
T

Representation of Random Shock
Via the Karhunen Loeve Expansion

Thomas L. Paez
Sandia National Laboratories

Albuquerque, New Mexico 87185
(505) 844-7052

Norman F. Hunter
Los Alamos National Laboratory

Los Alamos New Mexico
(505) 667-2099

Shock excitations are normally random process realizations, and most of our efforts to
represent them either directly or indirectly reflect this fact. The most common indirect
representation of shock sources is the shock response spectrum. It seeks to establish the
damage-causing potential of random shocks in terms of responses excited in linear,
single-degree-of-freedom systems. This paper shows that shock sources can be
represented directly by developing the probabilistic and statistical structure that underlies
the random shock source. Confidence bounds on process statistics and probabilities of
specific excitation levels can be established from the model. Some numerical examples
are presented.

INTRODUCTION

The shock response spectrum (SRS) is the de facto standard for representation of the severity of shock sources. It
was proposed by Biot in the 1930’s (See Biot, 1943) to account for the fact that test excitations with arbitrary time
histories could not be generated on shock test hardware available at that time. Today, though arbitrary time histories
of shock excitation still cannot be generated for all test items, it is desirable to establish models for shock excitation
sources that characterize the actual environment. These can be used in analysis and laboratory applications where an
arbitrary time history can be generated for a particular test item. A general, stochastic model for shock might be used
to rationally and systematically specify laboratory and analysis test shock environments that have computable and
controllable levels of conservatism. In this study we develop a stochastic shock model whose parameters can be
chosen to have any desired level of confidence (of not being surpassed) and which can be used to generate shocks
with any desired probability of not being surpassed.

The Karhunen-Loeve (KL) expansion (Ghamen and Spanos, 1991) is a tool for the compact representation of
arbitrary random processes. Masri, Smyth and Traina (1998) have shown that the KL expansion can be used to
model the responses of deterministic structures to earthquake excitations. This investigation shows that the KL
expansion can also be used to express arbitrary nonstationary random process sources, and, in addition, that the
parameters of the KL expansion can be adjusted to model a source whose parameters reflect a preestablished
confidence level, and whose realizations reflect a particular probability of being surpassed. Statistical analysis of the
parameters in the KL expansion is performed using the bootstrap (Efron and Tibshirani, 1993, Paez and Hunter,
1998, Hunter and Paez, 1998).

A numerical example is presented to demonstrate how shock signals that are nonstationary random process
realizations can be generated.
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THE KARHUNEN-LOEVE EXPANSION

The Karhunen-Loeve (KL) expansion is a tool for the compact representation of multi-variate, continuous-valued,
continuous-parametered (i.e., continuous time) random processes. We consider in this investigation a special case:
the representation of a zero-mean, univariate; continuous-valued, discrete time, nonstationary random process. Let

X, an n X 1 column vector of random variables, be such a random process. Its autocomelation matrix, an n X n

nonnegative definite matrix, is denoted ~xjy . To establish the KL expansion, compute the eigenvalue

decomposition of the autocorrelation matrix:

Rxx =VWVT (1)

V is the n X n matrix whose columns are the eigenvectors of the autocomelation matrix. V is orthogonal withT

respect to V, and we can scale the columns of V to achieve orthonormality. W is the diagonal matrix of eigenvalues
of the autocorrelation matrix. Its elements are nonnegative. (We sort the elements on the diagonal of W so that the
largest ones appear at top left.) The smallest elements in W are eliminated along’ with the corresponding columns in
V, leaving ordy positive values in W. (This may substantially reduce the dimensions of V and W.) When this is done
Eq. (1) is approximated by:

Rxx = VWVT (2)

where w is an m X m ( m < n ) diagonal matrix of the largest values in W, and v is the n X m matrix containing

the corresponding vectors from V.

Now factor the right side of Eq. (2):

Rxx = VW
l/21wl/2v T

(3)

[Jwhere 1 is the m X m identity matrix. Recognize that the autocorrelation on the left is ~ XX T (where the symbol

E[.] denotes the operation of mathematical expectation) and that the identity matrix on the right can be interpreted as

the autocorrelation matrix, Ruu = E[uu T], of an m X 1 vector of zero-mean, uncorrelated random variables, U.

