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ABSTRACT

The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability
density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically
calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum
variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is
defined as a kinetic energy involving the momenta plus a potential energy ¢, where ¢ is minus the logarithm of
the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in
the parameter space with relatively few evaluations of ¢ and its gradient. The Hamiltonian algorithm alternates
between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method
for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred
dimensions. The Hamiltonian method handles correlations among the variables much better than the standard
Metropolis algorithm. A new test, based on the gradient of ¢, is proposed to measure the convergence of the MCMC
sequence.

Keywords: Markov Chain Monte Carlo, Hamiltonian method, hybrid MCMC, Metropolis method, statistical effi-
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1. INTRODUCTION

In Bayesian analysis, the posterior probability distribution characterizes the uncertainty in the model parameters
estimated from a given set of measurements. It has become evident that the Markov Chain Monte Carlo (MCMC)
technique provides a straightforward way to explore the posterior, and hence characterize the uncertainty in pa-
rameters.’ ™ MCMC effectively generates a sequence of model realizations, randomly drawn from the posterior
distribution.

Most Bayesian analyses make use of one of two standard MCMC algorithms. In the Gibbs approach, each variable
of the target pdf is changed one at a time. The variable is chosen from the conditional probability for that variable,
with all other variables held fixed. It is usually assumed that the conditional probability is known and easy to
make random draws from. In common usage of the Metropolis algorithm, all the parameters are varied at once.
The parameter vector is perturbed from the current sequence point by adding a trial step drawn randomly from
a symmetric pdf. This proposed trial position is either accepted or rejected on the basis of the probability at the
trial position relative to the current one. The Metropolis algorithm is often employed because of its simplicity. One
discouraging property of the Metropolis algorithm is that its optimal efficiency for Gaussian distributions drops as
0.3/n, where n is the number of variables, which I have confirmed in previous work.® This loss of efficiency for
high dimensional models is a severe disadvantage when the function evaluations are expensive.

In this paper I focus on a promising MCMC technique that I call the Hamiltonian method.”® It is often referred
to as simply the hybrid method because it alternates between Gibbs and Metropolis steps. However, that name does
not distinguish it from any number of other algorithms that employ a combination of Gibbs and Metropolis steps. In
1980 Andersen® proposed a Monte Carlo approach to simulating a system of particles, such as in a gas. Each particle
in the physical system is described in terms of a position and momentum. A Hamiltonian H is defined as a kinetic
energy (sum over the square of each parameter’s momentum divided by two times its fictitious mass) plus a potential
energy . The goal is to draw random samples from the pdf proportional to exp(-H). The algorithm consists
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of drawing the particles’” momenta from a known distribution and then following their trajectories of constant H.
Hamiltonian dynamics allows one to move along those trajectories using an algorithm such as the leapfrog technique.

Several years later, Duane et al.” put Andersen’s simulation into an MCMC context; ¢ is taken to be minus the
logarithm of the target pdf. Then, for each parameter in the problem, an auxiliary parameter is introduced, which
represents the parameter’s conjugate momentum variable. Duane et al. introduced a Metropolis test at the end of
each such Hamiltonian trajectory to maintain detailed balance. After such a Metropolis step, Gibbs sampling is
used to pick a new momentum vector, which is easy because the conditional pdf is an uncorrelated Gaussian in the
momenta. The use of Hamiltonian dynamics facilitates large steps in the parameter space with only a few evaluations
of ¢ and the gradient of ¢. This algorithm and its refinements have been relied on to accomplish critical calculations
in quantum field theory.!® Note that the gradient of ¢ can often be done in a time comparable to the (forward)
calculation of ¢ by applying adjoint differentiation to the computer code used to calculate .

In this paper I show that when the target pdf is an isotropic Gaussian distribution, the efficiency of the Hamil-
tonian technique is nearly independent of the number of parameters. Only minor difficulties are encountered for
more general Gaussian pdfs, for example, those with unequal variance for different parameters and with correlations
among parameter uncertainties.

