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Advanced Wave-Equation Migration
Lianjie Huang and Michael C. Fehler

Los Alamos Seismic Research Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

ABSTRACT

Wave-equation migration methods can more accurately account for
complex wave phenomena than ray-tracing-based Kirchhoff meth-
ods that are based on the high-frequency asymptotic approxima-
tion of waves. With steadily increasing speed of massively parallel
computers, wave-equation migration methods are becoming more
and more feasible and attractive for imaging complex 3D struc-
tures. We present an overview of several efficient and accurate
wave-equation-based migration methods that we have recently de-
veloped. The methods are implemented in the frequency-space and
frequency-wavenumber domains and hence they are called dual-
domain methods. In the methods, we make use of different ap-
proximate solutions of the scalar-wave equation in heterogeneous
media to recursively downward continue wavefields. The approx-
imations used within each extrapolation interval include the Born,
quasi-Born, and Rytov approximations. In one of our dual-domain
methods, we use an optimized expansion of the square-root opera-
tor in the one-way wave equation to minimize the phase error for
a given model. This leads to a globally optimized Fourier finite-
difference method that is a hybrid split-step Fourier and finite-
difference scheme. Migration examples demonstrate that our dual-
domain migration methods provide more accurate images than
those obtained using the split-step Fourier scheme. The Born-
based, quasi-Born-based, and Rytov-based methods are suitable
for imaging complex structures whose lateral variations are mod-
erate, such as the Marmousi model. For this model, the compu-
tational cost of the Born-based method is almost the same as the
split-step Fourier scheme, while other methods takes approximately
15-50 per cent more computational time. The globally optimized
Fourier finite-difference method significantly improves the accu-
racy of the split-step Fourier method for imaging structures hav-
ing strong lateral velocity variations, such as the SEG/EAGE salt
model, at an approximately 30 per cent greater computational cost
than the split-step Fourier method.

INTRODUCTION

Since the inception of the Kirchhoff migration method in late 1970s
(Schneider, 1978), the ray-based migration method has been widely
used in industry because of its remarkable high efficiency. Rays are
high-frequency asymptotic approximation of waves, therefore, it is
difficult for a ray migration scheme to accurately image complex
structures where wave phenomena are important. Many improve-
ments have been made to make the ray migration more reliable
and different ray migration methods have been developed during
last two decades (e.g. Wiggins, 1984; Keho and Beydoun, 1988;
Zhu, 1988; Geoltrain and Brac, 1993; Gray and May, 1994; Moser,
1994; Fei et al., 1996; Bevc, 1997; Audebert et al., 1997; Hanitzsch,
1997; Hildebrand and Fehler, 1998; Tygel et al., 1998; Abma et al.,
1999; Dellinger et al., 2000; Hokstad, 2000; Romero et al., 2000;

Sun et al., 2000). To date, the ray-based migration method is still
the most commonly used imaging tool in industry.

Wave propagation in continuous and heterogeneous media is
governed by the wave equation. This partial differential wave-
equation is often numerically solved using different methods to
simulate complex wave phenomena. Migration imaging is a back-
propagation of wavefields recorded on the surface of the Earth.
Imaging a complex 3D structure requires a great number of back
propagation steps, and therefore, it needs an accurate and effi-
cient imaging scheme. To achieve a high efficiency and reduce
the computer memory requirement when using wave equation for
migration, Claerbout pioneered research in this area by using the
one-way wave equation and introducing different approximations
to the square-root operator in the equation in 1970s. He summa-
rized wave-equation migration methods developed by himself and
his colleagues in a book published in 1985 (Claerbout, 1985). In
one-way wave-equation-based methods, wavefields recorded on the
surface of the Earth are downward continued into the Earth and an
imaging condition is applied at each position within the Earth to
obtain the image of the Earth’s interior. Most of the methods in-
troduced in Claerbout’s 1985 book make use of finite-difference
schemes to solve the approximations of the square-root operator
in the one-way wave equation. Hale (1991) introduced a finite-
difference migration method using McClellan transformations.

