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ABSTRACT

Hydraulic property measurements often rely on non-linear inversion models

whose errors vary between samples. In non-linear physical measurement systems, bias

can be directly quantified and removed using calibration standards. In hydrologic

systems, fieId calibration is often i.niie~ible and bias must be quantified indirectly. We

use a Monte Carlo error analysis to indirectly quantifj spatial bias in the saturated

hydraulic conductivity, K.. ~and t~hcexp(>rxmtjal relative permeability parameter, G

estimated using a tension in.filtrometer. Two types of observation error are considered,

along with one inversion-model error resulting from poor contact between the instrument

and the medium. Estimates of spatial statistics, including the mean, variance, and

variogram-model parameters, show significant bias across a parameter space

representative of poorly-to well-sorted silty sand to very coarse sand. When only

observation errors are present, spatial statistics for both parameters are best estimated in

materials with high hydraulic conductivity, like very coarse sand. When simple contact

errors are included, the nature of the bias changes dramatically. Spatial statistics are

poorly estimated, even in highly conductive materials. Conditions that permit accurate

estimation of the statistics for one of the parameters prevent accurate estimation for the

other; accurate regions for the two parameters do not overlap in parameter space. False

cross-correlation between estimated parameters is created because estimates of K, also

depend on estimates of a and. both nw~n,c::c~s :USWirmted from the same data.

....
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1.0 INTRODUCTION

In recent years, there has been an increased focus on characterizing the spatial

variability of unsaturated hydraulic properties. Because laboratory methods for

estimating unsaturated properties are expensive, time-consuming, and may not yield

results representative of heterogeneous field conditions, simple and rapid field methods

for estimating in situ unsaturated properties are appealing and potentially cost-effective.

AS a result, a variety of field methods for CS<!S~itizg i~~sittt E:-ik::{ic uoi:wiez have

been developed (e.g., Reynolds and Ehick, 1985; Ankeny et al., 1991; Simunek and van

Genuchten, 1996), and applied in spatial variability studies (e.g., Istok et al., 1994; Jarvis

and Messing, 1995; Mohai-dy et al., 1994; Russo, et al., 1997; Shouse and Mohanty,

1998). Although most studies carefully document instrument procedures, Iittle attentio~

has been paid to examining hydraulic property rneasumrnent errors k the field. The

absence of a rigorous treatment of property measurement errors in many of these studies

is a potentially serious oversight, especially when hydraulic property data are used to

characterize spatial variability.

Field measurement methods are often validated through limited testing in a known

medium (e.g., Reynolds and Elrick, 1987; Simunek, et al., 1999) or by numerically

sim~lating experimental results (e.g., Reynolds and Elrick, 1987; Sirnunek and van

Genuchten, 1996; Wu, et al., 1997). In some cases, a cursory examination of errors has

been perfom.ed (e.g., Simunek and wirr Genuchtenj 1996; Russo et al., 1997). These

~. “’..4” .-. .\ ~?’-
Iypes 01 VdiUcdOri can ho w thd a me{IiGd is tkrw ror rnbak l..= ,.,. ,.., .4...,. 0“? ,-:T.7 iv <-;.:’y~p.zr[~?,$ iri

the studied material. However, it is not sufficient for validating the use of a method in
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spatial variability studies where material properties vary over orders of magnitude.

Meawements are only usefhl when they are sufficiently accurate for their intended

purpose (e.g., Doebelin, 1966). Proper validation of a measurement technique for spatial

variability studies should include systematic error analyses that considers the impact of

measurement error on estimated spatial statistics, including the variogram. Without such

a systematic evaluation, the reliability of data collected in spatial variability studies of

Errors in measwred hydraulic properties are diff!cult to quamiy. Most in siiu

hydraulic properties (e.g., hydraulic conductivity) are estimated indirectly using: 1)

instruments ~at observe the response of a hydrologic system to a time-varying or steady

boundary condition, and 2) non-linear mathematical-inversion models that infer property

values from t-leeobsewxi responses. Became properties depend on non-hear inversion

models, purely random error in the obsemation can lead to a systematic error, or bias, in

the derived property value (Mandel, 1964). Bias may also result when the inversion

model is inadequate (Kempthome and AIImaras, 1986). We refer to these two

contributions to measurement error as “observation error” and “inversion-model error”,

respectively.

~” Most texts on error analysis (e.g., Mandel, 1964, Doebelin, 1966) suggest that

measurement bias can be experimentally evaluated and removed through the use of

calibration standards. While individual components of an instrument may be calibrated,

such as transducers used to observe response, the entire instrument including the....

inversion model must be calibrated to overcome the inversion non-linearity.

Unfortunately, most instruments and methods for estimating in situ hydraulic properties

4
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are not directly calibrated because physical standards do not exist, and furthermore may

never be calibrated because inversion-model errors vary unpredictably between individual

field samples. In spatial variability studies, it is also impossible to fully calibrate

estimates of the spatial statistics. Therefore, the effect of bias on spatial statistics cannot

be directly quantified, and instead must be examined indirectly.

Measurement bias is potentially disastrous in the context of spatial variability

system, property measurement errors are. correlated to the sampled hydraulic property.

The spatial pattern of estimated hydraulic properties is distorted in space and estimated

spatial statistics are also corrupted by bias and no longer representative. In summary, we

hypothesize that field measurements of unsaturated hydraulic properties, aud thek spatial

statistics, are spatially biased.
,

In this paper, we use a Monte Carlo error analysis to systematically evaluate for

the first time the extent of bias in the spatial statistics of unsaturated hydraulic properties.