Then Eq. (3) can be rewritten:

E~xx*]=vw1’2E[uuT ~l’2v~ =E~w%u~wq (3a)

Association of the terms in brackets with one another leads to an approximation for X

x=vw1t2u (4)

[1This expression is the KL expansion of the random process X. Computation of the autocorrelation matrix E XX T
confirms this representation by yielding the approximation in Eq. (2). In this representation of the random process X,
the columns of v assume the role of shape functions characterizing underlying temporal components that appear in
realizations of X. The elements in the diagonal matrix w assume the role of amplitudes characterizing the relative
contributions of the individual shapes in v. The elements in the mean zero, unit variance, vector of uncorrelated
random variables U are the randomizing factors that combine the shapes times their corresponding amplitudes:
Clearly, components associated with small amplitudes tend to have only slight influence on the overall
representation.



Because w is diagonal with positive elements, and the columns of vv are mutually orthonormal, Eq. (4) can be
inverted to obtain:

U=W-112VTX (5)

If the joint probability distribution of the elements in the vector X is <known, then it can (in principle) be used to

establish the joint probability distribution of the elements in the vector W. The fact that the elements in the vector U
are uncorrelated does not necessarily imply that the elements are independent, except in the case where X and U are
normally distributed. When the random vector X is jointly normal, thcen the elements in U are jointly normal and
uncorrelated (i.e., independent). Experience indicates that even when thne joint probability distribution of the random
process X is non-Gaussian, the marginal probability distributions otif the elements in U will often be cIose to
Gaussian.

In practice we will often assume that the elements of U are independent, and seek to satisfy ourseIves that this
assumption is justified. Further, we will also often assume that the elemaents of U have a standard normal distribution

(i-e., Gaussian with zero mean and unit v~iance). Some comments on~parameter estimation and practical statistical
issues follow.

Assume that a collection of realizations of the random process X hhas been measured and the elements of the

measured ensemble are denoted x .~,j = 1,...,~ . (Each measured realization of X is stored in a column vector.)

Combine the measured realizations in a matrix as follows:

x = [xl, xZ,..., x&l 1
The estimator for the autocomelation matrix is:

1ix-x =—xxT
M

Use the estimated autocorrelation matrix as in Eqs. (1) and (2) to cobtain the parameters of

expansion, fi and ~ . Use these parameters and the form of Eq. (5) tco transform the measured
random process X into realizations of the random vector ~

*=$–1/2~TX

(6)

(7)

the estimated KL

realizations of the

(8)

There are M columns in the matrix u, U .~,j=l,..., M , each ones an m-vector corresponding to a realization

x ~, ~ = 1,..., k! . The collection of i(th) elements in all the vectors Ul j, ~ = 1,..., ikf , are realizations of the i(th)

mndom variable in the vector U, i.e., Ui. When M is sufficiently largse, these quantities can be used to estimate the

probability distribution of the random variable Ui . When M is srimall (say, less than ten) the only practical

alternative is to is to assume a distribution for the elements of U. Typically, we would assume that the elements in U
are jointly Gaussian. Alternatives will be developed in later pape:rs, however, for the present we adopt this
simplifying assumption.

GENERATION OF RANDOM PROCESSSREALIZATIONS

The model developed here can be used to generate accurate realizationss-of the random process X. To accomplish this
we refer to Eqs. (4) and (8). Equation (8) can be inverted to establish a rzealization-based version of Eq. (4). It is:



.

x, =iw%r (9)

This expression indicates that if we generate a realization U ~ of the random vector U and use it as shown, we obtain

a realization x ~ of the random process X. Given the assumptions made above, it is easy to generate a realization of

U. We simply generate a sequence of m standard normal random variates (using a standard procedure or a software

package), and use them to populate Ur.

We anticipate that when the elements of Ur are large, then the realization Xr will tend to be severe, in the sense

A112
that its peak values will be large. This is not a simple issue because (1) the elements of w diminish down the

diagonal, and (2) the values of Ur can be both positive and negative, therefore, the relative values of the elements

of u ~ affect the phasing of components in ~ and this affects the actual peaks realized in x ~. In view of these

things, the leading values of the random variates in Ur are most important in establishing the severity of Xr, and

when all the values in Ur tend to be small, Xr tends to be less severe.

Because we have assumed the elements of U to be jointly standard normal, the square of the cartesian length of U
(i.e., the square root of the sum of the squares of the elements in U) is a chi squared distributed random variable with
m degrees of freedom. (See Mood, Graybill and Bees, 1974.) Denote this length [uI. It is possible to specify the

length of Ur such that it has a precise probability of not being surpassed. We express this mathematically as:

()P(JLq+4+ Fx; IU,12 = l–a (lo)

‘here Fx;() is the cumulative distribution function of a chi squared distributed random variable with m degrees

2
of freedom, and 1-a is the probability that the length u ~ is not surpassed by IUI.The quantity U ~ is the (l-

ct)x10070 percentage point of a chi squared distribution with m degrees of freedom. For example, when m=5 and

Q=O.01, the ninety-nine percent percentage point of the chi squared distribution with five degrees of freedom is

15.0863, and there is probability of 0.99 that when a vector Ur is formed by choosing its five components as

uncorrelated standard normal variates, its length is less than _= 3.8841.

