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An Unsplit, Two-Dimensional Advection Algorithm (U)

S. J. Mosso and B. K. Swartz
Los Alamos National Laboratory

This paper describes a method of representing the distribution of advected quantities over zones
with a conservative, multi-dimensional, monotonically limited, quadratic interpolant. The
method is applicable to two-and three-dimensional, regular and irregular grids. The intent of this
method is to reduce dissipation associated with advection. (U)

Keywords: hydrodynamics, advection, remap, link

Introduction

The first author’s motivation for this work is contained in this introduction.

Advection packages in Eulerian codes can be broken into two major pieces. The first piece is the
geometric calculation of the flux volumes. These volumes describe the physical extent of the material that
will be transported from the donor zone to neighboring acceptor zones. It is the first author’s opinion
that for two spatial dimensions, the flux volume calculation has been effectively and efficiently solved in
the two papers ‘Reconstructing Volume Tracking’ (Rider and Kothe, 1998) and ‘Incremental
Remapping as a Transport/Advection Algorithm’ (Dukowicz and Baumgardner, 2000).

The remaining component of an advection package is the calculation of the conserved quantities that
each of the flux volumes carries from its donor to acceptor zones. To this end we propose, for each cell
of an irregular grid, a way to use nearby cell mean values to define and then limit a quadratic
approximant. The result is a conservative but discontinuous piecewise quadratic approximation.

Most Eulerian and Arbitrary Lagrangian Eulerian (ALE) codes perform material advection through a
series of one-dimensional advection steps. As an example, flux split advection for a zone that is
uniformly expanding in all directions does not move material through all of its faces in a single step. By
stepping the advection calculation through the facial pairs, flow that is diagonal to the facial normals will
first be transported out of one face and then through a neighboring face in the acceptor zone. Alternating
the order for the direction of advection reduces directional asymmetries.

The volume of material transported across the zone faces in traditional Eulerian codes is calculated
using a single-dimensional simplification. The depth of the flux volume is simply the vector dot product of
the velocity distribution over the face with the facial normal times the time step. The flux volume is then
the facial area times the fluxing depth. No variation of the fluxing depth over the face is considered.

The value of the conserved quantities that the fluxed material carries from the donor zone to the
acceptor zone is calculated by using one of two, nearly equivalent, methods: van Leer’s (van Leer,
1977) third-order scheme or Boris and Book’s Flux Corrected Transport (FCT) (Boris and Book,
1973). In both of these methods, a one-dimensional, monotonic, quadratic distribution is used to
represent the spatial variation of each conserved quantity over the donor zone. By monotonic, we mean
that the interpolated value at the zone face lies between the mean values of the conserved quantity in the
donor zone and those of the corresponding neighbor zone (MUSCL —type monotonicity). As with the
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calculation of the flux volume, the spatial variation of the conserved quantity in the directions normal to
the facial normal is not accounted for in the quadratic distribution.

Another contributor to grid imprinting is the variation in advection dissipation. In general, the third
and higher spatial derivatives of conserved quantities are nonzero. This means that the quadratic
distribution will not accurately represent sharply varying quantities. The quadratic distribution will exhibit
a dissipated or viscous distribution and will not vary as rapidly as the physical variation. When the
quadratic distribution is used to determine how much of the conserved quantity the fluxed material
carries from the donor to the acceptor zone, the computation value will be less than the true value. For
the case of material moving diagonally to the zone faces, material will be transported between the
original donor zone and the ultimate acceptor zone in two steps in two dimensions and in three steps in
three dimensions. Each of these advection steps will contribute its own dissipation. Contrast this
diagonal material motion in one part of the mesh with zone-aligned motion in another portion of the
mesh. In the grid-aligned flow, the material will move in a single advection step from the donor to the
acceptor zone and will thus experience less dissipation.

