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ABSTRACT

Given some initial, unperturbed problem and a desired perturbation, a second-
order accurate Taylor series perturbation estimate for a Monte Carlo tally that is a
function of two or more perturbed variables can be obtained using an implementation of
the differential operator method that ignores cross terms, such as in MCNP4C™. This
requires running a base case defined to be halfway between the perturbed and unperturbed
states of all of the perturbed variables and doubling the first-order estimate of the effect of
perturbing from the “midpoint” base case to the desired perturbed case. The difference
between such a midpoint perturbation estimate and the standard perturbation estimate
(using the endpoints) is a second-order estimate of the sum of the second-order cross
terms of the Taylor series expansion. This technique is demonstrated on an analytic
fixed-source problem, a Godiva k. eigenvalue problem, and a concrete shielding
problem. The effect of ignoring the cross terms in all three problems is significant.

1. INTRODUCTION

The effect of small perturbations in criticality or fixed-source problems may be
difficult to calculate directly using the Monte Carlo method because the inherent
statistical uncertainty in the calculation may be larger than the effect of the perturbation
for reasonable sample sizes. One Monte Carlo perturbation method is the differential
operator (or Taylor series) method (Olhoeft, 1962; Takahashi, 1970; Hall, 1982; Rief,
1984), in which the tally of interest is expressed as a Taylor series expansion about the
initial, unperturbed parameters that are to be perturbed. The coefficients and derivatives



of the expansion are determined using Monte Carlo methods as the initial, unperturbed
tally is computed.

The second- and higher-order terms of a Taylor series expansion of a function of
two or more variables include “cross terms” that involve mixed partial derivatives of the
function with respect to each of the variables. These cross terms represent the interaction
between the perturbations. If none of the variables interact in their influence on the
function, then the function can be represented as the sum of Taylor series expansions of
the function with respect to each of the variables independently because the cross terms
are all zero. This assumption of independently-acting perturbations is a standard feature
of common Monte Carlo codes.

However, the importance of the cross terms is difficult to predict. Peplow (2000)
found that the cross term for seemingly independent perturbations (the average number of
neutrons per fission and the mass density in a one-group k. eigenvalue problem) was not
only non-zero, but important.

Thus, it is important for users of an implementation of the differential operator
perturbation method that ignores cross terms to have a way of estimating the importance
of this effect. This paper provides such an estimate and demonstrates its use on three
sample problems.

2. TAYLOR SERIES EXPANSIONS FOR PERTURBATIONS

Consider a function of two variables, c(f,, f,). A Taylor series expansion of
c(f,, f,) about some initial, unperturbed values fi o and f> s
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where the ellipses represent an infinite series of third- and higher-order terms.

Let fl' and f2' be specific perturbed values of f; and f, for which it is desired to
estimate the quantity

AC(Af{, Afz,) = C(flfa fz,) —c(fiosfa0) > 2)

(2)



where Af= f'—f,, and Af, = f,—f,,. Using Eq. (1), a second-order Taylor series
estimate of Ac(Af,Af,) is
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The second-order cross (mixed derivative) term, the middle term in the brackets in
Eq. (3), is the subject of this paper.

Let f,,, and f, , represent points halfway between the initial, unperturbed points

fio and f,, and the desired perturbed points f," and f, :

f1,% = (fl,() +f1,) (4a)

1
2

and
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Manipulating Egs. (4a) and (4b) gives

(o= Fiy)=—A- 1) (52)
and

(oo =Foy )=, =12) - (5b)

Define

Ac(f) = frys L= o )=l D= oy o) - (©)

A second-order Taylor series estimate of Ac(f,'~f, ., f, = f,,,) is
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A second-order Taylor series estimate of Ac(f,, = f, . fo0 = f5y) 18
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Subtracting Eq. (9) from Eq. (7) and using Egs. (2) and (5) yields

’ ’ a 1°J2 ’ a 12J2 ’
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Equation (10) represents an estimate of Ac(Af/,Af,) of Eq. (2) that is always

second-order accurate because the second-order Taylor series term vanishes. Note that
the right hand side of Eq. (10) is double the first-order term for the Taylor series estimate
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of Ac(f/=fiy>f,—f,y) [the sum of the first two terms on the right hand side of
Eq. (7)].

