwise, explicit criteria trading off between the accuracy and the dimension of the 
hidden layers are often used.  Two such criteria are Akaike’s Final Prediction Error (FPE) and An Information theoretic 
Criterion (AIC) (Ljung, 1999): 

)/1()/1( NNNNeFPE tt −+=  (15) 

NNeAIC t /2]ln[ +=  (16) 

where dmMMdmN t +++++= ))(1( 21  is the total number of weights, nmN = is the number of points in the data, 

)2/( NEe = , and E  is the sum of squared errors for all entries in ˆ− . Minimization of these criteria identifies the 

number of nodes that are neither underparameterized nor overfitted. In this example, a neural network with 10 nodes in each 
mapping and de-mapping layer has minimized the two criteria on average, and employed for the subsequent novelty 
detection. The number and time of iterations are not reported here because the iterations depend on the training method and 
the initial conditions. However in most cases, less than 10,000 iterations were required before convergence. Several trainings 
with different initial conditions were required for a given architecture to assure that the global minimum had been achieved. 
Also, sigmoidal transfer functions were used in all hidden layers as well as the output layer so that the outputs were bounded 
in the range (-1, 1). The networks employed in this study are conventional feedforward networks and trained by a Levenberg-
Marquardt version of backpropagation. It is reported that the Levenberg-Marquardt algorithm is 10 to 100 times faster than 
the usual gradient descent method (Hagan and Menhaj, 1994). 

 

 

Figure 5: The neural network architecture for the hard disk drive example 
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Figure 6: Correlation between temperature and the output in the bottleneck layer 

Although it is not presented in this paper, the difference between the original training data  and the reconstructed data 
ˆ  was negligible for most cases. If the neural network was successfully trained, the output of the bottleneck layer should be 

analogous to the unmeasured temperature T because the temperature is the only underlying intrinsic variable causing all the 
fluctuations. Figure 6 shows the relationship between the output of the bottleneck layer and temperature, T. The bottleneck 
output is indeed closely related to the temperature: the relationship, although not linear, is monotonic and this is sufficient to 
reconstruct the input at the output layer. Therefore, this auto-associative neural network had in a sense revealed the 
unmeasured temperature embedded in this data set.  
 

 

The fault in this system is simulated by changing K and C by various degrees. The four damage cases investigated in this 
study are summarized in Table 1. For instance, the damping coefficient of case (a) is fixed at the damping value 

corresponding to T= oC20  ( dC = 20C ), and the damaged return spring constant, dK , is varied between 0.85 20K and 

0.95 20K . Here, 20K  is the value of the return spring constant at T= oC20 . More specifically, 600 sets of dK  values are 

randomly sampled between 0.85 20K  and 0.95 20K  assuming a uniform distribution between these two values. Then, the 

corresponding values of 1a , 2a , 1b , and 2b  are computed, and fed to the previously trained auto-associative neural network 

for the computation of the novelty index. In a similar manner, input data with the size of 6004 ×  are generated for damage 
cases (b) – (d). 

To provide a perspective of the variation magnitudes caused by damage and ambient temperature, Figure 7 shows the 
fluctuations of the transfer function coefficients associated with damage case (d) in Table 1. It is clearly shown that, in this 
example, temperature produces much larger changes in these coefficients than damage. Therefore, without special cautions 
and treatment, it is very difficult to identify what is causing these variations. This kind of observation can be often found in 
many applications. For example, dynamic characteristics of offshore platforms undergo significant variations in time as a 
result of tides and change of oil storage producing a continuous range of normal conditions. In this case, it is clearly 
undesirable for the novelty detector to signal damage simply because of a change in the environment. The presented auto-
associative network can help to address this issue by learning the concealed dependency of the network inputs on the 
unmeasured intrinsic parameters.  
 