This has a special meaning with regard to the formation of realizations X ~ of the random process X. When we

choose realizations u ~ of the random vector U to be random, yet to have a particular length u ~ , we are in essence

choosing the realizations at random from the surface of a hypersphere in a space of dimension m. When m=2 the
hypersphere is a circle. When m=3 the hypersphere is a sphere in three dimensional space, etc. This hypersphere is

(I1)

2
the boundary of a region within which a fraction equal to F z Ur

X.
of the realizations of U lie. Realizations

(w2
Xr formed with such vectors Ur are ~ z Ur x10070 conservative in a probabilistic sense. The realizations

X.

all have different severities that depend on the definition of severity. For example, we might take the absolute

maximum acceleration of x ~ as our definition of shock severity, or we mighttakethe shock withthe highest SRS
in some preestablished frequency range as the most severe. The definition of severity is application dependent.
When shock severity has been defined, we can generate many shocks and calculate their severities. Normally, we
accept the one with the greatest severity as the representative of the shock source.



The steps to forming a vector Ur with cartesian length L are: (l) Generate a vector z of uncorrelated standard

normal random variates. (2) Multiply each element in z by the ratio L$zl, where ~1 is the cartesian length of Z.(3) Set

u ~ equal to the resulting vector.

INTERVAL ANALYSIS OF PARAMETERS OF THE KL EXPANSION

It now remains to establish confidence intervals for the parameters of the KL expansion. Because the columns of the

-1/2
matrix $ serve as shape functions of the random process X, and the diagonal elements of w serve as their

corresponding amplitudes, the interval analysis that relates to amplitude conservatism of the random process must

~1/2 .112
treat the elements of w . Because the elements of w do not follow a standard probability distribution, we

perform a confidence analysis of these elements using the bootstrap.

The bootstrap (Efron and Tibshirani, 1993, Paez and Hunter, 1998, Hunter and Paez, 1998) is a technique for
statistical analysis of measured data. The data may be non-Gaussian (and not Gaussian-related). The data may be
limited in quantity (as is often the case with shock data where data are expensive to obtain or naturally limited in
quantity). The statistical measure of interest may be one of the classical measures of random data behavior or
something more complicated (as in the following application).

The fundamental idea behind the bootstrap is that data measured from a random source are treated, for purposes of
statistical estimation, as though they completely describe the random source. For example, when the data

-xj, ~ = 1,..., n , are measured from a scalar random source we maybe interested in estimating some parameter Oof

the probability distribution from which the data emanate. We might use a formula 6 = g(x) (where

x = {X1,X2,..., Xn }, and the formula is obtained, for example, through maximum likelihood estimation) to

establish an estimator of the parameter 6. Normally, we are interested in assessing the quality of the estimator @, by

approximating its bias, standard error, or we may wish to use it to estimate confidence intervals on t?.When the data

Xj, ~ = 1,..., ?2., come from a Gaussian source, and when the parameter is compatible with classical analysis, this

assessment can be done using the classical theory of statistics. In other situations, the bootstrap is most useful.

~ In the current application we seek to extend the use of the bootstrap to the assessment of statistics of the KL
expansion. We do so in the following way. As above, assume that a collection of realizations of the random process

X has been measured and the elements of the measured ensemble are denoted x j, ~ = 1,..., M . Create a bootstrap

sample of the random process realizations by selecting M integer-valued random numbers from the interval [1J41.

Denote these numbers ji, i = 1,...,M , and use them as indices, (The sequence of numbers ji ,i = 1,...,M , may

contain duplicates of one or more digits in [1~, and some of the values in [ 1J4’J may not be present.) Create a
bootstrap sample based on these indices.

{X; = Xj, ,Xj2 ,...,
‘jM 1 (11)

Now use the bootstrap sample X; as in Eqs. (7), (2) and (3) to obtain bootstrap replicates of the autocorrelation

()A (T1**
matrix estimate, R xx ~ = ~ x~ x~ *and the IU parameters, ~ ~ and ~~ . Repeat this procedure B times to

generate an ensemble of bootstrap replicates of the ICI- parameters, fi ~ and fi~ , b= 1,... ,B. These parameters form

the basis for the approximate statistical analysis of the shock random process.



.

