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ABSTRACT

The observed iron Ka fluorescence lines in Seyfert I galaxies provide strong evidence for an
accretion disk near a supermassive black hole as a source of the emission. Here we present an
analysis of the geometrical and kinematic properties of the disk based on the extreme frequency
shifts of a line profile as determined by measurable flux in both the red and blue wings. The
edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence
provide a robust alternative to profile fitting of disk parameters. Our approach yields new,
strong bounds on the inclination angle of the disk and the location of the emitting region.
We apply our method to interpret observational data from MCG-6-30-15 and find that the
commonly assumed inclination 30° for the accretion disk in MCG-6-30-15 is inconsistent with
the position of the blue edge of the line at a 30 level. A thick turbulent disk model or the
presence of highly ionized iron may reconcile the bounds on inclination from the line edges with
the full line profile fits based on simple, geometrically thin disk models. The bounds on the
innermost radius of disk emission indicate that the black hole in MCG-6-30-15 is rotating faster
than 30 % of theoretical maximum. When applied to data from NGC 4151, our method gives
bounds on the inclination angle of the X-ray emitting inner disk of 50 & 10°, consistent with
the presence of an ionization cone grazing the disk as proposed by Pedlar et al. (1993). The
frequency extrema analysis also provides limits to the innermost disk radius in another Seyfert 1
galaxy, NGC 3516, and is suggestive of a thick disk model.

Subject headings: accretion, accretion disks — black hole physics — galaxies: active — line:
profiles — X-rays: galaxies

1. Introduction

The Advanced Satellite for Cosmology and Astrophysics (ASCA) has provided data from over a dozen
Seyfert I galaxies to reveal the presence of iron emission lines which are broadened by a considerable
fraction of the speed of light — greater than 0.2 ¢ in some cases (Mushotzky et al. 1995; Tanaka et al.
1995; Nandra et al. 1997a). The observed line profiles are the most direct evidence for the presence of
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supermassive (~ 10® M) black holes in the centers of these galaxies: the spectra have distinctive skewed,
double-peaked profiles which reflect the Doppler and gravitational shifts associated with emitting material
in a strongly curved spacetime (Chen & Halpern 1989; Fabian et al. 1989; Laor 1991; Kojima 1991). The
data strongly support a model wherein the emission lines are produced by iron Ka fluorescence at 6.4 keV
when optically thick, “cold” regions of an accretion disk (such that the ionization state of iron is less than
Fe XVII) are externally illuminated by hard X-rays (George & Fabian 1991; Matt, Perola & Piro 1991). In
one bright, well-studied source, MCG-6-30-15, the high signal-to-noise ratio has enabled parameters of a
simple geometrically thin, relativistic model to be estimated (Tanaka et al. 1995; Dabrowski et al. 1997;
Reynolds, Begelman 1997; Bromley, Miller & Pariev 1998).

The model parameters which may be gleaned from line profiles include disk radii, emissivity of the disk,
observed inclination angle of the disk ¢ (i = 0° is face-on and i = 90° is edge-on), and the spin parameter
of the black hole, a. = Je/GM?, where J is the hole’s angular momentum. If the hole is rotating, we
assume that the disk lies in the equatorial plane of the black hole, as a result of the Bardeen—Peterson
(1975) alignment mechanism, and that the disk is corotating. Of these parameters, perhaps the most
problematic is the disk emissivity. The distribution of the hard X-ray flux which illuminates the disk
determines the emissivity of the fluorescing disk material, and therefore has a strong influence on line
profiles. The emissivity is usually assumed to be axisymmetric. This is reasonable if the observed profile
is obtained with a long integration time since strong asymmetries presumably would average out. Specific
choices for emissivity include a power-law in radius (Fabian et al. 1989; Bromley, Chen & Miller 1997), a
form consistent with a point source of illumination (Matt, Fabian & Ross 1993; Matt, Fabian & Ross 1996;
Reynolds & Begelman 1997), and a function proportional to the total energy flux in the Page & Thorne
(1974) accretion model (Dabrowski et al. 1997). Dabrowski et al. (1997) also considered a non-parametric
form of the emissivity function. Recently, Iwasawa et al. (1999) performed a line-profile fit assuming
nonaxisymmtric X-ray illumination of the disk in MCG—6-30-15. Nonaxisymmetric emissivity might be
expected for the bright state of this source if the mass of the central black hole is ~ 108 M. In this case
the integration time of the observations is shorter than the orbital period at a radius of a few times that of
the horizon.

The calculation of emissivity may be complicated somewhat by the local physics of the disk as well as
the nature of the illuminating source. If the incident radiation is strong it can cause iron to become highly
or fully ionized. For iron atoms at ionization stages no higher than Fe XVI, Ka emission occurs at 6.4 keV,
however, resonant absorption and successive Auger processes prevent significant line emission by Fe XVII
through Fe XXIII. Lithium— and Helium-like ions, Fe XXIV and Fe XXV, emit at approximately 6.7 keV,
while Hydrogen-like ion Fe XXVI produce Ka line at 6.97 keV (Matt et al. 1996; Matt et al. 1993; see also
the review by Fabian et al. 2000).

Local anisotropy of rest-frame emission is another effect which can influence an observed line profile. It
is often assumed that the emitter is locally isotropic, although Laor (1991) considered limb darkening and
Matt et al. (1996) considered effects of resonant absorption and scattering which can result in anisotropic
emission.

The next level of detail in modeling local disk physics was to consider non-Keplerian flows, as when
material falls within the innermost stable orbit around a Schwarzschild black hole (Reynolds & Begelman
1997), or when there is turbulence in a disk of finite thickness (Pariev & Bromley 1998). More recently,
temporal variations in line profiles (Lee et al., 2000; Iwasawa et al., 1999; Nandra et al., 1999) have been
observed. Simulations of line profiles with a time-dependent illumination (Reynolds et al. 1999; Young
& Reynolds, 2000; Ruszkowski 1999) are also performed. Knowledge of the line variability can provide
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information about the size of the inner region of the accretion disk and the mass of a black hole.

To circumvent uncertainties in the emissivity of the disk and yet still obtain estimates and constraints
of fundamental disk parameters such as the inner radius, Bromley, Miller & Pariev (1998) suggested using
the minimum and maximum frequency shifts of a broad emission line as a diagnostic. As first demonstrated
by Cunningham (1975), the edges of a line profile from an emitting disk annulus uniquely determine the
radius of the annulus and its inclination. Similarly, bounds may placed on these parameters when the
emission comes from many such annuli. These bounds are more robust indicators than estimates derived
by fitting the full profile shape when the emissivity is nonaxisymmetric or when the continuum has been
poorly modeled in the central regions of the broad lines.

In this work we use the method of line frequency extrema to study the geometric and kinematic
properties of relativistic accretion disks. We provide new methods of line edge detection based on
polynomial fits to the line profile and continuum, and compare the results to the x? rejection technique used
by Bromley, Miller & Pariev (1998). In § 2 we describe the minimum and maximum frequency diagnostic
and ways to determine the position of a line edge and its error. In § 3 we apply the technique to the iron
line profiles from MCG-6-30-15, NGC 4151, and NGC 3516, and we compare the results of the edge fitting
to the fitting of the whole line profile. Finally, we discuss prospects for our method with data from future
X-ray missions.

2. The Method of Minimum and Maximum Frequency Shifts
2.1. Description of the Method

The information contained in a line profile is rich, but the parameter space of models is also fairly large.
Here, as in Bromley, Miller & Pariev (1998), we sacrifice detailed modeling for broad characteristics of the
accretion disk by examining only the edges of the line. The gain is a reduced dependence on unrealistic
model assumptions such as axisymmetric emissivity or the behavior of the continuum emission over the
entire frequency range of the line. For example, the usual continuum model is a power law in frequency,
but there is evidence from Iwasawa et al. (1996) that the index can vary in time. Since the lines are
extraordinarily broad, one risks the possibility of a poor guess for the continuum which would affect the
shape of the inferred profile. This in turn can affect inferences of the disk model parameters, including inner
and outer radii. Worse, the profile might also be misinterpreted because our assumptions of axisymmetry
might be incorrect, a possibility which is worrisome in light of time variability of the continuum and line
profile. For example, patchy, local flares would violate axisymmetry unless the observed line profile were
integrated over a long period of time.

From Cunningham (1975), it is clear that minimum and maximum frequency shifts of a line profile
themselves contain information about fundamental disk parameters, regardless of details which may
complicate the shape of the profile. Here we use the frequency extrema diagnostic for both standard
infinitesimally thin disk case and for the disk model taking into account turbulent broadening and additional
frequency shifts of the line due to Doppler effect associated with the accretion inflow and correction to the
gravitational redshift because of the elevation of the line emitting spots above the equatorial plane of the
disk. For the latter case we use results by Pariev & Bromley (1998) for the line profiles emitted from the
surface of the “standard” a-disk (Novikov & Thorne 1973). The parameters which uniquely define the
system of black hole and accretion disk are the mass of the black hole M, spin parameter of the black
hole a,, and inclination of the disk relative to the observer 7. The shape of a time-independent line profile



cannot provide us with the absolute scale of the system, GM/c?, although variable features in the profile

can indicate the black hole mass. In the present work we deal only with time-averaged observations, hence
the mass M enters only as degenerate scale factor with disk radius. In the case of the Shakura & Sunyaev
(1973) a-disk model, additional model parameters include the luminosity of the disk in Eddington units,

L/Leg, and a viscosity parameter a. Of course, with fixed values for these parameters, an observation of

the luminosity can constrain the black hole mass.

