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ABSTRACT

* Hydraulic property measurements often rely on non-linear inversion models
whose errors vary between samples. In non-linear physical measurement systems, bias
- can be directly quantified and removed using calibration standards. In hydrologic
systems, field calibration is often infeasible and bias must be quantified indirectly. We
use a Monte Carlo error analysis to indirectly quantify spatial bias in the saturated
hydrauli_c conductivity, K, and the exponential relative permeability parameter, ¢,
estimated using a tension infiltrometer. Two types of observation error are considered,
along with one inversion-model error resulting from poor contact between the instrument
and the medium. Estimates of spatial statistics, including the mean, variance, and
variogram-model parameters, show significant bias across a parameter space
representative of poorly- to well-sorted silty sand to very coarse sand. When only
observation errors are present, spatial statistics for both parameters are best estimated in
materials with high hydrgulic conductivity, like very coarse sand. Wl;en simple contact
errors are included, the nafure of the bias changes dramatically. VSpatial statistics are
poorly estimated, even in highly conductive materials. Conditions that pefmit accurate
estimation of the statistics for one of the parameters prevent accurate estimation for the

other; accurate regions for the two parameters do not overlap in parameter space. False

cross-correlation between estimated parameters is created because estimates of X also

depend on estimates of o and both paramicters are estimated from the same data.
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1.0 INTRODUCTION

In recent years, there has been an increased focus on characterizing the spatial
variability of unsaturated hydraulic properties. Because laboratory methods for
estimating unsaturated properties are expensive, time-consuming, and may not yield
results representative of heterogeneous field conditions, simple and rapid field methods
for estimating in situ unsaturated properties are appealing and potentially cost-effective.
As aresult, a variety of field methods for estmating in sz‘z‘? hydraulic properties have
been developed (e.g., Reynolds and Elrick, 1985; Ankeny et al., 1991; Simunek and van
Genuchten, i996), and applied in spatial variability studies (e.g., Istok et al., 1994; Jarvis
and Messing,. 1995; Mohanty et al., 1994; Russo, et al., 1997; Shouse and Mohanty,
1998). Although most studies carefully document instrument prbcedures, little attention
has been paid to examining hydraulic property measurement errors in the field. The
absence of a rigorous treatment of property measurement errors in many of these studies
is a potentially serious oversight, especially when hydraulic property data are used to
characterize -spatial variability.

Field measurement methods are often validated through limited testing in a known
medium (e.g., Reynolds and Elrick, 1987; Simunek, et al., 1999) or by numerically
simulating experimental results (e.g., Reynolds and Elrick, 1987; Simunek and van
Genuchten, 1996; W, et al., 1997). In some cases, a cursory examination of errors has

been performed (e.g., Simunek and van Genuchten, 1996; Russo et al., 1997). These
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spatial variability studies where material properties vary over orders of magnitude.
Measurements are only useful when they are sufficiently accurate for their intended
purpose (e.g., Doebelin, 1966). Proper validation of a measurement technique for spatial
 variability studies should include systematic error analyses that considers the impact of
measurement error on estimated spatial statistics, including the variogram. Without such
a systematic evaluation, the reliability of data collected in spatial variability studies of
unsaturated hvdraulic properties remains suspect.

Errors in measured hydraulic properties are difficult to quantify. Most in situ
hydraulic properties (e.g., hydraulic conductivity) are estimated indirectly using: 1)
instruments that observe the response of a hydrologic system to a time-varying or steady
boundary condition, and 2) non-linear mathematical-inversion models that infer property
values from the observed responses. Because properties depend on non-linezr inversion
models, purely random error in the observation can lead to a systematic error, or bias, in
the derived property value (Mandel, 1964). Bias may also result when the inversion
model is inadequate (Kempthorne and Allmaras, 1986). We refer to these two
contributions to measurement error as “observation error” and “inversion-model error”,
respectively.

Most texts on error analysis (e.g., Mandel, 1964, Doebelin, 1966) suggest that
measurement bias can be experimen‘;ally evaluated and removed through the use of
calibration s#andards. While individual components of an instrument may be calibrated,
such as transdqgf:rs used to observe response, the entire instrument including the

inversion model must be calibrated to overcome the inversion non-linearity. .

Unfortunately, most instruments and methods for estimating in situ hydraulic properties
4




Spat)‘al bias. Holt, Wilson, and Glass. August 1, 2000: Submitted for review to WRR

are not directly calibrated because physical standards do not exist, and furthermore may
never be calibrated because inversion-model errors vary unpredictably between individual
field samples. In spatial variability studies, it is also impossible to fully calibrate
estimates of the spatial statistics. Therefore, the effect of bias on spatial statistics cannot
be directly quantified, and instead must be examined indirectly.

Measurement bias is potentially disastrous in the context of spatial variability
studies. Because the observed response depends upon the hydraulic properties of the
system, property measurement errors are correlated to the sampled hydraulic property.
The spatial pattern of estimated hydraulic properties is distorted in space and estimated
spatial statistics are also corrﬁpted by bias and no longer representative. In summary, we
hypothesize that field measurements of unsaturated hydraulic properties, and their spatial

statistics, are spatially biased.