Table 1: Damage scenarios investigated in this study 

Cases Spring constant ( dK ) Viscous damping ( dC ) 

(a) [0.85 20K , 0.95 20K ] 20C  

(b) 20K  [0.90 20C , 1.10 20C ] 

(c) [0.95 20K , 1.05 20K ] 20C  

(d) [0.95 20K , 1.05 20K ] [0.90 20C , 1.10 20C ] 



−20 0 20 40 60
−1

−0.5

0

0.5

1

a
1

−20 0 20 40 60
−1

−0.5

0

0.5

1

a
2

−20 0 20 40 60
−1

−0.5

0

0.5

1

b
1

T (C
o
)

−20 0 20 40 60
−1

−0.5

0

0.5

1

b
2

T (C
o
)  

Figure 7: Comparison of the variation magnitudes caused by ambient temperature and damage case (d) 

(-: variation caused by temperature, +: variation cause by damage with fixed temperature at oC20 ) 

 
 
 

 

First, validation data corresponding to the baseline system are created in a similar way to the generation of the training data 
set. That is, for a randomly selected temperature value, the physical parameters and the coefficients of the transfer function 
are computed. Then, the auto-associative neural network takes the coefficients as inputs and computes the novelty index. This 
procedure is repeated 600 times to generate the same number of novelty measures. 

For each damage cases in Table 1, 1a , 2a , 1b , and 2b  coefficients are obtained from the partially perturbed dK , iK , J, 

and dC . Then, the novelty index defined in Equation (7) is computed after feeding these coefficients into the previously 

trained network. The diagnosis results are displayed in Figure 8. Case (a) produces novelty values, which show gross changes 
and visual inspection suffices to identify the fault. Cases (c) and (d) result in more subtle changes but still noticeable changes. 
However, case (b) does not display any distinct changes.  

The establishment of a threshold value can be useful to decide if “statistically significant” changes have occurred in the 
system condition. However, the construction of the threshold value based on a rigorous statistical analysis is not achieved in 
this study. Further investigation is necessary to address this issue. Worden (1997) and Cempel (1985) established the warning 

level, above which it is considered that a reading is sufficiently abnormal to require investigation. The computation of the 
warning level is based on a continuous adjustment of the mean and standard deviation of the parameter records, and then 
confidence intervals can be assigned assuming a Gaussian distribution of the records.   

Based on permutation theory, Box and Andersen (1955) proposed a modified hypothesis test to safely use in more 
general applications without a normality assumption. The primary objective is to test the null hypothesis, 0H : 

)(2 xσ = )(2 yσ  against the one-sided alternative 1H : )(2 xσ < )(2 yσ . Here )(2 xσ  and )(2 yσ  are the variances of arbitrary 

variables x  and y , respectively. This modified hypothesis test can be employed to check if the new signal has significantly 

changed from the training data set. Various studies based on Monte Carlo simulation (Miller 1997 and references therein) 
have demonstrated that this Box-Andersen test maintains reasonably correct significant levels under the null hypothesis for a 
variety of heavy- and short-tailed distributions. 
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Figure 8: Novelty indices evaluated at four different damage cases  

 
 
 
 

 
This paper presents the novelty detection technique for structural damage diagnosis, explicitly taking into account changing 
environmental and operational conditions. An attempt is made to discriminate the changes of system responses due to 
ambient operational conditions from those caused by structural damage. The proposed approach is demonstrated using a 
simplified model of a computer hard disk. Results indicate that the incorporation of the auto-associative network with novelty 
measure enables one to detect damage even when the system exhibits a range of normal conditions. The development 
presented here will allow the some progress in in-service monitoring of aerospace, automobile, civil, and mechanical 
systems, which are subject to various operational and environmental conditions. Such a monitoring system will be less prone 
to false-positive indication of damage. To minimize this false indication of damage and develop a more robust monitoring 
system, the training data set need to be collected over a wild range of environmental and operational conditions of the system. 
Otherwise, the novelty detector cannot make any definite statement regarding the existence of damage because unusual 
operational conditions can also have similar effects on the warning system.  

Before the proposed approach could be used with confidence on experimental data, several issues need to be addressed. 
Although the dimension of the bottleneck layer is known a prior in this example, this layer size should be also estimated 
based on model order selection techniques similar to the ones presented in this paper. Often the node numbers of this layer 
could be initially estimated by grasping the main environmental and operational factors based on observations and 
engineering judgment. The sensitivity of the novelty index performance based on different noise types and levels need to be 
further investigated. It is also important to establish what degree of changes in the novelty index is statistically significant.  In 
reality, the features need to be extracted from measured vibration signals. However, in this study, the coefficient of the 
transfer function derived from a mathematical model is used. The uncertainties involved in the feature extraction procedure 
also need to be quantified in future work. Joint research effort is currently underway at Los Alamos National Laboratory and 
University of Sheffield to address these issues. 
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