Some wave-equation migration methods are based on use of the
Fourier transform and are carried out in the frequency-space and
frequency-wavenumber domains. We refer them to as the dual-
domain migration methods. The Fourier transform-based methods
exactly implement the transverse Laplacian operators in the wave
equation, and consequently, they minimize the artificial numeri-
cal dispersion effects that commonly occur in the finite-difference-
based methods. Gazdag (1978) developed the phase-shift migration
method and Stolt (1978) proposed the F-K migration scheme. Both
methods require a homogeneous velocity model. To handle lat-
eral velocity variations, Gazdag and Sguazzero (1984) introduced
the phase-shift plus interpolation (PSPI) method, and Stoffa et al.
(1990) proposed the split-step Fourier (SSF) approach. Wu and
Jin (1997) and Jin and Wu (1999) introduced a windowed Fourier
transform-based method. Le Rousseau and De Hoop (1999) and
de Hoop et al. (2000) developed a high-order Fourier transform-
based method that obtains increased accuracy at a cost of increas-
ing the number of Fourier transforms used. Ristow and Riihl
(1994) developed a hybrid split-step Fourier and finite-difference
approach called the Fourier finite-difference method. Xie and Wu
(1998) introduced an alternative hybrid split-step Fourier and finite-
difference scheme.

In recent years, we have developed a suite of wave-equation mi-
gration methods that are based on one-way wave propagation and
implemented in the frequency-space and frequency-wavenumber
domains (Huang and Wu, 1996a, b; Fehler and Huang, 1998;
Huang et al., 1998, 1999a, b; Huang and Fehler, 2000a, b, 2001).
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We have also used some of these methods for modeling primary for-
ward wave propagation in random media (Fehler and Huang, 1998;
Huang and Fehler, 1998b; Fehler et al., 2000). In this paper, we
present an overview of these dual-domain migration methods. In
the methods, we applied the Born, quasi-Born, and Rytov approxi-
mations within each extrapolation interval during wavefield down-
ward continuation. In one of the methods, we optimized the Fourier
finite-difference method for the entire model. We give a brief de-
scription of the methods and present migration images obtained us-
ing synthetic datasets for the Marmousi model and the SEG/EAGE
salt model. The images obtained using our dual-domain methods
are more accurate and reliable than those obtained using the the
split-step Fourier scheme (Stoffa et al., 1990; Huang and Fehler,
1998a), which is a small-angle approximation of the Rytov-based
method.

Compared to ray migration methods, the advantage of wave-
equation migration methods is that they can more accurately ac-
count for complex wave phenomena, while their disadvantage is
that they are generally more computationally intensive than ray mi-
gration methods. However, with steadily increasing speed of mas-
sively parallel computers, the wave-equation migration schemes are
now becoming more and more feasible and attractive for imaging
complex 3D structures.

WAVEFIELD EXTRAPOLATION EQUATIONS

We give the wavefield extrapolation equations for our dual-domain
wave-equation migration methods including the extended local
Born Fourier (ELBF), quasi-Born Fourier (QBF), extended lo-
cal Rytov Fourier (ELRF), and globally optimized Fourier finite-
difference (GOFFD) approaches. The ELBF, QBF, and ELRF
methods are derived using the two-way wave equation and a one-
way Green’s function, while the GOFFD method is based on the
one-way wave equation.

ELBF Method

In the ELBF method (Huang et al., 1999b), the Born approxima-
tion is applied within each extrapolation interval. To extrapolate the
wavefield from depth level at z; to another level at z;41 = z; + Az
where Az is the extrapolation interval, the incident and scattered
wavefields at z;41 are extrapolated using the known wavefield
P(z, z;;w) to form the wavefield at z;41 given by

P(z, zi41;w) = Po(, zip150) + P (0, zi15w), (1)
where the incident wavefield Py (x, zi+1;w) is obtained by
Py(z, ziy1;w) = fk;l {eikZ(“)Az}'JJ {P(m,zi;w)}} (2)

with the vertical wavenumber k. given by

2

In egs. (1)-(3), w is the circular frequency. In eq. (2), F, repre-
sents the Fourier transform over = and JF ! represents the inverse
Fourier transform over k.. In eq. (3), vo(z;) represents a reference
velocity of the medium within the interval from z; and z; 41, which

is generally chosen as the reciprocal of the average slowness. The
Born scattered wavefield PP (x, zi11; w) is given by

