

AFREET: Human-Inspired Spatio-Spectral Feature Construction for

Image Classification with Support Vector Machines

Simon Perkins s.perkins@lanl.gov

Space and Remote Sensing Sciences, Los Alamos National Laboratory, NM 87545 USA

Neal Harvey harve@lanl.gov

Space and Remote Sensing Sciences, Los Alamos National Laboratory, NM 87545 USA

Abstract

We examine the task of pixel-by-pixel clas-
sification of the multispectral and grayscale
images typically found in remote-sensing and
medical applications. Simple machine learn-
ing techniques have long been applied to
remote-sensed image classification, but al-
most always using purely spectral informa-
tion about each pixel. Humans can often
outperform these systems, and make exten-
sive use of spatial context to make clas-
sification decisions. We present Afreet:
an SVM-based learning system which at-
tempts to automatically construct and re-
fine spatio-spectral features in a somewhat
human-inspired fashion. Comparisons with
traditionally used machine learning tech-
niques show that Afreet achieves signifi-
cantly higher performance. The use of spa-
tial context is particularly useful for medical
imagery, where multispectral images are still
rare.

1. Introduction

1.1 Machine Learning and

Flat Image Classification

Earth-observing satellites produce vast quantities of
image data every day, much of it multispectral. These
images are used for a wide variety of applications,
ranging from weather prediction, through agricultural
use monitoring, to making maps of remote areas. One
of the core tasks in much of this analysis is the iden-
tification in the image of relevant objects of interest:
clouds, wheat fields, roads, and so on.

Medical imagery, from sources such as X-rays, micro-
scope slides, CAT scans and MRI scans, shares many

characteristics with remote-sensed imagery. Again,
vast quantities of it are generated and must be an-
alyzed to find objects of medical interest: tumors, un-
healthy cells, particular kinds of tissue, etc.

Both these types of imagery can be called “flat”. They
have an essentially 2-D nature, and are usually imaged
at a fixed (and known) scale. Many of the classification
tasks in these domains can be reduced to the problem
of performing an initial pixel-by-pixel classification of
a given image, which is then used for further analysis.

Given the vast quantity of image data generated in
these two fields, it is clear that reliable automated
techniques for pixel-by-pixel classification would be of
enormous benefit. At present, most medical imagery
is classified by human experts,1 but in the remote-
sensing domain, automated classifiers are widely used.
Most of these classifiers are designed by hand, a slow
and laborious process which requires detailed and ac-
curate knowledge of the physics of the object being
sought, and of the sensor used to produce the image,
and also of the background against which the object
will be imaged. If the sensor is upgraded, or its cali-
bration drifts, or if the task requirements are modified
even slightly, a redesign of the classifier is usually nec-
essary.

Given the difficulty of hand-designing classifiers, it
is natural to look at machine learning and pattern
recognition techniques, and ask if they might allow us
to generate reliable automatic classifiers much more
quickly and easily. Many researchers have exam-
ined these approaches, ranging from simple statisti-
cal methods such as minimum distance and maximum
likelihood classifiers (Richards, 1993), to more com-
plex approaches such as neural networks (Bischof &
Leonardis, 1998) and, more recently, Support Vector
Machines (Roli & Fumera, 2000). While high perfor-

1And most patients prefer it that way. . .

mance is often achieved with these systems, it is still
often or usually the case that a human “eyeballing”
the image, visualized in appropriate false colors where
appropriate, can do better.

1.2 How Do Humans Do It?

One problem with most learning systems that have
been developed for pixel-by-pixel image classification
is that they base their decisions purely on the spectral
information contained in each pixel. Humans, in con-
trast, have relatively little ability to perceive spectral
information, being limited to at most three channels.
Instead, they appear to make great use of spatial con-
text and texture information in making decisions. This
effect is even more extreme in medical imagery, which
is usually monospectral, and where the raw intensity
value in each pixel carries very little information about
its identity.