Here we first define gmin = Vmin/Ve and gmax = Vmax/Ve t0 be the minimum and maximum frequency
shifts of a line relative to the rest-frame frequency. Then we consider emission from an infinitesimal
annulus of the disk with Boyer-Lindquist radius 7. For a given value of the spin parameter a, (as well as
luminosity L and viscosity parameter « for a thick disk) there exists a unique mapping gmin = gmin(7,%),
and gmax = gmax(T, 1), connecting frequency extrema of a line and the inclination angle i and radius r of the
annulus. An example of such a mapping is given in Figure 1. Note that we use units of gravitational radius,
R, = GM/c?, so that for a nonrotating black hole the radius of event horizon is 2R,, and the radius of the
innermost stable orbit is 6R,; for the maximally rotating astrophysical black hole with a, = 0.998 (Thorne
1974), the radius of the event horizon decreases to 1.063R, and the accretion disk becomes stabilized down
to the radius 1.237R,. It is this extension of the stable disk down to small radii which is the most prominent
effect of rotation of the black hole.

Emission in an observed line consists of the sum of contributions from many infinitesimal annuli. These
annuli produce a curve in the gnin—9gmax plane, which corresponds to a single, constant inclination angle .
Of course a measured profile will generate a single point in this plane which is simply the extreme values
of redshift and blueshift along a constant-i curve. The position of the measured point in the gmin—9max
diagram indicates that emission can come only from the quadrant of the gmin—¢gmax plane defined by
inequalities g(i,7) > gmin and g(i,7) < gmax. At the same time, some emission must come from the points
on both sides of this quadrant, i.e. from the points having either ¢(i,7) = gmin or g(i,7) = gmax. The
position of this point can fix the range of possible disk inclination angles ¢: Since gmin increases with
increasing r along the curve ¢ = constant, the upper limit on inclination angle of the disk is given by the
value of i for the curve i = constant passing through the data point. The lower limit is provided by the
1 = constant curve which just touches the horizontal line ¢ = gmax. If gmax < 1, then the lower limit for
i is 0. Furthermore, for each ¢ within the observed bounds one can determine the outer 7o, (7) and inner
7in (i) radii of annulus, which give a contribution to the observed profile. Generally, the middle regions of
the disk can have arbitrary amounts of iron line emission, but there must always be some emission coming
from points of the disk surface at radii r = 7oyt (7) and r = i, (7).

If several line profiles are available for the same object in different phases of emissivity, then we may
be able to place further constraints on the inclination angle of the disk and to check the validity of the
accretion disk model (i.e. that bounds for ¢ are not mutually exclusive). Narrower limits for ¢ put tighter
constrains on ri, and 7o,t. We emphasize that these constraints are independent of the emissivity law across
the disk.

As mentioned above, by looking only at the position of the edges of line profiles we clearly lose a large
amount of the information contained in the shape of a line profile. We instead obtain very strong bounds
on the inner radius and inclination angle of the disk. In the case of time variability over time scales not
resolved during photon counts integration time, positions of the frequency extrema are still able to provide
estimates of the inclination angle of the disk and bounds for the inner edge of the disk. This is an important
feature when there are changes in the disk illumination and/or possible obscuration of parts of the disk by
absorbers (Weaver & Yaqoob 1998) which can substantially alter the main core of the line.
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Another advantage of looking only at the positions of the edges of the line is that it circumvents the
effects on the line profile of possible resonant absorption of the line photons in the disk corona. As shown
by Ruszkowski & Fabian (1999), reasonable assumptions about the velocity field in the corona of the disk
suggest that an absorption feature is located slightly redward of 6.4 keV leaving the red and blue edges
of the line unaffected. In this case a direct fit of the profile with a standard Keplerian disk model would
give poor results. The frequency extrema method does not require detailed models of absorbing corona or
occulting cloud, nor is it sensitive to the reflection from a surrounding torus or any other sources of narrow
6.4keV iron line emission except in the rare instances when the disk is observed almost directly face-on and
all disk emission is reddened.

2.2. Theoretical gnin—9gmax Maps

We used a general purpose ray-tracing code to calculate values of gy and gmax for a number of narrow
rings and a number of different inclinations i. The code, described by Bromley, Chen & Miller (1997),
generates a pixelized image of the accretion disk as would be seen by a distant observer. The observed

frequency at each pixel is given by
=Y _ it 1)
9= = 55 (
where subscripts o and e are observer and emitter respectively, @ is the 4-velocity of the emitter and p'is the
emitted photon’s 4-momentum. Note that the emitter 4-velocity is specified by the disk model, while the
photon 4-momentum is calculated by numerically tracing the photon geodesic back in time from the pixel
in the observer’s sky plane to the surface of the disk. Then, we sort pixels into narrow rings and determine
extrema of g over all pixels fallen into a ring between r and r + ér. To create a grid of lines ¢ = constant

and r = constant on gmin—gmax plane we use cubic spline interpolation.

The ray tracer itself is a general-purpose second-order geodesic solver for a Kerr geometry. An arbitrary
disk surface can be specified so that the photon trajectories terminate on this surface. For axisymmetric
geometries the number of individual geodesics which need to be traced numerically in order to produce
complete set of images is of the same order as in the method of transfer functions by Laor (1991). Using
of parallel supercomputer allowed us to compute an image of 1000x 1000 pixels during about 1 minute of
run-time.

Details about modeling the emitter 4-velocity, @ in equation (1), can be found in Pariev & Bromley
(1998). Here, we assume that outside of the orbit of marginal stability the bulk emitter 4-velocity is the
sum of a Keplerian 4-velocity and a small, inward radial velocity component as given by Novikov & Thorne
(1973). We do not take into account the § component of inflow velocity, nor the dependence of ¢ component
of velocity on the height of the disk. These are higher order corrections to radially directed inflow. Inside of
the marginal stability radius, all orbits are presumed to be in free-fall in the equatorial plane with integrals
of motion equal to the values at the innermost stable orbit. We assume a simple model for turbulent motion
in the disk, with an isotropic Gaussian distribution of turbulent velocities with the square mean equal to
the square of the speed of sound ¢? averaged over the disk thickness, namely

et ) = elre )y e [-3S =] )

27 ¢ 22 2 v,

where the intensity I at a specified frequency v depends upon the rest frame energy of the K« line
(ve = 6.4keV), the angle cosine p, of the photon emission with respect to the normal of the disk as
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measured in the source frame, and the radial coordinate r. of the emitting material on the surface of the
disk; €(re, pe) is the surface emissivity; cq(r.) is the sound speed at the radius of emission, r.. We consider
only the case of isotropic emission, when € = €(r.). The width of a Gaussian line profile in the comoving
frame with the disk surface is o(r.) = cs(re)/v/3. The sound speed at a radius r, is proportional to the
accretion rate and, therefore, to the luminosity of the disk (Shakura & Sunyaev 1973; Novikov & Thorne
1973; equation [15] in Pariev & Bromley 1998). Therefore, the amount of smearing of the line at a given
radius is proportional to L/Leq. Note, that the actual turbulent velocities may have a mean value less than
the speed of sound (see Pariev & Bromley 1998 for details), thus we are considering the maximum possible
effect of turbulence on line profiles.

Turbulent broadening causes the whole line profile to be smoothed. Particularly, blue and red edges are
no longer sharp but have wings of the order of ¢;/c at the radii where the edges of the profile are formed.
Accretion inflow causes a slight shift of the profile to the red, but does not strongly influence the position of
the profile edges, since the edges are formed in regions of the disk which have radial inflow velocities nearly
perpendicular to the light ray emerging toward the position of the observer.

Adding a Gaussian turbulent velocity spectrum makes the determination of edges of a theoretical line
profile somewhat uncertain. Moreover, the observed extent of a line depends upon the signal-to—noise ratio
of the observational data. Keeping in mind that our Gaussian prescription for turbulent broadening is crude
and velocities of turbulent motions along line of sight cannot exceed the speed of sound, we assume the
following procedure for finding the minimum and maximum redshifts in the case of a turbulent disk model
with finite thickness and accretion inflow: We add the value of v/3a(r)/c = ¢s(r)/c to the uncorrected gmaz
in order to obtain gmax and subtract the value of ¢5(r)/c from the uncorrected gmin in order to obtain
gmin- This procedure is also consistent with a signal-to-noise ratio of about 10% in currently available
observational data for line profiles. The grid of gmin—¢max Obtained in this way was used in all estimates of
parameters of thick disk model and is shown by dashed lines in Figs. 1 and 4 for nonrotating and extremely
(ax = 0.998) rotating black holes. To determine the greatest possible effect of the physical structure of the
disk, we have chosen a high disk luminosity, L. = Legq, and an « viscosity parameter of 0.3. These values
still consistent with an optically thick disk.

The main effect kinematics and finite disk thickness is to yield larger values for gmax and smaller
values for gmin. For a nonrotating black hole the disk extends down to 6R,, at which point the thickness of
the disk as well as radial inflow velocity approach zero, while the surface density increases without bound
(Novikov & Thorne 1973) — this is a consequence of the zero-torque boundary condition at the inner edge
of the disk. Thus the difference between the thin and thick disk models vanishes at 6R,. In reality, the
gas smoothly transits near 6 R, from a slow inward spiral caused by viscous stresses to a plunging geodesic
orbit into the black hole. Nonzero viscous torque and radial inflow should also change the parameters of the
disk just beyond the 6R, orbit (e.g. Beloborodov, Abramowicz & Novikov, 1997). Thus, the shape of the
dashed curves in Fig. 1 for r < 10R, should be altered for more realistic situations so that the transition
from » > 6R, to 7 < 6R, is smoothed out and dashed lines should move upward and to the left near the
r = 6R, curve of the thin disk model.

