

RSI

FISCAL YEAR 1998 YEAR-END REPORT

For the November 1997 to October 1998 Period

LARGE-SCALE DEMONSTRATION AND DEPLOYMENT PROJECT—TECHNOLOGY INFORMATION SYSTEM (LSDDP-TIS)

Principal Investigator:

M.A. Ebadian, Ph.D.

Florida International University
Collaborators:

**E. Stan Vallidum,
Leonel Lagos, and Mabel Acosta**

U.S. DEPARTMENT OF ENERGY
HEMISFERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY
FLORIDA INTERNATIONAL UNIVERSITY
10555 WEST FLAGLER STREET, EAS-2100, MIAMI, FLORIDA 33174
305-348-4238 • FAX: (305) 348-1852 • WORLD WIDE WEB SITE: [HTTP://WWW.HCET.FIU.EDU](http://www.hcet.fiu.edu)

Prepared for:

**U.S. Department of Energy
Office of Environmental Management
Office of Science and Technology**

HEMISFERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY (HCET)

Florida International University, Center for Engineering & Applied Sciences

10555 West Flagler Street, EAS-2100, Miami, Florida 33174

305-348-4238 • FAX: (305) 348-1852 • World Wide Web Site: [HTTP://WWW.HCET.FIU.EDU](http://www.hcet.fiu.edu)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, nor any of its contractors, subcontractors, nor their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

**LARGE-SCALE DEMONSTRATION AND DEPLOYMENT PROJECT—
TECHNOLOGY INFORMATION SYSTEM (LSDDP-TIS)**

RECEIVED

JAN 05 2001

OSTI

Principal Investigator

M.A. Ebadian, Ph.D.

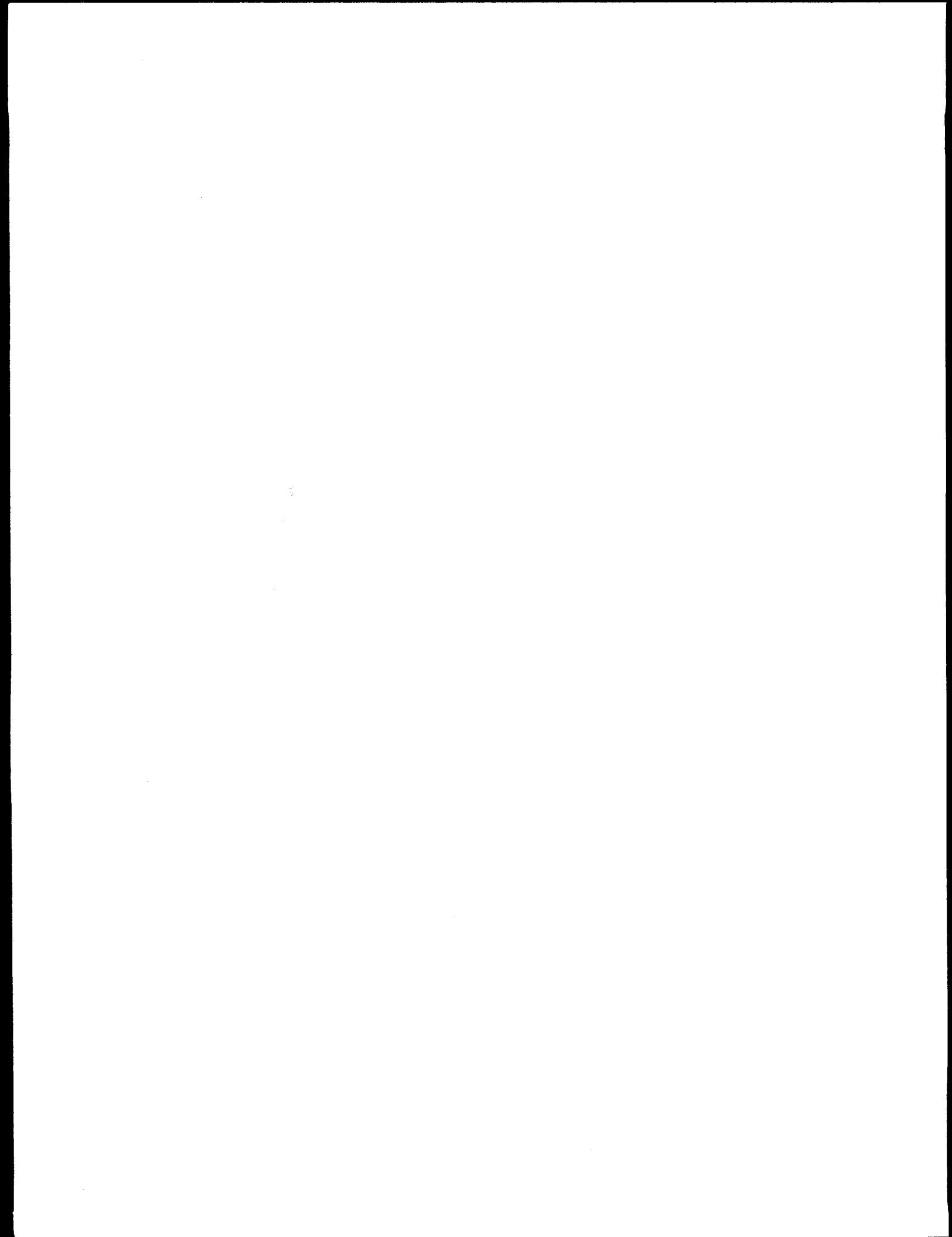
Hemispheric Center for Environmental Technology
Florida International University
Miami, FL 33174

**Florida International University
Collaborators**

**E. Stan Vallidum,
Leonel Lagos, and Mabel Acosta**
Hemispheric Center for Environmental Technology
Florida International University
Miami, FL 33174

January 1999

Prepared for


U.S. Department of Energy
Office of Environmental Management
Office of Science and Technology

Under Grant No.: DE-FG-21-95EW55094

ACKNOWLEDGMENTS

This report is based on work supported by the U.S. Department of Energy, Office of Environmental Management, Office of Science and Technology's Deactivation and Decommissioning Focus Area, Federal Energy Technology Center. The Principal Investigator, FIU Collaborators, and students at Florida International University would like to thank Dr. Paul Hart and Steve Bossart for providing us the opportunity to work on this project.