It is easily seen that generalizing Egs. (1)-(9) for a function of N variables
c(fi> fys--s fy) would yield a second-order accurate estimate of Ac(Af,,Af5,....Af v):
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3. SECOND-ORDER ACCURATE PERTURBATION ESTIMATES

Suppose that it is desired to estimate the change in the neutron flux in a
homogeneous fixed-source problem due to a change in the material composition. For
simplicity, let the material consist of only two isotopes whose relative fractions change
realistically in the perturbation (i.e., their fractions must sum to unity). Using the
differential operator perturbation technique to estimate the change while computing the
initial, unperturbed case, but ignoring the second-order cross (mixed derivative) term [the
middle term in the brackets in Eq. (3)], leads to errors.

On the other hand, define a new material having isotopic fractions exactly halfway
between their fractions in the original, unperturbed problem and the desired perturbed
problem. Let the new material be used in the base case and run a perturbation from that
base case to the desired perturbed case. Now, the first-order term in the Taylor series
expansion is the term in brackets in Eq. (10). Doubling this term yields a second-order
accurate estimate of the change in the neutron flux due to the change to the desired
perturbed material composition from the original, unperturbed material composition.

This “midpoint” strategy can be generalized to a tally with more than two
simultaneous perturbations, as suggested by Eq. (11).

This strategy has two drawbacks over the standard “endpoint” strategy. First, it
can not generally be used to compute a series of perturbations in a single run. Second,
and more serious, it requires an additional Monte Carlo calculation (since it is assumed
that the initial, unperturbed case will be computed anyway) for the perturbation from the
new (midpoint) base case to the desired perturbed case. If two runs are required, why not
run the initial, unperturbed case and the desired perturbed case and compute the
perturbation directly as the difference, and be done with any perturbation estimates at all?
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First, a small difference between direct calculations will be swamped by the
statistics of each calculation, so a reliable perturbation estimate may, in fact, be desirable
or even necessary. Thus, it may be that the perturbation estimate can be obtained with far
less computer time than the direct calculation of the perturbed case would require.

Second, a second-order perturbation estimate can be used in a way that a direct
calculation of the perturbation can not: to calculate the missing cross terms. This point is
addressed in the Sec. 4.

4. ESTIMATING SECOND-ORDER CROSS TERMS

Assume that a second-order perturbation estimate for a tally is more desirable than
a direct estimate because the perturbation estimate is much cheaper to obtain (even
though it too requires a separate calculation from the initial, unperturbed case).

One widely used Monte Carlo code with the differential operator perturbation
technique that ignores the second-order cross term is MCNP™" version 4C

(Briesmeister, 2000). The MCNP estimate of Ac(Af/,Af,) of Eq. (3) is

’ ’ ac(faf) ’ ac(f’f) ’
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Do e % g )
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the right hand side of which is just the right hand side of Eq. (3) without the cross term in
the second-order term. It was proven in Sec. 2 that, through second order, the right hand
side of Eq. (10) is equal to the right hand side of Eq. (3); let these expressions be equal to
anew symbol, Ac, , . (Af;,Af;). Then the difference

’ ’ ’ ’ 82 D A’
Acanorder (Afl ’ AfZ) - ACMCNP (A-fl 4 AfZ) = M A-fIAfZ . (13)
aflafz /;F_JJ:L(),

Generalizing Eq. (12) to the case of a function of N variables and using arguments for
Eq. (11) instead of Eq. (10), Eq. (13) becomes

* MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.

(6)
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cHINTINo

the sum of all the cross terms.

In other words, a true second-order accurate estimate of the perturbation, obtained
using the midpoint method as described in Sec. 3, can be used with a conventional
endpoint MCNP perturbation estimate to determine with second-order accuracy the value
of the cross terms ignored by MCNP. Thus, it is now no longer necessary to merely
assume (and hope!) that the cross terms are small.

One practical use of such an estimate is as follows. Compute the second-order
cross term for an endpoint f” and f, using Eq. (13). Then an estimate of the cross term

for a change to arbitrary points f; and f, between f,, and f,, and f  and f,
respectively, is

. Acan order (Aﬁ: Af;) - ACMCNP (A-fl,’ AfZ,) _ _
eross temn - 2 (-ri-f) - 09

An MCNP estimate of the perturbation due to a change from f,, and f,, to f; and f>

should be more accurate if the cross term of Eq. (15) is added to it. A numerical example
of the use of this idea is given in Sec. 5.2. Equation (15) can easily be generalized for a
function of more than two variables.