Although the total inaccuracy of a measurement includes the effects of both bias and

random errors (e.g., Mandel, 1964; Doebelin, 1966), bias is the most insidious component

of error because it is diff~cult to identi~ or remove without calibration. Unsaturated

property field instruments are seldom calibrated. We therefore focus on the issue of bias

in this study. In particular, we consider tension-tilltrometer estimates of the saturated

hydraulic conductivity and the pore-size distribution parameter for the exponential

unsaturated hydraulic conductivity model. To keep our analysis tractable, we create an. ..

artificial reality in which the only errors affecting measurements are simple observation

and inversion-model errors. This paper is not intended to be a detailed evaluation of all

5
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measurement error induced bias in spatial statistics tension-infiltrometer-estimated

hydraulic properties. Instead, we focus on quantitatively revealing for the first time the

impacts of measurement error bias on estimated spatial statistics. We do not consider

sampling bias or uncertainty due to non-ideal sample locations or incomplete sampling.

2.0 M%THODS

The tension infiltmmter is an kmunez~ commonly used for exzmining the

spatial variability of unsaturated hydrauiic properties (e.g., DOE, 1993; Mohanty, et al.,

1994; Jarvis and Messing, 1995; Shouse and Mohanty, 1998). It is a simple device for

applying a constant (negative) pressure boundary condition to unsaturated soil (Figure 1).

Contact with the soil is established using a porous membrane on the base-plate ring.

Typically, a ring is placed cm the soil swfam and fdled with fme sand. The base plate is

placed upon the sand, which provides contact with the soil. Flow from the instrument is

primarily caused by a capillary gradient. The flux from the instrument is determined by

monitoring the declining water level in the Mariotte bottle (Figure 1). The design and

operation of the tension irdltrometer is described by Ankeny et al. (1988).

A common inversion approach for the tension itilltrometer requires that the

unsaturated hydraulic conductivity be described by an exponential relative permeability

model, exp(cqj), where

-K(W)= K, ‘eXp(-q) ,

~ is the tension”tx the absolute value GE(k rriatzic potential,

ln[~(~)] / ~, and K, is the saturated hydraulic conductivity.

6

a is the slope of

The exponential
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permeability model is commonly used in stochastic models of unsaturated flow (e.g., Yeh

et al., 1985a, b, c; Mantoglou and Gelhar, 1987z b; Polmann, et al., 1991; Indelm~ et

al., 1993; Russo, 1995; Harter and Yeh, 1996; Zhang et al., 1998). With knowledge of

two applied tensions (VI and ~~ and corresponding observed steady-state flux rates (Ql

pairs of statistically homogeneous independent Gaussian random fields of In(a) and

ln(K~, with a zero specified point covariance between ln(c$ and ln(K~. The pore-size

parameter, Q is typically assumed to follow a normal distribution in most unsaturated

stochastic models (e.g., Yeh et al., 19i15a, l!385b, 1985c; Mantoglou and Gelhar, 1987a,

1987b; Indelman, et al., 1993; Zhang et al., 1998). However, we have chosen to describe

a with a log-normal distribution because a log-normal distribution may be more realistic

(e.g., White and Sulley, 1992; Russo et al., 1997). At each spatial location in a Monte

Carlo simulation, we estimate the true flux and applied tension, add observation error to

these values, and re-estimate in(a) and In(K,). To simpli& our analysis, we assume that

(1) describes the unsaturated hydraulic conductivity, Wooding’s (1968) approximation is

exact, and that sub-sample-scale heterogeneity (including macropores) does not exist.

We consider only two types of observation error, error in estimated steady flux and error

in applied tensioq and only one type of model inversion error, error in contact between

the disk and the medium. As in practice, we reject physically implausible results during

the re-estimation. We examine biases affecting the mean, variance, and variogram model

7
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parameters for ln(ct) and ln(K~ and define the parameter space in which these statistics

can be predicted with minimal bias.

In this study, we do not consider the effects of structural errors, caused by a

limited number of samples and non-ideal sampling locations, on variograrn estimation.

Most spatial variability studies are based on several hundred points or less, and structural

errors introduce significant uncertainty in spatial statistics (e.g., Russo, 1984; Warrick

and Myers, 1987; Russo et al., 1987a, b).

2.1 Random FieIds d

For each Monte Carlo simulation we generate over 262,000 pairs (a 512 by 512

random field) of log-normal a and KSwth a fixed geometric mean d .,’a.rrancsof a(czG

and a~(al ) and KS(K: and & ~). The geometric means of a and. KSare vtied bemeens

simulations. Philip (1969) suggests that the parameter a ranges between 0.002 to 0.05

cm-l, although other reported values are both smaller than 0.002 cm-l (e.g., Bresler, 1978;

Russo and Bouton, 1992) and greater than 0.05 cm-l (e.g., Clothier et al., 1985; Russo et

al., 1997). aG is varied from 104 to 0.1 cm-l to encompass this range of wdues.

Sirr@.rly, we vary K: from 10-5cm/s to 0.1 crrds. This range is consistent with the

range of hydraulic conductivity values reported in tension inliltrometer studies (e.g.,

Ankeny et al., 1991; Hussen and Warrick, 1993; Shouse and Mohanty, 1998) and is

8

~~”eezeand Cherry, 1979). The variancesrepresentative of siky sand to coaw sand (e. g., . .

of In(a) and ln(KJ remain arbitrarily fixed at 1.0 which are consistent with the range of



. ,

Spatial bias. Holt, Wilson, and Glass. August 1, 2000. Submitted for review to WRR

values reported from field studies (e.g., Russo and Bouton, 1992; Mohanty et al., 1994;

Istok et al., 1994; Russo et al., 1997). Across our entire parameter space, we conduct 13

x 17 =221 Monte Carlo simulations, in which the means of In(K,) and in(a) ~e each

incremented by steps of size 0.576 between simulations.