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	iv
ACRONYMS AND ABBREVIATIONS	v
EXECUTIVE SUMMARY	vi
1.0 INTRODUCTION	1
1.1 PURPOSE OF THIS INVESTIGATION	1
1.2 OVERVIEW OF LSDDP-TIS	1
1.2.1 Microsoft Access Database	1
1.2.2 The LSDDP-TIS Website	2
1.2.3 LSDDP-TIS Website Graphical User Interface	2
2.0 PROJECT DESCRIPTION	3
3.0 ACCOMPLISHMENTS DURING FY98	4
3.1 INTEGRATE TECHNOLOGY EVALUATIONS OF NEWLY AWARDED LSDDPS	4
3.2 USER MANUAL	4
4.0 LESSONS LEARNED	5
5.0 PLANNED ACTIVITIES FOR FY99	6
6.0 CONCLUSIONS	7
APPENDIX A. Microsoft Access Database	
APPENDIX B. Large-Scale Demonstration and Deployment Project Technology Information System (LSDDP-TIS) User Manual	
APPENDIX C. Data Report Form	

LIST OF TABLES

Table 1.	Total number of technologies assessed by each LSDDP site.....	2
Table 2.	Status of project technical plan	3
Table 3.	Completion schedule for expanded TIS	6
Table C-1.	Data Report Form.....	C-1

LIST OF FIGURES

Figure 1.	Process flowchart for LSDDP-TIS system.	1
Figure A-1.	Data Entry Screen.	A-1
Figure A-2.	Edit Data Entry Screen.....	A-2
Screenshot 1.	LSDDP-TIS Home Page.....	B-4
Screenshot 2.	TechSearch Starting Page	B-5

ACRONYMS AND ABBREVIATIONS

D&D	Deactivation and Decommissioning
DOE	U.S. Department of Energy
DOE-EM	U.S. Department of Energy – Environmental Management
DOE-OST	U.S. Department of Energy – Office of Science and Technology
FIU	Florida International University
FIU-HCET	Florida International University's Hemispheric Center for Environmental Technology
FY98	Fiscal Year 1998
FY99	Fiscal Year 1999
GUI	Graphical User Interface
HCET	Hemispheric Center for Environmental Technology
PC	Personal Computer

EXECUTIVE SUMMARY

In recent years, an increasing demand for remediation technologies has fueled rapid growth in the D&D technologies. The D&D project managers are now faced with the task of selecting from among the many commercially available and innovative technologies, the most appropriate technology, or combination of technologies, that will address their specific D&D needs. The DOE's Office of Science and Technology (OST) sponsored the Large-Scale Demonstration and Deployment Projects (LSDDP) to demonstrate improved and innovative technologies that are potentially beneficial to DOE's environmental project. To date, three LSDDPs have been conducted at DOE's nuclear production and research facilities at the Fernald Environmental Management Project – Plant-1 (FEMP), Chicago Pile-5 Research Reactor (CP-5), and Hanford Production Reactor 105-C. Now four new LSDDPs have been launched at the Los Alamos National Laboratory (LANL), Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Mound Environmental Management Project (MEMP).

In the LSDDPs, an extensive search is first conducted to identify candidate technologies that can potentially address the identified problems. The candidate technologies then go through a screening process to select those technologies with the best potential for addressing remediation problems at the LSDDP site as well as project sites across the DOE complex. This selection process can be overwhelming and time-consuming. The result is that D&D project managers for the new LSDDPs are challenged to avoid duplication of demonstrated technologies.

LSDDP-TECHNOLOGY INFORMATION SYSTEM

Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) developed LSDDP-TIS as an aid to LSDDPs decision-makers. LSDDP-TIS is a searchable database that helps in identifying candidate technologies for the new LSDDPs or for addressing specific problems. This system will radically reduce time, effort, and uncertainty previously associated with selecting technologies already demonstrated.

RELEASE OF THE UPGRADED LSDDP-TIS

The release of the upgraded LSDDP-TIS was scheduled for October 30, 1998. In this release, the database will contain screened information provided by the first three LSDDPs. This information base is expected to grow rapidly as the four new LSDDPs screen more technologies.

This report provides an overview of the tasks involved in the development of LSDDP-TIS and an account of the activities completed during the fiscal year 1998 (FY98). It also provides a project completion schedule and describes the activities planned for fiscal year 1999 (FY99).

1.0 INTRODUCTION

The principal objective of Large-Scale Demonstration and Deployment Projects (LSDDP) is to demonstrate improved and innovative technologies that are potentially beneficial to DOE's environmental project. At present, the project managers must research, screen, and evaluate candidate technologies that address their specific problems and objectives associated with each remediation project. Undoubtedly, this process is time-consuming and costly. Now, the new LSDDP project managers are posed with the challenge of avoiding duplication of demonstrated technologies.