.
S &

- Inthis paper, we use a Monte Carlo error analysis to systematically evaluate for
the first time the extent of bias in the spatial statistics of unsaturated hydraulic properties.
Although the total inaccuracy of é measurement includes the effects of both bias and
random errors (e.g., Mandel, 1964; Doebelin, 1966), bias is the most insidious component
of error because it is difficult to identify or remove without calibration. Unsaturated
property field instruments are seldom calibrated. We therefore focus on the issue of bias
in this study. In particular, we consider tension-infiltrometer estimates of the saturated
hydraulic conductivity and the pore-size distribution parameter for the exponential
unsaturated hydraulic conductivity model. To keep our analysis tractable, we create an

artificial reality in which the only errors affecting measurements are simple observation

* and inversion-model errors. This paper is not intended to be a detailed evaluation of all

5
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measurement error induced bias in spatial statistics tension-infiltrometer-estimated
hydraulic properties. Instead, we focus on quantitatively revealing for the first time the
impacts of measurement error bias on estimated spatial statistics. We do not consider

sampling bias or uncertainty due to non-ideal sample locations or incomplete sampling.

2.0 METHBODS

The tension infiltrometer is an instrument commmonly used for examining the
spatial variability of unsaturated hydraulic properties (e.g., DOE, 1993; Mohanty, et al.,
1994; Jarvis and Messing, 1995; Shouse and Mohanty, 1998). Itisa sﬁnple device for
applying a constant (negative) pressure boundary condition to unsaturated soil (Figure 1).
Contact with the soil is established using a porous membrane on the base-plate ring.
Typically, aring i§ placed on the soil surface and filled with fine sand. The base plate is
placed upon the sand, which provides contact with the soil. Flow from the instrument is
primarily caused by a capillary gradient. The flux from the instrument is detemﬁned by
monitoring the declining water level in the Mariotte bottle (Figure 1). The design and
operation of the tension inﬁltrometer is described by Ankeny et al. (1988).

A common inversion approach for the tension infiltrometer requires that the
unsaturated hydraulic conductivity be described by an exponential relative permeability
model, exp(ay), where

K(y) =K exp(-ay), )

w is the tension or the absolute value of the matric potential, « is the slope of

In[K(y¥)]/ v , and X, is the saturated hydraulic conductivity. The exponentiél relative
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permeability model is commonly used in stochastic models of unsaturated flow (e.g., Yeh

-etal., 1985a, b, ¢; Mantoglou and Gelhar, 1987a, b; Polmann, et al., 1991; Indelman, et

al., 1993; Russo, 1995; Harter and Yeh, 1996; Zhang et al., 1998). With knowledge of
two applied tensions (y; and ) and corresponding observed steady-state flux rates (0,

and Q,), parameters o and K| can be estimated using the analytical approximation of
Wooding (1968).

N A 1

We emmploy a Monte Carls approach to conduct our analysis. We generate 221
pairs of statistically homogeneous independent Gaussian random fields of In(a) and
In(K.), with a zero specified point covariance between In(c) and In(K,). The pore-size
parameter, a, is typically assumed to follow a normal distribution in most unsaturated
stochastic models (e.g., Yeh etal., 1985a, 1985b, 1985¢; Mantoglou and Gelhar, 1987,
1987b; Indelman, et al., 1993; Zhang et al., 1998). However, we have chosen to describe
awith a lég-normal distribution because a log-normal distribution may be more realistic
(e.g., White and Suﬂey, 1992; Russo et al., 1997). At each spatial location in a Monte
Carlo simulation, we estimate the true flux and applied tension, add observation error to
these values, and re-estimate In(@) and In(X). To simplify our analysis, we assume that
(1) describes the unsaturated hydraulic condﬁctivity, Wooding’s (1968) approximation is
ex.a‘ct, and that sub-sample-scale heterogeneity (including macropores) does not exist.

We consider only two types of observation error, error in estimated steady flux and error

in applied tension, and only one type of model inversion error, error in contact between

_ the disk and the medium. As in practice, we reject physically implausible results during

the re-estimation. We examine biases affecting the mean, variance, and variogram model
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parameters for In(e) and In(X) and define the parameter space in which these statistics
can be predicted with minimal bias.

In this study, we do not consider the effects of structural errors, caused by a
limited number of samples and non-ideal sampling locations, on variogram estimation.
Most spatial variability studies are based on several hundred points or less, and structural
errors introduce signiﬁcaﬁt uncertainty in spatial statistics (e.g., Russo, 1984; Warrick

and Myers, 1987; Russo et al., 19872, b).

2.1 Random Fields \/

For each Monte Carlo simulation we generate over 262,000 pairs (a 512 by 512

p)

~
v

i

>

random field) of log-normal « and X, with & fixed geometric mean and variance of o (&
and O-li(a)) and K (K¢ and o-li( k,y)- The geometric means of aand X are varied between
simulations. Philip (1969) suggests that the parameter o ranges between 0.002 to 0.05

cm’, although other reported values are both smaller than 0.002 cm™ (e.g., Bresler, 1978;

Russo and Bouton, 1992) and greater than 0.05 cm™ (e.g., Clothier et al., 1985; Russo et
al., 1997). aFis varied from 10 to 0.1 cm™ to encompass this range of values.
Similarly, we vary K¢ from 10° cm/s to 0.1 cm/s. This range is consistent with the

range of hydraulic conductivity values reported in tension infiltrometer studies (e.g.,
Ankeny et al., 1991; Hussen and Warrick, 1993; Shouse and Mohanty, 1998) and is

representative of silty sand to coarse sand (e.g., Freeze and Cherry, 1979). The variances

of In(&) and In(X,) remain arbitrarily fixed at 1.0 which are consistent with the range of
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values reported from ﬁeld'studies (e.g., Russo and Bouton, 1992; Mohanty et al., 1994;
Istok et al., 1994; Russo et al., 1997). Across our entire parameter space, we conduct 13
x 17 =221 Monte Carlo simulations, in which the means of In(X,) and In(a) are each
incremented by steps of size 0.576 between simulations.