Van Leer Method

As mentioned above, most Eulerian codes calculate the transported value of the conserved
quantities using the van Leer methodology. As a review, in one spatial dimension van Leer
approximated a distribution on a uniform grid using a quadratic function. One implementation writes the

quadratic function over the interval (x i xm) , using its centroid X , as:

- — (x—-%Xx [ x=xY 1
f(X)=f+Af( A j"‘_Af[( ) } (D

2 Ax ) 12
where f is the cell mean, Af is the limited first spatial difference (Fig. 1), and A’f is a second

difference of the quantity f . The calculation of the limited first difference involves consideration of three

different numerical differences, as illustrated in Fig. 1. All three alternatives are calculated, and the
difference with the minimum magnitude is used. To ensure that no new maxima or minima are created, if

f1+1

o o
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Left sided difference Central difference Right sided difference

Figure 1. One-dimensional van Leer difference choices for spatial difference of f.
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the sign of the left and right differences is different, the resulting difference is zeroed. In a similar way, the
second difference

sz = (me - &i—l) @)
was calculated and then adjusted so that the interpolated values at the zone edges do not fall outside the
range of values of f over the three zones. To perform this limiting, Eq. (1) was used to calculate an
interpolated value of f at the zone boundary. If the value of the interpolant fell outside the bounding
range of the two f s, the value of the second derivative was reduced until the interpolant fell into the
prescribed range.

As an important consideration, the representation (1) of the interpolant guarantees that its integral
over the zone will equal f . This will occur independent of the value used for the first or second
differences.

Current Method: Vertex Gradients and Zonal Gradients

The current method was developed with the intention of extending the features of the van Leer
method to multiple dimensions, and ensuring that the accuracy of the method would be the primary
objective. By accuracy, we mean that the method best preserves the features of the problem for
translational advection problems. Another way of defining accuracy would be the method that exhibits
the least dissipation. The method should be accurate on structured and unstructured, orthogonal and
nonorthogonal, and two- and three-dimensional meshes.

A simple, two-dimensional, nonorthogonal, unstructured mesh is illustrated in Fig. 2. The
central zone is labeled c. The centroid of each neighboring zone is indicated as an open circle and a
sample vertex of zone c is indicated by the shaded circle. The average gradient around the vertex v is
calculated by means of a line integral around it using the divergence theorem. This line integral extends
along line segments that join the centroids of its neighboring zones. Each zone contributes (via the

Figure 2. A two-dimensional, nonorthogonal, unstructured mesh.
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trapezoidal rule) two terms to the vertex gradient: the zone averages at the segment ends times the
segment’s exterior normal times the segment length:

s g L[l
Vi, = [[ v axay = — §(f Aar = Vol dzg‘,[ i, zej 3)

John Dukowicz (Dukowicz, 1984) was possibly the first to describe a gradient in this way. Miller
and Burton (1990) then implemented Dukowicz’s method using a robust and accurate algorithm to
compute the gradient. Since we use the trapezoidal rule over a linear segment, if we place a linearly
varying quantity over a set of neighboring zones and then calculate the gradient using this method, we
reproduce the given gradient to machine roundoff. If we distribute a quadratic function over a mesh, we
should do a good job (i.e., convergent) of approximating its average gradient near each vertex. This
calculation will be exact for quadratic functions on a tensor product of two uniform one-dimensional
meshes and will be convergent for irregular grids.

Recall that van Leer calculated two one-sided differences and a central difference. He examined
these to choose the smallest magnitude difference for his limited zonal gradient. In a similar way, we will
calculate a gradient at each vertex of the mesh. One extension of van Leer’s method to multiple
dimensions and convex zones would use the minimum-magnitude vertex gradient for the initially
unlimited zonal gradient. Our experience has shown that this choice leads to larger discontinuities in the
approximant at the zone edge than occurs with the more flexible limitations we propose below.

In addition to the one-sided gradients, van Leer utilized a central difference. We call our analog of
this difference the zonal gradient Vf, . To calculate this gradient, first we define a vertex-dual mesh in

which segments joining successive neighboring zone’s centroids enclose the vertex’s dual zone. A
vertex’s dual zone is the same region that we used for its vertex gradient (Figure 2). Moving around the
boundary of an ordinary zone, each vertex zone contributes its vertex gradient and associated vertex
volume to the zonal gradient as follows:

Y voi, vf,
V= S ©

Due to the cancellation of interior line integrals, this zone-average gradient is the same as the gradient
that would be calculated through the line integral formulation (as in Dukowicz and Kodis, 1987) around
the cell’s surrounding zone centroids. Its magnitude may need to be limited.