1.1 PURPOSE OF THIS INVESTIGATION

The principal objective for designing LSDDP-TIS is to aid DOE-EM's decision-makers to keep informed about technologies evaluated in other LSDDPs and to identify candidate technologies for demonstration in the new LSDDPs or for addressing specific problems. LSDDP-TIS will help improve the quality, consistency, and efficacy of their technology selection decisions.

1.2 OVERVIEW OF LSDDP-TIS

Figure 1 illustrates the main processes involved in the development of LSDDP-TIS.

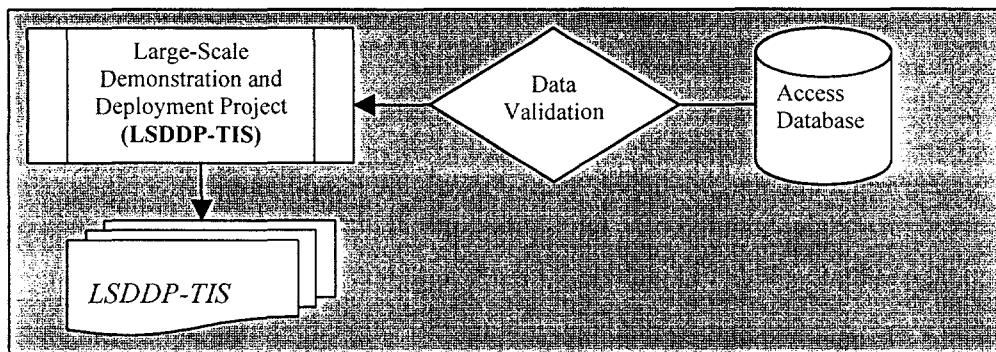


Figure 1. Process flowchart for LSDDP-TIS system.

1.2.1 Microsoft Access Database

A database support system is only as useful as the quality and comprehensiveness of the information that it contains. The Microsoft Access database was designed for data-entry, editing, and data validation of LSDDP screened information. Upon entering the database, the data-entry person is prompted for user name and password. Consequently, a menu is displayed with 5 options: to add a new record, to edit an existing record, to search for specific information, to perform statistical analysis on the data, and validation. Figures A.1 and A.2 in Appendix A illustrate the screens for the data-entry person to add or edit records. In browse mode, the data-

entry person will also be able to search for specific information about the screened technologies and general LSDDP information is displayed. Another feature of the database is data validation. In this section, the project manager will check that all the information entered is correct, including misspelled and missing information. If all the information is correct, the technology information is ready for import into the LSDDP-TIS website. If any error is found, then the technology information is rejected and ready for the data-entry person to correct the errors. This validation process is a constant transfer of information between the project manager and the data-entry person until all the information is correct.

1.2.1.1 Database Statistics

Table 1 summarizes the access database current count of technology pre-screened forms in each LSDDP site. At present, forms are still missing from the three LSDDP sites. For example, CP-5 has 14 pre-screening forms missing and the pre-screening forms for the demonstrated technologies.

Table 1.
Total number of technologies assessed by each LSDDP site

LSDDP Site	Total Number of Technologies Assessed
CP-5	116
Plant-1	173
C-Reactor	40

1.2.2 The LSDDP-TIS Website

The search engine is called TechSearch. The design goal was to make the site user-friendly. The first version of the site had two password screens, each with a unique username and password. To simplify the process, login has been done away with. A one-time registration procedure is all that is required.

The search criteria with the first version were restrictive. Only one technology category or evaluation status could be selected at a time. To get around this, users were asking for an Any option. To find a vendor or record, you had to know the exact spelling as it appeared in the record you were looking for. Now multiple items can be chosen in all categories. A pick list of vendor names and technology names is regenerated depending on the structure of the query.

Both of these changes have been made to speed the selection process and make the query process more intuitive.

1.2.3 LSDDP-TIS Website Graphical User Interface

Graphical user interfaces (GUIs) are simply computer screens that a website uses to request data from users, as well as to feed back information to the users. Appendix B illustrates some of the GUIs that are used by LSDDP-TIS.

2.0 PROJECT DESCRIPTION

Table 2 summarizes the tasks that were identified for completion in FY98 in connection with the development of the LSDDP-TIS. Also shown is the status of each task as of the end of FIU-HCET's fiscal year on October 31, 1998.

**Table 2.
Status of project technical plan**

Task	Status as of October 31, 1998
3.1 Integrate Technology Evaluation	Ongoing

This subtask was delineated in the FY98 Project Technical Plan (PTP) and was designed to plan and manage the work activities for the year ending October 31, 1998. The goal for FY98 was to incorporate the new LSDDPs technology evaluations into the LSDDP-TIS on a monthly basis. This goal is ongoing, primarily due to the LSDDPs not submitting their screened forms. Despite the delay, system enhancements and maintenance were completed in FY98. Section 3 of this report provides details of the status of the above tasks.

3.0 ACCOMPLISHMENTS DURING FY98

Each of the tasks outlined in the FY98 PTP “Large-Scale Demonstration Project-Technology Information System (LSDDP-TIS)” is summarized in the following paragraphs. The task as found in the FY98 PTP is shown in italics. The result of this task follows the statement.

3.1 INTEGRATE TECHNOLOGY EVALUATIONS OF NEWLY AWARDED LSDDPs

Task: Incorporate new LSDDPs technology evaluation data into the LSDDP-TIS on a monthly basis and maintain the website.

Status: Ongoing. The integration of the technology evaluation data depended on the progress of the newly awarded LSDDPs and their submittal of the datasheets.

3.2 USER MANUAL

A user manual was developed for the use of this system. Appendix B describes in detail how a person can use this user-friendly system.

