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ABSTRACT

Given some initial, unperturbed problem and a desired perturbation, a second-

order accurate Taylor series perturbation estimate for a Monte Carlo tally that is a

function of two or more perturbed variables can be obtained using an implementation of

the differential operator method that ignores cross terms, such as in MCNP4C
TM

.  This

requires running a base case defined to be halfway between the perturbed and unperturbed

states of all of the perturbed variables and doubling the first-order estimate of the effect of

perturbing from the “midpoint” base case to the desired perturbed case.  The difference

between such a midpoint perturbation estimate and the standard perturbation estimate

(using the endpoints) is a second-order estimate of the sum of the second-order cross

terms of the Taylor series expansion.  This technique is demonstrated on an analytic

fixed-source problem, a Godiva keff eigenvalue problem, and a concrete shielding

problem.  The effect of ignoring the cross terms in all three problems is significant.

1.  INTRODUCTION

The effect of small perturbations in criticality or fixed-source problems may be

difficult to calculate directly using the Monte Carlo method because the inherent

statistical uncertainty in the calculation may be larger than the effect of the perturbation

for reasonable sample sizes.  One Monte Carlo perturbation method is the differential

operator (or Taylor series) method (Olhoeft, 1962; Takahashi, 1970; Hall, 1982; Rief,

1984), in which the tally of interest is expressed as a Taylor series expansion about the

initial, unperturbed parameters that are to be perturbed.  The coefficients and derivatives



(2)

of the expansion are determined using Monte Carlo methods as the initial, unperturbed

tally is computed.

The second- and higher-order terms of a Taylor series expansion of a function of

two or more variables include “cross terms” that involve mixed partial derivatives of the

function with respect to each of the variables.  These cross terms represent the interaction

between the perturbations.  If none of the variables interact in their influence on the

function, then the function can be represented as the sum of Taylor series expansions of

the function with respect to each of the variables independently because the cross terms

are all zero.  This assumption of independently-acting perturbations is a standard feature

of common Monte Carlo codes.

However, the importance of the cross terms is difficult to predict.  Peplow (2000)

found that the cross term for seemingly independent perturbations (the average number of

neutrons per fission and the mass density in a one-group keff eigenvalue problem) was not

only non-zero, but important.

Thus, it is important for users of an implementation of the differential operator

perturbation method that ignores cross terms to have a way of estimating the importance

of this effect.  This paper provides such an estimate and demonstrates its use on three

sample problems.

2.  TAYLOR SERIES EXPANSIONS FOR PERTURBATIONS

Consider a function of two variables, ).,( 21 ffc   A Taylor series expansion of

),( 21 ffc  about some initial, unperturbed values f1,0 and f2,0 is
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where the ellipses represent an infinite series of third- and higher-order terms.

Let 1f ′  and 2f ′  be specific perturbed values of f1 and f2 for which it is desired to

estimate the quantity

,),(),(),( 0,20,12121 ffcffcffc −′′≡′∆′∆∆

(1)

(2)
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where 0,111 fff −′≡′∆  and .0,222 fff −′≡′∆   Using Eq. (1), a second-order Taylor series

estimate of ),( 21 ffc ′∆′∆∆  is
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The second-order cross (mixed derivative) term, the middle term in the brackets in

Eq. (3), is the subject of this paper.

Let 
2

1,1
f  and 

2
1,2

f  represent points halfway between the initial, unperturbed points

0,1f  and 0,2f  and the desired perturbed points 1f ′  and :2f ′
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Manipulating Eqs. (4a) and (4b) gives
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A second-order Taylor series estimate of ),(
2

1
2

1 ,22,11 ffffc −′−′∆  is

(3)

(4a)

(4b)

(5a)

(5b)

(6)



(4)

( ) ( )

( ) ( )( )

( ) .
),(

),(
2

),(

2

1

),(),(
),(

2

,22

,

2

2

21

2

,22,11

,21

21

2
2

,11

,

2

1

21

2

,22

,2

21

,11

,1

21

,22,11

2
1

2
1,22

2
1,11

2
1

2
1

2
1,22

2
1,11

2
1

2
1,22

2
1,11

2
1

2
1,22

2
1,11

2
1

2
1,22

2
1,11

2
1

2
1

�
�
�

�

�

−′
∂

∂
+

�
�
�

�

�

−′−′
∂∂

∂
+−′

∂

∂
+

−′
∂

∂
+−′

∂

∂
=−′−′∆

=

=

=

=

=

=

=

=

=

=

ff
f

ffc

ffff
ff

ffc
ff

f

ffc

ff
f

ffc
ff

f

ffc
ffffc

ff

ff

ff

ff

ff

ff

ff

ff

ff

ff

Similarly, define

.),(),(),(
2

1
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1
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1
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1 ,2,10,20,1,20,2,10,1 ffcffcffffc −≡−−∆