In Richard’s equation, the parameter a scales the influence of gravity (e.g., Philip,

1969). As a is increases, the slope of the K(V) relationship increases indicating a

;1~T~.:.-:.[,,- ,, f -~-,.. .:.:..-.. L.J“ pc:c- :;zc dk;-::xltio:l :;y 2s21:’:.:?: Ikt +&itpm-s: :X?&s.Jf~ ~j~;~~j:

proportional to the grain-size distribution, we can imply that the degree of sorting is

inversely proportional to ct. We can also infer that KSincreases with the average grain

size. Across the parameter space the geometric mean values of a and K, represent poorly

to well-sotied silty sand to very coame wind.

Random fieids are generated usirig the FFT method (e.g., Robin et al., 1993). YVe

em-ploy a 2D, isotropic, exponential variogram model

(2)

where G2is the variance of the random process, h is a separation vector, and& is the

correlation length. In stochastic models, it is”often assumed that the correlation lengths of

unsaturated parameters are the same (e-g., Yeh et al., 1985% b, c; Mantoglou and Gelhar,

1987% b) and, for convenience, we set all correlation lengths equal to 10 length units.

9
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2.2 Observation Errors

Two sets of observations, each consisting of an applied tension and an observed

steady-state flux, are required to estimate a and K,. We assume that the applied tension is

observed using a standard pressure transducer in the baseplate (Figure 1). The flux from

the Mariotte bottle is estimated by observing the height of water in the bottle with

pressure transducers at two different times (e.g., Ankeny et al., 1988). Errors, in this

. .
C2.Se, aw ii.n:~ted.to TY?::.N!UCCIe::m: ZT;Cc:::!~::<CS~: ---c ~- T’c.uti ;C CCI’V;it~:~~--- ‘- >..~.:‘...,.L....... .. ..’’-.,--> -

Mariotte bottle.

The estimated tension, @, at the base-plate membrane is expressed as

?=V+$

where w is the true tension and < is the error due to transducer rmise ad drift aiid

bubbling error. Because bubbling error is a time dependant phenomena, < has a temporal

correlation. Ankeny et al. (1988) examined this issue and concluded that, inmost cases,

temporal correlation can be neglected. We assume that ~ is an independent, mean-zero,

normally-distributed random variable and neglect transducer &i& implying that the

transducers themselves are perfectly calibrated. With the assumption of independence,

the variance of @ is defined as

~:cr; =— (4)
M

where a; is the variance of ~ and M is the number of tfies the transducer is Polled”

Ankeny et al. (~988) reports that the standard deviation of obse&ed pressure within their

10
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tension infiltrometer device is 0.62 cm. We assume that this variability is representative

of the tension variation at the disk and set a; = 0.4 cm2.

Estimates of the flux rate from a tension infiltrometer are most commonly based

upon a method described by Ankeny, et al. (1988). Two transducers in the Mariotte tube

are used to minimize, but not eliminate, the effect of bubbling errors. The flux rate, ~, is

estimated by determining the decline of water-level in the Maiotte tube as infiltration

.-,(.,-------.-,.,.: .,_,,.. ,,.+~.,,t,..,-~..i.: ... ... .<.’J,.,..J.. ......

(5)

where & = l?(tz) – ~(tl), At = t2 – tl (the polling interval for the transducers), rt is the

radius of the Mariotte robe, ~nd ~(;) is tbe estimated height oft& water in the Mariotte

tube at time t. Flux errors are ca.ised by errors i.n estimating the hei~kL of the water in the

M&iotte tube,

A(t) = H(t)+ .5 (6)

where If(t) is the true height of the water in the bubbling tube at time tands is an

independent, mean-zero, nommlly-distributed error with variance U82.As with the error

in observed tension, the assumed distribution and assumption of independence of E is an

approximation that improves when the sampling period is much greater than the bubble

frequency. If N flux estimates are averaged, then the variance of this estimate is

2cr~Z2 rf4
0; =

At2N
(7)

11
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We estimate ~ = 0.0025 cm2 from the results of Figure 2 of Ankeny et al. (1988), with

spurious data removed. We also assume that the radius of the bubbling tube rt is 1 cm,

that the pressure transducer is polled once per second, and 30 seconds worth of data are

averaged to estimate the steady-state flux rate. Using (7), the variance of estimated flux

rates is c:= 0.00165 cmc}s2.

We consider only one type of inversion-model error, a “contact error” resulting

from poor contact between the base-plate membrane and the sample medium. It is a

common problem during use of the tension infiltrometer and, in our experience, appears

to Occ’ux.Tore kp.l:r;.t~:.’ :01 Obser’z.ti S.1.-s nxde at I@er tensions. This type of enor

reduces the area for fio~’ and alters the flow geometry. Flaws in the sand contact between

the disk and the medium act as large pores, which do not fill at high tensions. At lower

tensions, these pores fill eliminating or reducing the error. Since the tension infiltrometer

requires at least two observations, one at a higher tension, this error is often more

pronounced at the higher tension.

We are not interested in studying con~ct error in detail, but only its impact on

estimating spatial statistics. Consequently, we develop and appIy a simple approximation

based upon the reduction of area for flow. We assume that the flow geometry does not

change and that only the disk area is reduced due to poor contact. We apply this error

only at the highest applied tension. The disk area is multiplied by a scaling factor (1 -j),

where ~is selected from a uniform random distribution over 0.0 to 0.1. Because estimates

12



Spatial bias. HOIL Wilson, and Glass. August I, 2000. Submitted for review to WRR

of a and K, require two flux observations, this error introduces an additional bias in the

estimated hydraulic properties. In the following sections, the contact error scenario

includes both the contact and obsemation errors.