This paper is part of a broader effort to develop methods for conducting Bayesian inference using large simulation
codes.'’ Thus, of particular interest are methods that can cope with large numbers of parameters, say hundreds
or more, in a context where a function evaluation can take several hours or even days to perform on state-of-the-
art computer systems. Our ultimate goal is to treat problems involving large simulations, for example, ocean'? or
atmospheric models, 3D tomographic reconstruction,'® aerodynamics, and hydrodynamics. Thus, it is essential to
reduce the number of steps taken by an MCMC algorithm needed to reach a specified degree of accuracy in estimating
the uncertainties in these models.

1.1. Bayesian Inference with MCMC

The MCMC technique facilitates Bayesian inference by providing a means to generate a set of random samples from
the posterior distribution. Given a set of Nj random parameter vectors {x;} drawn from a pdf ¢(x), one can easily
estimate the expectation value of any function f(x):

N

(f(x)) = / £(%) g(x) dx ~ Nik S fxi) (1)
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For example, the posterior mean estimate of the parameters X is obtained using f(x) = x. With f(x) = (x — x)?,
one obtains the variance. Other measures of parameter uncertainty can similarly be determined from the MCMC
sequence.

The MCMC technique makes it feasible to perform many of the difficult technical calculations required in Bayesian
analysis,"? such as normalization of pdfs, marginalization, computation of expectation integrals, and model selection.
The MCMC technique has opened up the possibility of applying Bayesian analysis to complex analysis problems.

2. TRADITIONAL MARKOV CHAIN MONTE CARLO ALGORITHMS

In MCMC the objective is to generate a sequence of parameter sets that mimic a specified target pdf ¢(x) where x is a
vector of parameters in the relevant parameter space. MCMC is useful in cases in which the functional nature of ¢(x)
is unknown, for which analytic methods of analysis are precluded. This situation often occurs when complex models
are required to predict the measurements. To clarify further, a complex simulation can provide for a specific x the
value of N ¢(x) where N is an unknown, but fixed, normalization constant. See Ref. 2 for an excellent introduction
to MCMC and review of its use in statistics applications.

The process of exploring g(x) is somewhat like feeling one’s way in the dark; nothing is known until one tries to
take a step and determines ¢ at the new position. In that context, it would clearly help to know the gradient of ¢(x)
with respect to x, because then one would at least know which way the terrain is sloping.



2.1. Metropolis Algorithm

One of the simplest algorithms used in MCMC calculations is due to Metropolis et al.'* In this algorithm, one
makes a trial perturbation from the current position in parameter space by randomly selecting a trial step from a
symmetric probability distribution. That trial step is either accepted or rejected on the basis of the probability of
the new position relative to the previous one. This algorithm is widely employed because of its simplicity.

One starts at an arbitrary point in the vector space to be sampled, xg. The general recursion at any point in the
sequence Xy is to repeat the following cycle many times:
(1) Select a new trial position x* = xj, + Ax,
where Ax is randomly chosen from a symmetric step distribution
(2) Calculate the ratio r = ¢(x*)/q(xx)
(3) Accept the trial position, that is, set xx11 = x*,
ifr>1,
or with probability r, if r < 1,
otherwise, stay put, xp+1 = Xx .

This algorithm is used in much of current MCMC research and works remarkably well,!52

takes into account correlations among pamfmleters16’6

especially when one

2.2. Gibbs Algorithm

In Gibbs sampling, typically one parameter is varied at a time, holding all others fixed. The parameter is to be
randomly drawn from the conditional pdf, the probability distribution of one parameter, given all other parameters;
q(z;|x—;), where x_; is the full set of parameters excluding only the single component z;. It is usually assumed that
one can easily draw a random sample from this conditional pdf.

2.3. Statistical Efficiency of an MICMC Sequence

Equation (1) permits one to evaluate posterior expectation values of desired quantities from an MCMC sequence.
A crucial issue is the degree of uncertainty in these estimates. The statistical efficiency of an MCMC sequence is
defined as the ratio of the number of independent draws from the target pdf to the number of MCMC iterations
required to achieve the same variance in an estimated quantity.