Clearly, if are going to use machine learning to pro-
duce classifiers that can compete with humans, then
we need to find a way of incorporating spatial context
information into the classifier. One simple way is to
provide extra channels for each pixel, each describing
some aspect of the local neighborhood. For instance
we could apply a simple smoothing mask to each spec-
tral channel of the image, and then incorporate the
smoothed channels as extra elements of the classifier
feature vector. Gong and Howarth (1990) describes
an example where an extra channel of texture infor-
mation was used to improve performance. However,
pre-defined spatial context features can only represent
a limited amount of context information. We can at-
tempt to include many different texture and statisti-
cal context features for many different sized neighbor-
hoods, but we rapidly run into problems. Simply gen-
erating all those extra features from an image can take
enormous amounts of time, and many of the features
may be redundant or carry no useful information.

One way of tackling the problem is to look at what hu-
man experts do when asked to design an image clas-
sification algorithm by hand. Typically they isolate
useful information from the images by applying se-
quences of standard image processing operations, in-
cluding smoothing masks, morphological operations
and texture operators, and then make a decision using
relatively simple thresholds and logic. This process
suggests a framework for generating an almost infinite
number of possible spatio-spectral features for an im-
age, by chaining together a set of standard image pro-
cessing operations. These features can then be passed
on to a relatively unsophisticated learning system for
final classification.

The trick, of course, is to decide which spatio-spectral
features to generate. In related work, Draper et al.
(1999) treat constructing good features as a control
problem. They use a reinforcement learning approach
to pick primitive operations to chain together. We
present a different approach to the same basic problem,
combining ideas from Support Vector Machines and
Evolutionary Computation.

2. Afreet

2.1 Motivations

Our current work onAfreet is motivated by the ideas
presented above, and by earlier work on a Genetic Pro-
gramming system for image classification, called Ge-
nie.2 For complete details, see, e.g. (Perkins et al.,
2000; Theiler et al., 1999), but suffice to say that
Genie uses a fairly standard Genetic Algorithm (Hol-
land, 1975) to evolve a population of image classifiers.
Each classifier performs a sequence of primitive image
processing steps that transforms the raw image data
planes into a set of “answer planes”. A linear dis-
criminant, derived by finding the Fisher Discriminant
(Bishop, 1995) on the training data, is then used to
generate a final binary classification for each pixel.

Despite being a relatively unsophisticated algorithm,
Genie produces extremely good classifiers (see, e.g.
(Harvey et al., 2000)). Its success seems to stem from
the rich variety of features it is able to construct from
the primitive genes, which allows the Fisher Discrim-
inant “backend” to do a good job of classification.
However,Genie makes no explicit attempt to produce
classifiers that generalize well, and training times can
be very long (many hours). Afreet was developed
primarily to address these two problems.

2.2 Design Details

2.2.1 Classifier Structure

Our earlier program, Genie, works with a popula-
tion of classifiers. As training progresses, the popu-
lation tends to converge towards a single solution and
the population will contain many functionally identical
chromosomes. Evaluating all of these chromosomes in-
volves a lot of redundant effort.3 In contrast, Afreet
works with a single classifier and attempts to itera-
tively refine it. This classifier consists of a bank of
“feature generators” which transform the raw input

2See (Banzhaf et al., 1998) for an good introduction to
GP. Note that Genie is a relatively non-traditional GP
system.

3Note however that completely identical chromosomes
are not re-evaluated.

image planes into a set of “feature planes”. A linear
discriminant is then applied on a pixel-by-pixel basis
to the feature planes to produce a final binary classi-
fication plane. The general structure of this classifier
is shown in Figure 1.

Raw Image Planes

Feature Generators

Linear
Discriminant

Binary Output Plane

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

Figure 1. Structure of the classifiers developed by Afreet.
The raw image planes are used to derive a number of fea-
ture planes, labeled F0 to F9 which are combined using a
linear discriminant to give a final binary classification.

Each feature generator is represented as a program
tree, a representation commonly used in genetic pro-
gramming systems. The primitive operations that are
available in Afreet are listed in Table 1. All of the
operators take zero or more images as input, and pro-
duce a single image as output. Figure 2 shows a typical
tree that might generate one of the feature planes in
Figure 1.