2.4 Hydraulic Property Estimates

We assume that the tension values used for each obsemation are estimated to be

$., for n = 1,2. For each observation, the value of # is determined by randomly sampling

a mean-zero normal distribution with cr~ = 0.4 cm2. Given ~~, ~ and K,, we calculate the

true flux from the tension infiltrometer using (Wooding, 1968)

wh;re r~ is the radius of the disk and is equal to 10 cm.

Once the tie flux rate is determined, we calculate the estimated flux ~. by

adding mean-zero, normally distributed error ~th o~2= 0.00165 cm4/s2. Sampling

locations where ~1 < ~z are discarded, as they would be in practice. Although we and

others (e.g., Mohanty, pers. comm., 2000; Ankeny, pers. comm., 2000) have both

observed and followed this practice in field studies, it is not well documented in the

literature. The percentage of discarded points is usually small. For our field studies it is

13
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When contact errors are considered, Q1 is estimated using the procedure outlined

above, while ~* is estimated using the same variance for o~2but is estimated using an

altered disk radius

(9)

This procedure is repeated for al

,

A . .

k,=
6 Q1eav’

(11) .
(.%-; +4rd

pairs of czand K, values.

2.5 Statistical Property Estimates

For each spatially correlated random field, the mean, variance, and cross-

covariance between ln(cz) and ln(K,) are determined. In addition, local variograms are

calculated for ln(cz), ln(K~), in(d), and ln(~,) using the GSLIB subroutines gam2

(Deutsch and Journel, 1998)

y(h) = ~;(h) ~[U(x, +h)-u(xi)~
r

(12)

14
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where N(h) is the number .of samples in lag interval h and U(x) is the random field. All

of the resulting 221 experimental variograms are fit using a Levenberg-Marquardt

algorithm with the exponential variogram model

..

(13)

.
where 2C is he estimated “correlation length”, i?: is the “model variance”, and & is the

nu~get ‘;ati~mx< The Vrltiance is eqwl] IC ill?. S::::] c;f:hc mcd’d. d. I.A:.LC,=. .“’~’f-c-l*.-,:+-.-I-=<.. .... ...... .

When a variograrn is constant for all lag distances, we refer to it as a “nugget variogram”

in which c?: = 0.0 and ~C = 0.0. In classical geostatistics, nugget variograms represent

white noise processes that have no spatial correlation. Bias for each statistical parameter

is ~~]~v:fi-c~i~g z ra~~

?E/iT

where ~~ is the statistical parameter (e.g., mean, variance, or variogram model

(i4)

parameters) for a random field of estimates and ~~ is the statistical parameter determined

for the true random field. The ratio equals 1.0 for an unbiased statistic.

3.0, RESULTS

Here, we present the results of our Monte Carlo analysis. We show that both the

&action of points discarded because of a physically implausible result ( 01 S OZ), ~d the

bias in the meanj-variance, and variogram-model parameters for in(d) and In(l?, ) , are

functions of the field values of K: and aG. In addition, we illustrate how measurement

15
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errors introduce false cross-correlation between in(d) and ln(~~ ). When only

measurement errors are considered, bias in spatial statistics increases for those geometric

mean values that produce low flux rates (e.g., small K, and high a) and appears to

correlate with the fraction of points discarded. When inversion-model errors, in the form

of a contact error, are included, the pattern of bias in spatial statistics changes

significantly and depends less on the fraction of points discarded.

3.1 Fraction of Points Discarded /

Figures 2a and 2b plots across parameter space the fraction of points discarded

(FPD) because of an unrealistic result, Q, < Q,. When only obsemation errors are

,.. -.
c~;:~;~~:~:~,@ ]w ~?

,. .

‘ K: allj. c:~. Tk:F.?II ;Ime<as’esSk .C 22), i.hC WD k 2 RCCCf.;Ild. tiv..h
~“‘!-.,-,;.1

with aG and decreases with K:. This result is not surprising, because relative errors in

flux rates increase when the flux rates are small and small flux rates result from high a

.
and small K. (8). In the upper left corner (high aG and small K:), estimated fluxes QI

and Qz are dominated by errors and are nearly independent of the sampled values of a

and K$. In these regions, the likelihood that- ~1 < Qz is high, and the FPD increases.

When contact error is included (Figure 2b), the FPD tends to become less dependent on

the value of K. at low aG, and the FPD decreases across much of the pammeter space.

16
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3.2 Bias in Estimated Mean

Figure 3a presents the bias, expressed as a ratio, in the geometric mean of d ,“or

6G, across parameter space. As the field value of either aG or K: decreases (lower left

portion of parameter space), the amount of bias in &G increases significantly to over five

times the true value. It is not surprising that bias would increase at small K,c, because

QI tends to be overestimated and ~z tends to be underestimated as the FPD increases.

However, it seems contradictory that bias k less at high aG, because the FPD increases

(there. This occurs because bias in the log flux ratio, in ~1 /Qz ) from (10) differs from

bias in the flux rates themselves, QI and ~z. At a small aG, flux-rate errors are

relatively smajl, but errors in the lq ratj.o are very large. Therefore, relatively sknll

wrors in flux-rates cause k.rge, positiv-dv i~iased errors in tile flux ratio and d ,.

The bias in the geometric mean of the estimated K., or l?:, is shown in Figure

3Cand is similar to”the bias in &G, except that it is less sensitive to aG. The parameter

l?, is a linear function of @l (11), and, as K: decreases, ~1 is overestimated because

the FPD increases. Therefore, bias in @ is nearly independent of aG.

