' RBRC-146 To appear in the Proc. of the XVIII International

Symposium on Lattice Field Theory "Lattice 2000,"
Bangalore, India, August 17-22, 2000

BNL-67856

L a wT e b . o _

D. Chen?, N. H. Christ®, C. Cristian®, Z. Dong®, A. Gara®, K. Garg®, B. Joo®, C. Kim®, L. Levkova®,
X. Liao®>, R. D. M whmneyb S. Ohta"“ T. Wettxgef

®IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598

YDepartment of Physics, Columbia University, New York, NY, 10027

°Department of Physics, University of Kentucky, Lexington, KY, 40506

dInstitute for Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, 305-0801, Japan
*RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY, 11973
fDepartment of Physics, Yale University, New Haven, CT, 06520-8120

The architecture of a new class of computers, optimized for lattice QCD calculations, is described. An individual
node is based on a single integrated circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit
IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor communications and additional control

hep-1at/0011004 1 Nov 2000

arXiv

1. INTRODUCTION

The numerical evaluation of Euclidean-space
Feynman path integrals provides a unique and
powerful tool to study non-perturbative phe-
nomena in quantum field theory. These tech-
niques permit both qualitative and quantitative
study of low-energy hadronic physics through
first-principles, Quantum Chromodynamics cal-
culations. These methods also hold the promise of
revealing new non-perturbative phenomena that
may be present in other quantum field theories
that are potential candidates for the theory be-
yond the standard model.

Unfortunately the corresponding calculations
are very demanding, requiring large resources and
sophisticated algorithms. While a fully physical
simulation including the effects of light quarks
with their physical masses is probably more than
a decade away, there is much optimism that phys-
ical results can be obtained by careful extrapo-
lation from parameter ranges which are less de-

*Talk presented at Lattice 2000, Bangalore, India. This
research was supported in part by the U. S. Department
of Energy and the RIKEN-BNL Research Center.

‘and diagnostic circuitry. The machine’s name, QCDOC, derives from “QCD On a Chip”.

manding computationally. Never-the-less, contin-
ued progress in this important area of theoretical
physics requires significant advances in compu-
tational methods and active exploitation of the
rapid progress in microelectronics and computing
technology.

Since the fundamental physics of low energy
relativistic quantum field theory is accurately
captured by the present lattice gauge theory for-
mulation, it is appropriate to employ the largest
possible computer resources to address outstand-
ing problems. In particular, much progress has
been made over the past two decades by using
specially designed computers, optimized to the
particular characteristics of lattice QCD calcu-
lations[1,2]. A massively parallel computer with
a large number of computational nodes, a rela-
tively small memory per node and relatively mod-
est disk bandwidth and storage capacity per node
is usually appropriate. However, relatively fast,
low-latency inter-processor communication is of-
ten needed. As a rough guide, for a fixed proces-
sor speed one might require a processor-memory
bandwidth (in words/sec) that is roughly one

s gt g

I AN

third of the processor speed (in floating point
operations/sec). The total off-node bandwidth
(counting both incoming and outgoing data),
specified in words/second, should be roughly one
tenth of this processor speed[3].

One example of such optimized computer con-
struction is provided by the present set of QCDSP
machines[4,5]. Designed and constructed during
the period 1993-1998 by the group centered at
Columbia, these “QCD on Digital Signal Proces-
sor” machines are now installed and operational
at Columbia University (400 Gfiops), the RIKEN
Brookhaven Research Center (600 Gflops) and
the Thomas Jefferson Laboratory (50 Glfops). By
providing only the computer resources required
for lattice QCD, these machines achieve a favor-
able cost performance figure of $10/Mflops.

We have now begun the design of a new class of
parallel machines which represent further evolu-
tion of the architecture of the QCDSP machines.
In the following we will describe our present plans
for these new machines. After a brief discussion
of the QCDSP machines (Section 2), we will dis-
cuss the overall architecture of the new computer
(Section 3), the features of the somewhat complex
integrated circuit that lies at its core (Section 4),
the properties of the PowerPC RISC processor
that will perform the actual computation (Sec-
tion 5), our network /communications strategy for
interprocessor communication (Section 6) and a
little about the software environment that we are
planning (Section 7).