4.0 LESSONS LEARNED

During the database development phase, the technology screening forms from the three different LSDDPs had to be analyzed to capture which data is common and essential to report. Since the three LSDDPs created their own screening forms, data that was important to one LSDDP site was not considered as important by another LSDDP site. For example, all LSDDP sites collected vendor information, but some LSDDP sites considered the phone number sufficient information while other LSDDP sites collected vendor address and vendor phone numbers. As a result, the database has missing information. The database is only as good as the quality and comprehensiveness of the information it contains. Figure C.1 in Appendix C illustrates a form that contains what information must be collected from the new LSDDP sites.

5.0 PLANNED ACTIVITIES FOR FY99

During the first quarter of FY99, beta testing of the LSDDP-TIS will be conducted, results of the beta test will be implemented, and screened data from the new LSDDPs will be incorporated into the LSDDP-TIS. Work will continue to upgrade the LSDDP-TIS into an expanded Technology Information System (TIS). The expanded TIS will include information from DOE's baseline technology information, FIU-HCET's technology assessment program, and data from other sources. FIU-HCET will also provide links from the TIS to other technology information resources and implement security/user access and privileges. Table 3 summarizes the completion schedule for tasks to be undertaken during FY99.

Table 3.
Completion schedule for expanded TIS

TASK	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Task 1. Conduct beta testing of the TIS.	X									
Task 2. Implement results of beta test.	X	X								
Task 3. Implement security/user access and privileges.			X							
Task 4. Incorporate technology screening data from new LSDDPs.	X	X	X	X						
Task 5. Incorporate DOE's baseline technology information.				X	X					
Task 6. Incorporate information from FIU-HCET's Technology Assessment Program.				X						
Task 7. Investigate feasibility of incorporating technology data from other sources.					X					
Task 8. Incorporate technology data from other sources.					X	X				
Task 9. Provide links from the TIS to other technology. information resources.							X			

Expanding the TIS is beneficial for the following reasons:

- Having a single, comprehensive source of information on baseline, commercially available, and innovative technologies that are potentially beneficial to the U.S. DOE and its customers.
- Time and cost savings realized by sharing information across the DOE complex, rather than repeating technology-screening efforts at each site. This will also expedite the technology selection process for future LSDDPs and for remediation projects.
- Exposure for new and innovative technologies in DOE market.

6.0 CONCLUSIONS

The U.S. Department of Energy (DOE) endeavors to keep its decision-makers and customers apprised of the latest information and lessons learned with regard to technologies considered for use within the DOE complex.

LSDDP-TIS will allow project managers to make informed decisions when selecting technologies for their remediation projects and avoid duplicating efforts already undertaken by their counterparts within the DOE. The most critical feature of any information system is the comprehensiveness, accuracy, and reliability of the information it provides. Therefore, the data collected in the LSDDP sites must be good, accurate, and complete.

Participants in the testing of the new TIS that have used the old TIS remark at its improvement, from its ease of use to the quality of its data. The system promises, and will deliver, significant savings in time and effort in selecting D&D technologies for remediation projects. FIU-HCET sees DOE and commercial sites both using this product to meet their future technology selection needs.