Agol & Krolik (2000) consider thin-disk structure when there is a finite time-steady torque on the
inner edge of the disk. According to them, additional dissipation near innermost edge of the disk due to the
applied torque would cause increased heating and increased sound speed compared to Novikov-Thorne disk.
Larger sound speed causes dashed lines on Fig. 1 to move upward and to the left. However, Paczynski (2000)
points out that any torque at the innermost stable circular orbit should be small as soon as the disk is
thin and a < 1. The subject of the transition from nearly Keplerian flow to rapid infall to the black hole
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is under active investigation (e.g., Gammie 1999). We only mention that our method of line frequency
extrema diagnostic could be used to put constrains on models resulting from such investigations, but this is
beyond the scope of the present work.

The deviation of frequency extrema plots for disks of finite thickness from those for infinitely thin
disks scales as o< L/Legq with the total thermal luminosity of the disk L, while the exact value of the «
parameter is not nearly as important (Pariev & Bromley, 1998). When then accretion rate and the ratio
L/Leq decrease, the sound speed, radial inflow velocity and thickness of the disk also decrease. In the limit
of very small accretion rates and very small L/Leqq, the solid and dashed grids in Fig. 1 and Fig. 4 becomes
coincident. For very low accretion rates the disk can be regarded as thin, with each light-emitting element
moving on a circular Keplerian trajectory with little turbulent broadening.

2.3. Line Blending

Blending of emission lines having different rest-frame frequencies would influence results of using
frequency extrema method. The most important sources of blending can be the presence of Ka emission
from highly ionized iron, emission of iron Kf3 at 7.06 keV, and nickel Ka 7.48keV line (George & Fabian
1991). The most difficult to estimate is the contribution of the hot (i.e., highly ionized) iron Ka line.
Hot disks can fluoresce in the K« line under certain circumstances, depending on the three-dimensional
temperature structure of the disk. These issues were given consideration by Matt et al. (1996), Matt et
al. (1993), and Zycki & Czerny (1994): The basic conclusion reached by these authors is that the rest-frame
frequency, intensity, and angular dependence of the emission are determined by the value of the ionization
parameter £(r) = 4nFx (r)/nu, where Fx(r) is the X-ray illuminating power-law flux striking a unit area
of the disk surface, and ny is a comoving hydrogen number density. In order to determine £ one must
know the characteristics of the source of illuminating X-rays such as its intensity, spatial distribution, and
motion relative to the disk. Some aspects of the dependence of the line profile and equivalent width on
these characteristics have been outlined in Reynolds & Begelman (1997) and Reynolds & Fabian (1997).
Our estimate of the parameter £ along the lines described in Reynolds & Begelman (1997) shows that for a
thin a—disk around a Schwarzschild black hole it can plausibly lie either above or below the threshold value
for ionization 200 ergcms™!, depending upon X-ray efficiency of the illuminating source and its spectral
index. For the Kerr case when the disk extends close to the event horizon, relativistic aberrations of the
illuminating radiation due to gravity, frame dragging, and the motion of material in the disk become very
significant, generally leading to the enhancement of the irradiating flux as measured in the comoving frame
of the disk material. Consequently, the parts of the disk at small radii are more likely to emit hot iron
lines 6.67 keV and 6.97keV. However, due to resonant scattering and Auger processes, little line emission is
produced in the transition region from cold to hot iron lines.

Furthermore, in regions where lines can form, X-ray flares above the disk can cause higher ionization
of the disk surface directly below the flare than the rest of the disk. All this makes the analysis of the iron
line profile complicated and dependent upon unknown positions of illuminating X-ray sources, accretion
rates and mass of the central black hole. We assume that the iron Ko line has 6.4 keV rest frame energy
everywhere in the accretion disk. For all observational data considered here, the core of the line is centered
close to 6.4keV, while higher energies for the core can be ruled out with very large degree of confidence.
This means that parts of the disk not very close to the black hole (> 20G M /c?), where the core of the line
is formed, produce the cold iron 6.4keV line. One is not so certain about inner parts of the disk producing
the red tail of the line, but we assume that the Ko line has the rest frame energy of 6.4keV throughout
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the disk. The maximum possible error in finding @i, introduced by this assumption is 0.09, which in
most cases is no more than the size of 20 error box for the values of g, for the present quality of X-ray
observations.

Since the K3 7.06 keV line is emitted by the same iron atoms that are responsible for the Ka line, the
shape of the two profiles should be the same. The ratio of fluorescent yields in Kg and K lines is 0.113
(George & Fabian 1991). If one makes the reasonable assumption that nickel is distributed over the disk
surface in the same way as iron, then the profile of nickel Ko line will be similar to that of iron, but shifted
by 1.08keV. The relative abundance of nickel with respect to iron is not known precisely for observed
sources but a reasonable value is about 0.06 (George & Fabian 1991).

The fact that the iron KA line and the nickel Ka line are faint compared to iron Ka allows us to
perform an effective decomposition of the blended profile into the sum of individual profiles of three lines. If
fobs(v) is the observed excess of photon counts per second over the fitted continuum, and f(v) is the actual
profile of iron K« line, then one has the relation

Fobs(v) = F(v) + 0.113f (v — 0.64) + 0.06f (v — 1.08).

Here we will use the term “energy-corrected profile” for the function f. One can solve this equation for f
iteratively, feeding approximations to the function for the contributions from the K3 and nickel lines. As an
initial guess, we take f,ps and each subsequent approximation fj11 is obtained using previous values of fy:

fk+1 (l/) - fobs(V) - 0113fk(ll - 064) - 006fk(1/ - 108)

The actual data points are the integrals of a continuous energy distribution within energy bins. The
accuracy in determining f(v), which we need according to the quality of the data, is of the order of a few
per cent. Therefore, it is sufficient for our purposes to treat data points just as a discrete samples of the
underlying continuous function. We computed values of fj11(v) at the center of each energy bin, linearly
interpolating between bins to obtain values of fi(v — 0.64) and fi(v — 1.08). When the shifted frequency
went beyond the red boundary of the observed data, we used a value of zero for the shifted profile. For the
data considered here, the iteration procedure converged with sufficient accuracy in only two iterations.

The main effect of the blending correction is to suppress the blue wing of the line or perhaps create an
“absorption” feature if the blue wing is weak or absent. We compared results of determining gmax using
uncorrected and energy-corrected profiles for the same observation, we found that only in the data with
the highest signal-to-noise was there a difference in the detected edge position of greater than 2¢. Thus, at
the quality of present X-ray spectral data for most Seyfert galaxies, the corrections for blending with lines
other than iron Ka line are small.

2.4. Edge Detection

We are interested in the determining boundary between the line and continuum, not the full profile
shape, and we now argue that we can work with the observed counts directly without restoring actual
X-ray fluxes by deconvolving with the response matrix of the X-ray detector. All the data considered below
were obtained with the ASCA SIS detector; its sensitivity to a monochromatic line varies by a factor of five
over the 3-8 keV waveband, with the response function broadening the signal by about 100 eV. One or two
satellite peaks also appear at a level not exceeding 3% of the intensity of the main line. The frequency of
the satellite peak is about two thirds that of the initial line. In addition, the monochromatic line produces
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a small continuous response in each channel with counts less than 1% of the counts in the channel at the
peak. The magnitudes of detector response effects are well within the errors of the observed intensity of
the line and the spread over 100 eV is comparable to smallest standard error in the position of the edges
measured here (see Tables 1 and 2 with the results for edges). Thus, we conclude that folding the broad line
and continuum spectrum through the detector response matrix does not have significant (i.e. more than
one standard error) influence on the locations of the line edges.

To locate the edge of a line profile, we start with an unconvolved, continuum-subtracted, energy-
corrected line profile as observed in the restframe of the host galaxy (i.e., cosmological redshift has been
removed). The continuum subtraction was performed differently by different observers: Iwasawa et al. (1996)
performed a fit with a single power law absorbed by the Galactic column density (Ny = 4 x 10%° cm—2) of
the underlying continuum in 3-10 keV range for MCG-6-30-15. Iwasawa et al. (1999) slightly improved the
continuum fit by adding a reflection component modeled by pexrav task (Magdziarz & Zdziarski 1995).
However, this reflection component affects line flux by only about 5 per cent. Wang et al. (1999) fitted the
continuum in the 1.0-4.0 and 8.0-10.0 keV band with a model which consists of a dual absorbed power law
with some fraction (about 5 per cent) of the direct continuum scattered into our line of sight and absorbed
only by the Galactic column. Compton reflection was not included in this fit since there is no reliable
indication of the existence of the reflection in this object. Nandra et al. (1999) fitted the continuum in the
3.0-4.0 and 7.0-10.0 keV range by a single power law only.

We need to examine only sections of the profile containing a suspected line edge and fit the profile
with a linear, polynomial model y = ag + a1z + asx? + a3z® in frequency z. In most instances, a quadratic
fit gives the best results, since the cubic term added artificial oscillations to the fit. A linear x> method
determines the polynomial coefficients a;, and these in turn provide roots of the polynomial model. The
real root (if it exists) which is closest to the center of the line is taken as the position of the edge.

