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Abstract

We investigate a well-motivated mesh untan-
gling objective function whose optimization
automatically produces non-inverted elements
when possible. Examples show the proceedure
is highly effective on simplicial meshes and on
non-simplicial (e.g., hexahedral) meshes con-
structed via mapping or sweeping algorithms.
The current whisker-weaving (WW) algorithm
in CUBIT usually produces hexahedral meshes
that are unsuitable for analyses due to inverted
elements. The majority of these meshes can-
not be untangled using the new objective func-
tion. The most likely source of the difficulty is
poor mesh topology.

Keywords: mesh untangling, mesh optimiza-
tion, hexahedral meshing, whisker weaving

1. Introduction

*This work was funded by the Department of En-
ergy’s Mathematics, Information and Computational
Sciences Program (SC-31) and by the LDRD program,
Subcase 350430000, and was performed at Sandia Na-
tional Laboratories. Sandia is a multiprogram labo-
ratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department
of Energy under Contract DE-ACO04-94AL85000.

Automatic meshing of complex geometries
into unstructured hexahedral elements re-
maing an active area of research. Many al-
gorithms such as sweeping [11], whisker weav-
ing [3], H-Morph [15], and hex-tet plastering
[13] have been devised to create hex-dominant
meshes.  Unfortunately, none of these al-
gorithms guarantees that the resulting mesh
will not contain inverted elements that render
the mesh unsuitable for computer simulations.
When meshes with inverted elements are cre-
ated some type of user intervention such as
geometry decomposition, changing of element
sizes, interval counts, or meshing schemes is
necessary.

A direct but not always reliable way to
fix meshes with inverted elements is to apply
smoothing or optimization algorithms. Ide-
ally, such methods would possess a guarantee
that the final mesh is non-inverted, even if the
initial mesh is inverted. For two-dimensional
structured meshes one has such a guaran-
tee using a smoother based on solving the
Winslow partial differential equations. Unfor-
tunately, for unstructured hexahedral meshes
such a guarantee is presently lacking. A
promising approach for achieving a guaran-
tee is mesh optimization of objective functions
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containing barriers [9]. Barrier methods gen-
erally require that the initial mesh to be opti-
mized is non-inverted. Thus, what is needed
to achieve full automation is an optimization
technique which untangles unstructured hex-
ahedral meshes. Automatic smoothing would
thus consist of two stages: untangling to re-
move inverted elements followed by optimiza-
tion of a barrier objective function to improve
element shape [4].

Untangling algorithms can also be used to
determine if an untangled mesh exists for a
given mesh connectivity. There is no known
a priori test to determine if a given mesh
can be untangled. A computer 'proof-by-
construction’ that an untangled mesh exists is
offered by mesh untangling optimizers. If an
untangled mesh exists for a given mesh con-
nectivity, it is usually non-unique.

The term ’tangled’ mesh refers to meshes
which contain inverted elements (equivalent
terms are ’invalid’ or ’folded’ meshes). A
mesh which contains no inverted elements is
called 'untangled’, *valid’, or 'unfolded’. Usu-
ally, tangled meshes cannot be used for phys-
ical analyses because unphysical results will
be produced. Tangled meshes rarely occur
when simplicial elements are used but are not
uncommon when non-simplicial elements are
employed in either structured or unstructured
meshes.

The definition of an inverted simplicial el-
ement is straightforward; it is any element
whose volume (with respect to the given node
numbering scheme) is non-positive. Defini-
tions for non-simplicial elements are consid-
ered in section 3.

A mesh untangling objective function for
simplicial meshes was indirectly suggested in
reference [2] but was not developed within the
framework of mesh optimization. The objec-
tive function proposed in this paper uses a sim-
ilar idea, namely, that the total volume of the
ball of elements associated with a mesh node is

independent of the position of the node. How-
ever, our method applies to both simplicial
and non-simplicial meshes and is posed within
the framework of mesh optimization.

Recently, another mesh untangling objec-
tive function was devised at Sandia National
Laboratories during the 1998 summer collabo-
ration between the present author and L. Fre-
itag. The approach has been developed for
simplicial meshes by Freitag and Plassman [5].
The objective function maximizes the mini-
mum volume of all elements containing the
node to be moved. A series of optimization
problems is performed for each interior node
of the mesh until node-movement is less than
some tolerance. This approach is generally re-
ferred to as a local optimization problem be-
cause the objective function depends on only
one node at a time. The ’local’ objective func-
tion has the nice feature of having convex level
sets [5], thus a unique maximum is assured [1].
Unfortunately, there is no guarantee that loop-
ing over all the interior nodes in a sequence
of local optimizations converges or, if it does,
that the final mesh is non-inverted.