APPENDIX A

MICROSOFT ACCESS DATABASE

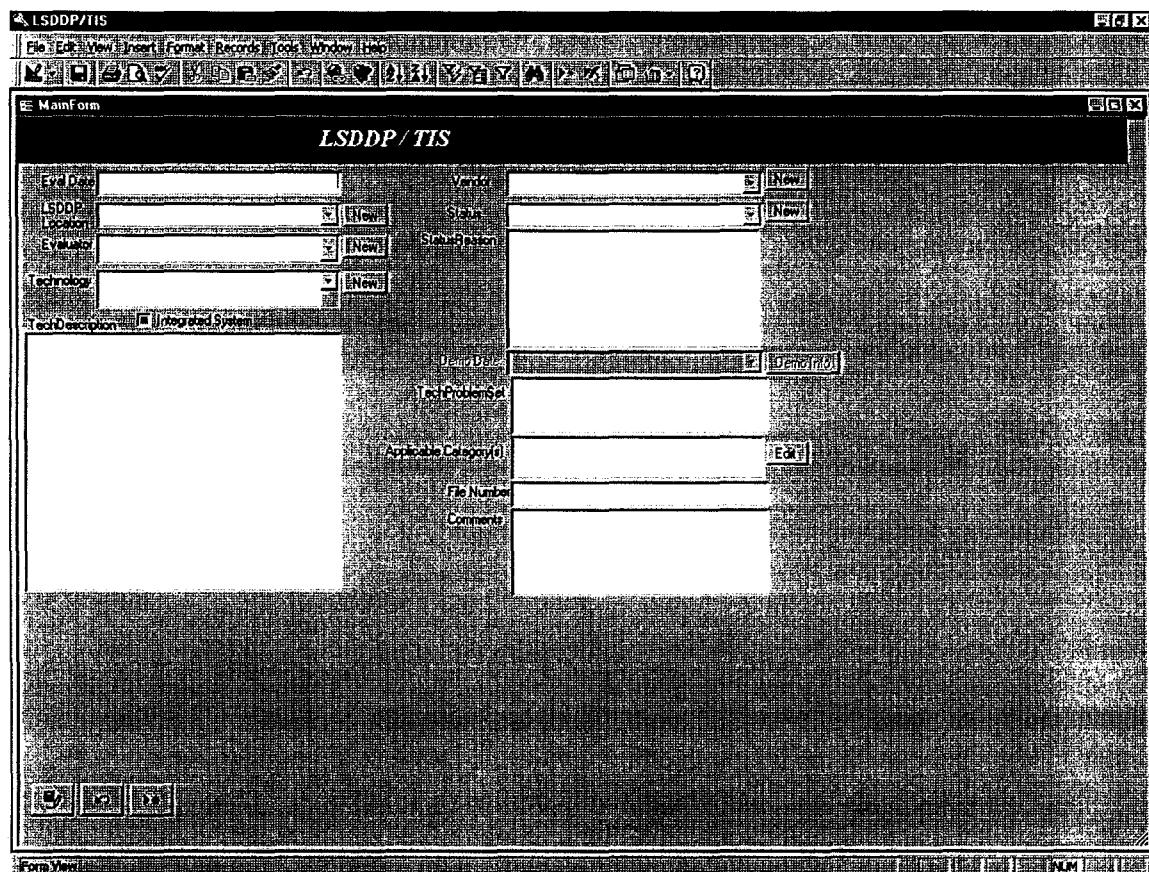


Figure A-1. Data Entry Screen.

LSDDP/TIS - [Edit LSDDP Information]

File Edit View Insert Home Records Tools Windows Help

LSDDP/TIS Yes 10/5/98

Ref ID: 8/16/98 Vendor: Oceaneering, Inc. Vendor ID: 103

LSDP ID: CP-5 Status: Accepted Status Reason: Standard

Owner: Holmer Dugger Status: Pending

Technology: Advanced Worker Protection System (AWPS) Tech ID: 100

Tech Description: Integrated System

Cryogenic Liquid air pack which provides 2 hours of breathing supply. Liquid cooled undergarment that eliminates heat stress in any ambient environment.

Demol Date: Demo Date: Demo ID: 1

CC Problems: N/A

Applicable Category(ies): Worker Health & Safety Category: 100

FDI Number: Comments:

From View

Print | Back | Home | Help | Exit

Figure A-2. Edit Data Entry Screen.

VendorName	
3M Company	Carter Technologies
ABB Abrasive Blasting-Vacublast	Chamberlains-Vacublast
ABB-CE Nuclear Power	Champion Speedway Hydraulics Inc.
Advanced Recycle Media Systems	Chemdahl Corporation
AEA O'Donnell	ChemRad
AEA Technology, UK	Church & Dwight
Aerojet	Cold Jet
Aerojet Tennessee Environmental Services	Coleman Research Corporation
Aerospatiale	Concrete Cleaning, Inc.
AIL Systems Inc.	Constellation Technology Corporation
Alaron Corporation	Container Products Corp.
Alliance, Inc.	Corpex Technology
Allied Signal (Technology Transfer Center)	Corrosion Specialties
Alpheus Cleaning	CTS Power Services, Inc.
AMES Laboratory	DDH Nuclear, Inc.
Applied Computer Solutions (ACS)	Decon International, Inc.
Applied Radiological Controls	Decon Systems, Inc.
Aquablast, Ltd. UK	Delphi Research Inc.
Arctech Inc.	Delphinos Engineering / Bechtel Hanford
Arctic Blast	DeVoe Marine
Argonne National Laboratory/ Lumonics Corporation	E.D. Bullard Company
Armex (Church & Dwight Co.)	EAI
Artisan Industries, Inc.	Eastern Environmental Engineers
Asbestos Recycling, Inc.	Eastern Technologies Incorporated(ETI)
B & W NESI	Eberline
B&W Nuclear Environmental Services	Ecology and Environment, Inc. (E&E)
Bartlett Nuclear Inc.	EDCO
Bartlett Services Inc.	EET, Inc.
Bio-Imaging Research Inc	EG & G
BNFL	EIC laboratories
Brokk	Electro-Pyrolysis, Inc.
Brookhaven National Laboratory (BNL)	Electro-Sonic Systems, Inc.
Brooks Vision and Innovation	Entropic Systems, Inc.
Butterworth Jetting Systems, Inc.	Environmental Alternatives
Canberra	ETEC/ Rockwell Industries
Cannon Sline	Euro Agua Drilling
Carnegie Mellon University	Exothermal Technology Corporation