In one-dimension van Leer limited the linear approximation to restrict zonal boundary values to lie in
the range encompassed by local zones’ median values. Dukowicz and Baumgardner (2000) have
extended this limiting to multiple dimensions. See also Dukowicz and Kodis (1987) and Swartz (1999)
and sections that follow herein.

Hessian Computation

Van Leer approximated the curvature of the interpolation by differencing the two one-sided
gradients. In a similar way, we will estimate a zone-centered second derivative by spatially differencing
(using the divergence theorem) the vertex gradients around the perimeter of the polygonal zone:
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9°f df

axzzzv(axj.l::?ﬁ_i:f( ). = 2Vl EZCﬁ IOy
Of A fof), s oL ), ] !
8x8y_2[ (ay] l+v[8x] j:2V01 Z

Z[fy )0, = v+ (B + ), - x)]

f@ﬂ)+f@0]

®)

I

°f _(f). —
PR V(ayj j Volzgf,,(nyl)e Vol LU+ e = %)

Here f, and fy are the mean values over the segment of the components of Vf , and fx and fy are the

values of the components of Vf, (3) at its endpoints. The subscripts s and ¢ refer to the starting and
terminating vertices of the edge. There are two methods for computing the cross-derivative term, both
of which produce almost the same result. Our method (5) averages the two alternatives to produce the
cross derivative.

This approach provides exact estimates of second derivatives for multivariate quadratic functions on
uniform grids. On more irregular grids, however, convergence or even boundedness of the estimates is
not to be expected. This is in spite of the fact that the resulting difference formulae yield convergent and
second-order-accurate approximations to solutions of ordinary differential equations on irregular grids
as the mesh size gets small. For proof of this see Manteuffel and White [1986, esp. Section 5].

The following analysis demonstrates these problems in one space dimension. Let four mesh vertices
bound three adjacent mesh cells that have centroids x|, X,, X, and mesh widths A, , A, , h, respectively.

Apply our approach to the three successive cell means f,, f,, f. Our estimates for the two successive

vertex-centered gradients are ( fiu—f )/ h., where h., = (h + h, )/2. Integrating Taylor

i+1

expansions about the X, shows these numbers are within O(h*) of f '(JTM /2), where

Xy = (YM + )?l.) /2. Thus, they are convergent but not second-order accurate approximations of
the value of the first derivative f~ at other locations (in particular, at the cell vertices x,,,, ). Turning to
[, the distance between the two middle vertices being h,, our proposed estimate of the second

derivative is the number

[(fz _fz)/}_lsn _(]?2 _]?1)/}73/2]/}12'
But: 4, can be quite different from X, — X,, and, since the use of the latter would be convergent, the
use of the wrong value, /,, can yield a nonconvergent estimate, even an unbounded one if adjacent
mesh sizes vary wildly (e.g., take o, = h, = h,h, = h*).

Limiting the Zonal Gradient

The quadratic distribution should not produce new internal maxima or minima so that instabilities or
noise in the zonal median values are not amplified. Van Leer set the gradient to zero if the signs of the
one-sided differences were different, and we employ a similar check. We computed a gradient at each
mesh vertex. For each zone we compute the dot product of each vertex’s gradient with all of the zone’s

5
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other vertex gradients. If any of the products is negative, the gradient around the zone’s perimeter would
have components in opposite directions. In this instance we set the zone’s gradient to zero.

Quadratic Expression
The quadratic expression we use to describe the distribution over a zone is

Foy) =F+ =0 +f,G-D+f]x-%7 - Avgl(x - 5)7]]
L =D - D +3 1, |- 5) - Avely - 9]

Here {x,y} is the zone’s centroid and Avg[ g( )] is the mean value of the function g( )over the

(6)

zone. These terms guarantee that when this expression is integrated over a polyhedral cell, its value will
be f, the mean zone value, times the volume of the polyhedron. This makes the distribution

conservative; i.e., fZVZ is _[ f dV for each zone z.