To estimate the error in measuring the energy of the edge of the line using the roots of a best-fit
polynomial we use Monte-Carlo realizations of the observed counts: Each profile consists of a number of
counts y; in energy channels spanning the intervals from x; — A; to x; + A;, where z; are the central energies
of each channel number i, A; are half—~widths of the channels. The half—widths of the channels increase with
increasing energy and range from about 50 eV at 3 keV to about 700 eV at 9 keV. For each real observed
profile we create 20000 artificial data sets by randomly drawing a flux value y from a Gaussian distribution
with mean y; and variance equal to the width of y-error bar ¢;. Then we perform a x? minimization of
each artificial data set to get the best-fit polynomials and their roots. Repeating this procedure for all
20000 Monte-Carlo data sets allows us to construct a probability distribution for the location of the line
edges determined in this way. Generally, such distributions are skewed with tails extending out from the
center of the line. We calculate the mean and the variance of this distribution of edges. Then, we take the
mean as the best approximation for the true position of the edge and variance as a standard error of this
edge determination. To be more conservative in light of the fact that the distribution of best-fit values is
not strictly Gaussian, we take our final values of gy, and gmax to have error boxes twice as large as the
standard error given by Monte-Carlo distribution of fits. In most cases, the ellipse in the gmin-gmax plane
with semimajor axes that are twice the standard errors contain 95% of all roots found.

The results of fitting with the polynomial model are given in Table 1. For the fits we choose only
channels on one side of the line peak, either red or blue depending on which edge we are looking for. Each
set of channels are continuous in energy and define some interval which brackets a line edge, i.e., the interval
contains regions where the spectrum is well-fit to the continuum model as well as channels which exhibit
clear and significant signal from line emission. Once chosen, the set of channels remains the same for all fits
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in a Monte-Carlo simulation. The actual energy range covered by the fitting intervals varies substantially
for different profiles depending on how sharp is the transition from the line to continuum. Roughly, energy
range is about 2-3 keV for the red edge and 1-2 keV for the blue edge. Instead of specifying the energy
range for each fit we choose to number all points on the plot of the profile and to list those which are used
in a particular fit. The points are numbered consecutively with the point number 1 referring to the redmost
channel. The numbers of points used in the fits are given in the third column of Table 1.

We also propose a non-linear “sharp edge” model to locate a line edge. In this model the continuum
is exactly zero and the line is a linear or quadratic piece which extends from the continuum to higher
intensities. At the red edge of a line the model is

y=0 for z <po,
y=pi(z —po) +p2(z —po)> for = > po, (3)

while for the blue edge

y=0 for x> poy,
y =pi(z —po) + p2(z —po)® for = < po, (4)

where in the last case p; is negative. The line edge is pg, the location of the kink which delineates the flat
continuum and the regions of increasing flux pg.

As with the polynomial fitting, we determine the distribution of pg in many Monte-Carlo realizations,
and take the mean and variance of this distribution as the estimated position of the edge and its
corresponding uncertainty. The fitting function (3)-(4) is not smooth and this causes many fits to give
po values very close to a mean channel frequency z;, mimicking a discrete distribution. Therefore, the
cumulative distribution of pg(z) looks like the sum of several step functions. The contour around the
mean point gmin—gmax determined from the Monte Carlo simulations which characterizes the scatter in the
Jmin—gmax Simulation points is rectangular in shape rather than the usual ellipse (as in the case of Gaussian
distributed gmin and gmax). We verified that for most fits the rectangle, centered on the mean value for the
Monte-Carlo simulated gmin and gmax values and having sides equal to twice the variance of the Monte-Carlo
simulations, contains about 95% of fitting points inside it. We plot these 20 “error-rectangles” as well as
best fit to actual data points on the gmin—gmax diagrams in Figs. 4—6. In order to make Figs. 56 easier to
read, we use asymmetric error bars instead of full “error rectangles.” These error bars originate at the point
corresponding to the best fit to the actual data. The ends of all four error bar segments define the error
rectangle, i.e. the length of each of the four error bars is equal to the distance between best fit point and
an edge of the rectangle. All our conclusions about disk geometry assume that the error distributions lie
within such rectangles. Table 2 shows edge estimates based on this non-linear model, analogous to Table 1.

In order to verify that the non-linear model gives reasonable determinations of the positions of the line
edges we applied the same Monte-Carlo method for finding the edge of an artificial line profile. This mock
line profile was created from a real profile in the following way. Starting with the same energy channels
x; £ A; as for the real data set, we find the best fit of the non-linear model to the actual data set y(z) and
take values of y(z;) of this fit. Then, using error values corresponding to the real data we apply the same
Monte-Carlo procedure of finding the edge of the artificial data set and thus determine the distribution of
the parameter py. Generally, we obtain the smaller errors and lower x2 for this type of fit, while the one
standard error intervals for pp found by both Monte-Carlo simulations are overlapping (see few exceptions
for poor quality edges below). This result is expected since the most likely profile for the data is the actual
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measured points, while the most likely profile for any given Monte Carlo realization is the underlying model
profile.

Which model, polynomial or non-linear, better approximates the true shape of observed profile?
Theoretically one expects that the profile formed by a thin Keplerian disk has sharp edges. Let us consider
the part of the disk surface near the innermost edge of the disk, where the reddest photons near the red
edge of the line with frequencies from g, t0 gmin + Ag are emitted. This part of the disk has the shape
of the crescent elongated along the inner edge of the disk (e.g., Fig. 8 in Luminet 1979, or color figures in
Bromley et al. 1997; Pariev & Bromley 1998). It is easy to see that the area of this crescent is oc Ag®/2.
Therefore, the flux (or photon counts) per unit frequency near the red edge of the line should be F, o Ag'/?
(if the illumination intensity does not approach zero at the inner edge of the disk). Certainly, the coefficient
in these proportionalities gets very small for rapidly rotating black holes because of the large gravitational
redshift close to the event horizon and strong relativistic decrease of the intensity of the emitted X-rays.
The whole area of the disk, where the red edge of the line is formed (~ RZ), is also small. The part of the
disk forming the bluest photons has an elliptic shape centered at a point far from the event horizon. Similar
consideration for the blue edge of the line gives F,, o« Ag. However, the coefficient here is large, because
the region on the disk surface producing the bluest photons is relatively large. It is for this reason that
observed line profiles show much sharper, well-defined blue edges. Sharp red edges can be noticed only for
slowly rotating black holes but become less prominent for rotating black holes. Indeed, line profiles for a
Schwarzschild system, calculated with high resolution, have a much more distinctive sharp red edge (e.g.,
Fig. 5 in Pariev & Bromley 1998) than in the case of an extreme Kerr metric. (e.g., Fig. 6 in Pariev &
Bromley 1998).

While polynomial fitting does not take into account the theoretically expected shape of the edge profile,
the nonlinear model (3)-(4) is an approximation to the real edge. However, many observed profiles do not
show easily discernible sharp edges in the presence of noise. In particular, red edges have the appearance
of smooth transits between line and continuum. Blue edges are sharper, but are often accompanied by
a trough at higher frequencies. Hence even in this case, the blue edge is often better described by the
polynomial model than the non-linear model with its zero-continuum requirement. As a result the latter
is seen to have large errors in most cases. However, when blue edges occur without a significant negative
trough, the nonlinear model gives a better fit than the polynomial profile.

We have demonstrated through Monte Carlo experiments that we can obtain reasonable values for
line edges and get good estimates of uncertainties. We checked that our technique is not sensitive to
the functional form of the line profile, a test which indicates how robust our method is to the emissivity
function of the disk and the energy-dependent detector response. Specifically, we verified that our fitting
technique gives values of gmin and gmax that are not overly sensitive to the multiplication of the data by a
smoothly varying, positive definite function. This procedure resulted in substantial changes in the variance
of estimated roots. However, if the function does not change greatly in the vicinity of the edge, the new
mean of Monte-Carlo simulations remained within the largest of the one o-errors for the non-modified and
modified data sets.

We also checked our method using two functions, one on either side of the best fit line edge, each
giving a multiplicative factor which modifies the observed intensity, to vary both the line and the continuum
independently. By choosing particular shapes for these function one can either augment or suppress the line
with respect to the continuum data adjacent to the line. This mimics the effect of increasing or decreasing
the emissivity of that part of the disk which contributes to the line edge. It turns out that multiplication by
such a function can significantly change the error in the determination of the edge but the location of the
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edge itself still remains within the largest of the one o errors for the original and modified data. In the case
where the line is suppressed and the tail of the line became very shallow, the error in the position of the
edge increases. Conversely, highlighting the line and suppressing fluctuations in the continuum decreases
the error.

These tests indicate that the Monte-Carlo method gives robust estimates of the position of the edge
without great sensitivity to the details of the disk emissivity function. Certainly, there are limits. For
example, if the disk is illuminated in an inhomogeneous fashion as a result of flares located close to the disk
surface, the line contribution from a highly localized region of the disk could be mistaken for the red edge
of the whole profile. In this case one would miss a faint red tail extending beyond this jump and get an
overestimate of the inner extension of the accretion disk.

As discussed below, our Monte Carlo procedure worked poorly for estimating line edges in some
particularly noisy data sets such as those of Iwasawa et al. (1996) for the Dark Minimum (DM) and Bright
Flare (BF) states of MCG-6-30-15. The best fit for the red edge in DM data gives negative values for po,
while the Monte-Carlo scattering of points around best fit for the red edge in BF data gives negative mean
value of pg in sharp contrast with the best fit of 4.13keV to the actual data points. To evaluate the position
of the red edge in these noisy data sets we can formulate alternative methods for line edge detection which
are based more directly on statistical properties of the line. For example, given a set of flux measurements
as a function of energy, we could test the hypothesis that the fluxes are all consistent with continuum
emission, using x? to measure of goodness-of-fit (e.g., Bromley, Miller & Pariev 1998). An edge detection
algorithm then might be to test the continuum hypothesis on the red-most channels, including successively
bluer channels until the continuum hypothesis can be rejected at some specified level of confidence. The
edge of the line would then identified with the energy of the bluest channel.