Figures 3b and 3d show that the bias in &G and @ changes drastically when

contact error is added. dG is only accurately estimated,in a narrow region at high aG,

near the top of parameter space, while l?: is overestimated across the entire parameter

space. There is-much less dependence on K:, and the bias is much greater at Iow aG.

The contact errors decrease Q2, leading to an increase in the flux ratio and overestimation

17
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A

of d and K,. For low CZ?Sthe biased estimates, &G and l?:, are both well over an order

of magnitude too high.

3.3 Bias in Estimated Variance

Bias in the variance of ln(c2) is depicted across parameter space in Figure 4a.

The bias increases as aG and K: decreases (lower left comer of parameter space), except

at very small K: (far left portion of parameter space) where the bias decreases again. As

ctGor K: decreases, the variability of the log ratio in (1O) increases, causing the variance

A A

of In(d) to increase. At very small K:, however, QI and Q2 are dominated by errors

and. are independent of sampled czand K,. ‘I%?KZPMwhty of fthe Ieg zxio k Id,:.cd, znd““cL’“

the variance of ln(ti) decreases.

. Fi@re 4b illustrates bias in the variance of in(d) when contact errors are added.

There is much less dependence on the K:, and the variance of ln(li) is underestimated at

large K:. In this case, ~2 tends to underestimate Qz because the disk ~ea is reduced.

The log ratio in (1O)is consistently overestimated, and the amount of overestimation

increases at low aG where the true flux ratio is small. TMS effect is most pronounced for

variability of the log ratio and

are strongly dependent upon the values of K, and a. The

the variance of ln( d ) decreases. Contact effects decrease

as K: decreases, because both ~1 and Qz become increasingly independent of a and K,...

(i.e. independent of Q, and Q,).

18
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small

Figure 4C shows bias in the variance of ln(l?,). Bia.sincreases at high aG and

K:. Recalling that ~, is a function of both & and ~1, this relationship appears

counter-intuitive, because the variance of ln(ii)

variability of QI decreases at high a~ and Iow

decreases as a increases and the

K:. Compensating effects, however,

A

cause the observed behavior. Consider the covariance between QI and 8 in

Var[ln(l?,)] K Var[ln(d)]+ Var[ln(ol)]+ 2 Cov[hl(d)> hl(ol)] (15)

~~)~d ~(~)efibitalargenegativecovtimce,exceptforthatIn general, estimated in A

portion of our parameter space where the fluxes become independent of a and K,.

Independence occurs at high aG or small K:, where more points are discarded (Figure

-,., --- . ... .... /. ,[--1‘w. s-.L;c ::’<“L:::.’.:‘,.“t.~’-ic‘}“i.m.m,: :. ‘&-:\;,::..=.,;-..1:. “, - .: 1.-{; \ ,q,.>.-,>,.,,..-,_.~,.. i’...A,.\/-,.) i~.~!1;).(~.1j G~.~.i Ue.L..l\.> Z~:”’3 ~~i~t~~ T.h$ll-i

the positive variances of ln(~ ) and ln( QI ) decrease. Therefore, the variance of

ln(t,) increases for high aG or small K:.

The bias in the variance of ln(l?, ) changes significantly when contact errors are

present (Figure 4d), as overestimation increases. At high K:, the bias is nearly

independent of K: and increases dramatically as a G decreases. When contict emors are

present, ii tends to be overestimated leading to overestimation of J?, (Figures 3C and

3d). This effect is most pronounced in parameter space where the flux rates are strongly

dependent on a and K,, that is in the lower right comer of the parameter space where K:

is large and aG is small. In this region, & depends primarily on the errors in the estimate
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of Qz, and the correlation between ~1 and & decreases. Consequently, the variance of

In(l?,) tends to increase (15).

3.4 Bias in Variograms

Bias in the variogram model variance and correlation length for In(d) me shown

in Figures 5a and 5b, respectively. The model variance is mostly overestimated, while

the correlation length is underestimated. The pattern of error in the model variance is

similar to the pattern of error in the variance of In(d) (Figure 4a), except in the upper left

comer of parameter space (high aG and small K: ) where the model variance approaches

zero. Correlation lengths are accurately estimated, with bias values near one, across most

of the parameter space. AS with the model variance, correlation lengi’us ‘Gmux e

inaccurate in the upper left comer of parameter space (Figure 5b), with a bias ratio

approaching zero. Correlation lengths and model variances approach zero as estimates of

the flux rates become dominated by errors, rather than the true values of a and K,. At

low aG and small K:, flux-rate errors greatly increase the variance of in(d) (Figure 4a),

but do not disrupt estimation of spatial correlation, because bias in the flu-rates

accentuates spatial differences of in(d).

Figures 5C and 5d display the bias in the model variance and correlation length for

in(d) when contact errors are added. Both are underestimated. The underestimation is

/

significant at high a Gand small K: and across a broad region characterized by low a G.

In the upper left comer of parameter space where ac is high and K: is small, as with
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the case with no contact error (Figures 5a and 5b), flux rates are dominated by errors, and

in(d) loses spatial correlation. However, along the bottom of the figure, with low czG,

estimates of ~2 rmetoo small leading to consistent overestimation of In(d) and a

reduction of spatial correlation. The spatial statistics are those of a nugget.