Gradient and Hessian Limiting

Van Leer employed his one-dimensional, quadratic function to limit the interpolated value of the
function at the two zone boundaries. In a similar way, we limit the value of the interpolant on the line
between the home zone’s centroid and each neighboring zone’s centroid. For each neighbor we will

require the associated boundary value of the interpolant to lie between the mean value f for the home

zone and f for the neighboring zone.

Let the zone’s centroid C be at {f ,y } = {Cx ,C y} . The five nonconstant functions

1 2 2
x—Cx, y-—-Cy, 5{(x—Cx) —Avg[(x—Cx) ]},
(7N
1
=y = S{r= 0y - avgy -]}

in (6) may be viewed as the basis for a five-dimensional vector space Vs. All members of Vs have mean
value zero over the zone. Given a number f , the set of functions in Vs that all have the value 2 — f ata
given fixed point x =a and y = b constitute a four-dimensional hyperplane P(a,b,2 — f) in V;. So
given also the constant function 1 the functions of the form (6) that have mean value f and also have
value 2 at {a,b} are exactly the functions in f x 1+ P(a,b,2 — f). P(a,b,c) divides V, into two

five-dimensional half-spaces: namely, the functions that exceed c at the point{a,b} and the functions that
are less than ¢ at {a,b}. Such linear inequality constraints on elements in V correspond to five-

dimensional half-spaces of V;, and the functions that satisfy a number of such constraints consist exactly

of the functions in the intersection of the corresponding half-spaces. Intersections of half-spaces
constitute convex polyhedrain V.

Having suitably normalized each element in the above basis for V,, we may take as coordinates for
Vs the five derivative values f, (C), f, (C), . (O), f,(C), f,, (C). Having defined some coordinates,
we can minimize the distance (as measured by summed squared coordinate differences) that we are
from a given point of V; and still lie in a given polyhedron. This is the essence of what we propose to do
— and what O’Rourke and Sahota (1998) did for vertex values of gradients.

6
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Constraint Enclosure Construction

For each zone, we wish to construct a monotonic interpolant of a zone’s mean value fh. To do so
we restrict variation towards each neighboring zone’s centroid using that neighboring zone’s mean value
fn as follows. Let the point Prn lie at the intersection of the home cell’s boundary with the line segment
that joins the home cell’s centroid Ch to a given neighboring zone’s centroid Cn. With each function g in
Vs is an associated value g(Pn), and the function fh+g has value fh+g(Pn) there. We want to restrict
ourselves to those quadratics whose values at Pn lie between the numbers fh and fn. Thus, we want to
restrict ourselves to those elements of Vs whose values at Pn lie between zero and fn-fh (this is related
to the so-called “MUSCL” constraint.) Towards this end, let N be the five-vector of values at Pn of the
five basis vectors (7). That is to say, if
Bn= Pn—-Cn

N = {an, Bny, % Bnx* — Avg((x - Chx)z)], Bnx Bny, % Bny* — Avg((y - Chy)2 )]}

Then the hyperplane of vectors D in Vs satisfying the equality constraint

NeD=0

are those five-vectors of derivatives at Ch of the functions of the form (6) that have value fh at the
boundary point Pn between the two centroids. Likewise, the vectors D satisfying the constraint
NeD=fn— fh

are the derivatives of the functions (6) having the value fn at Pn. Each vector in the slab Sn lying
between these two parallel hyperplanes in Vs corresponds to a function of the form (6) having a value at
Pn lying between fh and fn.

Each neighboring zone of the given home zone has its own zone mean, its own intermediate point
Pn, and its own associated slab Sn that constrains potential vectors D of allowable derivative values at
the home zone’s centroid. We ask that the constraints for all neighbors take effect simultaneously (this
amounts to a directional weakening of the “MUSCL” constraint used by Dukowicz and Kodis and is an
analog of O’Rourke and Sahota in our more general context). Geometrically this intersection of the
slabs Sn corresponding to all the neighboring zones yields our polyhedral constraint enclosure E. Since
the slabs are convex sets, E is a closed convex subset of V.