In Richard’s equation, the parameter « scales the influence of gravity (e.g., Philip,
1969). As ais increases, thé slope of the K( i) relationship increases indicating a
narrowing of the pore-size disinbution. 5y assuming that the pore-size distribution is
proportional to the grain-size distribution, we can imply that the degree of sorting is
inversely proportional to c.. We can also infer that K| increases with the average grain
size. Across the parameter space the geometric mean values of « and X represent poorly
to well-sorted silty sanéto véry coarse sand.

Random fields are generated using the FFT method (e.g., Robin et al., 1993). We

employ a 2D, isotropic, exponential variogram model

7 (h) =a{1—exp[—%ﬂ @

where o is the variance of the random process, h is a separation vector, and A, is the
correlation length. In stochastic models, it is often assumed that the correlation lengths of

unsaturated parameters are the same (e.g., Yeh et al., 1985a, b, ¢; Mantoglou and Gelhar,

19874, b) and, for convenience, we set all correlation lengths equal to 10 length units.
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2.2 Observation Errors

Two sets of observations, each consisting of an applied tension and an observed
steady-state flux, are required to estimate ozand K. We assume that the applied tension is
observed using a standard pressure transducer in the base plate (Figure 1). The flux from
the Mariotte bottle is estimated by observing the height of water in the bottle with

pressure transducers at two different times (e.g., Ankeny et al., 1988). Errors, in this

case, are limited to transducer error and changes in ension dus 1o bubbling Wit
Mariotte bottle.

The estimated tension, i , at the base-plate membrane is expressed as

y=y+s ®

where s the true tension and ¢ is the error due to transducer noise and drift and
bubbling error. Because bubbling error is a time dependant phenomena, ¢ has a temporal
correlation. Ankeny et al. (1988) examined this issue and concluded that, in most cases,
temporal correlatioh can be neglected. We assume that £is an independent, mean-zero,

normally-distributed random variable and neglect transducer drift, implying that the

transducers themselves are perfectly calibrated. With the assumption of independence,

the variance of  is defined as

2
= ————O}

P =g “)

log

where O‘? is the variance of £and M is the number of times the transducer is polled.

Ankeny et al. (1988) reports that the standard deviation of observed pressure within their

10
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tension infiltrometer device is 0.62 cm. We assume that this variability is repreéentative
of the tension variation at the disk and set o7 = 04cm’.

Estimates of the flux rate from a tension infiltrometer are most commonly based
upon a method described by Ankeny, et al. (1988). Two transducers in the Mariotte tube

are used to minimize, but not eliminate, the effect of bubbling errors. The flux rate, Q , 18

estimated by determining the decline of water-level in the Mariotte tube as infiltration

Q=—nr (5)

AR
At
where AH = H (5,) - A (#,), At =, —t, (the polling interval for the transducersj, ryis the
radius of the Marjotte tube, and & (z) is the estimated height of the water in the Mariotte
tube at time ¢. Flux errors are caused by eﬁors in estimating the height of the water in the
Mariotte fube,

HO=H()+¢ (6)
where H(¢) ié the true height of the water in the bubbling tube at time ¢ and £1is an

independent, mean-zero, normally-distributed error with variance o;>. As with the error

in observed tension, the assumed distribution and assumption of independence of ¢1is an
approximation that improves when the sampling period is much greater than the bubble

frequency. If N flux estimates are averaged, then the variance of this estimate is

, 20in’r) D
o'q - AtzN .

11
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We estimate ¢~ = 0.0025cm? from the results of Figure 2 of Ankeny et al. (1988), with

spurious data removed. We also assume that the radius of the bubbling tube r¢is 1 cm,
that the pressure transducer is polled once per second, and 30 seconds worth of data are

averaged to estimate the steady-state flux rate. Using (7), the variance of estimated flux

rates is 0'; =0.00165 cm®/s?.

We consider only one type of inversion-model error, a “contact error” resulting
from poor contact between the base-plate membrane and the sample medium. Itisa
common prdblem during use of the tension infiltrometer and, in our experience, appears
to occur more &equzr* {or observations made at higher tensions. This type of error
reduces the area for flow and alters the flow geometry. Flaws in the sand contact between
the disk aLnd the medium act as large pores, which do not fill at high tensions. At lower
tensions, these porés fill eliminating or reducing the error. Since the tension infiltrometer
requires at least two observations, one at a higher tension, this error is often more
pronounced at the higher tension.

We are not interested in studying contact error in detail, but only its inipact on
estiﬁatmg spatial statistics. Consequently, we develop and apply a simple approximation
based upon the reduction of area for flow. We assume that the flow geometry does not
change and that only the disk area is reduced due to poor contact. We apply this error
only at the high€st applied tension. The disk area is multiplied by a scaling factor (1- /),

where fis selected from a uniform random distribution over 0.0 to 0.1. Because estimates

12
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of aand X, require two flux observations, this error introduces an additional bias in the
estimated hydraulic properties. In the following sections, the contact error scenario

includes both the contact and observation errors.

2.4  Hydraulic Property Estimates

We assume that the tension values used for each observation are estimated to be

>
=2

MR aINe = 1. o o {0 ars ;pralanlorad e crbfraprine 595
Gemeand v, =7.0em. The true tensions {u ) are calenleod by subtracring S from

W, , for n=12. For each observation, the value of £is determined by randomly sampling |
a mean-zero normal distribution with o-é2 = 04cm’. Given y,, o, and K, we calculate the
true flux from the tension infiltrometer using (Wooding, 1968)

. 5
Ko ool 4 1 o
J— P S B e e - { %
e = & VL= 7zrd 1\9)
a \ ary

where r, is the radius of the disk and is equal to 10 cm.