A second-order Taylor series estimate of ),(
2

1
2

1 ,20,2,10,1 ffffc −−∆  is
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Subtracting Eq. (9) from Eq. (7) and using Eqs. (2) and (5) yields

( ) ( ) .
),(),(

2),(
2

1

2
1,22

2
1,11

2
1

2
1,22

2
1,11

,22

,2

21

,11

,1

21

21

�
�
�

�

�

�
�
�

�

�

−′
∂

∂
+−′

∂

∂
=′∆′∆∆

=

=

=

=

ff
f

ffc
ff

f

ffc
ffc

ff

ff

ff

ff

Equation (10) represents an estimate of ),( 21 ffc ′∆′∆∆  of Eq. (2) that is always

second-order accurate because the second-order Taylor series term vanishes.  Note that

the right hand side of Eq. (10) is double the first-order term for the Taylor series estimate

(7)

(8)

(9)

(10)
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of ),(
2

1
2

1 ,22,11 ffffc −′−′∆  [the sum of the first two terms on the right hand side of

Eq. (7)].

It is easily seen that generalizing Eqs. (1)–(9) for a function of N variables

),,,( 21 Nfffc �  would yield a second-order accurate estimate of :),,,( 21 Nfffc ′∆′∆′∆∆ �
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3.  SECOND-ORDER ACCURATE PERTURBATION ESTIMATES

Suppose that it is desired to estimate the change in the neutron flux in a

homogeneous fixed-source problem due to a change in the material composition.  For

simplicity, let the material consist of only two isotopes whose relative fractions change

realistically in the perturbation (i.e., their fractions must sum to unity).  Using the

differential operator perturbation technique to estimate the change while computing the

initial, unperturbed case, but ignoring the second-order cross (mixed derivative) term [the

middle term in the brackets in Eq. (3)], leads to errors.

On the other hand, define a new material having isotopic fractions exactly halfway

between their fractions in the original, unperturbed problem and the desired perturbed

problem.  Let the new material be used in the base case and run a perturbation from that

base case to the desired perturbed case.  Now, the first-order term in the Taylor series

expansion is the term in brackets in Eq. (10).  Doubling this term yields a second-order

accurate estimate of the change in the neutron flux due to the change to the desired

perturbed material composition from the original, unperturbed material composition.

This “midpoint” strategy can be generalized to a tally with more than two

simultaneous perturbations, as suggested by Eq. (11).

This strategy has two drawbacks over the standard “endpoint” strategy.  First, it

can not generally be used to compute a series of perturbations in a single run.  Second,

and more serious, it requires an additional Monte Carlo calculation (since it is assumed

that the initial, unperturbed case will be computed anyway) for the perturbation from the

new (midpoint) base case to the desired perturbed case.  If two runs are required, why not

run the initial, unperturbed case and the desired perturbed case and compute the

perturbation directly as the difference, and be done with any perturbation estimates at all?

(11)
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First, a small difference between direct calculations will be swamped by the

statistics of each calculation, so a reliable perturbation estimate may, in fact, be desirable

or even necessary.  Thus, it may be that the perturbation estimate can be obtained with far

less computer time than the direct calculation of the perturbed case would require.

Second, a second-order perturbation estimate can be used in a way that a direct

calculation of the perturbation can not: to calculate the missing cross terms.  This point is

addressed in the Sec. 4.

4.  ESTIMATING SECOND-ORDER CROSS TERMS

Assume that a second-order perturbation estimate for a tally is more desirable than

a direct estimate because the perturbation estimate is much cheaper to obtain (even

though it too requires a separate calculation from the initial, unperturbed case).

One widely used Monte Carlo code with the differential operator perturbation

technique that ignores the second-order cross term is MCNP
TM,a

, version 4C

(Briesmeister, 2000).  The MCNP estimate of ),( 21 ffc ′∆′∆∆  of Eq. (3) is
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the right hand side of which is just the right hand side of Eq. (3) without the cross term in

the second-order term.  It was proven in Sec. 2 that, through second order, the right hand

side of Eq. (10) is equal to the right hand side of Eq. (3); let these expressions be equal to

a new symbol, ).,( 212 ffc ordernd
′∆′∆∆   Then the difference
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Generalizing Eq. (12) to the case of a function of N variables and using arguments for

Eq. (11) instead of Eq. (10), Eq. (13) becomes

                                                
a
 MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.
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the sum of all the cross terms.