We shall use E to limit some given estimate

F :{fxafy’fxx’fxy’fy}'}

of numbers for the derivatives at the home zone’s centroid as follows: if F' does not lie in the constraint
enclosure E, we use the nearest vector in E instead. For ‘nearest’ here, we follow O’Rourke and
Sahota and use the Euclidean distance between the coordinates.

An Example Constraining Linear Functions

Dukowicz and Baumgardner (2000) presented an interesting problem: a circular distribution of
height 1 is imposed upon a background of 0.1, and this distribution is then transported around the
mesh’s center point. This problem is a challenge because of the discontinuity in the distribution as well as
the spatial curvature of the step. This problem was used extensively in the development of the current
work. To illustrate this method, let us look at a portion of the mesh near the discontinuity in Fig. (3) and
consider limiting a linear (not quadratic) function f. The space of derivative values is now two-
dimensional.
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The central zone /h is shown with its eight neighbors n/ through n8. The average zone value is
indicated next to its letter identifier. The constraints associated with neighbor n/ are shown in Fig. (4)
and neighbor n3 in Fig. (5). In Fig. (6), the constraints are collected into one plot. The monotonicity
constraint slabs that the neighboring zones impose are bounded by heavy lines. The average, unlimited
zonal gradient for the home zone is indicated as the red-filled circle (near ‘nl’). The limited gradient (the
blue-filled circle near the origin) is ‘interior’ to the constraint enclosure.

c N \2
-1

2

Figure 4. nl constraints

n? 0.1 ng 069 (n1 1.0

2

ng 0.1 h 0.12 n2 0.53

1.5

1

0.8

nbh 0.1 nd 0.1 n3d 0.1

-0.5

Figure 3. Portion of mesh from Dukowicz -
and Baumgardner’s circular step problem. Figure 5. n3 constraints
J
v A °

¢ n6 | nl /
‘ el

I%; A 4 S

/e

N\

Figure 6. Limits on gradient of linear functions.
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In this example, the constraint enclosure E is unusual in that it has zero area because of the n3 and
n7 constraints. In other problems, where the area in the constraint enclosure is more extensive, the
question of how to determine the limited values of the gradient and Hessian at the centroid is less
straightforward. To summarize, the criteria that this work uses to determine the limited quadratic are
that:

- the derivatives (coordinates) must be interior to all constraints,

- the Euclidean distance of the coordinates from those of the original input derivative estimates is to

be a minimum.

There are a number of other objective functions that could be used to select among the constrained
quadratic functions.

Limiting Procedure

We seek the unique vector L that is closest to F' (in the Euclidean distance) while still satisfying all
the inequality constraints; i.e., the vector L lies in the convex constraint polyhedron E. The process of
limiting the gradient and Hessian values could be broken into two successive steps. We might first limit
the gradient and then, using these values for the gradient, limit the Hessian. It was found that breaking
the monotonicity limiting into two successive steps resulted in a less dynamic representation (the
components of the Hessian were reduced or eliminated). The gradient limiting “used up” the range of
values allowed by the monotonicity. When the gradient and Hessian were limited simultaneously, the
components of the Hessian that resulted produced a more curved interpolant.