2. QCDSP MACHINES

The present machines running at Columbia,
the RIKEN-BNL Research Center and Jefferson
Laboratory are configured as four-dimensional ar-
rays of processing nodes, in quantities of 8192,
12,888 and 1024 nodes respectively. Each node
is made up of a Texas Instruments, TMS320C31-
50 digital signal processor, 2 Mbytes of DRAM
(with an additional 0.5 Mbytes of redundancy for
error detection and correction), and an =~ 250K
transistor, application specific integrated circuit
(or ASIC) which provides a buffered /prefetching
interface to the memory and eight 50 MHz serial
communication ports.

3 .2 2

SN

Figure 1. The 8,192-node, 0.4Tflops peak speed,
QCDSP machine running at Columbia since 4/98.

Each node is mounted on a small daughter
board. Sixty-four such nodes are mounted on a
mother board and eight mother boards fit into a
backplane. The 8,192-node machine at Columbia
has 8 racks holding 16 backplanes and 128 mother
boards and is shown in Figure 1.

The four-dimensional, inter-node communica-
tion mesh is realized in the following fashion.
First, the 64 nodes on each mother board are in-
terconnected as a 4 x 4 x 2 x 2 hypercubic lat-
tice. Two of the 4 x 2 x 2 faces, orthogonal
to a common direction, are joined together in
that direction creating a four-dimensional cylin-
der with six, three-dimensional faces correspond-
ing to the remaining six of the eight faces of the
original 4 x 4 x 2 x 2 hypercubic lattice. Each
of these six faces is connected to a separate ca-
ble brought out from the backplane. These ca-
bles, six per mother board, can then be inter-
connected to create the desired overall machine
topology, including a disconnected collection of
independent machines. For example, the 12,288-
node machine at Brookhaven is currently oper-
ating as one 4,096-node machine and four 2,048-
node machines. This ability to cable the machine
on the mother board level provides valuable flex-
ibility but also some inconvenience when the ca-
bles must be manually rearranged.

3. QCDOC ARCHITECTURE

With this background discussion of the current
QCDSP machines, we now turn to a general de-

scription of the architecture of the next QCDOC
computers. For this next-generation machine we
have followed a similar strategy. We seek to com-
bine a large number of inexpensive, small, low-
power processors into a machine capable of ap-
plying their computational power to a single very
difficult calculation. In this way we attempt to
optimize both the cost performance and operat-
ing costs of the machine without compromising
our ability to focus very significant computer re-
sources on the most demanding problems.

Recall that the difficulty of a full QCD lattice
calculation scales as a very high power of the vol-
ume: Work ~ L3 1% where L is the linear lat-
tice size. As the problem gets larger the amount
of computing power needed per volume increases
rapidly, forcing us in the direction of many pro-
cessors, each managing a decreasing fraction of
the total physical volume.

The network bandwidth and latency are there-
fore chosen to permit a single problem to be
mounted on a large machine. However, we also at-
tempt to achieve sufficient flexibility that a small
version of the machine can do interesting physics
as well and that a large machine can be easily
subdivided to tackle independent problems that
may represent too small a lattice to require or fit
on the full machine.

A critical part of the present design grows from
our collaboration with IBM and the resulting
ability to exploit state-of-the-art IBM technology.
Using the next generation of IBM’s ASIC technol-
ogy, we are designing a single integrated circuit,
which will integrate the complete functionality of
our previous daughter board and nearly all the
circuitry of the mother board as well. This fol-
lows the industry trend of exploiting the decreas-
ing semiconductor feature size to build a “system
on a chip”,

In our case we will be able to incorporate an
industry standard RISC integer processor; a fully
integrated 1 Gflops, 64-bit floating point auxi-
lary processor; 4 Mbytes of DRAM,; all inter-node
communication and an Ethernet controller for ex-
ternal disk I/0 as well as diagnostic and boot-up
purposes, all on a single chip. We expect such
a chip will consume 1-2 Watts, will occupy a die
approximately 1 cm on a side and will permit

an aggregate cost/performance figure of less than
$1/Mflops.

In order to provide greater flexibility in mem-
ory size per node, allowing even a quite small ma-
chine to have interesting physics applications, we
will provide an industry standard, double-data-
rate, synchronous dram module for each node.
This will permit a commercial memory card to
be added, providing an additional 32 Mbytes to
0.5 Gbytes per node as required by physics goals
and economic limitations.