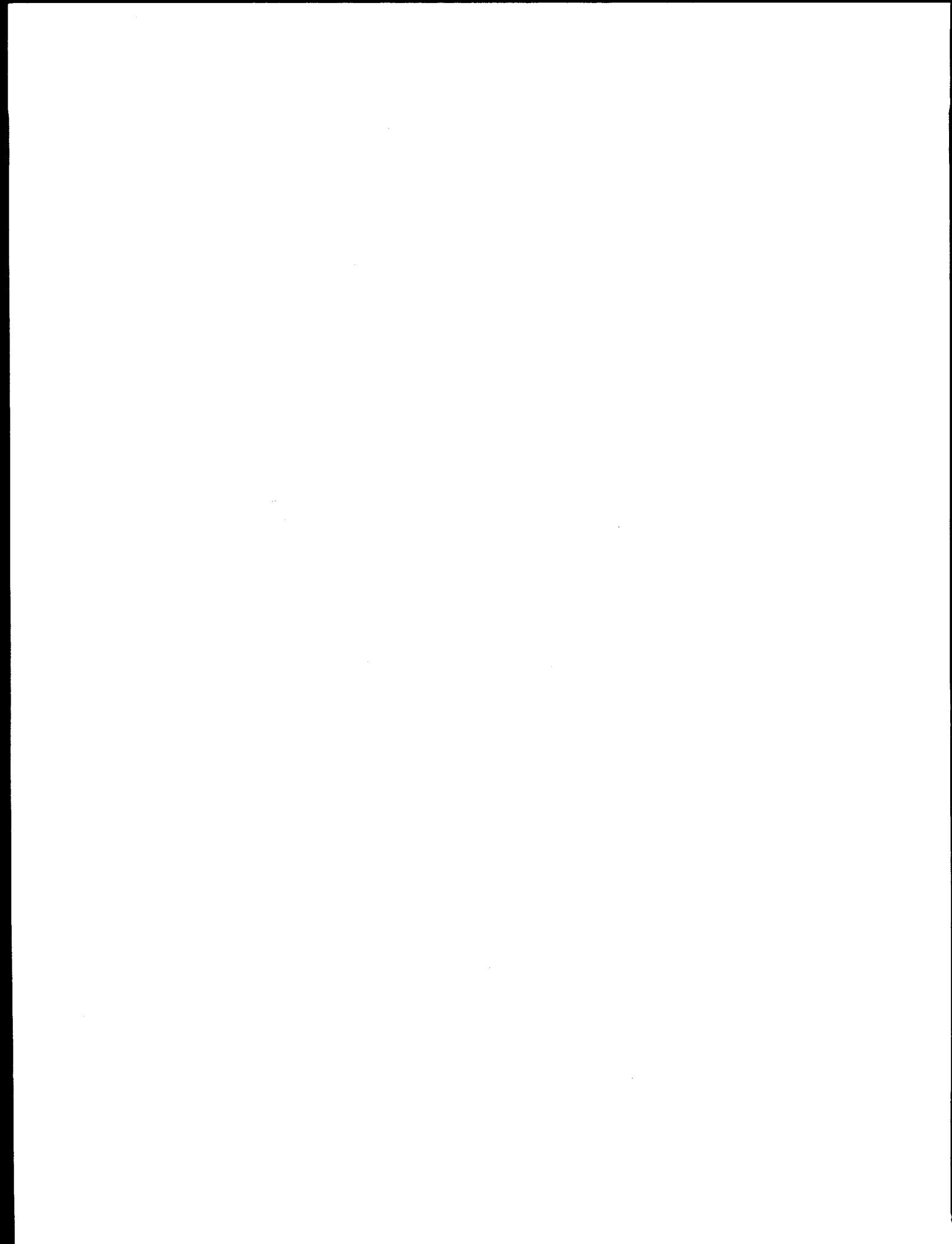
VendorName	
F2 Associates	Martin Mareitta Energy-Portsmouth Systems
FIU-HCET	Master-Lee Decon Services, Inc.
Framatome Technologies Inc.	Maxwell Ind.
Frametome USA	McDonnell-Douglas
FRHAM-TEX Safety Products, Inc.	Mearl
G/O Corporation	Mechanical Technology Incorporated (MTI)
General Electric research and Development	MEIER Associates
Geomet Technologies, INC.	Membrane Technology and Research, Inc.
Global Encasement, Inc.	Mitsui Engineering and Shipbuilding Company
Henningan Engineering Services	Molten Metal Technology
Hydr'am (France)	Monarflex, Inc.
Hydro GeoPhysics	MPR & Associates
Ice Blast	N/A
ICE SOLV	National Liquid Blasters (NLB)
Idaho National Engineering Laboratory (INEL)	Nelco Manufacturing Corp.
Integrated Automation System	Newtek
Interstate Nuclear Services	NIS Ltd. UK
Inuktun (Canada)	Non-Destructive Cleaning
Iowa State University	NSS Numaco, Inc.
IPI	Nuclear Decommissioning Limited
Isotron	Nuclear Sheilding Supplies & Services Inc.
James Howden and Company (Lamberton Robotics)	O-Brien and Gere Technical Services
Janell, Inc.	Oak Ridge Center for Manufacturing Technology
Jordan Engineering UK Ltd.	Oak Ridge National Laboratory (ORNL)
KEMA Nederland B.V.	Oceaneering Space Systems
Kernkraftwerke Gundremmingen	Oceaneering Technologies
Kinetic Sciences Inc.	Oceaneering, Inc.
KKC Corrosion Control	P N Services
Kleiber and Schulz, Inc	P.W. Stephens Environmental Co.
Koehler Alba	Pacific International Grout
LITCO	Par Systems Inc.
Lockheed Martin Energy Systems (LMES) - Y-12 Plant	Pegasus International Inc.
Los Alamos National Labs	Pentek, Inc.
LSP Technologies	PermaCharge Corp.
LTC Americas	Permanent Concrete Solutions
LTC-Vacublast	Petrogen Co.
Manufacturing Sciences Corporation	Physical Sciences, Inc

VendorName

Plant Technical Services	Technicatome (France)
Polygon Industries	Textron Systems Division, Inc.
Power Products & Services, Inc.	TLG Services, Inc.
Power Systems Energy Systems, Inc.	TOMCO
PPG	Transco Products, Inc.
Promatec	Tri-Rinse, Inc.
Quest Integrated	TTI Engineering
Rad Elec., Inc.	U.S. Ecology
Radial Research	UNI-Chem
Radian Corp.	Vacu-Blast, Ltd. UK
Radiological Services, Inc.	Vector Super Products
RAI Technologies, Inc.	Vector Technologies, Inc.
Real Time Field Screening-2	Vectra Technologies
Redzone Robotics Inc.	Visual Inspection Technology
REMOTEC	Vortec Corporation
Retech, Inc.	Vulcan Painter, Inc.
RHH Foam Systems, Inc.	Westinghouse Electric Corp.
Riso National Laboratory	Westinghouse Hanford Company
Robotics Technology Development Program (ORNL)	Wheelabrator HPD, Inc.
Rockwell Aerospace Energy Technology	WOMA Corporation
Rust	
Sandia National Laboratory	
Sato Kogyo co., LTD. Tokyo, Japan	
Savannah River	
Schlink-Urenco (Germany)	
Schmidt Mfg.	
Schupack Suarez Engineers, Inc.	
Science and Engineering Associates	
Science and Technology Inc. (STI)	
Scientific Ecology Group, Inc.	
Sealed Air Corp.	
Shonka Research Associates, Inc.	
South Carolina Universities Research and	
Spar Space Systems	
Special Technologies Laboratory	
Stepan Chemical Co.	
STI Optronics	
Super Tex	