GaussSmooth 4

NormRatio

Data 0 Open 1,5

Data 1

Figure 2. A typical feature generator used to generate one
feature plane. This particular generator performs a mor-
phological opening on plane 1 of the input image, using a
linear structuring element of radius 5. It then finds the nor-
malized ratio between this result and input image plane 0.
Finally this ratio image is smoothed with a Gaussian mask
of radius 4.

Before the feature planes are generated, the pixel val-
ues in the input image are rescaled so that the mini-
mum value is 0.0 and the maximum value is 1.0. All

operators used in Afreet assume that input pixel val-
ues are of the order of unity and ≥ 0, and they produce
output which has the same properties.4 Once a fea-
ture plane is generated it is then rescaled again to have
a mean value of 0.0 and a standard deviation of 1.0.
The various normalization scales and offsets are only
calculated during training. When the trained classifier
is being applied to new images, the previously derived
normalization values are re-used.

2.2.2 Initialization

The set of feature generators is generated randomly
at the start of training subject to two constraints:
(a) the feature set contains no duplicate generators,
and (b) the depth of the generators does not exceed a
user-defined limit, typically taken to be 3. The small-
est possible tree has a depth of 1. We use a generation
technique that encourages compact trees, by linearly
increasing the probability of a terminal node being se-
lected towards 1.0, as the depth limit is approached.

2.2.3 Training the Discriminant

The linear discriminant is trained as a Support Vector
Machine (Vapnik, 1995; Burges, 1998), using a mod-
ified version of Platt’s SMO algorithm (Platt, 1999),
suggested by Keerthi et al. (1999). Although this algo-
rithm allows us to train kernel SVMs as well as linear
ones, we have chosen to use only linear discriminants,
because it makes feature set evolution much easier, as
explained below.

Our training data consists of training images, in which
pixels have been marked as belonging to a “positive”
class (yi = +1), or a “negative” class (yi = −1). In
general there will be different numbers of pixels in each
class. We have found in our applications that better
results are often achieved if we try equally hard to get
both categories correct, rather than simply minimizing
total misclassifications. Therefore we use a cost func-
tion that makes the total importance of the “positive”
pixels equal to the total importance of the “negative”
pixels. This is easily done by modifying the usual SVM
objective function to be optimized to the following:

1

2
‖w‖2 +

∑

i

Ciξi

{

Ci =
K

n+
if yi = +1

Ci =
K

n
−

if yi = −1
(1)

where ξi are the “slack variables”, w is the vector of
weights describing the linear discriminant, K is a con-
stant, yi is the class label associated with the ith pixel,
and n+ and n

−
are the numbers of pixels in the pos-

itive and negative classes respectively. In the more

4This accounts for the slightly strange formula for the
NormRatio operator.

Table 1. Primitive operations used to construct Afreet features. Data is the basic operation used to access the input
image. All other operations are neighborhood operations, except Peak and NormRatio, which work on single pixels. Open
and Close may use a linear structuring element. The relevant morphological operation is carried out with this S.E. at all
possible distinct orientations on the discrete pixel grid, and the output value is the maximum of all possible openings,
or the minimum of all possible closings, as appropriate. Consult any good image processing textbook for more details.
In the descriptions below, the radius parameter can take values between 1 and 10; the center parameter takes a value
between 0.0 and 1.0; and the shape parameter can takes values of DISK or LINE.

Name Inputs Params Description

Data 0 index Extracts raw data plane index from the input image.
GaussSmooth 1 radius Gaussian smoothing with a kernel of the specified radius.
Grad 1 radius Smoothed gradient magnitude using Gaussian smoothing with a kernel

of the specified radius.
Min 1 radius Minimum value within radius pixels of each pixel
Max 1 radius Maximum value within radius pixels of each pixel
StdDev 1 radius Standard deviation in circular neighborhood of given radius.
Peak 1 center Non-linear transfer function. Pixel values are mapped onto new val-

ues given by a Gaussian function with the given center and standard
deviation 0.25.

Open 1 shape, radius Morphological opening. shape determines if a disk or linear structuring
element is used. radius determines the size of the S.E.

Close 1 shape, radius Morphological closing. Parameters as for Open.
NormRatio 2 — Normalized ratio between two planes: (a−b

a+b
+ 1)× 0.5

usual SVM formulation, a single constant C is used
for all pixels. See (Burges, 1998) for more details.