In other words, a true second-order accurate estimate of the perturbation, obtained

using the midpoint method as described in Sec. 3, can be used with a conventional

endpoint MCNP perturbation estimate to determine with second-order accuracy the value

of the cross terms ignored by MCNP.  Thus, it is now no longer necessary to merely

assume (and hope!) that the cross terms are small.

One practical use of such an estimate is as follows.  Compute the second-order

cross term for an endpoint 1f ′  and 2f ′  using Eq. (13).  Then an estimate of the cross term

for a change to arbitrary points f1 and f2 between 0,1f  and 0,2f  and 1f ′  and ,2f ′

respectively, is

( )( ) .
),(),(

termcross 0,220,11

21

21212
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ffcffc MCNPordernd
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An MCNP estimate of the perturbation due to a change from 0,1f  and 0,2f  to f1 and f2

should be more accurate if the cross term of Eq. (15) is added to it.  A numerical example

of the use of this idea is given in Sec. 5.2.  Equation (15) can easily be generalized for a

function of more than two variables.

Note that a direct calculation of the perturbation, ),,( 21 ffcexact
′∆′∆∆  used instead of

),( 212 ffc ordernd
′∆′∆∆  in Eq. (13) yields
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(15)
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where, as in Eq. (1), the ellipses represents an infinite series of higher-order terms.

Comparing the right hand sides of Eqs. (13) and (16), it is evident that to determine the

cross term by itself (to second-order accuracy) requires ),,( 212 ffc ordernd
′∆′∆∆  not

).,( 21 ffcexact
′∆′∆∆

Finally, note that Eq. (13) holds regardless of the accuracy of the second-order

Taylor series estimate ),( 212 ffc ordernd
′∆′∆∆  with respect to the true perturbed result.

5.  EXAMPLE PROBLEMS

5.1.  Analytic Two-Isotope Fixed-Source Problem

Consider a material composed of two isotopes with fractions f1 and f2 such that

f1 + f2 = 1.  Let the atom density of the material be 1 cm
–3

, and let there be no scattering or

fission.  Then the total one-group cross section is Σ = 1 × (f1σ1 + f2σ2) = f1Σ1 + f2Σ2.  The

total flux within a 1-cm slab made of this material due to a monoenergetic beam normally

incident on a surface is
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Let the microscopic total cross sections for isotopes 1 and 2 be 2
3

1 =σ  and

.2
1

2 =σ   Then since the atom density of the mixture is unity, the macroscopic cross

sections for isotopes 1 and 2 are 2
3

1 =Σ  and .2
1

2 =Σ   Furthermore, if the unperturbed

material is composed of half of each isotope,
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The sum of the first-order terms for isotopes 1 and 2 for [the first and second

terms on the right hand side of Eq. (18)] is
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The sum of the pure second-derivative terms for isotopes 1 and 2 [the third term

plus the fifth term on the right hand side of Eq. (18)] is
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The second-order cross term for )1.0,1.0(−φ∆  [the fourth term on the right hand side of

Eq. (18)] is

( ) ( )( ) .00120452.01.01.0
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The sum of all three second-order terms is

( )( ) .000803014.01.052
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The second-order Taylor series estimate of )1.0,1.0(−φ∆  is the sum of all the

terms, or 0.0272271.  The exact analytic value of )1.0,1.0(−φ∆  is, using Eq. (17),

( ) ( ) .0272465.011
9.0

1 19.0 =−−− −−
ee

This problem was run with MCNP4C using a one-group cross section library

made for the fictitious materials.  The unperturbed total flux within the slab was given by

an F4 tally with ~ 198 million histories to be 0.632135 ± 0.00%.  (The analytic result is

0.632121.)  Perturbed tally results are shown in Table 1.  The agreement of the computed

first-order term with the analytic value [from Eq. (21)] is excellent, but the agreement of

the second-order term with the analytic value [from Eq. (24)] is not good because the

cross term is ignored in the MCNP calculation.  On the other hand, the agreement of the

second-order term with the analytic value for the sum of the second derivatives [from

Eq. (22)] is excellent.