In this investigation we choose to statistically gage the severity of the shock model using the magnitudes of the

()diagonal elements in w
1/2 *

b, b = 1,...,B. (Recall that these elements are all positive valued.) When these

quantities are large, Eq. (9) indicates that shock magnitudes will be great. Further, because the diagonal elements in

every fi ~ are organized in descending order, the first few values are most important in establishing the severity of

the shock model. In view of this, we create a parameter

6; .’g(w;q b = 1,..., B

k=l

(12)

/

()1/2 *
to use as a metric of the severity of the shock model. The expression Wk ~ is the (k)th diagonal element in the

()matrix wl/2 ~.

In order to use this information to obtain a (1-cz)xIOO percent conservative shock model, we plot the order statistic,
defined,

Fb =
b–O.5

b = 1,..., B
B

(13)

as a function of the values of ~~ ,b = 1,...,B. This yields an empirical cumulative distribution function of 8, the

parameter estimated by the d; . We identify the value of b for which Fb = 1– Cf, and denote this P. Then the (l-

c2)x100 percent conservative shock model is the one whose KL parameters are ~ ~ and i ~. (Some slightly and

much more complicated, and accurate, approaches can be taken to the identification of parameters. See Efron and
Tibshirani, 1993.) When we use these parameters in Eq. (9) to generate a shock realization, that realization can be

characterized as one that is (1 -c$x1OO percent conservative, in the sense described here.

NUMERICAL EXAMPLE

Consider a shock source that generates non-Gaussian random process realizations like the one shown in Figure 1.
Assume that M= 10 realizations have been measured from that source. Use the approach described in the previous
section to identify the parameters of a 90 percent conservative shock model with B= 1000 bootstrap samples. Use
this model to generate shocks with a 95 percent probability of not being exceeded. Take the worst of the shocks as a
test shock. The result is the shock shown in Figure 2. Its greatest absolute peak value is 350g compared to a peak
absolute value of the most severe underlying shock of 250g. This is a factor of 1.4. Its SRS compares to the SRS of
the shock shown in Figure 1 as shown in Fkgure 3.

CONCLUSIONS

A direct technique for the probabilistic and statistical specification of shock tests based on measured shock data has
been developed. The technique is based on the Karhunen-Loeve expansion. It has two important features. First, it
permits the selection of parameters in the KL expansion to satisfy a confidence criterion. That is, it permits us to

specify a level of confidence that the shock model chosen is ( l-ct)x 100 percent more conservative than other models
that might have been chosen. Second, it permits the generation of test shocks that have a specified probability of
being exceeded. This means that there is some controllable level of probability that a shock more severe than the



generated shock will occur. This combination of probabilistic plus statistical analyses yields what is commonly

known as tolerance limit on shock test specification.
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Figure 1. Shock measured from a nonstationary random process source.
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Figure 2. Test shock representing the ensemble of measured shocks at 90% confidence level and 95% probability of
non-exceedance.
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Though the technique established here introduces some new and useful capabilities, it involves some assumptions

that require heed and further consideration. Most important, we have assumed that the random vector U, implicitly
defined in Eq. (4) is composed of jointly standard normal, uncorrelated random variables. This will generally not be
exactly true, in practice. Methods exist to transform arbitrarily distributed and dependent random vectors into the
jointly standard normal, uncorrelated space, and they should be applied to this problem.
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Figure 3. SRS of a typical shock in the measured ensemble (solid) and the test shock (dashed). SRS damping factor
= 0.05.

ACKNOWLEDGMENT

This work was supported by the United States Department of Energy. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy. Los Alamos
Laboratory is operated by the University of California.

REFERENCES

Biot, M., (1943), Transactions ASCE, No. 108, p. 365.
Efron, B., Tibshirani, R., (1993), An Introdllcfiott to the Bootstrap, Volume 57 of Applied Monographs on Statistics

and Applied Probability, Chapman and Hall, (1993).
Ghanem, R., Spanos, P., (1991), Stochastic Finite elemenrs: A Spectral Approach, Springer-Verlag, New York.
Hunter, N., Paez, T., (1998), “Applications of the Bootstrap to Mechanical System Anal ysis,” Erperimentaf

TechniqLtes, V. 22, No. 4, pp. 34-37.
Masri, S., Smyth, A., Traina, M., (1998) “Probabilistic Representation and Transmission of Nonstationary Processes

in Multi-Degree-of-Freedom Systems,” Jowmd of Applied Mechanics, ASME, VOI, 65, June, pp. 398-409.
Mood, Gray bill, Bees, (1974), lntrodlfction to the Theory of Statistics,
Paez, T., Hunter, N., (1998), “Fundamental Concepts of the Bootstrap for Statistical Analysis of Mechanical

Systems;’ E.KperitnentalTechniqlies, V. 22, No. 3, pp. 35-38.