Suppose that we are given a sequence of Nj samples vy drawn from a pdf of a scalar quantity v and that the
samples are drawn from that pdf by a stationary process. The estimated value of v is given by the sample mean,

Ny,

. 1
v:mka . (2)
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If the vy represent independent random draws from the underlying pdf, we know that the variance in the estimated

value ¥ is (v)
var(v
3

N, (3)

where var(v) is the variance of the pdf. If the variance of the estimate ¢ is determined from numerous repetitions of
the MCMC process, the statistical efficiency of the sequence generation procedure is then

O'% =var(d) =

_wvar(v)
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(4)

The focus of this study is the estimation of the variance of the variables from MCMC sequences. Therefore, I will
choose v to be the variance of a component of x. The variance of the variance of a Gaussian distribution is twice its
squared value. Thus, the efficiency of the MCMC algorithm for estimating the variance var(?;) in x; is

o 2(var(v;))?
" Nyvar(t;)

(5)

where v; = var(z;) and ©; is its value estimated from an MCMC sequence of length Nj. The variance of ¥; is
estimated from many runs of the MCMC algorithm being tested.



While the above method for estimating the efficiency of an MCMC algorithm differs from that used in Ref. 6,
it is derived from the same definition for statistical efficiency. The results of two methods should generally agree.
However, because the efficiency of the Hamiltonian method is so high, it is difficult to use the autocorrelation function
to measure it.

2.4. MCMC Issues

Two important practical issues in MCMC are convergence and burn in.* Since sequences may be started from
an arbitrary point, any particular sequence may take some time to equilibrate with the target pdf, that is, reach
convergence. Therefore, one must try to determine when the sequence has reached convergence, a process that is
often carried out by monitoring the sequence itself. The samples obtained during this “burn in” period must be
discarded for subsequent analysis as it does not represent the pdf. One good way to determine convergence is to
run multiple sequences starting each with disparate parameter values.'” The sequences are taken to have converged
when they coalesce into a common distribution. I will introduce a new convergence test in Sect. 3.2. For more
detailed information about MCMC, the reader is referred to the excellent book edited by Gilks et al.?

2

3. HAMILTONIAN MCMC ALGORITHM

As mentioned in the Introduction, the Hamiltonian method is based on an analogy to physical systems. For each
parameter z;, a additional parameter p; is introduced, which represents the parameter’s associated momentum.® A

Hamiltonian is constructed as a potential energy term, ¢ = —log(g(x)), plus a kinetic energy term:
P2
H= . 6
p(x) + o, (6)
where ¢ = —log(¢(x)) and m; is a fictitious mass. The goal is to draw random samples from the new pdf that is

proportional to exp(—H).

Each iteration of the algorithm starts with a Gibbs sampling to pick a new momentum vector from the uncorrelated
Gaussian in the momenta corresponding to the second term in H. Then the trajectory in the (x,p) space that
maintains a constant H value is followed using the leapfrog technique, which consists of the following three substeps:

T, T Op
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where 7 represents the time increment for the leapfrog step. The first and third updates in momentum are half time
steps and have the effect of making the scheme accurate to second order in 7. After m leapfrog steps corresponding
to a total trajectory time of T' = m7, a Metropolis acceptance/rejection decision is made to guarantee that the
sequence is in statistical equilibrium with ¢. This deterministic approach allows large steps in the parameter space
to be taken with only a few evaluations of ¢ and the gradient of ¢. The ability to take large steps is the essential
feature of the Hamiltonian method that makes it attractive. The Metropolis test is required to maintain detailed
balance in the MCMC sequence, that is, to guarantee that the probability of moving from the starting position to
the final position exactly equals the reverse jump.

Let’s count the number of function evaluations required by the leapfrog technique. The first and third leapfrog
substeps require the evaluation of V. However, the gradient in the third step is at the same location as the beginning
of the next leapfrog step, so long as there is no Metropolis rejection. The Metropolis test requires the evaluation
of ¢ at the end of the trajectory. In the ADICT scheme described in the following section, this evaluation of ¢ is
typically done as part of the gradient calculation. The bottom line is that m leapfrog steps will typically require m
o evaluations and m evaluations of V.

Figure 1 shows a typical sequence of H trajectories for a one-dimensional Gaussian distribution with unit variance.
The vertical jumps correspond to the Gibbs sampling of momentum from the Gaussian pdf, exp(—p?), for unit mass.
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Figure 1. Example of a sequence of several trajectories in the momentum-parameter space for the Hamiltonian
method for a 1D Gaussian distribution. The motion is always clockwise. Small dots are placed at end of each of the
five leapfrog steps and large dots at the end of each Hamiltonian trajectory.