Table 1. Standard results for ∆φ(–0.1,0.1).

The analytic column of Table 1 shows that the first two terms in the Taylor series

expansion make up 99.9% of the exact (infinite Taylor series) value.  Thus, the absence

of third- and higher-order terms from the MCNP calculation leads to inappreciable errors.

The missing cross term is the cause of the entire error of 4.4%.

Use of the midpoint method of Sec. 3 enables MCNP4C to obtain second-order

accurate results for this material composition perturbation.  Define a base case material to

contain 45% of isotope 1 (σ = 1.5) and 55% of isotope 2 (σ = 0.5), in addition to the

previously defined materials of 50% of each isotope (initial, unperturbed problem) and

40% of isotope 1 and 60% of isotope 2 (perturbed case of interest).  Table 2 shows the

results for the flux (F4 tally) when ~ 476 million histories are run.  In this case, the first-

order term is itself second-order accurate because it is essentially a numerical first

derivative evaluated at the midpoint of two points.

Using Eq. (17) in Eq.(10) with ,45.0
2

1,1
=f  ,55.0

2
1,2

=f  ,5.01 =′f  and 6.02 =′f

yields an analytic midpoint result of 0.02724155.  This result is compared with the others

in Table 2.  Comparing the analytic second-order Taylor series estimates (the sum of the

first- and second-order terms) for the endpoint and the midpoint methods, it is clear that

some of the greater accuracy seen in the differential operator (MCNP4C) midpoint results

over the standard endpoint results of Table 1 is due to the fact that the first derivatives in

(25)

Taylor series term MCNP4C Analytic

First-order 0.026426 ± 0.02% 0.026424

Second-order 0.002008 ± 0.03% 0.000803

Sum of first- and second-order 0.028434 ± 0.02% 0.027227

Exact (analytic) N/A 0.027247
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the midpoint method are estimated at an optimal location, halfway between the

unperturbed case and each of the perturbed cases.

Table 2. Midpoint results for ∆φ(–0.1,0.1).

This implies that the higher-order terms are smaller for the midpoint method than

for the standard method.  Indeed, it can be proven that the leading error term, the third-

order term, is about four times greater in the standard method than in the midpoint

method.  (And in Table 2, the error in the endpoint analytic second-order Taylor series

estimate is about four times the error in the midpoint result.)  How big is this effect

compared with the missing second-order cross term?  Obviously very small in this simple

problem, as Table 2 shows.  In general it is expected to be very small, since it is a third-

order rather than a second-order effect, but this is an issue that still needs to be addressed.

These results may also be used to estimate the cross term directly. The second-

order accurate MCNP estimate of ∆φ(–0.1,0.1) of Table 2 minus the MCNP estimate of

∆φ(–0.1,0.1) of Table 1 is –0.001192, an excellent estimate of the analytic value of

–0.001205 of Eq. (23).

5.2.  Godiva Composition Perturbation

The Godiva composition perturbation problem used in the MCNP4C perturbation

verification of Hess (1998) was redone.  This is a keff eigenvalue problem in which the

composition of the Godiva spherical assembly was perturbed from its original 94.73%
235

U and 5.27% 
238

U to 50% by weight of each isotope.  Three intermediate compositions

were also calculated.  As in Hess (1998), all MCNP KCODE calculations used an initial

keff guess of unity, 20 settle cycles, 200 active cycles, 3000 particles per cycle, and current

default cross sections.  The keff eigenvalue for the initial, unperturbed case was

0.99831 ± 0.08%.

Results are shown in Table 3.  The second column of  Table 3 shows the standard

MCNP4C perturbation estimates, which were computed in a single KCODE run of the

initial, unperturbed case.  The third column of Table 3 shows the estimates obtained using

the “midpoint” method of Eq. (10) and Sec. 3; this column required four runs, one for

each perturbation.  The fourth column of Table 3 shows the reference result obtained by

running a KCODE calculation for each case (including the initial, unperturbed case, for a

total of five runs) and subtracting.  All of these results are also plotted in Fig. 1.

Taylor series term

“Midpoint”

MCNP4C

result

Standard

(endpoint)

analytic

Midpoint

analytic

First-order 0.0272416 ± 0.01% 0.026424 0.027242

Second-order 0.0 0.000803 0.0

Sum of first- and second-order 0.0272416 ± 0.01% 0.027227 0.027242

Exact (analytic) N/A 0.027246 0.027246
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Table 3. Results for the Godiva composition perturbation.