PSB (1‘, Zitls w) Q—‘J]:]:wl {O’(Zi)eikz (2i)Az
4
X Fz {[iwAs(z,2:)Az] P(z,zi;w)} },

where As is the slowness perturbation and the parameter o is given
by
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In the quasi-Born Fourier method (Huang and Fehler, 2000b), the
scattered wavefield in eq. (1) is replaced by the quasi-Born scat-
tered wavefield given by

6)

+0.3125 <

QBF Method

Po(@, zi41;w) PP (2, zi41;w0)

PP (x, 2i41;w) = .
P (2, zig1; w) Po(, zig1;w) — PB(z, 211, 0)

@)

ELRF Method

The ELRF method (Huang et al., 1999a) makes use of the wavefield
extrapolation equation given by

P(z,ziy13w) & Po(x, zig1;w)els 2415 ®)
where the complex exponential term ¢ (z, zi+1;w) is given by

B - .
bs (@, 2 + Az;w) = P (@, zit130)
Po(ﬁ, Zi+1;w) (9)

_ PP(xziw) P (3, 2i415w)
Po(z, zit1;w) Py (z, zig1;w) + 6’

where the superscript “+” denotes the complex conjugate and 9 is a
small real number which can be chosen as

0 = ¢ [max{Po(x, zi+1;w) 5 (%, zit1;w)}] (10)

with a small real number of {. In eq. (10), the maximum value is
searched for all lateral positions at z; 1 for a given w. In practice,
the value of ¢ can be 0.01 to 0.05. We showed that the split-step
Fourier method is a small-angle approximation of the extended lo-
cal Rytov Fourier method (Huang et al., 1999a).

GOFFD Method

The GOFFD method (Huang and Fehler, 2000a) is based on the
one-way wave equation in the frequency-space domain given by

OP(z,z;w)

5, — Q% w) Pz, zw) (11)
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with operator () defined as

w? 0?

Q + 922 (12)

v2(z, z)

where v is velocity. Making use of a reference velocity vg, operator
@ is approximated by

a(m—1)X3

/. 0? 1

~ 2, 97 2 1\ _p a\m=1)A0

Q~ ko 8a:2+k0(m 1) kol—b(1+m2)X§’
(13)

where a and b are chosen by an optimization scheme to minimized
the phase error for a given model, and

m=2, (14)
Vo
ko =2, (15)
Vo
. 1 9?
x=--2_ |
0 k(z) 81'2, ( 6)

where v is a reference velocity that must be the minimum value
of velocities at all lateral positions within an extrapolation inter-
val (Ristow and Riihl, 1994; Huang and Fehler, 2000a). Extrap-
olation of wavefields using eq. (11) and the combination of the
first two terms on the right side of eq. (13) results in the split-step
Fourier propagator. The corresponding operator of the third term in
eq. (13) is a compensation operator for the split-step Fourier prop-
agator to improve its accuracy when lateral velocity variations are
strong. This operator can be implemented using an implicit finite-
difference method (Claerbout, 1985). Consequently, the wavefield-
extrapolation method using eqs. (11) and (13) is a hybrid approach.
Whenm = 3, a = 0.47826, b = (0.43848.

MIGRATION EXAMPLES

We use the dual-domain wave-equation migration methods de-
scribed in the previous section to migrate synthetic datasets from
two standard models, the Marmousi model and the SEG/EAGE salt
model. The images are compared with those obtained using the
split-step Fourier method.