As in the previous machine, we have adopted
a mesh, nearest-neighbor communication scheme.
This eliminates the need for a switch, a compo-
nent that can easily represent a signficant frac-
tion of the cost of a large machine with a fast
but more general network. As is described below,
we presently plan a network of dimension higher
than four. Even two extra dimensions provide
considerable flexibility in joining the machine into
a variety of disconnected four-dimensional hyper-
planes, thereby significantly reducing the need for
the somewhat inconvenient recabling required by
the QCDSP design.

The last element of the QCDOC architecture
to address is the general-purpose network used to
boot the machine, load code, extract results and
provide access to mass storage. In our present
QCDSP machines these capabilites are provided
by a tree made up of SCSI links with the final
connections on each mother board realized us-
ing a TI serial protocol. We plan to exploit the
tremendous commercial developments in Ether-
net devices to replace this SCSI network with
Ethernet. The ASIC in each node will contain
a standard 100 Mbit/sec Ethernet controller al-
lowing each node to be addressed individually and
interrogated by the host computer through a tree
of commerical Ethernet switches.

At present we plan to join the Ethernet con-
nections for each group of four nodes into an on-
board Ethernet switch. Each of these 16 Ethernet
switches will have a 100 Mbit/sec, off-board Eth-
ernet connection through an external connector.
This will reduce the effective simulataneous band-
width available per node to &~ 3 Mbytes/sec. This
next layer of 100 Mbit/sec connections will then
be joined into 1 Gbit/sec Ethernet connections

using external commercial hardware and with no
further loss of bandwidth. Connecting multiple
RAID disks to the resulting multiple, 1 Gbit/s
Ethernet wires should allow full support for this
3 Mbyte/sec/node bandwidth giving an 8K-node
machine an aggregate 24 Gbyte/sec bandwidth to
disk. '
Thus, from the view of the host computer an
8K-node QCDOC machine looks like a large Eth-
ernet appliance with 8K distinct Ethernet ad-
dresses. Since this Ethernet provides the only
control link to this machine, we must provide an
Ethernet “reset” capability. This requires a fur-
ther simple, hardwired Ethernet interface which
is independent of the PowerPC and the more com-
plex Ethernet controller that the PowerPC must
initialize before it can be used. However, such
a capability is also needed for other applications
and a very attractive solution appears to have
been already developed within IBM Research.

4. ASIC DESIGN

We next discuss the overall design of the ap-
plication specific integrated circuit which, except
for the external memory module, forms the en-
tirety of the new processing node. This is best
understood from Figure 2. The cross-hatched ar-
eas in the figure represent internal parts of the
ASIC that we must design while the open boxes
are modules that are available as library compo-
nents that can be simply referred to in the hard-
ware description language version of the design.
(Including these pre-designed macros is much like
introducing a subroutine call into a normal com-
puter program.) A brief description of the various
parts of design outlined in Figure 2 includes:

4.1. PowerPC core

This IBM-supplied macro represents the com-
plete RISC processor with its attached 1 Gflops,
64-bit IEEE floating point unit. This is a model
‘440’ PowerPC—a member of IBM’s family of em-
bedded PowerPC designs and is described below
in Section 5. A complete, functional model of the
integer unit is represented in our simulation envi-
ronment allowing us to execute compiled code on
that portion of the ASIC as we begin the detailed

design.

4.2, Serial Communications

This is provided by the serial communications
unit (SCU) described below in Section 6 and the
three high speed serial modules, labeled HSSL,
in Figure 2. Each of these modules contains four
independent sending ports and four independent
receiving ports, all operating at 500 MHz. Each
of the four serial receiving ports collects incoming
serial data into 8-bit units and provides them to
the SCU as bytes at 62.5 MHz. Such high-speed
components are quite sophiticated, with built-in
phase locking and a predetermined physical lay-
out. These three HSSL units, providing a total
of 24 sending or receiving ports, represent very
valuable pre-packaged technology that is supplied
as part of the IBM ASIC design system. When
employed in the geometry of a four dimensional
mesh, only 8 of these links will be used in each
direction, providing a total off-node communica-
tions bandwidth of 8 Gbits/sec.