9

In principle, this “running x2” method is conservative. It requires only that enough channels be
sufficiently different from the continuum that we can reject the continuum model. If the continuum were
extremely well sampled, then possibly a sequence of outlying fluxes all packed at, say, the blue end of the
set of channels could be dismissed as merely expected statistical fluctuations. A less conservative method
should consider correlations between the fluxes in neighboring channels to enable a more sensitive edge
detection.

A further drawback of the running x? method is that it cannot distinguish between absorption and
emission features. In practice, one can replace the flux in suspected absorption regions with exact continuum
values or even randomly generated values. To down weight the effects of possible absorption features we also
consider a ”sign” statistic to estimate the likelihood that a set of fluxes contains a line edge. Specifically,
we count the number of fluxes above and below the continuum and compare with the expected binomial
distribution.

We applied both these methods to the line profile data and obtained limits on the red edge of the lines
in the Iwasawa et al. (1996) Deep Minimum and Bright Flare data. The two methods yielded similar results
(Figure 5), with the edge detected by the sign method being 10% bluer than that detected by the running

2
x~ method.
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3. Implications for MCG-6-30-15, NGC 4151, and NGC 3516 line profiles
3.1. MCG-6-30-15

MCG-6-30-15 is a nearby (z = 0.008) Seyfert 1 galaxy. The broad skewed iron line profile observed
from this galaxy has drawn much attention from the X-ray community over the past few years after its
discovery (Tanaka et al. 1995). Figure 2 shows the results of polynomial fitting for frequency extrema from
different available observations of MCG-6-30-15. Figure 5 corresponds to the same profiles but fitted with
the nonlinear edge detection procedure. Comparison of the edge estimates using the two different methods
indicates that errors from the nonlinear fit are larger than errors from the polynomial fit (except in the
“97b” data from Iwasawa et al. 1999, for which the nonlinear fit’s error box is smaller than the error ellipse
of the polynomial fit). Best fits with nonlinear method are, generally, very close to the Monte-Carlo mean
values for the polynomial fits, with the exception of BF profile from Iwasawa et al. (1996). However, as
we mentioned above, the nonlinear fitting of the BF data worked poorly, and the running x? test gives
somewhat redder position of the edge than polynomial fitting.

We reported briefly on the application of gmin—¢gmax method in Bromley et al. (1998). The results
for gmin—¢gmax for Int, BF, and DM data of Iwasawa et al. (1996), reported in Bromley et al. (1998), were
very conservative, i.e. the extent of both red and blue edges in Bromley et al. (1998) were probably
underestimated. Our new edge detection procedure, which is designed to isolate an edge, not to find a
bounding value, gives smaller gmin and larger gmax. In contrast, the x2 rejection method used by Bromley
et al. (1998) does not take into account correlations in positions of data points, thus it may miss extended
emission edges which smoothly approach the continuum but at intensity levels which are comparable to the
errors of observations. Our new fitting technique allows us to hone in on such significant edges, if they exist,
although the uncertainties can be larger in this case. In choosing our new method over the x? rejection
technique, we are opting for precision over accuracy.

The “Int” data set gives the most restrictive point in the gmin—gmax plane for determining the lower
limit of the disk inclination angle. Using 20 error limits for the position of that point results in the following
absolute lower limits on 4: in a thin-disk Schwarzschild system i > 36° (nonlinear fitting, Fig. 5a) or i > 38°
(polynomial fitting, Fig. 2a); in an extreme Kerr system with a thin disk, i > 34° (nonlinear fitting, Fig. 5¢)
or i > 36° (polynomial fitting, Fig. 2c).

Incorporating all five available data sets, marked as T,97,97b,Int, and BF, one can estimate a likely
lower bound on the inclination of a thin disk as i > 44 + 6° (nonlinear), i > 48 + 5° (polynomial) for a
Schwarzschild system, and ¢ > 42 &+ 5° (nonlinear), 7 > 45 + 5° (polynomial) for extreme Kerr system.

These results contradict the estimates of ¢ obtained from the numerous fittings of the full line profile
to thin-disk models: 30.2°%"-%, 29.7°%%9 (Tanaka et al., 1995, Schwarzschild model), 26.8°%%! (Tanaka et
al., 1995, Kerr model), 29°%%° (Dabrowski et al., 1997), 32°%? (Iwasawa et al., 1999). The most probable
explanation for the discrepancy is that the blue edge of the profiles is not as sharp as predicted by the
thin-disk models. The positions of the points in the frequency extrema diagrams for turbulent disk models
(Figs. 2b, 2d, 5b, and 5d) indicate that the effects of finite disk thickness is to reduce the lower limit on the
inclination of the disk. Smoothed blue wings are characteristic of turbulent disk profiles as well (Pariev &
Bromley, 1998). Comparing Figs. 2a and 2b, 5a and 5b, one can see that the model of a thick disk around
nonrotating black hole with the luminosity of L = 0.5L¢q is enough to bring the lower bound on i from
the position of the Int data point down to 30°. To reduce the most probable inclination estimate from
the five data points (T,97,97b,Int,BF) to 30° requires higher accretion rates at a level of L &~ Leq. Since
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the efficiency of converting energy to radiation is higher for an extreme rotating black hole, the effect of
turbulent motions is smaller for the same values of L. By comparing Figs. 2c and 2d, 5¢ and 5d, one can
see that at L = Leq the absolute 20 limit on ¢ reduces to 30°, while one needs even higher accretion rates in
order to diminish the most probable lower bound on ¢ down to 30°. We thus conclude that the MCG-6-30-15
data suggest either a thin disk at relatively high inclination angle or a thick disk at lower inclination.

A key factor for our hypothesis that MCG-6-30-15 may harbor a thick disk is the mass of the black
hole, since this determines the ratio of L/Leq. There is no compelling measurement of the mass of central
black hole in MCG-6-30-15 to date. However, the form of the X-ray power density spectrum reported in
Nowak & Chiang (1999) evidently is universal, spanning low mass (~ 10 M) objects like of Cyg X-1 to
supermassive (10% M) ones like NGC 5548. The scaling of the frequencies at which the power laws break
led Nowak & Chiang (1999) to conclude that the mass of the black hole in MCG-6-30-15 is about 10 M,
which is at the lower end of the supermassive black holes mass spectrum in AGNs (Richstone et al., 1998).
Reynolds (2000) looked at possible reverberation delays between continuum emission in energy bands of
24 keV and 8-15 keV and emission in the 5-7 keV band containing the line in a long RXTE observation
of MCG-6-30-15. He did not find any reverberation delays longer than 500 seconds. This result, along
with X-ray variability data allowed him to conclude that the mass of the black hole is ~ 10% — 107 M,
in agreement with Novak & Chiang (1999) result. A multiwavelength study of MCG-6-30-15 (Reynolds
et al., 1997) shows that the bolometric luminosity of the object is ~ 8 - 10*3 erg s~!. Thus, the mass of
10 M, implies that the accretion luminosity is roughly 60% of the Eddington luminosity. This estimate
provides some grounds for the hypothesis that the extended edges of the line are caused by turbulence in
an accretion disk.

If one believes that the luminosity of the accretion disk is 60% of the Eddington limit, one can conclude
that the black hole in MCG-6-30-15 cannot rotate at the maximum rate, since disks around fast rotating
Kerr black holes do not have turbulent velocities high enough to make a 30° inclination angle consistent
with gmax for the “Int” data point. Together with the lower bound for a, from the gni, values of the reddest
observed line profiles (see below) this leads to the estimate of a. &~ 0.3. It is interesting to point out that
knowledge of the accretion disk luminosity can lead to a value of a, from the position of the blue edge of
the line. In the future, with improved understanding of the inner disk structure, one can hope to use the
shape and position of the blue edge of the profile to obtain a better quantitative estimate of a..

Still, we cannot rule out that highly ionized regions of the disk, emitting iron lines at 6.7keV and
6.97keV, can also produce blue wing of the line. As seen in Figures 2 and 5, when the continuum was
brighter (see the 97a data point from Iwasawa et al. 1999), the gax was smaller than when the continuum
was dimmer (97b data point). The data sets can be explained by asserting that in the 97a case the bright
flare occurred close to the innermost region of the disk, and more distant regions of the disk were not
sufficiently well illuminated to produce an extended blue wing. If highly ionized iron were skewing our
inference of the blue edge, it would presumably do so in a manner that would be more noticeable during the
bright flare. It does not seem that such a contribution spontaneously appears during the bright flare, since
this would push the true gnax lower than we have measured, and the 97a data would then imply a lowered
inclination angle bound which is inconsistent with the other datasets. In the absence of higher quality data,
we can only say that contamination by a 6.7 keV line occurs in both cases or not at all.