Figures 6a and 6b present the bias in the model variance and correlation length for

In(l?$). Model variances and correlation lengths are accurately estimated across most of

the parameter space, but greatly underestimated at small K:, especially in combination

for the patterns displayed by errors irr the rnod.el.variance and Correktiori ien=til. Of

particular importance is yk~ti~~td,), which tends to reduce the variogram of ln(~~ )

because In(a) and ln(~,) are negatively correlated. At high aG and small K: (upper

left comer), flux rates are dominated by errors, ~d Y,.(a), Yktd,j, ~d Y,.(ti),hfQ,)have

little correlated spatial structure. Consequently, the model variance and correlation

len@h of In(l?,) are reduced in this region. At low aG, however, spatial structure is

presemed in ~~(ti), YhtQ,)7‘d ‘In(ti),ln(fjl )
, but the negative correlation between ln(ti) and

ln(~l) is strong, and little spatial structure is preserved in the variogram of ln(~$) . At

low aG and small K: (lower left corner), ln(ti) is dominated by errors in QI, as 01
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tends to have more error than &, and the magnitude of the cross-covariance between

in(d) and ln(Ql) increases.

When contact error is added, patterns of bias in the model variance and correlation

length of ln(~$) change (Figures 6C and 6d). Similar to errors in the variance of ln(l?~)

(Figure 4d), model variance bias increases significantly at low aG. Errors in the cross-

variogram between in(d) and In(Ql ) still strongly control the variograrn of ln(l?$ ). At

low aG, In(d) is controlled by errors in ~z, and yhtd),hfd,~is small. As a result, the

estimated correlation length of ln(l?$ ) is fairly accurate (Figure 6d), but the model

variance is greatly overestimated (Figure 6c). As with the case with no contact error,

model variances and comelation lemgtk.s ::ppr6ack zerG at high aG ad small K: (upper

left corner), because flux rate estimates are dominated by errors.

3.5 Cross-Correlation

Although true properties In(a) and ln(K~) are statistically independent, we
. .

observe significant cross-conflation between estimated properties in(d) and I

ln(~, ) (Figure 7). False cross-correlation between In(d) and In(I?$) results because

both d and f?, depend on QI (1Oand 11), and l?, depends on and increases with &

(1 1), yielding positive point correlation functions. When only measurement errors are

present, the condation coeff~cient for In(d) and In(l?, ) appears to increase as K,G

decreases, reflecting increasing errors in the flux rates. When contact errors are also
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present, the pattern of the correlation coefilcient changes, and strong cross-correlation is

observed at both large K~, and low aG (lower right comer), and small K; and high a G

(upper left comer of parameter space). This occurs because & tends to be overestimated

in this region of parameter space (Figure 3b).

With the tension infiltrometer we use one parameter(&) to estimate another

.
(~, ). Errors in the first parameter generate errors in the second, resulting in apparent

.. . ..,..:-,-:.-.,V.l-:L::: ,->, p-;:-(:;;j.~ >~~;j:l~:.’~>:(j~s-~ fj.:~+k?L2.,-~. .--- ,,.,.,,,-.-...b----

-. .:: ..,,7;+,,+,..,.>a - “...,.,.,..,:-,,
., k..... ,..:.?..:.,..c.. . .. . . . . . . .. . u..!’. . . . ,.., . . ... . . .. .. t.. ,

estimate multiple parameters, because errors in the data set will propagate through

multiple inversions. Cross-correlation due to measurement error may enhance or obscure

the true cross-correlation between hydraulic parameters.

4.0 DISCUSSION

In this paper, we focus on revealing some of the impacts of tension infiltrometer

measurement error on estimated spatial statistics. In the following discussion, we argue

that our results are over optimistic for many applied field situations. We fust show that

observation errors are likely to be much greater than those used in this study. We have

illuminate the general problem of bias in hydrologic property measurements.
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4.1 Range of Observation Errors

In most field studies, observation errors are likely to be greater than those used for

this study. The flux-rate errors used here were based on instrument observations reported

byAnkenyetal.(1988). Because their observations were made under highly controlled

laboratory conditions (&keny, pers. corn., 1998), we conducted a series of laboratory

sorted, fie sand. The tension infiltrometer (manufactured by Soil Measurement Systems

of Tucso~ Arizona) was calibrated using standard methods (e.g., Soil Measurement

Systems, 1992), and applied following normal procedures. After each test, the sand was

base of -iie box. For these ~e~is, G-g wm Cietmtimxi m be 0.06 cm6/s2. This vake may

.
be a more representative more representative of field studies than the flux-enor variance

used here (o~2= 0.00165 cms/s2).

Errors in applied tension at the disk source may also be much larger than

considered here. Many tension in.f.ltrometers do not have a pressure transducer located at

the disk source. Instead the applied tension at the disk is traditionally calibrated at a

given bubble rate (e.g., Soil Measurement Systems, 1992). A constant bubble rate is



, .

Spatial bias. HoIt, Wi[son, and Glass. August 1, 2000. Submitted for review to WRR

effective steady-state tensions will systematically vary from the calibrated values. In

addition, some tension infiltrometers have a separate disk, and errors will be introduced if

the disk is not at the correct elevation relative to the Mariotte bottle.

4.2 Neglected Inversion-Model Errors

Infiltrometer operators generally@ to minimize observation errors by calibrating

,>:(:.;;:~ (:::-~1.. + 4 “Fcl----- ~..+,......... .: ,-.-.,~,. . “-,- 1‘i~’’-~~~=LsLs01 LILAI.,\/ii i.”..-....... .. .. ........’....> -...-A..C-:L,L... !.U1.,’>.J..%,,. :.:;,:_ .-. ,.,<-?,.,:>~.:...,...,..,.,,,-efl.p.i=.7.J-;: ~.. .,. - .~ai.:2,,.<.L...,.,....2

(Arikeny et al., 1988). In principle, bias due m absewaiion e~~Grs cu be signiiicardy

reduced by virtually eliminating these errors, provided that the inversion model is not too

non-linear. Changing the inversion. model can also reduce bias due to inversion-model

. . .,D~1-,r... ..J, 1%.xuse it is vu?wdIv mmossdxt :ci ccmcls<t~l’ ::nd .:k:._,i.CL~.. .,4.-I,,,~.,..<.:...3C,...-.- J...I..;.,.,,a,.eq,,.,.~+~~]~~f
._

,>L ,::., <::,: %.:+.-”,,., . C,...mtmtto a IP;ica’:ik y.:”,,.,,,.... . .. .~-..-<.,,.:..<<.-...?,<. . .
. ,, .+-.... ,-.- ‘j~-,=r-,.,--- 1....-:--.-,.. .... . ~ ~,,~-!,- .....- ......, ..>..’!...>... t: .. u: . ...... ..... .*Q :,.,:........ ‘.