4.3. EDRAM

The 4 Mbytes of embedded DRAM provide suf-
ficient storage that the data for most lattice QCD
problems can easily fit entirely within this mem-
ory. Since we do not need to connect the memory
and processor using external drivers and pins, we
can provide a much wider output bus from the
memory. In our design the memory controller is
connected to the memory though a 1024-bit bus
(not including the bits needed for error correc-
tion and detection). This data is then carefully
buffered into the 256-bit units needed for cache
line fetches and provided to the 440 core in 128
bit units at 500 MHz. Sufficient internal buffering
is provided so that sequential access can proceed
at this 8 Gbytes/sec rate, hiding the DRAM page
misses that will necessarily occur as one moves
through memory.

4.4. External Memory controller

An important IBM library component is the
DDR SDRAM controller. This unit connects to
the 128-bit Processor Local Bus (PLB), the stan-
dard, on-chip bus that also joins the PowerPC
processor and the SCU. This controller manages
all aspects of external memory accesses including

8 Gbyte/sec 1 Gflops 2 GByte/sec
& wd%ye?D;fAM [Memory/Procesoi Double Precision [Interface to
m Bandwidth r) |External Memory
. S—
| BT e
. @ Jowom| m | [mm] Prpt—IHa
. R] :
; 1
— : z:'“ ToER &)
= _L—%f_ |
= %
=) /
Tt Complete Processor Node U /T
n for QCD Supercomputer ——
on a Single Chip
24 Off-Node Links 24 Channel DMA 100 Mbit/sec
8 Gbit/sec Communication Fast Ethernet
Bandwidth Control

Figure 2. Block diagram of the QCDOC ASIC design. The cross-hatched components are of our design
while the remaining boxes represent functions that are available as part of the IBM ASIC library.

DRAM refresh and error detection and correc-
tion. Both the PLB and the external memory
will operate at 1/3 of the processor speed. While
the connection to the external memory is only
72 bits (including error detection and correction),
the double data rate feature means that data is
effectively clocked at twice the 166 MHz PLB bus
frequency, giving a 2.6 Gbytes/sec bandwidth to
external memory.

4.5. Ethernet Controller
The final module described is the Ethernet con-
troller. This is a highly functional, pre-designed

unit which will manage Ethernet traffic with in-
frequent interruption of the processor. It is sup-
plied with a direct memory access (DMA) unit
and should also be supported by a pre-existing
software driver. This Ethernet controller is con-
nected to the PLB somewhat indirectly through
a second, 32-bit On-chip Perpherial Bus, again
a standard bus within the IBM library of ASIC
components.

5. PowerPC PROPERTIES

The processor core, central to our design, is
an industry standard, embedded PowerPC RISC
processor. This is a 32-bit processor with 32 gen-
eral purpose registers, a 32 KByte data cache
and a 32 KByte, prefetching instruction cache.
The CPU can issue two instructions on every cy-
cle, contains three execution pipes, carries out
branch prediction and supports out-of-order in-
struction issue, execution and completion. It sup-
ports highly functional memory management con-
necting 32-bit effective and 36-bit physical ad-
dresses using a 64-entry translation look-aside
buffer, where each entry identifies an indepen-
dently mapped page of length between 1 Kbyte
and 256 Mbyte. The 64-bit IEEE floating point
unit is connected as an auxilliary processor which
executes Book-E floating point instructions in
hardware with direct access to the processors data
cache.

6. COMMUNICATIONS/NETWORK

The communications network is a natural evo-
lution of that used successfully in the QCDSP ma-
chines. The basic transfer size is increased from
32- to 64-bits. The inter-node communication is
self-synchronizing with the receipt of a given 64-
bit word acknowledged only after that word has
been removed from the input buffer, indicating
that another word can be sent without the pos-
sibility of data loss. The detection of an error
will cause the issue of an “acknowledgement with
error” which will initiate a retry. The commu-
nications protocol is designed so that any single
bit error within 32-bits will be detected. If that
error occurs during the first 8 bits of a transfer,
those bits used to identify the transfer, the error
will in addition be corrected sllowing the proper
response to the error to be taken.

In order that no communications bandwidth
is lost waiting for an acknowlegement, four dis-
tinct receive buffers are provided with each sepa-
rately acknowledged. This permits four words to
be sent before an acknowledgement is received.
These receive buffers will be divided into two
groups. The first group of three is used for nor-

mal data transfers with both the sent and re-
ceived data streamed to memory by an indepen-
dent DMA unit for each of the 24 external wires.
These data transfers will be programmed as a se-
quence of block-strided moves controlled by sim-
ple chained instructions loaded into the SCU. The
second group is the fourth of these registers. It
is loaded and unloaded directly by the PowerPC
and data arriving is signaled by a processor in-
terrupt. This supervisor communication channel
can be used to support efficient operating system
communication between neighboring nodes that
is independent of ongoing application data trans-
fers.