The position of the Iwasawa et al. (1997) DM and the Iwasawa et al. (1999) 97a point in the gmin—Ggmax
diagram indicate that at the level of 20 confidence there is emission coming from below 6R,, the innermost
stable orbit of a Schwarzschild black hole. Figures 2 and 5 show that this conclusion is true regardless
of the value of the black hole spin and thickness of the accretion disk. This can be considered as robust,
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model-independent evidence that the central object in MCG-6-30-15 is emitting from regions in the strong
gravitational field of a black hole. The most probable innermost radius of emission as determined by the
97a and DM points with an assumed inclination angle of 30° is 4-5R,, and it is still within 6/, for our
higher inclination angle estimates. The location of the inner edge of the disk at these radii corresponds to
the rotational parameter a, to be in the range between 0.29 and 0.56. Since there is no significant iron
absorption edge in the DM and 97a profiles, it is unlikely that any free-falling gas below innermost stable
orbit can account for the observed extended red tails (Young, Ross, & Fabian, 1998). If the red tails of the
DM and 97a profiles are produced by the emission of ionized iron, this will decrease gmin by a few per cent
and make the estimates of the innermost radius of the disk even smaller and the rotational parameter a.,
even higher. The caveat here is that we are able to determine only an upper bound for gp;, of DM and the
best nonlinear fit for 97a red edge falls close to the lower end of the error interval (Fig. 5, section 2). We
could be missing extended red tails in the profiles as a result of large scatter and observational errors. Thus,
it is reasonable to view our results for a. as only a lower bound, i.e., that the black hole in MCG-6-30-15
rotates faster than about a/M = 0.3.

3.2. NGC 4151

NGC 4151 is a bright nearby (z = 0.0033) Seyfert 1.5 galaxy. It exhibits a broad Ka line profile
very similar to the one observed in MCG-6-30-15 but with better signal-to-noise (Wang et al., 1999). The
observed biconical geometry of the narrow line [O III] A5007 region (Evans et al., 1993) suggests edge-on
geometry of the accretion disk. The best estimate of the angle between axis of the emission line cone and
line of sight is 65°. We may be tempted to adopt this value of inclination for the X-ray emitting disk as
well, however, better constraints come from the geometry of the observed radio jet (Pedlar et al. 1993)
which presumably originates in the inner region of the AGN. Unlike Evans et al. (1993), Pedlar et al. (1993)
consider a geometry of the narrow line region in which the [O III] emission comes from a stripe where the
ionization cone touches the galactic disk. This hypothesis is justified by a comparison of the velocities of
the [O III] region and those of neutral hydrogen, which require the [O III] region to participate in the
galaxy rotation and, thus be close to the plane of the galaxy. If the axis of the radio jet coincides with the
axis of the ionization cone, then one can infer that the angle between the radio jet and the line of sight to
be 40° (which turns out to be consistent with the observed relativistic beaming of v = 0.15¢). Naturally,
one expects the radio jet to be perpendicular to the plane of the inner part of the accretion disk where
the collimation process occurs. This would then give an estimate of 40° for the inclination angle of X-ray
emitting part of the accretion disk.

Our gmin—9max findings for NGC 4151 are plotted in Figures 1 and 4. The 20 lower bound for
the inclination angle of the disk derived from the thin disk model and a nonlinear edge fit (Fig. 4) is
approximately 28°. The best-fit frequency extrema point in Fig. 4 gives a most probable inclination of
35°. The upper 20 limit is 47°. All of these numbers are almost independent of value of a,. Polynomial
fitting (Fig. 1) gives somewhat larger values for gmax; the corresponding results for the inclination angle
are: the lower 20 bound is 40°, best fit value is 48°, and the upper limit is 60°. The bounds differ by no
more than 5° for different values of a.. The line emission comes from a disk radius beyond 6R,, with the
most probable location of the innermost emission region at 8-10R,. The turbulent disk model gives lower
inclination angles and slightly (by approximately 1R,) higher radii of the location of emissive spots.

Wandel, Peterson, & Malkan (1999) determine virial masses, emission-line region sizes, and the flux of
ionizing continuum of AGNs using reverberation and photoionization techniques. For NGC 4151 they find
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the mass of the black hole to be 1.2-2.2 - 107 M, the ionizing luminosity 5 - 10*? erg s—!, which corresponds
to the ratio of ionizing luminosity to the Eddington luminosity as 3 - 1073, The ionizing luminosity is
presumably comparable to the bolometric luminosity, since a large part of the AGN energy is expected to
be radiated in the UV band. Thus, it is unlikely that the thickness of the disk has any effect on the iron
line profile in NGC 4151.

Our analysis excludes the value of 65° for the inclination angle of the disk and is in good agreement
with the value of 40° deduced by Pedlar et al. (1993). The unshifted main core of the line can be attributed
to some relatively narrow line component whose origin is not the accretion disk. This component can be due
to reflection of line photons from a surrounding torus and cool corona above the accretion disk (Poutanen
et al. 1996).

3.3. NGC 3516

NGC 3516 is another close Seyfert 1 galaxy (z = 0.009) which is known to have a broad, skewed K«
iron line (Kriss et al., 1996; Nandra et al., 1997b; Nandra et al., 1997c; Nandra et al., 1999). We used the
most recent observations by Nandra et al. (1999) for the application of our method. The gpin-gmax point
for the line profile for the whole observation (Fig. 1 in Nandra et al., 1999) as well as points for the line
profile at each time interval (Fig. 3 in Nandra et al., 1999) were calculated. Figure 3 shows the results of
polynomial fitting of lines edges, while Figure 6 represents the results of nonlinear fitting. One can see that
the positions of the gmin-gmax points obtained by these two different methods fall within each other’s error
boxes, though the errors of the nonlinear model are larger than polynomial fitting. To be conservative, we
use the nonlinear fits (Fig. 6) in our analysis. From the position of points P2, P4, and P5 we conclude that
the lower limit on the inclination angle of a thin Keplerian disk is 27 £ 4°. The best-fit locations in Fig. 6
indicate an inclination angle of the disk 43 4+ 4°. These estimates are smaller for a rapidly rotating black
hole but only by a few degrees.

We cannot put an upper limit on the inclination angle of the disk in this case. Nandra et al. (1999)
fit an integrated state (“Int”) profile and obtain the following values for the inclination of a thin disk:
In the Schwarzschild model, i = 357L°, and for the extreme Kerr model i = 0719°. We sce that the
appearance of blue wings in profiles P2, P7, and P4 causes our estimates of the inclination angle to increase
compared to the fits from the integrated line profile. This discrepancy might be understood from Figure 1
of Nandra et al. (1999), showing that their fits for Schwarzschild and Kerr geometries have red wings which
extend beyond the actual red edge of the line profile. Our determinations of the red edge of the Int profile
give: linear fitting (Table 1) 3.53 &+ 0.19keV; nonlinear best fit (Table 2) 3.34keV; and nonlinear fits to
Monte-Carlo scattered points (Table 2) 3.98 + 0.45. For the nonlinear fits we used only data points from
channels 5 to 24, excluding the depression below 3.5keV which is caused by absorption. For comparison,
the fitting domain of Nandra et al. (1999) extends below 3keV.

The inclination angle i = 3571° obtained by Nandra et al. (1999) for the Schwarzschild model is still
consistent with our lowest limit, however, their estimate for the Kerr model is lower than any of our limits.
Thus, our line edge determinations for time-resolved observations (P1-P8) favors a Schwarzschild black hole
— the best fit to a Kerr model by Nandra et al. (1999) simply cannot account for blue wings of the line in
P2, P4, and P5 time intervals. These transient blue wings may be caused, for example, by a temporary
enhancement of irradiation of outer parts of the disk during the P2, P4, and P5 observation intervals. In
the combined set of data, this enhancement of the blue wing gets averaged out and contributes to the
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change (decrease) of the index of the best-fit power law model of the continuum.

NGC 3516 observations do not show a red tail as extended as in MCG-6-30-15. Large uncertainties in
the data points in Fig. 6 prevent us from placing tight constraints on the radial location of the emitting
region or from deriving any conclusions about the possible extent of the accretion disk below 6R,. The
point with the lowest upper bound on gn,;, is P2. Using the square of errors for that point one can only
conclude that the disk in NGC 3516 must be extended below 12R, at a 20 level of confidence, if one adopts
1 = 35° for the disk inclination.

Another possibility is that a thick disk model (Figs. 6b and 6d) could naturally explain the blue
extended wings of the line without changing the fit to the core. Analysis of unevenly sampled X-ray
luminosity data on NGC 3516 led Edelson & Nandra (1999) to obtain a rough estimate of the mass of
the central black hole in NCG 3516 of 107 M. Infrared, optical and near UV fluxes from the NGC 3516
nucleus total ~ 3 -1071%erg s7'cm™2 (NASA/IPAC Extragalactic Database), while the far UV flux is
~6-10"Merg sTlem ™2 (Goad et al. 1999), and the soft X-ray flux (NASA/IPAC Extragalactic Database)
is 3-107'2erg s~ 'em 2. This sums up to give a lower bound for the bolometric luminosity of ~ 10** erg s—!
or the ratio L/Leq = 0.08.

If the above luminosity estimates are accurate, then the effects of turbulent broadening on the line
profile are negligible. However, L/ Leq can be a few times larger, with the main uncertainty coming from
poor knowledge of the mass of the central black hole. When results of reverberation studies for NGC 3516
become available, we hope to obtain a better estimate of the central black hole mass and to determine
L/Le¢q more accurately. Still, Figure 6d indicates that even a “maximally” thick disk with L = Leq cannot
make the Nandra et al. (1999) Kerr best fit value of i = 071°° to be consistent with gma., measurements for
P2, P4, and P5 intervals (all the points of the curve i = 19° are below the error squares for P2, P4, and P5).
In the case of a Schwarzschild model, comparison of Figs. 6a and 6b shows that the ratio of L/Leq & 0.3 is
enough to raise the curve ¢ = 35° such that it will be consistent with the best fit points for all observational
intervals except P5 and P8. The inability of the Kerr thick disk model to account for the blue wings of the
line strengthens our conclusion that the black hole in NGC 3516 should be rotating slowly

4. Summary

In this work we suggest a method which allows us to put bounds on the geometry and kinematics of
the line emitting surface of a relativistic accretion disk around a supermassive black hole. Our technique is
not sensitive to models of the illuminating source, the distribution of illuminating radiation over the disk
surface, or the angular distribution of the reflected line in the rest frame of the reflecting material. We use
our method to determine the positions of the red and blue edges of observed emission lines and extract
information from these positions by comparison with the results of a fully relativistic ray-tracing code. The
code generates maps of line-frequency extrema, and it can be used to demonstrate explicitly the differences
which can arise as a result of black hole spin and turbulence in an accretion disk.