Prestack Migrations of the Marmousi Dataset

The Marmousi velocity model (Fig.1a) contains complex structures
with several faults in the upper portion of the model and anticli-
nal structures in the imaging target region that represents a reser-
voir (Bourgeois et al., 1991). The Marmousi common-shot-gather
dataset was generated by a finite-difference scheme and has be-
come an industry standard dataset to test the capability of different
migration algorithms. The Marmousi model was discretized with
a horizontal grid spacing of 25 m and a vertical grid spacing of
4 m. The dataset consists of 240 shots with 96 traces per shot. The
shot and receiver intervals are both 25 m. The first shot was at
z = 3000 m. Receivers were on the left hand side of each shot
with a minimum offset of 200 m. The frequency range used dur-
ing migrations is from 5 to 60 Hz with 226 frequency components.
Migration images obtained using the split-step Fourier (SSF), ex-
tended local Born Fourier (ELBF), extended local Rytov Fourier

(ELRF), quasi-Born Fourier (QBF), and globally optimized Fourier
finite-difference (GOFFD) methods are displayed in Figs.1(b)—(f),
respectively.

The structure of the Marmousi velocity model is complex,
but the lateral velocity variations are moderate in most regions,
therefore, the SSF migration provides a reasonably good image
(Figs.1b). Figs.1(c)—(f) show smoother images of the anticlinal
structure (labeled “Target Region” in the figures) than Fig.1(b).
Several interfaces merge into the region around A in Fig.1(a) and
hence the wave phenomena in this region are complex. The im-
age around location A in Fig.1(b) obtained using the SSF method
is different from that obtained using a time-consuming but more
accurate method, the finite-difference wave-equation migration al-
gorithm provided by Advance Geophysical Co. (Bevc, 1997). This
is because the split-step Fourier method uses a small-angle approx-
imation of the extended local-Rytov Fourier method and accounts
only for the phase changes but not for the amplitude changes of
wavefields caused by lateral velocity variations. Taking the am-
plitudes of scattering into account is vital to accurately imaging
complex structures such as the area near location A. All of the im-
ages in Figs.1(c)—(f) have similar quality and are comparable to the
finite-difference migration image (Bevc, 1997).

The ELBF migration took almost the same CPU time as the SSF
migration, the QBF migration took approximately 15 per cent more
CPU time, and both the ELRF and GOFFD migrations took approx-
imately 50 per cent more CPU time.

Migrations of an Exploding-Reflector Dataset

The SEG/EAGE salt model is a complex structure containing salt
features situated in the US Gulf of Mexico (Aminzadeh et al., 1996;
O’Brien and Gray, 1996). The model contains faults with various
dips and strong lateral velocity variations in most regions. This
model is not as complex as the Marmousi model, but its lateral ve-
locity variations are stronger than those in the Marmousi model.
The velocity contrast between the salt body and the surrounding
sediments is often larger than a factor of two. We chose a 2D slice
of the SEG/EAGE 3D salt model (Fig.2a) that was discretized with
a grid spacing of 12.192 m. We generated an exploding-reflector
dataset using a finite-difference scheme with a fourth-order accu-
racy in space and a second-order accuracy in time. The wavefield
was recorded at the upper boundary of the model. Migrations were
carried out using the SSF, ELBF, QBF, ELRF, and GOFFD methods
(Figs.2b—f) for a frequency range of 1-40 Hz. The correct locations
of salt interfaces are superimposed onto the images with solid gray
lines (red lines in color) in Figs.2(b)—(f). The ELBF, QBF, ELRF,
and GOFFD migrations give more accurate images near location A
(Figs.2c—f) than the SSF migration (Fig.2b). The images obtained
from the ELBF and ELRF migrations are similar (Figs.2c, e), while
the QBF migration (Fig.2d) and the GOFFD migration (Fig.2f) give
more accurate images of the interface at location B. In addition, the
GOFFD migration (Fig.2f) provides more accurate images of the
lower interface of the salt body and those of subsalt interfaces than
the other migrations.