Note that a direct calculation of the perturbation, Ac,_,.,(Af/,Af,), used instead of
ACanorder (Afl,’ Af2,) ln Eq (13) ylelds

(7)
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where, as in Eq. (1), the ellipses represents an infinite series of higher-order terms.
Comparing the right hand sides of Eqgs. (13) and (16), it is evident that to determine the
cross term by itself (to second-order accuracy) requires Ac,,,,..(Af,Af,), not

Acexact (A-fl,’ Af 2,)'

Finally, note that Eq. (13) holds regardless of the accuracy of the second-order
Taylor series estimate Ac, . .. (Af/,Af;) with respect to the true perturbed result.

5. EXAMPLE PROBLEMS
5.1. Analytic Two-Isotope Fixed-Source Problem

Consider a material composed of two isotopes with fractions f; and f> such that
fi +f>=1. Let the atom density of the material be 1 cm™, and let there be no scattering or
fission. Then the total one-group cross section is £ = 1 X (fi61 + /202) =f1X1 + 2X,. The

total flux within a 1-cm slab made of this material due to a monoenergetic beam normally
incident on a surface is

ofi f) = (1-e7)

:;(1—8_(f121+f222)) . (17)
‘fizl + f222

Using Eq. (17) in Eq. (1), then applying Eq. (2), yields
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Let the microscopic total cross sections for isotopes 1 and 2 be o,=% and
6, =)5. Then since the atom density of the mixture is unity, the macroscopic cross
sections for isotopes 1 and 2 are X, =3 and X, = ). Furthermore, if the unperturbed
material is composed of half of each isotope,

L,= f1,021 + fz,ozz

1 3 11

_._+_._

22 22 (19)
1

Now let the perturbed material be composed of 40% of isotope 1 and 60% of isotope 2.
Then

Y= f1}:1 + f2’22

3 1
=04-=+0.6-—
2 2 (20)

=0.9
In this case, Af/=0.4—-0.5=-0.1 and Af, =0.6—0.5=0.1.

The sum of the first-order terms for isotopes 1 and 2 for [the first and second
terms on the right hand side of Eq. (18)] is

(~1+ 2e_1(%j(— 0.0)+(1+ 25%%)(0.1) =0.0264241 . 1)

The sum of the pure second-derivative terms for isotopes 1 and 2 [the third term
plus the fifth term on the right hand side of Eq. (18)] is

2 2
%(2—551{%) (-0.1) +%(2—5e—1(%j (0.1 =0.00200753 . (22)

The second-order cross term for A¢(—0.1,0.1) [the fourth term on the right hand side of
Eq. (18)] is

(2—5@{%%)(— 0.1)(0.1)=—0.00120452 . (23)

The sum of all three second-order terms is

1{(%2 + (lf - (iﬂ(z —5¢7)0.1)* = 0.000803014 . (24)

2|1\ 2 2 2
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The second-order Taylor series estimate of A¢(—0.1,0.1) is the sum of all the
terms, or 0.0272271. The exact analytic value of A¢(-0.1,0.1) is, using Eq. (17),

1

—(1=e)-(1-¢")=0.0272465 . (25)
0.9

This problem was run with MCNP4C using a one-group cross section library
made for the fictitious materials. The unperturbed total flux within the slab was given by
an F4 tally with ~ 198 million histories to be 0.632135 = 0.00%. (The analytic result is
0.632121.) Perturbed tally results are shown in Table 1. The agreement of the computed
first-order term with the analytic value [from Eq. (21)] is excellent, but the agreement of
the second-order term with the analytic value [from Eq. (24)] is not good because the
cross term is ignored in the MCNP calculation. On the other hand, the agreement of the
second-order term with the analytic value for the sum of the second derivatives [from
Eq. (22)] is excellent.

Table 1. Standard results for A@(—0.1,0.1).
Taylor series term MCNP4C Analytic
First-order 0.026426 £ 0.02% | 0.026424
Second-order 0.002008 + 0.03% | 0.000803
Sum of first- and second-order | 0.028434 +0.02% | 0.027227
Exact (analytic) N/A 0.027247

The analytic column of Table 1 shows that the first two terms in the Taylor series
expansion make up 99.9% of the exact (infinite Taylor series) value. Thus, the absence
of third- and higher-order terms from the MCNP calculation leads to inappreciable errors.
The missing cross term is the cause of the entire error of 4.4%.