Once the trﬁe flux rate is determined, we calculate the estimated flux Q,, by
adding mean-zero, normally distributed error with ¢ = 0.00165 cm®/s”. Safnpling
locations where Q < Q2 are discarded, as they would be in practice. Although we and
others (e.g., Mohanty, pers. comm., 2000; Ankeny, pers. comm., 2000) have both
observed and followed this practice in field studies, it is not well documented in the

literature. The percentage of discarded points is usually small. For our field studies it is

typically around 5%.

13
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When contact errors are considered, Ql is estimated using the procedure outlined

above, while Q2 is estimated using the same variance for 01;2 but is estimated using an

altered disk radius

rp=ryfl—f &)
where fis sampled from a uniform distribution over 0.0 to 0.1. This means that the disk

radius may be reduced from 10 cm to a minimum of ~ 9.5 cm.

The rejetive permeability parameter, &, is then estimated {Revnolds and
Elrick, 1991)
In(©,/0,)
& =—== (10)
Y.~
and the sarorated hydraulic conductivity, X, is estimated with
5 A af¥1
5 a Qe
F o2 11 .

- ' t Grr} +4r,

This procedure is repeated for all pairs of & and K| values.

2.5  Statistical Property Estimates

For each spatially correlated random field, the mean, variance, and cross-

covﬁriance between In(e) and In(K,)are determined. In addition, local variograms are

calculated for In(a), In(X,), In(&), and In(X,) using the GSLIB subroutines gam2
(Deutsch and Journel, 1998)

1 N(k) R
) - ) 12
TN > UG, +h)-U(x,)] (12)

i=l

y(h) =

14
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where N(h) is the number of samples in lag interval h and U(x) is the random field. All
of the resulting 221 experimental variograms are fit using a Levenberg-Marquardt
algorithm with the exponential variogram model

") =o? l—exp(—%] +o? (13)

c

“where A, is the estimated “correlation length”, &2 is the “model variance”, and &7 is the
nugget variance. The variance is equal 1o the sum of the moedel and nugget variances,
When a variogram is constant for all lag distances, we refer to it as a “nugget variogram”
in which &2 = 0.0 and /ic =0.0. In classical geostatistics, nugget variograms represent
white noise processes that.have no spatial correlation. Bias for each statistical parameter

is shown using & ratio

aQ

b /B, (14)

where ]SE is the statistical parameter (e.g., mean, variance, or variogram model

parameters) for a random field of estimates and f’T is the statistical parameter determined

for the true random field. The ratio equals 1.0 for an unbiased statistic.

3.0 RESULTS
Here, we present the results of our Monte Carlo analysis. We show that both the

fraction of points discarded because of a physically implausible result (Ql < Q:2 ), and the
bias in the mean,-variance, and variogram-model parameters for In(&) ‘and In(f{ ,),are

functions of the field values of K° and &. In addition, we illustrate how measurement

15
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errors introduce false cross-correlation between In(&¢) and ln(&) . When only
measurement errors are considered, bias in spatial statistics increases for those geometric
mean values that produce low flux rates (e.g., small X and high o) and appears to

correlate with the fraction of points discarded. When inversion-model errors, in the form
of a contact error, are included, the pattern of bias in spatial statistics changes

significantly and depends less on the fraction of points discarded.

3.1 Fraction of Points Discarded /

Figures 2a and 2b plots across parameter space the fraction of pointé discarded
(FPD) because of an unrealistic result, Ql < Q2 . When only observation errors are

N A iemsem D e WO Lo NPT S AR NP G G T T P
consicered (Figwe 2a), the FPD is & funcuion of beth X and 7. The FPD increases

gl
]

with & and decreases with X¢. This result is not surprising, because relative errors in
flux rates increase when the flux rates are small and small flux rates result from high «

and small X, (8). In the upper left corner (high o and small K), estimated fluxes O,

and th are dominated by errors and are nearly independent of the sampled values of &

and K, . In these regions, the likelihood that O, < {, is high, and the FPD increases.
When contact error is included (Figure 2b), the FPD tends to become less dependent on

the value of X, atlow %, and the FPD decreases across much of the parameter space.

This occurs because contact error tends to decrease Qz, reducing the likelihood that

0<0,.
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3.2 Biasin Estimated. Mean

Figure 3a presents the bias, expressed as a ratio, in the geometric mean of & , or
&°, across parameter si)ace. As the field value of either a®or K¢ decreases (lower left
portion of parameter space), the amount of bias in &% increases significantly to over five
times the true value. It is not surprising that bias would increase at small K¢, because
' 0, tends to be overestimated and Q2 tends to be underestimated as the FPD increases.
However, it seems contradictory that bias is less at high «©, because the FPD increases
there. This occurs because bias in the log flux ratio, ln(Ql / th) from (10) differs from

bias in the flux rates themselves, Q1 and Qz. At a small &, flux-rate errors are
relatively small, but errors. in the log ratio are very large. ”I;herefore, relatively small
errors in flux-rates cause large, positively biased errors in the flux ratio and & .

The bias in the geometric mean of the estimated X, or I%SG , 1s shown in Figure
3¢ and is similar to the bias in &°, except that it is less sensitive to ®. The parameter
K . 1s a linear function of Ql (11), and, as K¢ decreases, Ql is overestimated because
the FPD increases. Therefore, bias in IZ:G is nearly independent of €.

Figures 3b and 3d show that the bias in &% and IZSG changes drastically when
contact error is added. &¢ is only accurately gstimated,in a narrow region at high ¢,
near the top of parameter space, while ]%:G is overestimated across the entire parameter
space. There is'much less dependence on K€, and the bias is much greater at low .