APPENDIX B

LARGE-SCALE DEMONSTRATION AND DEPLOYMENT PROJECT TECHNOLOGY INFORMATION SYSTEM (LSDDP-TIS) USER MANUAL

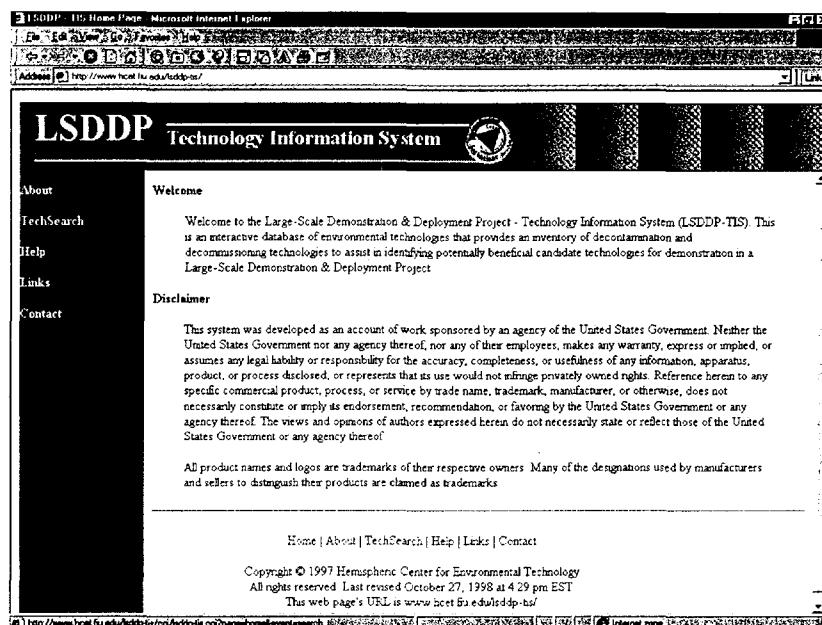

HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

**Large-Scale Demonstration
and Deployment Project Technology Information System
(LSDDP-TIS) User Manual**

**E. Stan Vallidum
FIU-HCET D&D Project Manager**

November 1998

1. INTRODUCTION


The key to successful deployment of innovative technologies is the demonstration of these technologies at a large-scale facility under actual field conditions. The Deactivation and Decommissioning Focus Area (DDFA) is implementing the "Large-Scale Demonstration and Deployment Project" (LSDDP) to facilitate the demonstration and future deployment of better, safer, faster, and cheaper technologies. The Large-Scale Demonstration and Deployment Project consists of seven individual projects. Three have been completed at Argonne Chicago Pile 5 Reactor, Fernald Plant 1, and Hanford 105-C Reactor. Implementation of these projects generated a large amount of technology screening information.

The purpose of this project is to develop and maintain a Large-Scale Demonstration and Deployment Project - Technology Information System (LSDDP-TIS) to facilitate technology screening performed by subsequent LSDDPs. Presently, there are LSDDPs at the Savannah River Site (SRS), Idaho National Environmental Engineering Laboratory (INEEL), Los Alamos National Laboratory (LANL), and the Mound Environmental Management Project (MEMP). Data will be collected and maintained at FIU-HCET and will be accessed by these Integrating Contractor Teams and the Deactivation and Decommissioning Focus Area through the Internet.

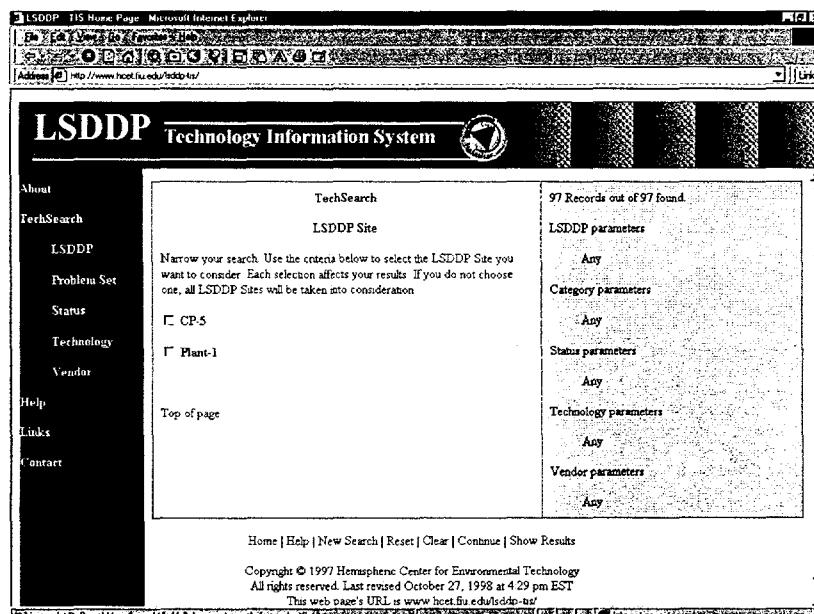
2. LOG-ON PROCEDURE

The home page of the Large-Scale Demonstration and Deployment Project - Technology Information System (LSDDP-TIS) is www.hcet.fiu.edu/lsddp-tis/ or access through the main web page www.hcet.fiu.edu/. If you are a first-time user, you will be presented with a user registration page. You will be asked your name, affiliation, and contact information. This is a one-time event and will allow FIU-HCET to track site usage and identify those areas that are being underutilized. To facilitate the storage of registration information, your browser asks you to accept a cookie file. This file is used to log you in automatically on subsequent visits to the site. Please accept it. If you do not accept this file or delete it, then you will be asked to register again before you can continue.