The circular arcs correspond to the trajectories of constant H followed in five leapfrog steps using 7 = 0.4, yielding
a total trajectory time of T'= 57 = 2.

One observes in Fig. 1 that it is possible to get into a resonance situation in which the Hamiltonian trajectories
move around the circle by a rational fraction number of cycles. This type of behavior would clearly not represent
random sampling and could lead to misleading results. Therefore, the length of the Hamiltonian trajectories must be
randomized to realize an adequate random sampling of ¢(x). Thus, for each Hamiltonian trajectory, T' is randomly
chosen from a uniform distribution from 0 to T;,4.. Once an MCMC sequence has been generated, the properties of
q(x) may be characterized by considering just the x; samples. The momentum contributions to the extended pdf,
exp(—H), are marginalized out because they are independent of the x dependence.

The choices for 7, T', and m; are important for achieving the best efficiency. If 7 is chosen to be too large, H will
not be held constant enough, resulting in rejection of the new position by the Metropolis step. A good rule of thumb
is that the length of the leapfrog steps should be kept smaller than the width of the x-p distribution. On the other
hand, it is desirable for the length of the H trajectory, which is proportional to T', to be a large fraction of the width
of the target pdf. As pointed out above, the values of T' must be randomized to avoid resonance conditions. Thus,
Tnaez should be chosen to produce H trajectories that are a few times the width of the target distribution. As with
most other MCMC algorithms, one must explore the parameter space to optimize their efficiency for any particular
application. It seems reasonable that one would like to pick the mass associated with each component that is about
the same as the variance of the target distribution along that component in order to maintain circular trajectories in
x-p space. However, as the parameters of the Hamiltonian algorithm have not been optimized in this study in any
detail, the above advice should be taken as preliminary.

3.1. Adjoint Differentiation

The Hamiltonian method requires knowing the derivatives of ¢ with respect to all the parameters. Fortunately, there
is a technique to efficiently calculate these gradients, even for complicated forward calculations.'® The technique,
which we have called Adjoint Differentiation In Code Technique (ADICT), essentially applies the chain rule for
differentiation to the forward computer code. The result is an auxiliary code to compute the derivatives, which
effectively reverses the data flow of the forward calculation. This approach typically generates the gradient of ¢



in a computation time comparable to the forward calculation. Compilers are available to automatically create an
adjoint code from a forward code, for example, the Tangent linear and Adjoint Model Compiler (TAMC) developed
by Ralf Giering'® for FORTRAN programs. TAMC has successfully been used to generate sensitivities for a 1D
hydrodynamics code!? and for an ocean-modeling code.'?

It is often the case that the adjoint derivative calculation is done in the same amount of time as the forward
calculation. For summarizing the results below, this equality will be assumed. The reader is cautioned that for more
complicated forward calculations, the gradient calculation may take somewhat longer than the forward calculation,
in which situations the efficiencies stated below would be overestimates of their true values.

3.2. Convergence Test

As mentioned in Sect. 2.4, guaranteeing convergence of a sequence is a major concern in MCMC. The following
convergence test seems to be helpful for monitoring convergence in situations where V is available. The expression
for the variance of ¢(x) along any particular component x; can be integrated by parts to obtain

wrte) = [ - aaeix =% [ - a0 2 ax dw—apaeo|” L 0
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where Z; is the first moment of ¢(x) in the z; direction and ¢(x) is assumed to be defined over the full infinite interval.
The derivative is
dp(x) _ dloglg(x)) 1 09q(x) (1)
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The second term on the right-hand side of Eq. (10) can often be argued to be zero because ¢(x) usually drops off
faster than |23| as x approaches co. Then the two integrals are equal. But these integrals may be evaluated using
the MCMC samples drawn from ¢(x) and checked to see if they indeed are equal, to within sampling uncertainties.

For a sequence of samples {x*}, allegedly drawn from ¢(x), the proposed test consists of computing the ratio

~\3 O
(el —3:)? %S% ok
R= , (12)

33k (af —27)?

The mean value of Z; is determined in the obvious way from the z¥ samples. The above argument implies that R
should be unity. Of course, as these quantities are Monte Carlo estimates, they are subject to statistical fluctuations
and R will fluctuate around unity, even for bona fide sample sets. Note that R generally need not be positive.