The contact errors decrease Q, , leading to an increase in the flux ratio and overestimation

17
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of & and K,. Forlow &’s the biased estimates, @° and K¢, are both well over an order

of magnitude too high.

3.3  Bias in Estimated Variance

Bias m the variance of In(&) is depicted across parameter space in Figure 4a.
The bias increases as aﬁd Kf decreases (lower left corner of parameter space), except
at very. small K¢ (far left porti;)n of parameter space) where the bias decreases again. As
aCor K¢ decreases, the variability of the log ratio in (10) increases, causing the variance
of In(@) to increase. At very smalll Kf , however, Ql and Qz are dominated by errors
and are independent of sampled @and K,. The vatiability of the log ratic is recuced, and
the variance of In(&) decreases.

- F igﬁre 4b illustrates bias in the variance of In(&) when contact errors are added.
There is much less dependence on the K, and the variance of In(&) is underestima'ted at
large KC. In this case, QA‘2 tends to underestimate (, because the disk area is reduced.
The log ratio in (10) is consistently overestimated, and the amount of overestimation
increases at low a® where the true flux ratiotis small. This effect is most pronounced for
higher K7, where Q, and Q2 are strongly dependent upon the values of K and a. The
Variability of the log ratio and t};e variance of In( @ ) decreases. Contact effects decrease
as K¢ decreas§§3. because both Ql and Q2 become increasingly independent of @ and X

(i.e. independent of O, and Q,).

18
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Figure 4c shows bias in the variance of 1n([<:'s) . Bias'increases at high o and
small K¢. Recalling tha;clla' ;is a function of both & and Ql , this relationship appears
countef—intuitive, because the variance of In(@) decreases as «increases and the
variability of Ql decreases at hlgh o and low K¢. Compensating effects, however,
cause the observed behavior. Consider the covariance between Ql and & in

varlln(&,)] o varfin(@)]+ varlln(@)) |+ 2 covfin(@), n(3))| (15)

In general, estimated M(Ql) and In(&) exhibit a large negative covariance, except for that
portion of our parameter space where the fluxes become independent of o and X_.

Independence occurs at high a® or small X¢, where more points are discarded (Figure

the positive variances of In(& ) and In( Ql ) decrease. Therefore, the variance of
In(R,) increases for high &% or small K7

The bias in the variance of 1n(123) changes significantly when contact errors are
present (F ig\jre 4d), as overestimation increases. Athigh K7, the bias is nearly

independent of X and increases dramatically as o decreases. When contact errors are

present, @ tends to be overestimated leading to overestimation of Ii's (Figures 3¢ and
3d). This effect is most pronounced in parameter space where the flux rates are strongly

dependent on e and K, that is in the lower right corner of the parameter space where K’

is large and & is small. In this region, & depends primarily on the errors in the estimate
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of Q2 , and the correlation between Ql and @ decreases. Consequently, the variance of

In(l% . ) tends to increase (15).

3.4  Bias in Variograms

Bias in the variogram model variance and correlation length for In(&) are shown
in Figures 5a and 5b, respectively. The model variance is mostly overestimated, while
the correlation length is underestimated. The pattern of error in the model variance is

similar to the pattern of error in the variance of In(&@) (Figure 4a), except in the upper left

corner of parameter space (high a® and small K¢) where the model variance approaches
zero. Correlation lengths are accurately estimated, with bias values near one, across most
of the parametef space. As with the model variance, correlation lengths become
inaccurate in the upper left corner of parameter space (Figure 5b), with a bias ratio

approaching zero. Correlation lengths and model variances approach zero as estimates of

the flux rates become dominated by errors, rather than the true values of zand K,. At

low % and small K€, flux-rate errors greatly increase the variance of In(&) (Figure 4a),
but do not disrupt estimation of spatial correlation, because bias in the flux-rates
accentuates spatial differences of In(&) .

Figures 5c and 5d display the bias in the model variance and correlation length for

In(&) when contact errors are added. Both are underestimated. The underestimation is

S

significant at high «®and small X and across a broad region characterized by low af®.

In the upper left corner of parameter space where ¢ is high and K7 is small, as with
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the case with no contact error (Figures 5a and 5b), flux rates are dominated by errors, and
In(&) loses spatial correlation. However, along the bottom of the figure, with low ¢
estimates of Q2 are too small leading to consistent overestimation of In(¢) and a

reduction of spatial correlation. The spatial statistics are those of a nugget.

Figures 6a and 6b present the bias in the model variance and correlation length for
ln(]%s) . Model variances and correlation lengths are accurately estimated across most of

the parameter space, but greatly underestimated at small K¢, especially in combination

with a low . The variogram of ln([%s) is proportional to ¥y, + Yuio T 2V m@ g,y

where 71,4 1s the variogram of In(&), myy 1 the varicgram of In(Q,), and Y@ n@y 1S
the cross-variogram between in(&) and {0}, This relationship is primenly responsible
for the patterns displayed by errors in the model variance and correlation length. Of

particular importance is Y @y @y which tends to reduce the variogram of ln(IZs)

because In(@) and ln(Ql) are negatively correlated. At high «° and small X (uppér

left corner), flux rates are dominated by errors, and .4, and Y @y 6y have

Vi)
little correlated spatial structure. Consequently, the model variance and correlation
length of ln(K ,) are reduced in this region. Atlow a® , however, spatial structure is

preserved In ¥4 and Y@@y ? but the negative correlation between In(&) and

V)2
ln(Ql) is strong, and little spatial structure is preserved in the variogram of 1n(f(s) . At

low ¢ and small K¢ (lower left corner), In(&) is dominated by errors in Ql ,as Ql
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tends to have more error than Qz , and the magnitude of the cross-covariance between
In(&) and In(Q,) increases.