Most of the error in the standard MCNP4C perturbation results is not due to the

second-order estimate (i.e., the absence of third- and higher-order terms), but rather to the

absence of the cross term in the second-order term.  When the cross term is included, as it

is in the “Midpoint” estimate of Fig. 1 and Table 3, the second-order Taylor series is quite

accurate to better than 20% ∆keff.

The only approximations left in the “Midpoint” curve of Fig. 1 are the absence of

third- and higher-order terms in the Taylor series expansion and the inherent assumption

that the perturbation does not alter the fission neutron source.

The missing cross term for the largest perturbed case can be computed to second-

order accuracy using Eq. (13) to be 0.04627 ± 30% [the uncertainty is, as usual, the

238
U

weight

fraction

MCNP4C

result

“Midpoint”

MCNP4C

result

Reference

calculation

0.13 –0.04279 ± 2.0% –0.04098 ± 0.86% –0.04298 ± 2.52%

0.26 –0.12719 ± 2.8% –0.11690 ± 0.67% –0.11671 ± 0.93%

0.38 –0.21896 ± 3.6% –0.19568 ± 0.52% –0.19505 ± 0.51%

0.50 –0.32403 ± 4.3% –0.27776 ± 0.44% –0.28381 ± 0.34%

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Change in 238U weight fraction

∆∆ ∆∆
k

e
ff

MCNP4C result

Midpoint MCNP4C result

Reference change

MCNP4C result + cross term approximation

Fig. 1 ∆keff for a Godiva composition change.  The cross term approximation of

Eq. (15) has been added; it lies on top of the Midpoint MCNP4C PERT

curve.  Error bars of one standard deviation are shown.
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square root of the sum of the squares of the standard deviations of the two terms on the

left hand side of Eq. (13)].  Despite the low precision, this value can be used in Eq. (15)

to estimate the missing cross term for each of the other perturbed cases.  This estimate of

the cross term can be added to the standard MCNP4C estimate (the second column of

Table 3) for an approximate second-order Taylor series perturbation estimate.  The

resulting curve is plotted on Fig. 1.  The new curve lies almost on top of the midpoint

method curve, but the standard deviation is greater.

Thus, second-order accurate perturbation estimates can be obtained with only two

Monte Carlo calculations: one for the initial, unperturbed case, where standard second-

order (no cross term) perturbations are estimated for all desired cases, and another for the

midpoint between the initial, unperturbed case and the endpoint perturbed case, with one

standard first-order only perturbation estimated for the perturbation from the midpoint to

the endpoint.

A word on the statistical uncertainties of Table 3 is in order.  Although it is

generally expected that the perturbation methods would yield lower uncertainties than the

direct difference method, in this problem the uncertainties in the standard MCNP4C

perturbation results are large because the uncertainties of the second-order term are much

larger than those of the first-order term.  This is a bit unexpected, though it has been seen

before (Hess, 1998).  The uncertainty of the midpoint method is therefore much smaller

than that of the standard method since the midpoint method does not use the second-order

terms [c.f. Eq. (10)].  Note that the uncertainty of the midpoint method actually increases

as the perturbation decreases, suggesting that it may be unbounded for small

perturbations.  However, the midpoint method is just a refinement of the standard Taylor

series method whose variance is known to be bounded; as the perturbation decreases, the

variance of the midpoint method converges to the (bounded) variance of the standard

method (within the statistics of the two different Monte Carlo calculations).  This has yet

to be proven mathematically.

5.3.  Shielding Concrete Composition Perturbation

A shielding calculation involving a point source within a spherical concrete shield

has also been performed.  The source is an isotropic 2.4-MeV neutron source.  The sphere

has a radius of 30 cm (~ 1 foot).  It is desired to determine the leakage for two different

concrete compositions (Harmon, 1994), one used by criticality safety engineers at Los

Alamos National Laboratory (LANL) and the other used by criticality safety engineers at

Oak Ridge National Laboratory (ORNL).  The composition of each of the concretes and

that of the “midpoint” concrete are given in Table 4.  All three concretes had a density of

2.25 g/cm
3
 and the current MCNP default cross sections were used for each isotope.  The

leakage through each concrete is also given in Table 4.  Leakage calculations for the

LANL, ORNL, and midpoint concretes used an F1 tally with ~ 4.5 million, ~ 2.2 million,

and ~ 3.1 million particle histories, respectively (hydrogen slows the calculation!).

