skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

Technical Report ·
DOI:https://doi.org/10.2172/776473· OSTI ID:776473

An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better understanding of the key processes involved.

Research Organization:
Yucca Mountain Project, Las Vegas, NV (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC01-91RW00134
OSTI ID:
776473
Report Number(s):
MOL.19980620.0110; TRN: US0702872
Country of Publication:
United States
Language:
English