In contrast, the method proposed in this pa-
per optimizes a single ’global’ objective func-
tion that depends on all of the interior nodes
simultaneously. All of the nodes are moved
at once for each iteration of the optimization
proceedure. A single objective function is op-
timized, thus the value of the objective func-
tion can be used to monitor progress during
the optimization proceedure. Although we use
a global objective function (i.e., one that de-
pends on all of the mesh nodes), we do not
attempt to find a global minimum but rather
to locate a stationary point.

The present algorithm performs mesh un-
tangling by optimization of an objective func-
tion via a node movement procedure involving
the interior nodes of the mesh. Mesh topology
is fixed. A parameter in the objective function
can be used to bound the worst elements of the




mesh away from the set of inverted elements.
Elements far from the set of inverted elements
are left untouched. The objective function is
constructed so that its value is non-negative;
when the parameter is positive the objective
function equals zero if and only if the mesh is
untangled.

We show that, for a single free node, the
proposed objective function is convex. This
property ensures that every minimum is a
global minimum. Optimization of the single-
node objective function always results in an
untangled mesh provided such a mesh exists
for the given mesh topology. This theoreti-
cal property has been checked computationally
using both tetrahedral and hexahedral meshes
with inverted elements.

2. Tetrahedral Mesh Untangling
Although our main goal is to untangle hexahe-
dral meshes, it is worthwhile to begin with the
simpler case of tetrahedral mesh untangling.!
Let T, be the m-th tetrahedral element of the
mesh (m = 1,2,..., M), with corresponding
volume oy, /6. It is well-known that the vol-
ume is related to the determinant of a 3 x 3
matrix [6] and can also be written as a triple
product:

o = (2 —2) - (5 — D) x @3 — =)
where xﬁ,’i) is the vector coordinate of the k-th
node of the m-th tetrahedral element. Since
an\;[=1 Qi /6 is the total volume V of the mesh,
it must be independent of the positions of the
interior nodes of the mesh.?2 It is assumed

that the total volume of the mesh is positive,
V>0

1The approach to be presented applies equally well
to triangles in two-dimensions.

2The volume of the geometric object to be meshed
is not necessarily the same as the total volume V of
the mesh elements due to surface curvature.

Recall that a tetrahedral mesh is untangled
if ayyy, > O for all m. This suggests the following
global objective function for mesh untangling

1 M
Jo= §Z{lam | —0m} -
m=1

fo is non-negative and is one-half the £; norm
of the vector of {a,}’s minus 3 times the vol-
ume of the mesh. fy is a function of the coor-
dinates of the interior mesh nodes (boundary
node positions are assumed to be fixed). The
domain of the objective function consists of
points in R, where p is the number of interior
nodes in the mesh. fy = 0 for any untangled
mesh because then «,, > 0 for all m. Thus
any untangled mesh forms a global minimum
of fo. fo > 0 for any tangled mesh. This can
be seen by re-writing the objective function as

fOZ_ZanZO

neNp

where Ay = {n | a, < 0}, i.e., sum includes
only elements with negative volume.

A defficiency of this objective function is
that if its value is zero, it can still contain an
inverted element (with zero volume).?> We can
address this defficiency in the following man-
ner. Let 0 < 3 be a user parameter and modify
the untangle objective function to read

1 _ _
fs = 5 Y Alam —68V | —(am — 667)}
- Z (an - 63‘7)

‘nENﬁ

where V3 = {n | a, < 66V} and V =
V/M (V is thus the average element volume).
The objective function is then globally mini-
mized when the Jacobian determinants are all
greater than or equal to 63V. For 8 > 0,
fs = 0if and only if the mesh is untangled.

3In this case Ny is empty.




Define the feasible set F3 to be the set of
points in R3? at which o, > 66V for all m.
Then Fy is the set of points for which the mesh
is untangled. F3 is a subset of F¢. The feasible
region is an open set and its closure Fj is the
set of points which make the objective function
Zero.

Let us use the notation f () to denote that
the objective function depends on p free inte-
rior nodes. The "local’ objective function with

one free node is then f[(,l).