Compared to the SSF migration, the QBF migration took ap-
proximately 13 per cent more CPU time and the GOFFD migration
took approximately 40 per cent more CPU time. The variable ex-
trapolation interval approach (Huang et al., 1998) must be used in
the ELBF and ELRF migrations to make them stable for this salt
model because it has strong lateral velocity variations, and con-
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Fig. 1: Marmousi velocity model (a) together with its prestack migration images (b)—(f) obtained using different migration methods. The images in (c)—(f)

3.0-
(f) Globally optimized Fourier finite-difference migration

have a similar quality which is higher than that in (b) (see the target region and location in A in each panel).
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Fig. 2: Velocity model (a) of a 2D slice of the SEG/EAGE model along with its poststack migration images (b)—(f) obtained using different migration
methods.The images in (c)—(e) have a similar quality which is higher than that in (b). The image quality in (f) is the best among those shown. The solid gray
lines (red lines in color) are the correct locations of the boundaries of the salt body.
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Fig. 3: Velocity model (a) of the SEG/EAGE 3D model together with the source locations at the top the model (b).
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Fig. 4: Velocity models (al and bl) of two sub-cubes of the SEG/EAGE 3D salt model together with their migration images obtained using the split-step
Fourier method (a2 and b2) and the globally optimized Fourier finite-difference method (a3 and b3). The image quality in (a3) and (b3) is much better than
that in (a2) and (b2).

sequently, the ELBF and ELRF migrations took, respectively, ap- 3D Prestack Migrations of a Common-Shot Dataset

proximately 1.5 times and 1 time more CPU time than the SSF
migration. 3D prestack migrations were performed on a dataset consisting of

45 common-shot gathers (Ober et al., 1997) extracted from a syn-
thetic dataset that was generated using a finite-difference scheme
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Fig. 5: Velocity model (a) around location A in Fig.4 together with images obtained using the split-step Fourier method (b) and the globally optimized
Fourier finite-difference method (c). The upper and lower boundaries of the salt body are well imaged in (d) but not in (c).

for the SEG/EAGE 3D salt model (Fig.3a). The model was defined
on a 3D grid with grid spacings of 20 m along the x-, y-, and z-
directions. The sources were located at the top of the model and
distributed as shown in Fig.3b. Each common-shot gather consists
of 201201 traces at receivers centered around the source loca-
tion. Migrations were made using the SSF and GOFFD methods
for a frequency range of 2-30 Hz. The panels on the left side of
Fig.4 show the front, right and top sides of a 3D velocity subcube
of the SEG/EAGE salt model (Fig.4 al) and the images of the sub-
cube (Figs.4 a2 and a3). The panels on the right side of Fig.4 show
the back, left and bottom sides of another 3D velocity subcube of
the SEG/EAGE salt model (Fig.4bl) and the images of the sub-
cube (Figs.4 b2 and b3). The GOFFD migration (Figs.4 a3 and b3)
produces images with a significantly improved quality compared to
that of the SSF migration images (Figs.4 a2 and b2). For detailed
comparison, the images around the areas near location A in Fig.4 a2
and Fig.4 a3 are shown in Fig.5 where Fig.5a is the velocity model
in that area.

The GOFFD migration took approximately 30 per cent more
computational time than the SSF migration.

CONCLUSIONS

The extended local Born Fourier, quasi-Born Fourier, extended lo-
cal Rytov Fourier, and globally optimized Fourier finite-difference
methods are all more accurate than the split-step Fourier scheme.
The former three Fourier transform-based methods are more suit-
able for imaging complex structures having moderate lateral ve-
locity variations because they are all based on first-order approx-
imations. When lateral velocity variations are moderate such that
no variable extrapolation intervals are needed in the extended lo-
cal Born Fourier method, the method is as efficient as the split-
step Fourier scheme. The quasi-Born Fourier method is approxi-
mately 15 per cent more computationally expensive than the split-
step Fourier method, and both the extended local Rytov Fourier
and globally optimized Fourier methods are approximately 40—
50 per cent more expensive. Because the extended local Born
Fourier and quasi-Born Fourier methods account for amplitudes of

wavefields more accurately than the other methods, they could be
used for true-amplitude migration. The globally optimized Fourier
finite-difference approach — a hybrid split-step Fourier and finite-
difference method — is an accurate and efficient tool for imaging
structures having strong lateral velocity variations. For 3D prestack
migration, the method is approximately 30 per cent more computa-
tionally expensive than the split-step Fourier scheme.
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