@gckie, 1996), it is unlikely an inversion model can be found that is completely free of

error. As our results show, a simple inversion-model emor, contact between the disk

source and the sampled medium, can lead to large amounts of spatial bias. A variety of

other types of inversion-model en-or could cause a different, yet still sign.i6cant, bias in

spatial statistics.

Consider the effects of viscosity errors due to temperature changes. Standard

inversion models for the tension tilltrometer assume that the viscosity of the irdlltrating

water remains constant (e.g., Ankeny, 1991; Reynolds and Elric~ 199 1). This is very
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result in an increase in the viscosity of pure water of-20/0 (Weast, 1972), resulting in a

-2Y0 decrease in unsaturated hydraulic conductivity. This change could cause significant

bias in properties estimated with the tension irdlltrometer.

In a field situation, bias due to viscosity errors would be temporal. In the

morning, the water temperature in the inlltrometer could be greater than that of the soil

and soil water. Infiltrating water would cooler during the meastg-ement of & and

and an overestimation of the flux ratio, &, and ~~. In the afternoon, the situation could

be reversed. In this situation, the temporal bias due to viscosity errors would appear as

noise that may cause underestimation of the model v&iance and the correlation length.

changes in the medium due to infiltration, soils with non-exponential hydraulic

conductivity functions, and air entrapment. As with our contact error, many of these

errors could cause significant bias in estimated spatial statistics, and their impact should

be studied.

4.3 Implications for Tension Infiltrometer Studies

Our results indicate that tension hdlltrometer observation and contact errors will

lead to overestimation of both & and l?.. This is consistent with Ankeny et al. (1991),

laboratory measurements by a factor of 3. The mathematical character of tension
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inflltrorneter inversion models leads to overestimation of & and I?, in the presence of

observation errors. Data with ~1 < Qz are rejected because they yield an unreasonable

resul~ that is negative values of d. A large FPD is therefore an indicator of potential

bias in tension tilltrometer results.

It is impo~t to recognize, however, that a small FPD does not necessarily imply

a small spatial bias. Three possible explanations can account for a small FPD in field

could be large ardthe mean a could be small, or inversion-model errors could reduce the

FPD. Recall that our contact error reduces the FPD across parameter space, yet causes

-.
nmch more bias in spatial statistics than observation errors. Other in.version-rnodel

Our results also indicate that measurement errors can introduce false cross-

,. .
correlation between & and K,. Because K, is proportional to &, correlation

coefficients will show a positive bias, and very large positive correlation coefficients are

a possible indicator of error. Negative correlation coefficients, however, do not indicate

the absence of measurement error bias.

The other spatial statistics (mean, variance, and variogram) offer few diagnostic

indicators of measurement bias. In fact, spatial statistics can appear realistic, but still be

strongly biased. Nugget variograms could indicate either strong bias or lack of spatial

correlation. Similarly a nugget effect in th:: variogram, a positive difference between the

variance and model variance, could in&ca[e bias but may also indicate uncorrelated
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random errors, sub-sample scale heterogeneity, or non-ideal sample location (e.g., Journel

and Huijbregts, 1978).

Unfortunately, we fmd no unique indicators of bias in tension infiltrometer data.

Certain results (e.g., large FPD, large positive correlation coefficients, and nugget

variograms) can strongly suggest the presence of bias, but indicators of little or no bias

are not obvious from our results. Investigators should take care to minimize observation

enor.s,thezeby red cing observation error bias. h addition, workers should ~ili ~ez;:>

attempt to identify, quantify, and treat, posskiy with erzor analyses, inversion-modei

errors that are likely to affect their measurements. Finally, spatial statistics should be

unless they are validated through an error analysis or

4.4 The Bias ProbIem

Bias in property measurements is a critical problem in groundwater hydrology

that potentially affects many hydraulic property measurements. For most measurement

systems in physics and engineering, calibration is used to quantify and remove

measurement bias (e.g., Mandel, 1964; Doebelin, 1966). Although the individual

/
components of many devices used for measuring hydraulic properties are calibrated (e.g.,

Ankeny, 1988), calibration of device components does not insure the elimination of

measurement bias. Unbiased errors in the device response can still lead to bias in

+ “. . -“.-neaslurerneln~s‘&t?.tuse ~ no rl-hrle~ mversicl. ,. .,,...“ ,. ~..,r,~ ~i,.,.>., Mavdel.l.le~f-, c i %4). ‘Ca!i’b:?:iorl

standards are available and incorporated into some field hydraulic property measurement

procedures (e.g., Davis, et al., 1994). Using calibration standards, bias can be effectively
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quantified and eliminated from measured hydraulic properties only when the physical

processes, including process time and length scales, in the standard and the sample are

similar.

For many field methods used to estimate porous media hydraulic properties, like

the tension tilltrometer, whole instrument field calibration standards are not feasible or

practical, and the exact nature of the bias induced by property-measurement errors cannot

.,-.... .. .,.-... ..’”-.,.n. .7-.,,-,.:-1.7--’- ~~ =-r.,-.-~.~,-: -’-;-&... 3 *l.:..,2.,....-C.C C/irs.:... ,; v ..,..,-.
-,. : ,.