Use of the midpoint method of Sec. 3 enables MCNP4C to obtain second-order
accurate results for this material composition perturbation. Define a base case material to
contain 45% of isotope 1 (6 =1.5) and 55% of isotope 2 (¢ =0.5), in addition to the
previously defined materials of 50% of each isotope (initial, unperturbed problem) and
40% of isotope 1 and 60% of isotope 2 (perturbed case of interest). Table 2 shows the
results for the flux (F4 tally) when ~ 476 million histories are run. In this case, the first-
order term is itself second-order accurate because it is essentially a numerical first
derivative evaluated at the midpoint of two points.

Using Eq. (17) in Eq.(10) with f,,, =045, f,, =055 f'=0.5, and f]=0.6

yields an analytic midpoint result of 0.02724155. This result is compared with the others
in Table 2. Comparing the analytic second-order Taylor series estimates (the sum of the
first- and second-order terms) for the endpoint and the midpoint methods, it is clear that
some of the greater accuracy seen in the differential operator (MCNP4C) midpoint results
over the standard endpoint results of Table 1 is due to the fact that the first derivatives in

(10)



the midpoint method are estimated at an optimal location, halfway between the

unperturbed case and each of the perturbed cases.

Table 2. Midpoint results for Ap(-0.1,0.1).
“Midpoint” Standard

Taylor series term MCNP4C (endpoint) | Midpoint

result analytic analytic
First-order 0.0272416 £ 0.01% | 0.026424 | 0.027242
Second-order 0.0 0.000803 | 0.0
Sum of first- and second-order | 0.0272416 +0.01% | 0.027227 | 0.027242
Exact (analytic) N/A 0.027246 | 0.027246

This implies that the higher-order terms are smaller for the midpoint method than
for the standard method. Indeed, it can be proven that the leading error term, the third-
order term, is about four times greater in the standard method than in the midpoint
method. (And in Table 2, the error in the endpoint analytic second-order Taylor series
estimate is about four times the error in the midpoint result.) How big is this effect
compared with the missing second-order cross term? Obviously very small in this simple
problem, as Table 2 shows. In general it is expected to be very small, since it is a third-
order rather than a second-order effect, but this is an issue that still needs to be addressed.

These results may also be used to estimate the cross term directly. The second-
order accurate MCNP estimate of Ad(—0.1,0.1) of Table 2 minus the MCNP estimate of
AO(—0.1,0.1) of Table 1 is —0.001192, an excellent estimate of the analytic value of
—0.001205 of Eq. (23).

5.2. Godiva Composition Perturbation

The Godiva composition perturbation problem used in the MCNP4C perturbation
verification of Hess (1998) was redone. This is a k. eigenvalue problem in which the
composition of the Godiva spherical assembly was perturbed from its original 94.73%
25U and 5.27% **U to 50% by weight of each isotope. Three intermediate compositions
were also calculated. As in Hess (1998), all MCNP KCODE calculations used an initial
keg guess of unity, 20 settle cycles, 200 active cycles, 3000 particles per cycle, and current
default cross sections. The k. eigenvalue for the initial, unperturbed case was
0.99831 + 0.08%.

Results are shown in Table 3. The second column of Table 3 shows the standard
MCNPAC perturbation estimates, which were computed in a single KCODE run of the
initial, unperturbed case. The third column of Table 3 shows the estimates obtained using
the “midpoint” method of Eq. (10) and Sec. 3; this column required four runs, one for
each perturbation. The fourth column of Table 3 shows the reference result obtained by
running a KCODE calculation for each case (including the initial, unperturbed case, for a
total of five runs) and subtracting. All of these results are also plotted in Fig. 1.