2.2.4 Evolving the Feature Set

It is unlikely that the randomly generated initial fea-
ture set constitutes an ideal basis for classification, so
Afreet attempts to iteratively refine the features us-
ing the algorithm shown in Figure 3. The algorithm es-
sentially involves deciding heuristically which features
are the most important and least important, and then
either replacing the least important with randomly
generated new features, or replacing the most impor-
tant with small “mutations” of that feature. If the
change produces a significant decrease in the value of
the SVM objective function, then it is kept, otherwise
we revert back to the unmodified feature. If the objec-
tive function is essentially unchanged (to within 1%),
then the new feature is kept if it is computationally less
expensive than the old one. This refinement strategy
is essentially a greedy one. For the feature refinement
process, we save time by only training on a randomly
chosen subset of all the training points, typically of
size 10,000. Once a feature set has been chosen, all
the points are used for the final optimization.

The importance of a feature is decided simply by look-
ing at the magnitude of the weight vector component
associated with that feature. Since all features are
normalized to have the same mean and standard devi-
ation, this component provides some indication of how

important a particular feature is. Note that we only
have direct access to the weight vector for linear SVMs.
Linear SVMs are also preferred because training times
are much faster using SMO. We use an evolutionary
computing method called “tournament selection” to
select the “best” and “worst” feature planes, which in-
troduces some stochasticity into the selection process.
The tournament size is based on the current feature set
size, and is chosen to give a fixed probability (typically
0.25) of choosing the absolute best or worst feature.

Three kinds of mutations are employed with equal
probability: (a)Parameter Mutation: A single node
with a parameter is picked, and that parameter is mu-
tated in a manner appropriate to the parameter type.
(b) Grow Mutation: A new node is generated ran-
domly and inserted at the head of the generator tree.
The old tree becomes one of its arguments. If the
new node has more than one argument, the other ar-
guments are generated randomly. (c) Shrink Mu-
tation: The opposite of Grow: The head node is re-
moved, and one of its arguments is selected randomly
to be the new feature tree.

These mutations are partially inspired by the ways
in which a human would typically modify an image
processing pipeline, while experimenting with possi-
bilities, but are obviously less well directed. Muta-
tions that would cause the tree depth to exceed a
user-defined depth limit (greater than the initializa-
tion depth limit) are not allowed. This absolute depth

Randomly initialize features
Perform initial optimization
for j = 1 to F :
let pm = j/F
let T = ln 1−pa

2
/ ln n−1

n

Randomly choose T feature indices I1 . . . IT ,
with replacement

with probability pm:
Find i such that |wIi | is maximized
Mutate feature with index Ii

else:
Find i such that |wIi | is minimized
Randomize feature with index Ii

Re-optimize
If objective function decreased, then keep change,

otherwise revert
end for

Figure 3. The feature set refinement algorithm. F is the
desired number of refinement cycles; pm is the probabil-
ity of mutating a good feature, rather than randomizing
a bad one; T is the tournament size; n is the size of the
current feature set; pa is the desired probability of picking
the absolute best or worst feature in the tournament; wk
is the component of the weight vector associated with the
kth feature.

limit is typically set to 5.

The probability of a mutation is adjusted linearly from
0 at the beginning of the refinement process to 1 at the
end. The motivation for this is that at the beginning
of the run it is more important to get rid of useless
features and try random replacements, while towards
the end, we hopefully have quite a good set of features
and so should focus on improving them.

2.2.5 Pruning

One of the potential advantages of a population-based
approach such as Genie is that it begins by consid-
ering many different solutions, and then as the train-
ing run progresses, it tends to converge attention on
a much smaller number of solutions. We can obtain
some of this effect in Afreet by starting with an
initial feature set that is much larger than the fea-
ture set we want to end up with. In conjunction with
the refinement process, we perform a series of pruning
steps, each of which simply eliminates the feature with
the current lowest weight component and re-optimizes.
Typically when using pruning, we start with a fea-
ture set ten times larger than the final feature set, and
prune down to the final set size during the initial 25%
of the feature refinement process.