Experience indicates that R tends to be less than one when ¢(x) is not adequately sampled. The plausibility of
this observation can be understood by considering the behavior of the numerator for a Gaussian distribution. The
derivative is proportional to x; — Z; and so the numerator’s sum is over (x; — :Elv)4. The value of R depends on the
samples {x*} from the MCMC sequence. If the sequence does a good job of spanning the width of the Gaussian
target pdf, their distribution will make R come out to approximately unity. However, if the samples don’t sufficiently
reach to the edges of the Gaussian, then the denominator will tend to be larger than the numerator because of its
slower dependence on (x; — Z;)?.

One of the advantages of the above test is that it does not reply on ¢(x) being Gaussian. However, the power
of the test, in the sense of the uncertainty in R is small enough to determine when convergence is not reached, will
depend on the functional behavior of ¢(x). For example, if ¢(z) is a 1D uniform distribution between two finite limits,
the numerator will only get a nonzero contribution when the sample is at one of the limits and that contribution will
be infinite.

4. RESULTS FOR MULTIDIMENSIONAL GAUSSIAN DISTRIBUTIONS

We now present some examples of the use of the Hamiltonian algorithm to generate MCMC sequences for multi-
dimensional Gaussian distributions. All masses m; are set to unity in these examples. Some attempt is made to
choose optimal values for the parameters 7 and T4, but better values might be possible. The efficiencies stated
below are derived from Eq. (5) using 1000 runs of the Hamiltonian algorithm for each set of conditions to compute
the variance in the estimate of parameter variance made in each run. For this study, each run routinely employs 50
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Figure 2. Five iterations of the Hamiltonian algorithm for a two-dimensional isotropic Gaussian pdf. The lengths
of the trajectories are purposely chosen to be much longer than normally used to display their elliptical nature. A
new elliptical trajectory results when the momentum vector is chosen by means of the Gibbs step.

iterations of the Hamiltonian algorithm. While this number may be far fewer than used in many applications, it is
consistent with the stated intent to perform MCMC in situations where the function evaluations are expensive and,
therefore, a limited accuracy in the estimated variance is acceptable. I have verified that the efficiencies quoted for
50 iterations remain valid for more iterations.

The examples presented here were obtained using the advanced image-processing language, IDL.2® Care must
be taken in using the random-number generation procedures, RANDOMU and RANDOMN; one must employ the
same seed variable throughout a run.®

4.1. Two-dimensional Gaussian Distributions

Figure 2 displays five successive H trajectories for an isotropic, univariate two-dimensional Gaussian distribution.
The total time for each trajectory is chosen to be abnormally large to display the shape of the H trajectories, T = 7.2.
With 7 = 0.4, there are m = 18 leapfrog steps per H trajectory. Each H trajectory forms an ellipse, whose tilt and
eccentricity is determined by the coordinates and momentum vector at its starting position. The momentum vector
is randomly drawn from a 2D univariate Gaussian distribution.

Figure 3 shows the behavior of the Hamiltonian MCMC algorithm for a two-dimensional anisotropic Gaussian
distribution with a standard deviation of 4 for z; and 1 for 5. The total length of each H trajectory is randomly
chosen from a uniform distribution between 0 and T,,,, = 5. For this example, the maximum value for 7 is 0.4,
resulting in up to 13 leapfrog steps per H trajectory. Thus, some trajectories are short and some are long. Because
of the anisotropy in the target pdf, the H trajectories are no longer elliptical, but appear to be similar to Lissajous
curves. For this example involving 15 H trajectories, all Metropolis tests are accepted. The MCMC sequence consists
of the 15 points at the end of each H trajectory, shown in Fig. 3 as larger dots. A new momentum vector is chosen
at these points, which starts the next H trajectory off in a new direction.

Table 1 summarizes the properties of the test statistic given by Eq. (12) seen in 1000 runs of the Hamiltonian
MCMC algorithm. The target pdfis the same 2D distribution described in the previous paragraph. The H trajectories
employ 7 = 0.2 and a rather small 7,4, = 2, chosen to limit the extent to which the algorithm samples the target
pdf. Tt is observed that R; provides a reasonably good indication of how well the MCMC algorithm has sampled the



Figure 3. Hamiltonian trajectories for a two-dimensional anisotropic uncorrelated Gaussian pdf, demonstrating the
ability of the Hamiltonian trajectories to readily transverse the length of the target pdf in just a few steps.