(11



Table 3 Results for the Godiva composition perturbation.
=By “Midpoint”
weight MCNP4C MCNP4C Reference
fraction result result calculation
0.13 —0.04279 £2.0% | —0.04098 £ 0.86% | —0.04298 +2.52%
0.26 —0.12719£2.8% | -0.11690 £0.67% | -0.11671 £0.93%
0.38 —0.21896 £3.6% | —0.19568 £0.52% | —0.19505%£0.51%
0.50 —0.32403 £4.3% | -0.27776 £0.44% | —0.28381 + 0.34%

Most of the error in the standard MCNP4C perturbation results is not due to the
second-order estimate (i.e., the absence of third- and higher-order terms), but rather to the
absence of the cross term in the second-order term. When the cross term is included, as it
is in the “Midpoint” estimate of Fig. 1 and Table 3, the second-order Taylor series is quite

accurate to better than 20% Ak,y.

The only approximations left in the “Midpoint” curve of Fig. 1 are the absence of
third- and higher-order terms in the Taylor series expansion and the inherent assumption
that the perturbation does not alter the fission neutron source.

The missing cross term for the largest perturbed case can be computed to second-
order accuracy using Eq. (13) to be 0.04627 £ 30% [the uncertainty is, as usual, the

—e— MCNP4C result

0
\ —m— Midpoint MCNPAC resuft
-0.05 -
\ —A— Reference change
h \\
-0.15

-0.2

—>¢— MCNPA4C result + cross term approximation

Akeff

N

-0.3 1

-0.35 : : : : : : : : :
0 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 05
Change in 28U weight fraction
Fig. 1 Akyy for a Godiva composition change. The cross term approximation of

Eq. (15) has been added; it lies on top of the Midpoint MCNP4C PERT
curve. Error bars of one standard deviation are shown.
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square root of the sum of the squares of the standard deviations of the two terms on the
left hand side of Eq. (13)]. Despite the low precision, this value can be used in Eq. (15)
to estimate the missing cross term for each of the other perturbed cases. This estimate of
the cross term can be added to the standard MCNP4C estimate (the second column of
Table 3) for an approximate second-order Taylor series perturbation estimate. The
resulting curve is plotted on Fig. 1. The new curve lies almost on top of the midpoint
method curve, but the standard deviation is greater.

Thus, second-order accurate perturbation estimates can be obtained with only two
Monte Carlo calculations: one for the initial, unperturbed case, where standard second-
order (no cross term) perturbations are estimated for all desired cases, and another for the
midpoint between the initial, unperturbed case and the endpoint perturbed case, with one
standard first-order only perturbation estimated for the perturbation from the midpoint to
the endpoint.

A word on the statistical uncertainties of Table 3 is in order. Although it is
generally expected that the perturbation methods would yield lower uncertainties than the
direct difference method, in this problem the uncertainties in the standard MCNP4C
perturbation results are large because the uncertainties of the second-order term are much
larger than those of the first-order term. This is a bit unexpected, though it has been seen
before (Hess, 1998). The uncertainty of the midpoint method is therefore much smaller
than that of the standard method since the midpoint method does not use the second-order
terms [c.f. Eq. (10)]. Note that the uncertainty of the midpoint method actually increases
as the perturbation decreases, suggesting that it may be unbounded for small
perturbations. However, the midpoint method is just a refinement of the standard Taylor
series method whose variance is known to be bounded; as the perturbation decreases, the
variance of the midpoint method converges to the (bounded) variance of the standard
method (within the statistics of the two different Monte Carlo calculations). This has yet
to be proven mathematically.

5.3. Shielding Concrete Composition Perturbation

A shielding calculation involving a point source within a spherical concrete shield
has also been performed. The source is an isotropic 2.4-MeV neutron source. The sphere
has a radius of 30 cm (~ 1 foot). It is desired to determine the leakage for two different
concrete compositions (Harmon, 1994), one used by criticality safety engineers at Los
Alamos National Laboratory (LANL) and the other used by criticality safety engineers at
Oak Ridge National Laboratory (ORNL). The composition of each of the concretes and
that of the “midpoint” concrete are given in Table 4. All three concretes had a density of
2.25 g/em® and the current MCNP default cross sections were used for each isotope. The
leakage through each concrete is also given in Table 4. Leakage calculations for the
LANL, ORNL, and midpoint concretes used an F1 tally with ~ 4.5 million, ~ 2.2 million,
and ~ 3.1 million particle histories, respectively (hydrogen slows the calculation!).