2.2.6 Interface Issues

Obtaining accurate training data is an essential part of
a learning system. We use a Java GUI called Aladdin

to allow human experts to provide training data. Al-
addin allows the user to visualize a multispectral im-
age, and “paint” regions of positive and negative class
value onto the image. Not all pixels need to be clas-
sified. The same interface is used to visualize classi-
fication results and can be used to refine the training
data before re-training.

3. Experiments

To test and illustrate the effectiveness of Afreet we
include some examples of the system being applied to
problems in the remote sensing and medical domains.

3.1 Data Sets

Figure 4 shows the training and test data that were
used. Three tasks were selected:

1. Finding major roads and parking lots in 2m res-
olution IKONOS satellite imagery of Los Alamos,
New Mexico. The IKONOS data consists of four
channels: red, green, blue and near-infrared.5

2. Finding brain tissue in MRI scans of a human
head. The MRI scans are single-channel grayscale
images.

3. Finding eyeball tissue in the same MRI images.

These tasks were deliberately chosen to be very diffi-
cult to do spectrally. The urban images contain many
roof tops and and driveways that are spectrally iden-
tical to the roads that we want to find. The single-
channel MRI scans contain many other objects with
the same grayscale intensity as the objects we wish to
find.

For each task, three scenes were selected and labeled.
We used the first two scenes (A and B) for training,
and tested the resulting classifier on the third scene
(C).

3.2 Experimental Details

Six experiments were performed for each task, to com-
pare Afreet with purely spectral classifiers, and to
test various aspects of Afreet’s operation:

5IKONOS is a commercial high-resolution im-
agery satellite operated by Space Imaging, Inc
(www.spaceimaging.com). IKONOS color images ac-
tually have a pixel resolution of 4m, but this has
been “sharpened” to 1m resolution using 1m IKONOS
panchromatic imagery, and then resampled to produce
these 2m resolution images.

A CB

Figure 4. Training data. Each row shows the training/test images used for a different task. From top to bottom: roads,
brain tissue, and eyeball tissue. To the right of each scene is shown the pixel labeling associated with that scene. White
corresponds to the positive class, black corresponds to the negative, and gray means that pixel was unlabeled. The
classifiers were trained on scenes A and B, and were tested on scene C. Note that the two medical imagery tasks use the
same scenes, but with different pixel labelings.

1. Conventional spectral-only maximum likelihood
classification using Normal distributions.

2. Linear Support Vector Machine trained on just
the spectral channels, using the SMO algorithm.

3. Afreet, without pruning, using a feature set of
size 10 and 100 feature refinement steps.

4. Afreet, with pruning, starting with a feature set
of size 100 and pruning down to 10 features over
the initial 25% of a 100 step feature refinement
process.

5. Afreet, with no feature refinement process, but
starting with a feature set of size 100, and pruning
down to 10 features, i.e. simply selecting the best
10 of the initial 100 features.

6. Afreet, with no refinement process, and no
pruning, i.e. simply optimizing with 10 randomly
generated features.

The last two experiments are controls to test the use-
fulness of the pruning process by itself, and to see how
useful the feature refinement process really is.

All the SVM experiments, including Afreet, used
K = 1000 in the objective function (expression 1).
Other parameters took the “typical” values mentioned
in the Afreet description above. All experiments
that involved a random component (3, 4, 5 and 6)
were carried out 5 times and the results averaged.

4. Results

Table 2 shows the experimental results. The “miss
rate” gives the percentage of pixels that are really in
the positive class that were misclassified. The “false
alarm rate” gives the percentage of pixels in the nega-
tive class that were misclassified. The “average” gives
the mean of these two numbers. Due to the weighting
scheme described in 2.2.3, it is this average that is op-
timized during Afreet training. Both training and
test scores are shown.

The general pattern of these results shows clearly
that Afreet (Experiments 3 and 4) outperforms both
the purely spectral linear SVM (Experiment 2), and
the Maximum Likelihood classifier (Experiment 1), on
both training scores and test scores. This is particu-
larly noticeable on the medical data where theAfreet
runs get average misclassification errors that are less

Table 2. Training and test scores for each of the six experiments and each of the three tasks. The table shows the miss
percentage, false alarm percentage and the average of those two percentages. The uncertainties shown are the standard
error of the mean of five trials of each experiment and task.