When contact error is added, patterns of bias in the model variance and correlation
length of ln(les) change (Figures 6¢ and 6d). Similar to errors in the variance of ln(I%s)
(Figure 4d); model variance bias increases significantly at low a“. Errors in the cross-

variogram between In(&) and ln(Ql) still strongly control the variogram of ln(Izs) . At

low «%, In(Q) is controlled by errors in Qz ,and Y @61y is small. As aresult, the

estimated correlation length of 111(12'5) is fairly accurate (Figure 6d), but the model
variance is greatly overestimated (Figure 6¢). As with the case with no contact error,
model variances and correlation lengths appréach zero at high @ and small X° (upper

left corner), because flux rate estimates are dominated by errors.

35  Cross-Correlation

Although true properties In{e) and In(X) are statistically independent, we
observe significant cross-correlation between estimated properties In(&) and
ln(ﬁs) (Figure 7). False cross-correlation between In(¢) and ln(l%s) results because
both & and Ii's depend on Ql (10 and 11), and ks depends on and increases with &
(11), yielding positive point correlation functions. When only measurement errors are

present, the correlation coefficient for In(¢) and In(X ) appears to increase as K

decreases, reflecting increasing errors in the flux rates. When contact errors are also
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present, the pattern of the correlation coefficient changes, and strong cross-correlation is
observed at both large X and low a® (lower right corner), and small K¢ and high o

(upper left corner of parameter space). This occurs because & tends to be overestimated
in this region of parameter space (Figure 3b).
With the tension infiltrometer we use one parameter (& ) to estimate another

K ). Errors in the first parameter generate errors in the second, resulting in apparent
s p g g pp

estimate multiple parameters, because errors in the data set will propagate through
multiple inversions. Cross-correlation due to measurement error may enhance or obscure

the true cross-correlation between hydraulic parameters.

4.0 DISCUSSION

In this paper, we focus on revealing some of the impacts of tension infiltrometer
measurement error’on estimated spatial statistics. In the following discussion, we argue
that our results are over optimistic for many applied field situations. We first show that
observation errors are likely to be much greater than those used in this study. We have /
also neglected a large nﬁmber of inversion—m;)del errors that can cause spatial bias. We

then discuss the implications this work for tension infiitrometer field studies. Finally, we

illuminate the general problem of bias in hydrologic property measurements.
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4.1  Range of Observation Errors

In most field studies, observation errors are likely to be greater than those used for
this study. The flux-rate errors used here were based on instrument observations reported
by Ankeny et al. (1988). Because their observations were made under highly controlled

laboratory conditions (Ankeny, pers. com., 1998), we conducted a series of laboratory

repeatability studies to directly evaluate the flux-rate variance, 0'; , during realistic

fad pomatmintac gl oA st e il
LR CONEUECC Snd oeg v a well-

sorted, fine sand. The tension infiltrometer (manufactured by Soil Measurefnent Systems
of Tucson, Arizona) was calibrated using standard methods (e.g., Soil Measurement

Systems, 1992), and applied following normal procedures. After each test, the sand was

base of the box. For these tests, o, was deteimined 1o be 0.06 em®/s”. This value may

be a more representative more representative of field studies than the flux-error variance
used here (o= 0.60165 cm’/s?).

Errors in applied tension at the disk source may also be much larger than
considered here. Many teﬁsion infiltrometers do not have a pressure transducer located at
the disk source. Instead the applied tension a;t the disk is traditionally calibrated at a
givé:n bubble rate (e.g., Soil Measurement Systems, 1992). A constant bubble rate is

achieved by establishing a vacuum on the Mariotte bottle, and a manometer is connected

A the cotirea ke Ty Pl ‘.:(:1( The Asmtd ~AF e alr prtfeoe 1y ‘Unq je aAtnetad imil ﬁ o
O I0€ IOUres TUne I0Y L0e GISX. 148 GoDiln 07 Ing 217 ¢o7Y 1UDes 18 adiused unul i1e

variety of errors. Because temperature changes will affect the expansion of bubbles,
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effective steady-state tensions will systematically vary from the calibrated values. In
addition, some tension infiltrometers have a separate disk, and errors will be introduced if

the disk is not at the correct elevation relative to the Mariotte bottle.

4.2  Neglected Inversion-Model Errors

Infiltrometer operators generally try to minimize observation errors by calibrating

\r““*r: (\1 tfﬁ

(Ankeny et al., 1988). In principle, bias due to cbservation errors can be significantly
reduced by virtually eliminating these errors, provided that the inversion model is not too
non-linear. Changing the inversion model can also reduce bias due to inversion-model -

error. Because it is virtually impossible to comp

rsios relevant to a | , raud

(Beckie, 1996), it is unlikely an inversion model can be found that is completely free of |
error. As our results show, a simple inversion-model error, contact between the disk
source and the sampled medium, can lead to large amounts of spatial bias. A variety of
other types of inversion-model error could cause a different, yet'-still significant, bias in
spatial statistics.

Consider the effects of viscosity errors due to temperature changes. Standard
inversion models for the tension infiltrometer assume that the viscosity of the infiltrating
water remains constant (e.g., Ankeny, 1991; Reynolds and Elrick; 1991). This is very

e £y ~ i f; o Tl emyey ot my “y:
w[:“ Cd“p lemrerdiure « Y\\l L2 1 TN V,:i TOYCNET ‘H

untikely, espesially in the feld v
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result in an increase in the viscosity of pure water of ~2% (Weast, 1972), resulting in a
~2% decrease in unsaturated hydraulic conductivity. This change could cause significant
bias in properties estimated with the tension inﬁltrometer.