This is a minimization problem involving a quadratic objective function subject to linear constraints.
We solve it following the “Gradient Projection Method” in Fox (1973) that produces a finite sequence
of points Li, i=1,2,... that lie in E, with each element closer to F' than the last. The sequence terminates
at L. First, if F itself violates no constraints, then L=F. Otherwise, we begin with L; = 0 since it lies in
E. Then L, is taken to be that point on the part of the line L, + s(F-L;) lying in E that is closest to F.
Since E is convex, L,, and its successors in the sequence, lies in E’s boundary, B. At L, we select the j,
constraint(s) that is (are) exactly satisfied (equality, not inequality)—i.e., that are active at L,. Our next
motion will take place along a line segment lying in some of the associated hyperplanes H,j, j=1,..,j>.
Roughly speaking, we want to move from L, in the descent direction L,-F (i.e., opposite to the
direction of the local value of the objective function’s gradient) as best we can but still remain in the
boundary B. We should be able to do this by removing from L,-F its component in the span of the
hyperplanes’ j, normal vectors. It is a tricky business as not all the constraints active at L, may be
usable in the desired direction from L,. We are not allowed to exit the constraint enclosure, so the active
constraints with a positive inner product between its normal and the descent direction are collected.
There may be several active constraints that are restricting motion. To determine a descent direction
along B, we carefully use the projection matrix that Fox described. This projection step is complex and
requires careful attention; it either produces a direction that remains interior to the enclosure or produces
a vector with zero length. The zero-length vector indicates that no further interior motion is possible; the
optimum value for L has been reached and it minimizes the objective function. If the projected direction
is non-zero, motion interior to the enclosure is possible; however, the distance to the nearest inactive
constraint will limit the step length. The distance to all nonactive constraints along the projected direction
is calculated. We place the next point L; in the sequence at the minimum of these distances, except
that—as the segment we’re moving on lies in the boundary of the polyhedron E—the even more

9
UNCLASSIFIED



NECDC UNCLAS SIFIED October 2000

desirable point minimizing the distance from F to the segment may be reached first. The process is then
repeated to yield points L, Ls,... untl no motion in E that has any component in F’s direction is
possible.

A Smooth Limiting Example
To illustrate the accuracy of the results, a smooth, high-order function is imposed on a uniform,
orthogonal grid. This test function is a cosine wave radially propagating from the origin with a circular
distribution:
2 2

Fxy) =Co{x = ] ®)

The resulting, limited piecewise quadratic distribution is illustrated in Fig. (7), in which each of the 25
zones is 1 by 1. The lower left corner of the graphic starts at the coordinate {-4,-4} and the upper right
corner is at {1,1}. To illustrate the distribution’s curvature, each zone has a 4 by 4 mesh imposed upon
it. The first circle upon which the input function takes its minimum value passes near {-3,-3}. This

T P
RN o A VA Y 00 sy
Bt 7 S AT 00 g 0 gy e e
..'..-t.- X 5 i 2

S5 R gy S Ay Y

Figure 7. Limited, third-order distribution for cosine function.

behaviour also occurs in the interpolant.

The interpolant follows the input function very accurately. Fig. (8) is a plot of the same function
locally approximated by similarly limited linear functions. The limiting process used to compute the
interpolants in Fig. (8) included only the constant and linear terms as in O’Rourke and Sahota. The
continuity of the interpolant between neighboring zones is significantly decreased.

A useful error measure is the absolute value of the difference between the analytic cosine function
(8) and the interpolant. The analytic expression for the mean absolute error over a zone is not available.

10
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Figure 8. Limited, second-order distribution for cosine function.

An approximation is computed by sampling the error at a number of locations in each zone and
averaging the sum. Twenty-five, evenly spaced locations were chosen in each zone and the mean
absolute error was computed for the second-order and the third-order interpolant. Fig. (9) is a
histogram comparing these two errors. The red bars are the second-order interpolant mean absolute
error and the blue bar is the mean absolute error for the third-order interpolant. The range of errors in
Fig. (9) is 0.064 in the lower left corner to 0.003 in the upper right comer. In areas of the problem
where the cosine function has small changes between neighboring zones, both second- and third-order
interpolants do a good job of representing the function. In regions of significant curvature, the third-
order interpolant produces a more continuous representation of the function between adjoining zones as
well as a lower error. Since advection transports material from the edge of one zone to another, the
more continuous representation by the third-order interpolant will produce a less diffusive advection
step that may better preserve features of the problem.

Conclusions

A piecewise quadratic method of representing the distribution of a conserved quantity has been
developed. The method more accurately represents the spatial distribution of these quantities and should
enable an unsplit advection algorithm to more accurately transport material. The interpolant is monotonic
with respect to its immediate neighboring zones in a MUSCL sense. A more extensive examination of
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the relationship between extrema of the approximant and monotonicity needs to be considered in the
future.

Figure 9. Histogram of average second- and third-order errors.
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