TRAINING SCORES

Roads Brain Eyes

Exp Miss % FA % Avg % Miss % FA % Avg % Miss % FA % Avg %

1 7.1 8.1 7.6 4.4 9.2 6.8 8.3 9.2 8.7

2 6.4 11.0 8.7 0.0 17.4 8.7 7.8 10.5 9.2

3 3.5± 0.4 3.9± 0.8 3.7 ± 0.6 0.23 ± 0.06 0.41 ± 0.07 0.32 ± 0.05 0.0± 0.0 0.31± 0.1 0.16 ± 0.05
4 3.8± 0.5 3.6± 0.6 3.7 ± 0.4 0.080 ± 0.04 0.23 ± 0.05 0.15 ± 0.03 0.0± 0.0 0.11 ± 0.02 0.06 ± 0.01
5 4.2± 0.2 4.0± 0.7 4.1 ± 0.4 0.18 ± 0.06 0.30 ± 0.08 0.24 ± 0.07 0.020 ± 0.02 0.89± 0.3 0.46 ± 0.2
6 8.2± 0.6 9.2± 0.5 8.7 ± 0.4 1.5 ± 0.3 3.6± 0.8 2.5± 0.5 1.1± 0.5 7.3± 1.1 4.2± 0.8

TEST SCORES

Roads Brain Eyes

Exp Miss % FA % Avg % Miss % FA % Avg % Miss % FA % Avg %

1 15.4 7.6 11.5 1.6 6.2 3.9 3.9 10.3 7.1

2 17.3 10.5 13.9 0.0 13.6 6.8 3.8 12.4 8.1

3 18.1± 1.7 4.2± 0.9 11.2 ± 1.3 0.012 ± 0.01 0.040 ± 0.02 0.026 ± 0.01 0.40± 0.4 0.39 ± 0.05 0.40 ± 0.2
4 18.0± 0.9 4.3± 0.6 11.2 ± 0.4 0.002 ± 0.002 0.24 ± 0.13 0.12 ± 0.07 0.11± 0.11 0.38± 0.1 0.24 ± 0.07
5 20.4± 0.9 5.0± 1.1 12.7 ± 0.9 0.050 ± 0.05 0.26± 0.2 0.16 ± 0.07 0.020 ± 0.02 0.89± 0.3 0.46 ± 0.15
6 21.5± 2.4 10.2 ± 0.8 15.9 ± 1.1 1.9 ± 0.7 2.2± 0.8 2.0± 0.6 0.26± 0.2 9.4± 1.7 4.8± 1.0

than 10% of the purely spectral runs. This is per-
haps not that surprising since the single-channel im-
ages contain very little spectral information, and so
texture is a very important cue. The one anomaly is in
road finding where the Maximum Likelihood classifier
achieves essentially the same performance as Afreet
on the test scene, although Afreet achieves a signif-
icantly higher training score.6

Amongst the various Afreet variants, it is difficult to
see a clear winner. Afreet with no feature refinement
at all (Experiment 6) does consistently worse, but the
other variants are not statistically different from one
another. More work needs to be done to see which
of “pruning from a large feature set”, or “gradual re-
finement of a small feature set”, is a more powerful
technique.

Figure 5 compares the best classifications produced by
Afreet, with the results from Maximum Likelihood
classification. This shows clearly the power of using
spatial context information in order to classify spec-
trally ambiguous image features.

6Subjectively, however, the Afreet test results look
better, but this is not captured by the fitness metric.

5. Conclusions and Further Work

For many real-world image classification problems,
purely spectral feature vectors are not sufficient. We
have presented Afreet, an SVM-based system that
attempts to automatically construct spatio-spectral
feature vectors by putting together image processing
operators to form pipelines similar to those hand-
designed by humans. Ideas from evolutionary com-
puting are used to refine the feature set from a ran-
dom initial selection. In the experiments described
here, Afreet performs a good job of classification,
and clearly uses spatial context to good advantage to
outperform purely spectral classifiers in most cases.