Table 1. Properties of the test statistic R given by Eq. (12) as a function of number of H trajectories for the 2D
target distribution shown in Fig. 3. The degree of sampling of the Hamiltonian method is curtailed by choosing
Tinaz = 2. The last column lists the average estimated variance from the 1000 runs used. The actual variances for
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the first and second components are 16 and 1, respectively.

Number of Average R Rms Deviation in R Mean Variance

Iterations | Comp. 1 | Comp. 2 | Comp. 1 | Comp. 2 | Comp. 1 | Comp. 2
10 0.071 0.486 0.085 0.363 2.47 0.870
20 0.139 0.665 0.124 0.373 3.93 0.913
40 0.268 0.808 0.189 0.344 6.44 0.945
80 0.430 0.901 0.243 0.272 9.32 0.980
160 0.629 0.949 0.304 0.214 12.38 0.987
320 0.766 0.964 0.300 0.156 13.73 0.991
640 0.870 0.984 0.258 0.118 14.97 0.994




Table 2. Characteristics of Hamiltonian method for isotropic univariate Gaussian distributions as a function of
their dimensionality. The Hamiltonian calculations involve 50 iterations with the parameters of the H trajectories
set at: Thar = 2, 7 = 0.4, m = 1. Listed are the fraction of H iterations accepted, the efficiency per Hamiltonian
iteration, and the efficiency per function evaluation. For comparison, the efficiency of the Metropolis algorithm is
given.

Dimension | Acceptance | Efficiency /Iteration Efficiency /Funct Eval
n Hamiltonian | Metropolis
4 0.984 0.447 0.075 0.075
16 0.968 0.417 0.070 0.019
64 0.931 0.394 0.066 0.0047
256 0.867 0.352 0.058 0.0012
1024 0.738 0.247 0.041 0.00029

target pdf. The behavior is different in the two components. The mean estimated variance for the second component
is estimated to within 2% for 80 iterations, at which point R = 0.90 4+ 0.27. For 80 iterations, the estimated variance
for first component is just a little over half of what it should be and R = 0.43 &£ 0.24. Even at 640 iterations,
the variance of the first component is on the average 4% too low. The test statistic has almost reached unity;
R =0.87+0.26.

The statistical efficiency (5) is about 0.33/iteration for all of the above conditions.

4.2. Isotropic Multidimensional Gaussian Distributions

The main concern of this paper is whether the Hamiltonian method can avoid the decrease in efficiency for high
dimensions, which has already been observed for the Metropolis method for isotropic Gaussian distributions.® Table 2
shows that the efficiency of the Hamiltonian method remains high, even for quite large dimensions. The Metropolis
efficiency listed is derived from the formula 1 = 0.3/n, which is appropriate for isotropic Gaussian target pdfs.® Per
function evaluation, the efficiency of the Hamiltonian method remains constant at about 7% up to several hundred
dimensions. The efficiency of the Metropolis algorithm starts at 7.5% at four dimensions and drops precipitously for
higher dimensions. The Hamiltonian method provides clearly superior performance at high dimensions.

The average value of the variance for these runs is around 0.96, quite close to the actual value of 1.00.

4.3. Correlated Multidimensional Gaussians

To demonstrate another property of the Hamiltonian MCMC algorithm, I use an example presented in Ref. 6. The
target distribution is a 16-dimensional Gaussian distribution with a high degree of correlation. The form of the target
pdf is motivated by a type of regularization typically used to solve ill-posed problems, that of a smoothness prior or
regularizer. See Ref. 6 for the derivation of the covariance matrix, a 6x6 piece of which is:

497 398 250 124 0.42 -0.02
3.98 497 398 250 1.24 042
2,50 398 497 398 250 1.24
1.24 250 398 497 398 250
042 124 250 398 497 398
-0.02 042 124 250 398 4.97

This covariance matrix clearly indicates a high degree of positive correlation over several neighboring elements, which
was shown to lead to inefficiencies for the standard Metropolis-MCMC algorithm. Using an isotropic Gaussian step
distribution, the best achievable efficiency for this problem was 0.11%. The efficiency was increased to 1.6% by
tailoring the trial step distribution to approximately match the covariance matrix estimated from a preliminary
MCMC run.
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Figure 4. A consecutive set of 15 Hamiltonian trajectories in a 2D subspace from a correlated 16-dimensional
Gaussian pdf. The contour shown is at the two-standard-deviation level for the marginalized distribution.