Conventionally, the only way to identify black hole rotation is to find emission from within the
innermost stable orbit of a nonrotating black hole. Our method illustrates that if one has information about
the geometry of the accretion flow from some other observation such as the inclination angle of a jet, along
with an estimate of the luminosity relative to Eddington, then a new measure of the hole’s spin may be
available. We can thus break the “degeneracy” that exists between rotating and nonrotating black holes in
a new way.
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Certainly, our method cannot be a substitute for the fitting of the whole shape of the line assuming
a particular emissivity law (power law axisymmetric in most works) and it cannot provide interesting
information about the emissivity law itself. However, it can provide bounds on the geometry of the disk
and the angular momentum of the black hole, which any emissivity model should satisfy. Therefore, it is
important to emphasize the position of the line edges and to test model parameters obtained as a result of
line profile fitting against the constraints provided by our method.

A drawback of the method are uncertainties in the determination of the position of the edges. A
main focus of this paper is to find a reasonable edge detection algorithm to replace the conservative
edge-boundary limits found by Bromley, Miller & Pariev (1998). We perform Monte-Carlo simulations of
the data set using fits to the line edges with both a nonlinear sharp-edge model and a polynomial model
which makes no a priori assumption about the shape of the line profile. We find reasonable agreement
between models, both in terms of best-fit values and the error distributions.

Another drawback of the method is possible contamination with iron K3 line, nickel Ka line, 6.7 keV
and 6.97keV Ka lines of highly ionized iron. We made corrections to profiles for the iron Kf line using a
Kp-to-Ka yield ratio and for the nickel Ka line using a fiducial yield of 0.06 relative to iron Ka (see George
& Fabian 1991). For quality of spectra currently available, these corrections are small.

We illustrate frequency extrema method by applying it to the Seyfert galaxies MCG-6-30-15, NGC 4151,
and NGC 3516. The results for MCG-6-30-15 show that the commonly assumed inclination angle of 30° for
a thin accretion disk is inconsistent with the position of the blue edge of the line at a 3o level. The thick
turbulent disk model can remedy this discrepancy, since it leads to appearance of a smooth blue wing in
the line while the changes to the main profile are not so large (Pariev & Bromley, 1998). Recent estimates
of the mass of the black hole in MCG-6-30-15 favor a luminosity ratio L/Leq ~ 0.6, which is enough to
account for the gnax for all observations of the iron line in MCG-6-30-15 published to date. Furthermore,
frequency extrema lead us to conclude that the black hole in MCG-6-30-15 must be rotating with at least
a/M = 0.26.

For NGC 4151 our method excludes face on and edge on geometries, while giving bounds for the
inclination angle of X-ray emitting inner disk of 50 & 10°. These bounds are consistent with the models
of the ionization cone grazing the disk by Pedlar et al. (1993) and two X-ray emitting disks of Wang
et al. (1999). However, our bounds are not consistent with the ¢ = 65° geometry assumed by Evans et
al. (1993) based on the observation of the biconical geometry of the narrow line [O III] A5007 sources.
Because of very low ratio of L/Leq, effects of turbulence in this source are negligible.

We find that frequency extrema results combined with line profile fitting by Nandra et al., (1999) favors
Schwarzschild vs. Kerr model for NGC 3516. Although L/Leq ~ 0.08 for this source, the determination
of the mass of the black hole is very uncertain. The possibility exists that the thick disk model may be
relevant for NGC 3516 and could explain the blue wings of the line, observed during monitoring of this
source by Nandra et al. (1999).

Further reverberation mapping results will provide better estimates of the mass of the black holes in
nearby Seyferts and allow the thick turbulent disk model to have more predictive power for each individual
source. Certainly, going beyond our simplifying assumptions and incorporating results of modeling of X-ray
reflection spectra from the disk surface would be the next step to interpret higher quality spectral data
from XMM and Constellation-X missions.
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Fig. 1.— Maps of minimum and maximum redshifts for the case of Schwarzschild (a) and extreme Kerr (b)
black holes. The grid of constant inclination angle (approximately horizontal lines) and equal radii (lines in
vertical direction) are plotted. Solid lines correspond to the thin Keplerian disk model; dashed lines are for
the turbulent thick disk model with Eddington luminosity L = L.4q. In the region with radii r < 6R, in
the Schwarzschild case the gas was considered to be free-falling. The point is for NGC 4151 data by Wang
et al. (1999). Error ellipse of polynomial fits is drawn at 20 level contour. The scale on plots (a) and (b) is
the same as well as on all gnin—9maz plots in this work.
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Fig. 2.— Data from MCG-6-30-15 plotted on a maximum and minimum frequency shift diagram. Error
ellipses of polynomial fits are shown at a 20 level contour. Observational data points on all four panels
are the same. The point marked as T stands for the Tanaka et al. (1995) data. Int, BF and DM denote
intermediate, bright flare and dark minimum spectra from Iwasawa et al. (1996). Points 97, 97a and 97b
are for the average profile (97), bright flare subset (97a) and minimum subset (97b) from Iwasawa et al.
(1999). The panels differ by the model used for the disk-black hole system. The top two panels are for a
Schwarzschild black hole: Fig. (a) is for thin disk model, and Fig. (b) is for thick disk model. The bottom
two panels are for extreme Kerr cases: Fig. (c) is for the thin disk model, Fig. (d) is for the thick disk model.
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Fig. 3.— Data from NGC 3516 plotted on maximum and minimum frequency shift diagrams. Error ellipses
of polynomial fits are shown at a 20 level contour. Observational data are the same on all panels and are
taken from Nandra et al. (1999). The point designated “Int” is for the profile integrated over the whole
observation. Points designated “P1” through “P8” are for shorter time intervals of the observation. The
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panels differ by the model used for the disk—black hole system just as in Figure 2.
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Fig. 4.— The results of continuum + line edge model fitting to the NGC 4151 data by Wang et al. (1999).
All explanations and notations are the same as for Fig. 1 but using the non-linear “sharp edge” fitting model.
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Fig. 5.— The results of continuum + line edge model fitting to the MCG-6-30-15 data. All explanations and
notations are the same as for Fig. 2 but using the non-linear “sharp edge” fitting model. Only blue limits
for the red edge in the case of DM and BF data are obtained.
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Fig. 6.— The results of continuum + line edge model fitting to the NGC 3516 data. All explanations and
notations are the same as for Fig. 3 but using the non-linear “sharp edge” fitting model.
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Table 1. Results of Fitting the Line Edges with Polynomial Model

Observation Edge Points Approximation keV g+ 20 x?2/dof

Tanaka95 Red 1-16 quadratic, MC around actual data 3.67£0.25 0.57+0.08

Tanaka95  Blue 26-31 quadratic, MC around actual data 6.90+0.10  1.078+0.031 e
196, Int Red 1-29 cubic, MC around actual data 4.17+£0.19  0.652+0.061 52.81/25
196, Int Blue 42-54  quadratic, MC around actual data 7.08+0.12 1.107+£0.039 15.29/10
196, BF Red 1-32 quadratic, MC around actual data 4.72+0.28  0.737+£0.086 66.58/29

196, BF  Blue 35-45 cubic, MC around actual data 7.025+0.199  1.098+0.062  13.53/7
196, DM Red 1-22 cubic, MC around actual data 2.7940.40  0.436+0.124 41.21/18
196, DM Blue 28-36 quadratic, MC around actual data 7.45+0.46  1.164+0.143  10.69/6
199, Int Red 1-6 quadratic, MC around actual data 3.79+0.30 0.59£0.09 e

199, Int Blue 20-24 quadratic, MC around actual data 7.12+0.17 1.11+0.06

199, a Red 1-33 quadratic, MC around actual data 3.074+0.29 0.484+0.09

199, a  Blue 37-43 quadratic, MC around actual data 6.244+0.23 0.975+0.07

199, b Red 1-34 quadratic, MC around actual data 4.294+0.47 0.67+0.15

199, b Blue 37-41 quadratic, MC around actual data 7.09+0.26 1.108+0.08

NGC 4151 Red 6-15 quadratic, MC around actual data 4.28+£0.15  0.669+0.047
NGC 4151 Blue 23-40 quadratic, MC around actual data 7.78£0.10  1.216+0.031
NGC 3516, Int Red 1-19 quadratic, MC around actual data 3.53+0.19 0.5540.06
NGC 3516, Int Blue 36-39 quadratic, MC around actual data 6.58+0.07  1.028+0.022
NGC 3516, P1 Red 18-36 quadratic, MC around actual data 4.584+0.32 0.72+0.10

NGC 3516, P1  Blue 37-43 cubic, MC around actual data 6.51+0.07 1.02+0.02
NGC 3516, P2 Red 1-36 quadratic, MC around actual data 3.62+0.22  0.566+0.069
NGC 3516, P2 Blue 38-48 cubic, MC around actual data 7.14+0.23 1.12+0.07
NGC 3516, P3 Red 23-36 cubic, MC around actual data 4.70+0.15  0.734+0.047