From Table 4, a perturbation from the initial, unperturbed case of the LANL

concrete to the ORNL concrete causes a change in the leakage of –0.205905 ± 0.11%.
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Table 4. Concrete compositions (mass fractions).

The results of perturbation calculations involving these concretes are shown in

Table 5.  A standard perturbation estimate of the change from the LANL to the ORNL

concrete is in error by 11.6%, while an estimate using the midpoint method is in error by

2.1%.

Table 5. Results for concrete composition perturbation.

Obviously, it is of no benefit to use the midpoint perturbation method in this

problem because it is just as expensive to compute the perturbed case (use of the ORNL

concrete) directly.  However, it is instructive to examine the cross term, which, to second

order from Eq. (14), is 0.019700 ± 19%.  (Note that the cross term in this case is actually

a sum of 21 terms!)  This cross term is one-third the magnitude but opposite the sign of

the sum of the pure second derivatives computed by MCNP (the second-order term of

Table 5), and its absence leads to ~ 9.5% of the error of the PERT estimate.  Presumably,

the other ~ 2.1% of the error is due to the neglect of third- and higher-order terms.

6.  CONCLUSIONS

In this paper, we have demonstrated a method for using MCNP4C to obtain a true

second-order Taylor series perturbation estimate of a tally that is a function of two or

more perturbed variables.  We have shown how such an estimate can be used to obtain a

second-order accurate estimate of the second-order cross terms that are ignored by the

MCNP4C perturbation feature.  Unfortunately, the second-order perturbation estimate

requires an additional MCNP calculation that may be quite expensive.  However, the

estimate of the cross term can be used in an interpolation scheme to improve a series of

Element/

Isotope LANL concrete ORNL concrete

Midpoint

concrete
1
H 0.00453 0.01000 0.007265

16
O 0.51260 0.53200 0.52230

Si 0.36036 0.33700 0.34868
27

Al 0.03555 0.03400 0.034775
23

Na 0.01527 0.02900 0.022135

Ca 0.05791 0.04400 0.050955

Fe 0.01378 0.01400 0.01389

Leakage 0.912068 ± 0.01% 0.706163 ± 0.03% 0.814627 ± 0.02%

Taylor series term

MCNP4C result

(LANL → ORNL)

Midpoint result

(Midpoint → ORNL

– Midpoint → LANL)

First-order –0.171040 ± 0.67% –0.210168 ± 0.35%

Second-order –0.0588281 ± 6.12% 0.0 ± 0.0%

Sum of first- and second-order –0.229868 ± 1.63% –0.210168 ± 0.35%

Error in sum 0.023963 ± 15.7% 0.004263 ± 18.1%
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standard MCNP4C perturbation estimates.  In addition, it may be desired to know what

effect the absence of the cross term has on a particular problem or class of problems.

This note provides a means of assessing the effect by estimating the missing cross term.

It is clear that the method developed in this paper could easily be extended to

apply to third- and higher-order Taylor series perturbation methods, but this extension has

yet to be developed.

One point of further interest is to examine the third- and higher-order Taylor

series terms to understand how accurate the second-order estimate of the cross term is

with respect to the second-order estimate of a perturbation using the standard “endpoint”

method.  Such an effort would lead to insight on how much of the error of the endpoint

method is due to the absence of third- and higher-order terms (i.e., the second-order

estimate) and how much of the error is due to the absence of the second-order cross

terms.

More future work involves studying the variance of the midpoint method, as

discussed in Sec. 5.2, and using multi- and one-group fixed-source and keff eigenvalue

problems with analytic solutions.  These problems are invaluable aids in evaluating code

approximations, and it is generally possible, as in this paper, to generalize them to more

realistic problems.

NOMENCLATURE

),( 21 ffc a general function of two variables

φ total neutron flux in a volume

keff standard measure of neutron multiplication or criticality; eigenvalue of the

Boltzmann transport equation

σ, Σ microscopic and macroscopic total neutron cross section, respectively

Subscripts

1, 2, …, N indices for a set of variables

0 the initial, unperturbed case

½ the “midpoint” case, halfway between the initial, unperturbed case and the desired

or endpoint perturbed case

MCNP an estimate of a perturbed tally that uses the differential operator method

without including the cross terms, as in the computer code MCNP

2nd order an estimate of a perturbed tally that uses the differential operator method

that does include the cross terms

exact a direct calculation of a perturbed tally

Superscripts

′ (prime) the desired perturbed or endpoint case
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