In a field situation, bias due to viscosity errors would be temporal. In the

morning, the water temperature in the infiltrometer could be greater than that of the soil

and soil water. Infiltrating water would cooler during the measurement of QZ and

sy ot At Y T e
RN F LTINS 0L R TS A SN

and an overestimation of the flux ratio, & , and K .. Inthe afternoon, the situation could

be reversed. In this situation, the temporal bias due to viscosity errors would appear as
noise that may cause underestimation of the model variance and the correlation length.

ST NT TR B T TIT AT CI T LTI Y Dyl st
E (RS BB S BRSSO S 2 S VA ) Ph &

ARSI LA

statistics. Gther potential souices of bias include sub-sample-scale heicrogenelly,
chz.mges m the medium due to infiltration, soils with non-exponential hydraulic
conductivity ﬁmctibns, and air entrapment. As with our contact error, many of these
errors could cause significant bias in estimated spatial statistics, and their impact should

be studied.

4.3  Implications for Tension Infiltrometer Studies

Our results indicate that tension infiltrometer observation and contact errors will

.

lead to overestimation of both & and K .. This is consistent with Ankeny et al. (1991),

who ooserved that

o

. C e O e
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laboratory measurements by a factor of 3. The mathematical character of tension
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infiltrometer inversion models leads to overestimation of @ and K, in the presence of

observation errors. Data with Ql' < Q2 are rejected because they yield an unreasonable
resulf, that is negative valﬁes of &. A large FPD is therefore an indicator of potential
bias in tension infiltrometer reéults.

It is important to recognize, however, that a small FPD does not necessarily imply
a small épatial biaé. Three péssible explanations can account for a small FPD in field

o 1t 1 -
CCTTOS COUWL D2 VETY SH‘;ZL‘, e el

ot}
v
et
>

could be large and the mean « could be small, or inversion-model errors could reduce the
~ FPD. Recall that our contact error reduces the FPD across parameter space, yet causes
much more bias in spatial statistics than observation errors. Other inversion-model

imilar effect.

Qur resuits also indicate that measurement errors can introduce false cross-

correlation between & and K. Because X, is proportional to &, correlation

coefficients will show a positive bias, and very large positive correlation coefficients are
a possible indicator of error. Negative correlation coefficients, however, do not indicate
the absence of measurement error bias.

The other spatial statistics (mean, variance, and variogram) offer few diagnostic
indicators of measurement bias. In fact, spatial statistics can appear realistic, but still be
strongly biased. Nugget variograms could indicate either strong bias or lack of spatial
correlation. Similarly a nugget effect in the variogfam, a positive difference between the

variance and model variance, could indicate bias but may also indicate uncorrelated
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random errors, sub-sample scale heterogeneity, or non-ideal sample location (e.g., Journel
and Huijbregts, 1978).
Unfortunately, we find no unique indicators of bias in tension infiltrometer data.
Certain results (e.g., large FPD, large positive correlation coefficients, and nugget
variograms) can strongly suggest the presence of bias, but indicators of little or no bias
are not obvious from our results. Investigators should take care to minimize observation
errors, thereby reducing observation error bias. In addition, workers skould diligently
attempt to identify, quantify, and treat, possibly with error analyses, inversion-model
errors that are likely to affect their measurements. Finally, spatial statistics should be
considered with skepticism unless they are validated through an error analysis or
independent mefric.
44  The Bias Problem
Bias in property measurements is a critical problem in groundwater hydrology
that potentially affects many hydraulic property measurements. For most measurement
systems in physics and engineering, calibration is used to quantify and remove
\measurement bias (e.g., Mandel, 1964; Doebelin, 1966). Although the individual /
components of many devices used for measuring hydraulic properties are calibrated (e.g.,
Ankeny, 1988), calibration of device components does not insure the elimination of
measurement bias. Unbiased errors in the device response can still lead to bias in

. . . . . N o
measurements that use & non-linear inversion model {e.g., Mandel, 1964). Calibrauon

<

standards are available and incorporated into some field hydraulic property measurement

procedures (e.g., Davis, et al., 1994). Using calibration standards, bias can be effectively
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quantified and eliminated from measured hydraulic properties only when the physical
processes, including process time and length scales, in the standard and the sample are
similar.

For many field methods uséd to estimate porous media hydraulic propertiés, like
the tension infiltrometer, whole instrument field calibration standards are not feasible or
practical, and the exact nature of the bias induced by property-measurement errors cannot
ve directly quantified or remmoved. For these methods, bias can onlv be quantifisd using
indirect approaches.such as a Monte Carlo error analysis. Giverrthe wide range of types

of error that may affect measurements of properties, however, it may be impossible to

identify and model their effects for every property estimation technique.

5.8 SUMMARY AND CONCLUDING REMARKS

- In this paper, we show that small observation and inversion-model errors bias
unsaturated hydraulic properties estimated with the tension infiltrometer and that this bias
can preclude accurate estimation of spatial statistics. For this a.nalysis, we develop Monte
Carlo models to evaluate the effects of small, simple observation and inversion-model
errors on estimated spatial statistics for the saturated hydraulic conductivity, K, and the
singlle parameter for an exponential relative permeability, a. Observation errors consist
of simple errors in infiltrometer flux-rates and applied tension at the infiltrometer source.