NGC 3516, P3  Blue 38-41 quadratic, MC around actual data  6.57+0.095  1.02740.030
NGC 3516, P4 Red 1-31 quadratic, MC around actual data 3.944+0.52  0.616+0.081
NGC 3516, P4  Blue 38-47 quadratic, MC around actual data 6.99+0.19  1.092+0.059
NGC 3516, P5 Red 1-30 cubic, MC around actual data 4.73+0.20  0.739+0.063
NGC 3516, P5  Blue 38-48 cubic, MC around actual data 6.894+0.20  1.077+0.063
NGC 3516, P6 Red 19-30 quadratic, MC around actual data 4.38+0.24 0.6844+0.075
NGC 3516, P6  Blue 39-48 quadratic, MC around actual data 7.24+£0.33  1.13140.103

NGC 3516, P7 Red 18-36 cubic, MC around actual data 4.184+0.15  0.653+0.047
NGC 3516, P7  Blue 38-46 quadratic, MC around actual data 6.97+0.15  1.089+0.047
NGC 3516, P8 Red 1-36 cubic, MC around actual data 3.444+0.25  0.538%+0.078

NGC 3516, P8  Blue 40-48 quadratic, MC around actual data 7.17+£0.36  1.120+0.112

Note. — MC is short for Monte-Carlo; 196 in the first column refers to the data from Iwasawa et al. (1996) for
Intermediate (Int), Bright Flare (BF),and Deep Minimum (DM) data sets; 199 refers to the data from Iwasawa et
al. (1999) for the whole observation (Int), for time intervals (a) and (b); Tanaka95 to the data from Tanaka et al.
(1999); NGC 4151 data are from Wang et al. (1999); NGC 3516 data are from Nandra et al. (1999) for the mean line
profile (Int) and for 8 time intervals (P1-P8); the last column contains x? averaged over Monte-Carlo realizations.
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Table 2. Results of Fitting the Line Edges with Nonlinear Model
Observation Edge Points Approximation keV g+ 20 x?/dof
Tanaka95 Red 1-16 linear, MC around actual data  3.79+0.36  0.592+0.112 35.26/14
Tanaka95 Red 1-16 linear, actual best fit 3.74 - 16.95/14
Tanaka95  Blue 26-34 quadratic, MC around actual data  6.99+0.15 1.092+£0.046  15.96/6
Tanaka95  Blue 26-34 quadratic, actual best fit 7.04 e 8.37/6
196, Int Red 1-29 linear, MC around actual data  4.14+£0.24 0.647+0.076
196, Int Red 1-29 linear, actual best fit 4.14 - 25.50/27
196, Int Blue 42-56 quadratic, MC around actual data ~ 7.204+0.21 1.123+0.063
196, Int Blue 42-56 quadratic, actual best fit 7.04 e 5.01/12
196, BF Red 1-33 linear, MC around actual data  4.88+0.93 0.763£0.290
196, BF Red 1-33 linear, actual best fit 4.13 43.71/31
196, BF  Red n-points x? estimate?® 4.58
196, BF Blue 34-45 quadratic, MC around actual data ~ 7.02+0.19 1.096+0.060
196, BF Blue 34-45 quadratic, actual best fit 6.88 e 6.05/9
196, DM Blue 28-36 linear, MC around actual data  7.37£0.57 1.152+0.178
196, DM Blue 28-36 linear, actual best fit 7.83 3.75/7
196, DM Red n-points x? estimate?® 3.55
199, Int Red 1-7 quadratic, MC around actual data  3.944+0.24 0.6154+0.076 5.91/4
199, Int Red 1-7 quadratic, actual best fit 4.04 e 0.83/4
199, Int  Blue 20-25 quadratic, MC around actual data  7.17+0.22 1.12140.070 5.16/3
199, Int Blue 20-25 quadratic, actual best fit 7.06 e 1.65/3
199, a Red 1-34 linear, MC around actual data ~ 3.67+£0.38 0.573+0.120 57.44/32
199, a Red 1-34 linear, actual best fit 2.97 - 23.45/32
199, a  Blue 37-43 linear, MC around actual data  6.31£0.42 0.986+0.131 9.33/5
199, a  Blue 37-43 linear, actual best fit 6.24 e 4.76/5
199, b Red 1-34 linear, MC around actual data  4.23+0.52 0.661+0.161 60.48/32
199, b Red 1-34 linear, actual best fit 4.10 S 25.74/32
199, b  Blue 37-41 linear, MC around actual data  7.18+£0.25 1.122+0.079 3.84/3
199,b  Blue 3741 linear, actual best fit 7.01 e 0.800/3
NGC 4151 Red 1-15 linear, MC around actual data  4.31+0.18 0.673+0.056 56.77/13
NGC 4151 Red 1-15 linear, actual best fit 4.34 - 17.35/13
NGC 4151  Blue 23-40 quadratic, MC around actual data 6.82+0.087 1.066+0.027 67.65/15
NGC 4151  Blue 23-40 quadratic, actual best fit 6.75 <o 20.73/15
NGC 3516, Int Red 5-24 linear, MC around actual data  3.98+0.45 0.622+0.141 81.33/18
NGC 3516, Int Red 5-24 linear, actual best fit 3.34 - 27.54/18
NGC 3516, Int  Blue 34-45 linear, MC around actual data  6.81+0.13 1.064+0.039 41.72/10
NGC 3516, Int  Blue 34-45 linear, actual best fit 6.82 - 16.26/10
NGC 3516, P1 Red 18-36 linear, MC around actual data  4.83+0.42 0.756+0.131 51.67/17
NGC 3516, P1 Red 18-36 linear, actual best fit 4.89 - 21.51/17
NGC 3516, P1 Blue 38-48 linear, MC around actual data  6.784+0.27 1.060+£0.083  16.68/9
NGC 3516, P1  Blue 38-48 linear, actual best fit 6.57 3.85/9
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Table 2—Continued

Observation Edge Points Approximation keV g+ 20 x?2/dof
NGC 3516, P2 Red 1-36 linear, MC around actual data  3.81+0.50 0.595+0.158 96.05/34
NGC 3516, P2 Red 1-36 linear, actual best fit 3.53 -+ 30.98/34
NGC 3516, P2 Blue 37-48 linear, MC around actual data ~ 7.14+0.25 1.116+0.079 21.62/10
NGC 3516, P2 Blue 37-48 linear, actual best fit 6.94 6.13/10
NGC 3516, P3 Red 23-36 linear, MC around actual data  4.79+0.48 0.749+0.149 27.89/12
NGC 3516, P3 Red 23-36 linear, actual best fit 4.66 e 4.86/12
NGC 3516, P3  Blue 37-48 quadratic, MC around actual data ~ 6.77+£0.17 1.0584+0.054  19.78/9
NGC 3516, P3  Blue 37-48 quadratic, actual best fit 6.94 5.07/9
NGC 3516, P4 Red 13-31 linear, MC around actual data  4.50+0.47 0.703+0.147 41.52/17
NGC 3516, P4 Red 13-31 linear, actual best fit 4.56 <o 10.67/17
NGC 3516, P4  Blue 37-48 quadratic, MC around actual data 6.93+0.147 1.083+0.046  23.96/9
NGC 3516, P4  Blue 37-48 quadratic, actual best fit 7.01 10.74/9
NGC 3516, P5 Red 1-30 quadratic, MC around actual data  4.64+0.42 0.725+0.131  76.6/27
NGC 3516, P5 Red 1-30 quadratic, actual best fit 4.72 <o 25.65/27
NGC 3516, P5  Blue 38-48 linear, MC around actual data  7.29+0.27 1.140+0.084  21.48/9
NGC 3516, P5  Blue 38-48 linear, actual best fit 7.37 8.42/9
NGC 3516, P6 Red 1-30 linear, MC around actual data  4.58+0.42 0.715+0.133 77.86/28
NGC 3516, P6 Red 1-30 linear, actual best fit 4.26 - 27.93/28
NGC 3516, P6  Blue 38-48 quadratic, MC around actual data  6.99+0.23 1.092+0.071  15.68/8
NGC 3516, P6  Blue 38-48 quadratic, actual best fit 7.01 e 4.26/8
NGC 3516, P7 Red 1-36 linear, MC around actual data  4.36+0.47 0.682+0.146 98.34/34
NGC 3516, P7 Red 1-36 linear, actual best fit 4.23 < 36.99/34
NGC 3516, P7  Blue 38-48 quadratic, MC around actual data ~ 7.03+£0.29 1.099+0.090  17.32/8
NGC 3516, P7  Blue 38-48 quadratic, actual best fit 6.84 e 6.16/8
NGC 3516, P8 Red 1-37 quadratic, MC around actual data  5.33£0.66 0.8344+0.207 100.5/34
NGC 3516, P8 Red 1-37 quadratic, actual best fit 5.37 - 40.96/34
NGC 3516, P8  Blue 39-47 quadratic, MC around actual data ~ 7.05£0.30 1.102+0.095  15.00/6
NGC 3516, P8  Blue 39-47 quadratic, actual best fit 7.11 6.77/6

2Blue conservative limit on the red edge from the n-points x? rejection method

Note. — MC is short for Monte-Carlo; 196 in the first column refers to the data from Iwasawa et al. (1996) for
Intermediate (Int), Bright Flare (BF),and Deep Minimum (DM) data sets; 199 refers to the data from Iwasawa et
al. (1999) for the whole observation (Int), for time intervals (a) and (b); Tanaka95 refers to the data from Tanaka
et al. (1999); NGC 4151 data are from Wang et al. (1999); NGC 3516 data are from Nandra et al. (1999) for the
mean line profile (Int) and for 8 time intervals (P1-P8); the last column contains x? averaged over Monte-Carlo

realizations.
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