Table 3. Characteristics of Hamiltonian method for correlated multidimensional Gaussian distribution as a function
of their dimensionality. The Hamiltonian calculations employ 50 iterations with the parameters of the H trajectories:
Timaz =8, 7=0.4, m = 1. Listed are the fraction of H iterations accepted, the efficiency per Hamiltonian iteration,
and the efficiency per function evaluation.

Dimension, n | Acceptance | Efficiency/Iteration | Efficiency/Funct Eval
16 0.919 0.453 0.022
64 0.831 0.391 0.019
128 0.765 0.352 0.017

The Hamiltonian calculations for this problem employ 50 iterations with the parameters of the H trajectories set
t0 Tonae = 8, 7 = 0.4, m = 1. A larger value for T}, is used than in earlier examples because of the larger variance
of the target pdf. Figure 4 shows a typical set of 15 iterations for this problem. The larger dots, representing the
actual sample points at the ends of each H trajectory, do a pretty good job of sampling this subspace.

Table 3 lists the efficiencies observed in 1000 runs of the Hamiltonian algorithm for various dimensionalities.
Recall that the best efficiency obtained with the Metropolis algorithm was 1.6%, and that was only after adapting
the trial step distribution to the problem. The efficiency of the simple Metropolis was 0.11%. The Hamiltonian
algorithm achieves better efficiency at 16 dimensions without any folderol. What is more, the efficiency of the
Hamiltonian method does not drop much with increasing dimensionality. The best achievable efficiency for the
Metropolis algorithm for 128 dimensions, after adapting it to the shape of the target pdf, would be 0.23%, about 7
times worse than the Hamiltonian algorithm achieves!

The estimated variance (diagonal elements of the covariance matrix) for these runs is about 4.75, reasonably close
to the actual value of 4.97.



5. DISCUSSION

The above results demonstrate the superiority of the Hamiltonian method to the Metropolis algorithm for generating
a sequence of random samples from a calculated target pdf, especially for more than 6 dimensions. The caveat is that
one must be able to calculate not only ¢, but also V. The efficiencies quoted are based on the assumption that one
can calculate the gradient as quickly as ¢ itself, which is possible for many calculations using adjoint differentiation
(ADICT). The Hamiltonian method not only maintains its high efficiency for high dimensions, but it also handles
anisotropic and correlated distributions in a robust manner.

There are several ways in which the Hamiltonian method might be improved. The crux of the method is the
use of the Hamiltonian trajectories. Because this aspect of the algorithm is deterministic, it seems reasonable to try
to improve the ability of the calculated trajectory to keep H constant, thereby avoiding Metropolis rejection, or, in
fact, the need for the Metropolis test. The usefulness of the algorithm would be improved if one could adaptively
adjust the leapfrog step size 7 to the local properties of the target pdf in order to maintain the accuracy in H. The
difficulty is to balance the H accuracy against any extra calculation needed. As with it any MCMC method, it is
also possible to improve the performance of the Hamiltonian method for correlated and anisotropic pdfs through the
usual means of adapting the algorithm to include estimates of the covariance structure of the target pdf.2

It is desirable to investigate the performance of the Hamiltonian method for highly anisotropic distributions.
Because of the deterministic aspect of the H trajectories, it can be imagined that one might find ways to cope with
anisotropies by adapting the leapfrog method to the varying characteristics of the Hamiltonian dynamics along the
trajectory.

The unadorned leapfrog method relies solely on the gradient of . In real-world calculations, the gradient might
not be calculated very accurately. One area of research that could prove useful is to develop methods to handle
inaccurate calculations of V. For example, corrections to the leapfrog H trajectories could be made on the basis
of calculated values of ¢. These corrections might even be useful when the gradients are accurately calculated to
overcome the shortcomings of the leapfrog method for larger step sizes, which are desirable for maintaining high
efficiency of the Hamiltonian algorithm.

My experiments with momentum persistence,®!% in which one nudges the momentum instead of completely

changing it with a random draw from the momentum distribution, have not provided a compelling reason to use it.
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