. .. . . .+.. .- &. L . r,

,. ~F,..

:.- !:] 1“ L. . . . . b ?:-: ‘::.!.-. ~) i:: ; ,. i =.$ C:,.P. {~i: i ‘L’r;i-: !: ‘U‘?.T;“;.:’;:-.?i :: .511-.C. ..

indirect. approaches.such as ‘aMonte Carlo error analysis. Giverrthe wide range of types

of error that may aflect measurements of properties, however, it maybe impossible to

identifi and model their effects for every property estimation technique.

inversion-model errors bias

unsaturated hydraulic properties estimated with the tension idt.rometer and that this bias

can preclude accurate estimation of spatial statistics. For this analysis, we develop Monte

Carlo models to evaluate the effects of small, simple observation and inversion-model

errors on estimated spatial statistics for the saturated hydraulic conductivity, K,, and the

single parameter for an exponential relative permeability, ct. Observation errors consist

of simple errors in infdtrorneter flux-rates and applied tension at the infiltrometer source.

Only one type of inversion-model error is modeled, a simple contact error. We generate

/“

spatiaHy correlated r~ndom fields of czand K,, simulate tension infiltrometer

measurements with errors, and estimate a and K, from the resulting tension infiltrometer
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data. When tension infiltrometer errors are due to observations only, spatial statistics of

estimated hydraulic properties me most biased when the field mean a is high or the mean

K, is low, because flux rates are dominated by errors. When simple contact errors are

included, the nature of the bias changes dramatically, and spatial statistics are most biased

at low mean a. False cross-correlation between estimated parameters occurs because

estimates of K, depend on estimates of a and because both parameters are estimated

.:..’1,~, .;.,,, ;:,,.-:~-,,.1.7?-a1,tJ.,.. .“>,. .A, .” ......’..

Our results have broad implications for all other types of instruments used for

characterizing spatial variability. All hydraulic properties are experimentally estimated

using an instrument that observes the response of the hydrologic system to a.transient or

,.-.s;i:2<c.”<’...c. ,- ~’-<‘:-::);.’.?.:.:2n 0 “t.<e:-”.’2:1s‘i,”s?:f:;‘y.
. !-.~,:<:},->,~,,’,s- -..:-a~~T>..:.~.-,,- -.<.--.~c-.~c: ,:--,-.;::;::,:%::: ;:. .. ,~k.>;.>... G.,.....,... .. . ... :. t< .....,-- , L..L..

mathtxnatical inversion of the gov-enti-~.gcqu miom m idkr tiw tiky-ckz’cbcprc~t:n: ; G;x:<.

O&ervation and inversion-model errors lead to biased property estimates because most -

inversion models are non-linear. As a result, estimated hydraulic properties and their

spatial statistics are biased. The extent of this bias depends on the non-linearity, the true

values of the sampled hydraulic properties, and the nature of measurement and inversion-

model errors present. Strong bias can produce or eliminate cross-correlation between

parameters and preclude accurate estimation of the mean, variance, and variogram. The

effects of observation and inversion-model error can be insidious, as hydraulic property
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variability studies offer no formal approaches for detecting and treating measurement

bias.

Robust field-estimation of hydraulic properties for spatial variability studies may

not be possible with many current instruments and inversion models, because multiple

parameters are estimated using a single, nonlinear model. In addition, bias in spatial

statistics of estimated hydraulic properties is extremely sensitive to different inversion-

@ a priori all tjqxs of inversiow-nmdel errorin.~del.e.YOr~~C.T.dit is r:Ot ~ossible ~~~~:~~i~~~

that may affect a particular property estimation method. Ilerefore, error analyses cannot

be used to uniquely. identi~ all material types or conditions under which a particular

Despite the difficulty and added cost, laboratory-estimated hydraulic properties

may be preferable to field-estimated properties, because some properties are directly

measured, measurement errors are smaller, and inversion-model errors can, to some

extent, be controlled. However, this suggestion must be tested by studies of bias in

estimated spatial statistics of laboratory-estimated hydraulic properties. Finally, the

impact of bias in spatial statistics on stochastic models of flow and transport remains to

be assessed. --
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LISTOFFIGURES

Figure 1. Schematic of the tension infltrorneter. The base plate (on the right) is in

contact with the sampled medium.

Figure 2. Fraction of points rejected as a function of parameter space with a) observation

error and b) also with contact error.

Figure 3. The ratio-&G /czG with a) observation error and b) also-with contact error. The

@ /K: with c) observation error and d) also with contact error. The most accurate

region, relative error between 0.95 and 1..05, is shaded.

error between 0.95 and 1.05, is shaded.

Figure 5. I:miogrrun model p?m.me!.ers

a) model variance with measurement errors only, b) correlation lenbgh with measurement

error only, c) model variance with contact error, and d) correlation length with contact

error. The most accurate region, ratio value between 0.95 and 1.05, is shaded. Regions

equal to zero are patterned indicating nugget variograms.
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Figure 6. Variogram model parameters for In( I?,), shown as a ratio of

“estimated’’/’’true”: a) model variance with measurement errors only, b) correlation length

with measurement error only, c) model variance with contact error, and d) correlation

length with contact error. The most accurate region, ratio value between 0.95 and 1.05, is

shaded. Regions equal to zero are patterned. -

Figure 7. Correlation coefficients for in(~) and ln(l?, ) as a function of parameter space:

a) with measurement error only and b) also with contact error. Regions equal to zero are

patterned.
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