One important thing that Afreet lacks is a sense
of direction when trying to mutate and replace fea-
ture generators. Humans do not make totally random
changes when optimizing image processing pipelines —
they make purposeful changes. We are currently ex-
amining a boosting technique that will allow Afreet
to rapidly estimate the effect of adding in a different
feature generator without having to re-optimize. This
will allowAfreet to screen a much larger set of poten-
tial features in a shorter time, and to make refinements
that are more sensible.

Figure 5. Result images from Experiment 4 for each task. The classification output from Afreet (top) and maximum
likelihood (bottom) are shown to the right of each scene. The tasks from left to right are: roads, brain tissue, and eyeball
tissue.

References

Banzhaf, W., Nordin, P., Keller, R. E., & Francone,
F. D. (1998). Genetic programming: An introduc-
tion. San Francisco, CA: Morgan Kaufmann.

Bischof, H., & Leonardis, A. (1998). Finding optimal
neural networks for land use classification. IEEE
Transactions on Geoscience and Remote Sensing,
36, 337–341.

Bishop, C. (1995). Neural networks for pattern recog-
nition. Oxford University Press.

Burges, C. (1998). A tutorial on support vector ma-
chines for pattern recognition. Knowledge Discovery
and Data Mining, 2.

Draper, B., Bins, J., & Baek, K. (1999). ADORE:
Adaptive object recognition. Proc. International
Conference on Vision Systems (pp. 522–537). Las
Palmas de Gran Canaria, Spain.

Gong, P., & Howarth, P. (1990). The use of structural
information for improving land-cover classification
accuracies at the rural-urban fringe. Photogrammet-
ric Engineering and Remote Sensing, 56, 67–73.

Harvey, N., Perkins, S., Brumby, S., Theiler, J.,
Porter, R., Young, A., Varghese, A., Szymanski, J.,
& Bloch, J. (2000). Finding golf courses: The ultra
high tech approach. In et S. C. al. (Ed.), Real world
applications of evolutionary computing, vol. 1803 of
Lecture Notes in Computer Science. Springer.

Holland, J. (1975). Adaptation in natural and artificial
systems. University of Michigan Press.

Keerthi, S., Shevade, S., Bhattacharyya, C., & Mur-
phy, K. (1999). Improvements to platt’s smo al-
gorithm for svm classifier design (Technical Report
CD-99-14). Dept. of CSA, IISc, Bangalore, India.

Perkins, S., Theiler, J., Brumby, S., Harvey, N.,
Porter, R., Szymanski, J., & Bloch, J. (2000). GE-
NIE: A hybrid genetic algorithm for feature classifi-
cation in multi-spectral images. In Proc. SPIE 4120:
Applications and Science of Neural Networks, Fuzzy
Systems and Evolutionary Computation III.

Platt, J. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. In
B. Schölkopf, C. Burges and A. Smola (Eds.), Ad-
vances in kernel methods — support vector learning,
185–208. MIT Press.

Richards, J. (1993). Remote sensing digital image
analysis. Springer-Verlag.

Roli, F., & Fumera, G. (2000). Support vector ma-
chines for remote-sensing image classification. Proc.
EOS/SPIE Symposium. Barcelona.

Theiler, J., Harvey, N., Brumby, S., Szymanski, J.,
Alferink, S., S.Perkins, Porter, R., & Bloch, J.
(1999). Evolving retrieval algorithms with a genetic
programming scheme. Proc. SPIE 3753 (pp. 416–
425).

Vapnik, V. (1995). The nature of statistical learning
theory. Springer, NY.

	AFREET: Human-Inspired Spatio-Spectral Feature Construction for Image Classification with Support Vector Machines
	Abstract
	1. Introduction
	1.1 Machine Learning and Flat Image Classification
	1.2 How Do Humans Do It?

	2. Afreet
	2.1 Motivations
	2.2 Design Details
	2.2.1 Classifier Structure
	2.2.2 Initialization
	2.2.3 Training the Discriminant
	2.2.4 Evolving the Feature Set
	2.2.5 Pruning
	2.2.6 Interface Issues

	3. Experiments
	3.1 Data Sets
	3.2 Experimental Details

	4. Results
	5. Conclusions and Further Work
	References