We expect that the topology of the communi-
cations network that is actually used will be the
standard four-dimensional torus appropriate for
Euclidean Feynman path integration. However,
by providing a higher dimensional mesh we will
facilitate the subdivision of the machine in soft-
ware reducing the need to physically reconnect
the communications cables when a different set
of physics jobs is to be run.

Figure 3. Two examples of reducing a 2 dimen-
sional torus to a sum of one-dimensional tori.
Note, the wires leaving the edges of each figure
will be joined back to the other side of that fig-
ure.

This “reconfiguration through dimensional re-
duction” can be most easily understood by ex-
amining some lower dimensional examples. First
consider what we would like ultimately to be a
one-dimensional machine of eight nodes. If these
nodes are interconnected into a two-dimensional,
4 x 2 mesh, we can realize a number of different
one-dimensional mesh configurations as shown in
the upper portion of Figure 3. The darkened
links shown in that Figure demonstrate a choice

in which the 8-node machine is configured into
two partitions: a 6-node machine and a separate
2-node machine. Clearly a variety of other choices
are possible as well including an 8-node machine
and two 4-node machines.

A more complicated example is shown in Fig-
ure 4 where what might have been a simple 4 x 4,
two-dimensional mesh machine is instead wired
as a three-dimensional 2 x 2 x 4 device. As shown
in that figure, the original 4 x 4 geometry is easily
realized. However, it is not difficult to recognize
a 2 x 8 mesh or two 2 x 4 machines.

Figure 4. Here the thicker connections represent
a 4 x 4, two-dimensional torus created from a 2 x
2 x 4, three-dimensional mesh. This mesh is also
connected as a torus by joining the corresponding
wires leaving opposite faces of the 2 x 2 x 4 cube.

In order to see how this is accomplished for the
six-dimensional case of interest, it is easiest to
consider an example. As an illustration, consider
an 8,192-node machine composed of 128 mother
boards, each with 64 nodes, a likely machine con-
figuration. Further, we will interconnect these 64
nodes as a 26 cube with three pairs of faces joined
back on themselves to realize a three-dimensional
torus on the mother board. In an arbitrary set
of coordinates, let us identify a node with 6 coor-
dinates: (no,n1,...,n5). We might then choose
the first three coordinates as corresponding to
this three-dimensional torus. Thus, n; € [0,1]
for i =0, 1 and 2. Six of the twelve faces of this
2 cube have been connected to each other. This
leaves a final six faces (each of size 25 = 32) to be
connected to other mother boards through edge

connectors on the mother board. The required
192 signals (or 768 wires) is large but possibly
managable.

For the next coordinate, ns, we might con-
nect together 4 mother .boards within a single
backplane and use ns = k + 2 * m, where k €
[0, 1] determines the third coordinate of the node
within the 26 hypercube on the mother board and
m € [0,3], labels the mother board on which
that node resides. This group of 256 nodes is
now a 2% x 8 x 22 six-dimensional solid with 8
of its 12 faces joined to themselves. This leaves
two remaining directions to be joined, connecting
this group of 256 nodes with the remaining 32
groups within our example machine. Each of the
four faces of such groups of 256-nodes must be
connected through a separate group of cables to
the neighboring face of another 256-node group.
Since each of these faces is made up of 2* x 8
processors a total of 128 signals are required per
face. An eight mother board backplane would
then need to provide connectors for 2 x4 = 8 such
groups of 128 signals. The total of 1024 signals is
less than the 1,280 signals leaving the backplanes
of our present QCDSP machines.

If we arrange these 256-node groups as a fi-
nal 4 x 8 mesh, the final machine becomes a
six-dimensional 2% x 82 x 16 torus. While there
may be computational problems for which this
machine could be employed directly as a six-
dimensional torus, we expect that the typical
configuration would exploit the six-dimensional
interconnect to realize a four-dimensional torus
more appropriate for lattice gauge theory calcu-
lations. One simple way to achieve such a re-
duction from six to four dimensions takes two in-
dependent two-dimensional factors and uses only
a one-dimensional subgrid (or collection of one-
dimensional subgrids) in each factor to produce a
four-dimensional product.