From Table 4, a perturbation from the initial, unperturbed case of the LANL
concrete to the ORNL concrete causes a change in the leakage of —0.205905 = 0.11%.
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Table 4. Concrete compositions (mass fractions).

Element/ Midpoint
Isotope LANL concrete ORNL concrete concrete
'H 0.00453 0.01000 0.007265
0 0.51260 0.53200 0.52230
Si 0.36036 0.33700 0.34868
7TAl 0.03555 0.03400 0.034775
“Na | 0.01527 0.02900 0.022135
Ca 0.05791 0.04400 0.050955
Fe 0.01378 0.01400 0.01389
Leakage | 0.912068 +0.01% | 0.706163 £0.03% | 0.814627 £0.02%

The results of perturbation calculations involving these concretes are shown in
Table 5. A standard perturbation estimate of the change from the LANL to the ORNL
concrete is in error by 11.6%, while an estimate using the midpoint method is in error by
2.1%.

Table 5. Results for concrete composition perturbation.
Midpoint result
MCNPA4C result (Midpoint - ORNL
Taylor series term (LANL — ORNL) — Midpoint - LANL)
First-order -0.171040 + 0.67% —0.210168 + 0.35%
Second-order —0.0588281 £ 6.12% 0.0£0.0%
Sum of first- and second-order | —0.229868 £ 1.63% | —0.210168 £ 0.35%
Error in sum 0.023963 £ 15.7% 0.004263 + 18.1%

Obviously, it is of no benefit to use the midpoint perturbation method in this
problem because it is just as expensive to compute the perturbed case (use of the ORNL
concrete) directly. However, it is instructive to examine the cross term, which, to second
order from Eq. (14), is 0.019700 £ 19%. (Note that the cross term in this case is actually
a sum of 21 terms!) This cross term is one-third the magnitude but opposite the sign of
the sum of the pure second derivatives computed by MCNP (the second-order term of
Table 5), and its absence leads to ~ 9.5% of the error of the PERT estimate. Presumably,
the other ~ 2.1% of the error is due to the neglect of third- and higher-order terms.

6. CONCLUSIONS

In this paper, we have demonstrated a method for using MCNP4C to obtain a true
second-order Taylor series perturbation estimate of a tally that is a function of two or
more perturbed variables. We have shown how such an estimate can be used to obtain a
second-order accurate estimate of the second-order cross terms that are ignored by the
MCNPA4C perturbation feature. Unfortunately, the second-order perturbation estimate
requires an additional MCNP calculation that may be quite expensive. However, the
estimate of the cross term can be used in an interpolation scheme to improve a series of
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standard MCNP4C perturbation estimates. In addition, it may be desired to know what
effect the absence of the cross term has on a particular problem or class of problems.
This note provides a means of assessing the effect by estimating the missing cross term.

It is clear that the method developed in this paper could easily be extended to
apply to third- and higher-order Taylor series perturbation methods, but this extension has
yet to be developed.

One point of further interest is to examine the third- and higher-order Taylor
series terms to understand how accurate the second-order estimate of the cross term is
with respect to the second-order estimate of a perturbation using the standard “endpoint”
method. Such an effort would lead to insight on how much of the error of the endpoint
method is due to the absence of third- and higher-order terms (i.e., the second-order
estimate) and how much of the error is due to the absence of the second-order cross
terms.

More future work involves studying the variance of the midpoint method, as
discussed in Sec. 5.2, and using multi- and one-group fixed-source and k.y eigenvalue
problems with analytic solutions. These problems are invaluable aids in evaluating code
approximations, and it is generally possible, as in this paper, to generalize them to more
realistic problems.

NOMENCLATURE

c(fys f>) a general function of two variables

0 total neutron flux in a volume

ket standard measure of neutron multiplication or criticality; eigenvalue of the
Boltzmann transport equation

0, X microscopic and macroscopic total neutron cross section, respectively

Subscripts

1,2,....N indices for a set of variables

0 the initial, unperturbed case

12 the “midpoint” case, halfway between the initial, unperturbed case and the desired
or endpoint perturbed case

MCNP an estimate of a perturbed tally that uses the differential operator method
without including the cross terms, as in the computer code MCNP

2nd order an estimate of a perturbed tally that uses the differential operator method
that does include the cross terms

exact a direct calculation of a perturbed tally

Superscripts

" (prime) the desired perturbed or endpoint case
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