Screenshot 1 shows the layout of the home page. There are two sets of control bars. On the left of the screen is the menu bar; this tool is used to change pages. At the bottom center is the action bar; use the action bar to access and perform a function with the search engine. On the home page and other non-search engine pages, the action bar is the same as the menu bar. Once you have started your search by clicking on TechSearch from the menu or action bar, the menu and action bars change.

Screenshot 1. LSDDP-TIS Home Page

3. QUERY PROCEDURE


The search engine is called TechSearch. By selecting TechSearch from either of the tool bars, you open the TechSearch page. Screenshot 2 shows that the menu and action bars have changed. The menu bar has expanded to show the five search category pages. Each page contains a list of available search criteria for that category. If no criteria are selected for a category, then it is treated as a request to match any record. For example, if you selected CP-5 as the LSDDP and Demonstrated as the Status, then any record regardless of the Problem Set, Technology Name, or Vendor Name would be matched. On the right side of the page is the result box. Once you have made criteria selection and chosen the Continue action, the results box displays the number of records matching your selection and your search criteria by category. When the number of matching records or the degree of criteria is to your satisfaction, you may choose Show Results to display the reports of those records.

The five search categories in the menu bar are as follow:

- LSDDP: A site or facility that has hosted an LSDDP
- Problem Set: The problem addressed by the technology
- Status: The evaluation recommendation with regard to deployment of the technology
- Technology: List of technologies by brand name that meet the criteria of the first three categories
- Vendor: List of vendor names that meet the criteria of the first three categories.

The action bar has changed and now shows five new options:

- New Search: Clears all criteria and returns you to the TechSearch starting page.
- Reset: Clears all selections made for that category session.
- Clear: Clears all selections made for that category.
- Continue: Adds your criteria to the query and updates the result box.
- Show Results: Displays reports for those records matching your search criteria.

Screenshot 2. TechSearch Starting Page

4. GENERAL INFORMATION

Right now the LSDDP-TIS website resides on a Silicon Graphics machine that is running Netscape Enterprise Server version 2.0a software. See Appendix B for the full specification of the web server. TechSearch employs the same search engine common gateway interface (cgi) techniques used by Compaq's AltaVista and Yahoo search engines.

The Access database for LSDDP-TIS will eventually hold over 600 records from the first three LSDDPs: 173 from Fernald Plant-1, 116 from Argonne's CP-5 facility, and 40 from the Hanford C-Reactor have been verified and entered into the active website. Data from the additional five LSDDPs are expected to total 500 records. The maximum an MS Access file size can be is 1 gigabytes or 1,048,576 kilobytes. The present size is 616 kilobytes. This means that the present configuration is capable of accommodating expected growth with little or no modification.

On the user side or client side, FIU-HCET recommends Microsoft's Internet Explorer 4 (IE4) or better. Netscape's Communicator or Navigator 4 (NC4) or better can also be used to access this page.

5. WEB SERVER SPECIFICATION

Silicon Graphics Inc.
Challenge S R5000

1 180 MHZ IP22 Processor

CPU: MIPS R5000 Processor Chip Revision: 2.1

FPU: MIPS R5000 Floating Point Coprocessor Revision: 1.0

Data cache size: 32 Kbytes

Instruction cache size: 32 Kbytes

Secondary unified instruction/data cache size: 512 Kbytes on Processor 0

Main memory size: 128 Mbytes

Integral SCSI controller 5: Version WD33C95A, differential, revision 0

Integral SCSI controller 4: Version WD33C95A, differential, revision 0

Integral SCSI controller 0: Version WD33C93B, revision D

Integral Ethernet: ec0, version 1; transfer rate 10mbit/s

Disk drive: 4.3 gigabyte SCSI for web pages

Disk drive: 2.1 gigabyte drive for system partition

Operating System: IRIX 6.2

Netscape Enterprise Server version 2.0a

APPENDIX C

DATA REPORT FORM

Table C-1.
Data Report Form

Large - Scale Demonstration and Deployment Project (LSDDP)	
Sponsoring Organization	
Integrating Contractor Team	
Contact name and Affiliation	
Technology Name	
Technology Description	
Vendor Name	
Address	
Phone	
Email	
Contact Name	
Problem Set	
<input type="checkbox"/> Decontamination <input type="checkbox"/> Dismantlement <input type="checkbox"/> Characterization <input type="checkbox"/> Worker Health & Safety <input type="checkbox"/> Waste Management <input type="checkbox"/> Other	
Problem Identification	
Status	
<input type="checkbox"/> Demonstrated <input type="checkbox"/> Accepted <input type="checkbox"/> Later Consideration <input type="checkbox"/> Not Accepted	
Reason for Status	
Date of Demonstration	
Demonstration Results	
Demonstration Documentation	
Fact-sheet Detailed Technology Report ITSR Technology Management System	