Only one type of inversion-model error is modeled, a simple contact error. We generate
spatially correlated random fields of «and K, simulate tension infiltrometer

measurements with errors, and estimate « and X from the resulting tension infiltrometer
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data. When tension infiltrometer errors are due to observations only, spatial statistics of
estimated hydraulic properties are most biased when the field mean « is high or the mean
K, is low, because flux rates are dominated by errors. When simple contact errors are
included, the nature of the bias changes dramatically, and spatial statistics are most biased
at low mean a. False cross-correlation between estimated parameters occurs because

estimates of K depend on estimates of « and because both parameters are estimated

Our results have broad implications for all other types of instruments used for
characterizing spatial variability. All hydraulic properties are experimentally estimated

using an instrument that observes the response of the hydrologic system to a transient or

SuE20Y
P

mathematical inversion of the governing cquations (0 nfer the hydrauiic property vaies.
OBservaﬁon and inversion-model errors lead to biased property estimates because most -
inversion models are non-linear. As a result, estimated hydraulic properties and their
spatial statistics are biased. The extent of this bias depends on the non-linearity, the true
values of the sampled hydraulic properties, and the nature of measurement and inversion-
model errors present. Strong bias can produce or eliminate cross-correlation between

parameters and preclude accurate estimation of the mean, variance, and variogram. The

effects of observation and inversion-model error can be insidious, as hydraulic property

estimates may ¢

R N R
OSaNIsucCar approacnes usel 1 sranal

are, however, inaccurate and misleading.
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variability studies offer no formal approaches for detecting and treating measurement
bias.

Robust ﬂeld—estimgtion of hydraulic préperties for spatial variability studies may
not be possible with many current instruments and inversion models, because multiple
parameters are estirnated using a single, nonlinear model. In addition, bias in spatial
statistics of estimated hydraulic properties is extremely sensitive to different inversion-
model errors, and it is pot possible to identify g priord all types of inversion-model error
that may affect a particular property estimation method. Therefore, error analyses cannot
be used to uniquely.identify all material types or conditions under which a i)articular
instrument or inversion model will perform best or to remove bias caused by -
measurement errors. For spatial variability studies, hydraulic properties are best

esumated using airect measurements o1 1€ oy

madel. If non-linear inversion-models are required, only one parameter should be
estimated from a single model and data set.

Despite £he difficulty and added cost, laboratory-estimated hydraulic properties
may be preferable to ﬁéld—estimated properties, because some properties are directly
measured, measurement errors are sméller, and inversion-model errors can, to some
extent, be controlled. However, this suggestion must be tested by studies of bias in
estimated spatial statistics of laboratory-estimated hydraulic properties. Finally, the
impact of bias in spatial statistics on stochastic models of flow and transport remains to

be assessed.
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L1ST OF FIGURES

Figure 1. Schematic of the tension infiltrometer. The base plate (on the right) is in

contact with the sampled medium.

Figure 2. Fraction of points rejected as a function of parameter space with a) observation

error and b) also with contact error.

Figure 3. The ratio- @°/a° with a) observation error and b) also-with contact error. The

KS) K S with c) observation error and d) also with contact error. The most accurate

region, relative error between 0.95 and 1.05, is shaded.
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only and b) also with contact error. The variance of K . shown as a ratio (O’i( 1%,)/ cr,i( K))

with ¢) observation error and d) also with contact error. The most accurate region, relative
error between 0.95 and 1.05, is shaded.

Figure 5. Varlogram model parameters for In( @ ),shown as a ratio of “estimated”/“true™:
a) model variance with measurement errors only, b) correlation length with measurement
error only, ¢) model variance with contact error, and d) correlation length with contact

error. The most accurate region, ratio value between 0.95 and 1.05, is shaded. Regions

equal to zero are patterned indicating nugget variograms.
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Figure 6. Variogram model parameters for In( [%5 ), shown as a ratio of
“estimated”/“true”: a) model variance with measurement errors only, b) correlation length
with measurement error only, ¢) model variance with contact error, and d) correlation
length with contact error. The most accurate region, ratio value between 0.95 and 1.05, is

shaded. Regions equal to zero are patterned.

Figure 7. Correlation coefficients for In(a) and ln(K ,) as a function of parameter space:

a) with measurement error only and b) also with contact error. Regions equal to zero are

patterned.
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Figure 5

b)

. ,:\10*
5 8

1 P

o 1072
g g
(3] [0 3
= =

2107 2102
o 0
5 g
(53 a

R ¥ ae ¢ - D104

10 107 1077 102 107! 1070 10t 107 1R et

Geometric Mean K (cm/s)

Geometric Mean o (1/em)
Geometric Mean o (1/cm)

I~ — ] I P
107 107 1070 107 107! 107 10% 103 107 107
Geometric Mean K {cmy/s) Geometric Mean K (cm/s)




. ~

Spasial Bias. Holt, Wilson, and Glass. August 1, 2000. Subminted for review ro WRR
Figure 6

10 1074

E E

L 2

» 2

o107 = 10—13\\\

3 = v

o O <

=z = a by

21073 1072

v Q@

= £ ©

< < o0

Qo Q

10 ; oo 1] ! e

107% 10 10® 10> 107 1% 107% 107 10> 107"

Geometric Mean K_ (cm/s) Geometric Mean K (em/s)

S
IU

Geometric Mean o (1/cm)

=
1

I ] i ’
10° 107 103 102 107! 105 107 107 10* (0t
Geometric Mean K (cm/s) Geomefric Mean K _ {cm/s)




-+ r

Spatial Bias. Holt, Wilson, and Glass. August I, 2000. Submitted for review to WRR
Figure 7
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