For example, we can use the scheme in the
lower diagram in Figure 3 twice to separate two
of the 2 x 8 factors in the machine, each into two,
one-dimensional terms, one of 12 nodes and one
of 4 nodes. We can thereby partition our 8,192-
node, 2% x 82 x 16 machine, into four independent,
four-dimensional tori: one 2 x 12 x 12 x 16, two
2x4x12x16 and one 2 x4 x 4 x 16. This would

permit a 243 x 32 calculation to be done on more
than one half of the hardware. Since a reasonable
programing model requires that an even number
of lattice sites appear on each node for each di-
manginn nf tha manhina ftting fantare ~AF +thran
AT LDIVULL Ul bllU LUOALLIIG, llhbllls LOALVULD ULl LiLITT

into our lattice is a non-trival accomplishent for
a large machine which is even in each dimension.

7. SOFTWARE

We plan a software environment for this next
generation of computers which is a natural evolu-
tion of that available on the present QCDSP ma-
chines. This follows a “data paraliel” program-
ming model in which application code is written
so that a single program runs on each node, exe-
cuting essentially the same instructions with dif-
ferent data on each node. The exceptions to this
pattern are usually I/O or communications rou-
tines where the placement of disks or the pattern
of communications is not homogenous and re-
quires different actions from different processors.
The code is cross-compiled on a UNIX-based host
(to date this is always a SUN machine) and then
down-loaded to the parallel machine.

A particular partition of the machine is con-
trolled from an extended UNIX shell environ-
ment which includes additional commands allow-
ing programs to be loaded and executed, data to
be loaded or read and individual memory loca-
tions to be examined. Both interactive and batch
UNIX processes can be run within this environ-
ment. This functionality is supported by a further
suite of operating system code that is executing
on the individual nodes.

This operating environment also provides ‘C’-
like subroutines that can be called by application
programs allowing printf (), fopen(), fclose()
and fprintf () capability. Critical to this soft-
ware environment is carefully designed low-level
code with a high degree of robustness and diag-
nostic capability permitting a hardware fault to
be isolated and identified from software. This un-
derlying boot/diagnostic kernel is essential to the
maintenance of a system of more than 20K nodes.

The industry standard RISC processor will al-
low further improvements on this reasonably con-
venient scheme. Since the Book-E compliant

processor is supported by a number of standard
compilers we should be able to provide a well-
supported and highly functional C/C++ pro-
gramming environment. This is in welcome con-
strast to the somewhat limited capabilities of
the C++ compiler available for the digital sig-
nal processors in the present QCDSP machines.
An equally important enhancement results from
the highly functional memory management unit
in the PowerPC processor. We plan to use
this capability to isolate system and application
code, creating a re.sonably robust code develop-
ment/debugging environment.

Of course, with such a flexible processor, an
even more sophisticated software environment is
certainly possible. While LINUX on every node
could certainly be provided, this degree of gener-
ality may well be inconsistent with high perfor-
mance for QCD applications.

8. CONCLUSION

This next-generation, QCDOC architecture de-
scribed above will provide a very significant ad-
vance over our present QCDSP machines. We
anticipate a cost performance of better than
$1/Mflops, a 10x improvement on the QCDSP
machines. Given the large processor/memory
bandwidth, optimized QCD code should sustain
above 50% on the new machine and even generic
‘C’ code should execute with reasonable effi-
ciency. We plan large machines at Columbia, the
RIKEN Brookhaven Research Center, a UKQCD
machine in Edinburgh and a possible national ma-
chine for the US lattice QCD community.

REFERENCES
1. J. C. Sexton, Nucl. Phys. Proc. Suppl. 47,
236 (1996).

2. N. H. Christ, Nucl. Phys. Proc. Suppl. 83,
111 (2000), hep-lat/9912009.

3. S. Aoki et al., Int. J. Mod. Phys. C2, 829
(1991).

4. D. Chen et al., Nucl. Phys. Proc. Suppl. 73,

" 898 (1999), hep-lat/9810004.

5. R.D.Mawhinney, Parallel Comput. 25, 1281

(1999), hep-lat/0001033.