Figure 1 shows level sets of fél) for a trian-
gular mesh with one free node and five bound-
ary points. Note how the objective function is
flat and equals zero in the feasible region; the
minimum is non-unique. Figure 2 shows levels
sets of f [(31) for the same boundary points, with
B = 0.2. Note how the set on which the ob-
jective function is zero has contracted. Figure
3 shows level sets of fél) for boundary points
which do not permit an untangled mesh to ex-
ist. In this case the feasible region is empty;
the value of the objective function inside the
smallest contour is a constant (approximately
1). The level sets in Figures 1, 2, and 3 are
convex, even though the feasible region may
be empty.

Lemma 1

Let a(z) = (1 — z) - [(z2 — z) % (z5 — z)] be
six times the volume of a tetrahedral element.
Then for any scalar A and any points z = z,,
T = Tp,

aldze + (1 = N)zp) = Aafz,] + (1 — N)afzs)

ie., a is a linear function in x.

Proof

Expand the triple product to find that a(z) =
¢+ z - v for some constant ¢ and some constant
vector v. §

Proposition 1
The objective function f[(gl) is convex and thus
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Figure 1: Level Sets of fél) for Triangle Mesh
- NonEmpty Feasible Region

every minimum is a global minimum.

Proof

Let 0 < A < 1. Using the triangle inequality
and Lemma 1, one can show

FP e + (1 = Na)
<A [ma] + (1= N F50 o]

§

For the m-th tetrahedral element, there ex-
ists a constant ¢,, and a vector v,, such that
Oy = Cp + T - Uy, This leads to

Lemma 2 For f(l),

M
Z Vm =0
m=1

Proof
Since V=M o, =YM c.+z v,
M U =8V/8z=0.§

Consider the gradient, V f};l), of the objec-

tive function fél). The gradient exists for any
node configuration for which o, # 68V for




Figure 2: Level Sets of fél) for Triangle Mesh
- NonEmpty Feasible Region, 8 = 0.2

all m. The gradient does not exist for any
node configuration for which there exists m
such that a,, = 68V. We call node configura-
tions of the latter type degenerate. Thus the
gradient exists for any tetrahedral mesh with
a non-degenerate node configuration. Station-
ary points are points at which the gradient
exists and Vf[gl) = 0. Because fél) > 0is
convex, any stationary point must be a global
minimum. It is easy to show that for non-
degenerate configurations

Vi) == 3 v

nENp

If Mg is empty for some non-degenerate node
configuration, then that node configuration
forms a stationary point. Hence, every point
in the feasible region is a stationary point.
However, every stationary point need not lie
in the feasible region because Zne N Un Can
be zero if the vectors are not linearly indepen-

dent. This situation occurs when the feasible.

region is empty. Figure 4 provides an exam-
ple; the feasible region is empty because 3 is
large. Stationary points exist inside the small-
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Figure 3: Level Sets of fél) for Triangle Mesh
- Empty Feasible Region

est contour but the value of the objective func-
tion there is approximately 5. Note that the
stationary points in this example result in an
untangled mesh.

Now consider meshes with more than one
free node. If there is more than one free node,
the global triangle objective function is ev-
idently non-convex. Figure 5 shows a slice
through the objective function fég) of a trian-
gle mesh having three free nodes. Two curves
are shown giving values of fé?’) [(1=A)xg+ Azs)
and (1 - A) fég) [Za] + A Fxp] vs. A where 24
and x;, are two configurations of the free nodes.
The first curve should lie below the straight
line given by the second curve if the objec-
tive function were convex. It is near-certain
that the global tetrahedral objective function
is also non-conex since there is no fundamental
difference between the triangular and tetrahe-
dral objective functions.

To minimize the objective function we im-
plemented a Polack-Ribiere conjugate gradient
algorithm and line search based on the discus-
sion in [14]. The algorithm was tailored to
the mesh generation setting (optimization of
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Figure 4: Level Sets of fél) for Triangle Mesh
- Empty Feasible Region, 3 =1

3p unknowns) and to the data structures of
CUBIT. We compute the gradient of the ob-
jective function numerically. Technically, since
the untangling objective function is continu-
ous but non-differentible at certain locations
in the nodal coordinate domain, the gradient
does not exist everywhere. Our line search
proceedure ensures that the optimization halts
if the minimum occurs at a non-differentiable
point. If a non-differentiable point is encoun-
tered elsewhere this delays but does not pre-
vent convergence to the minimum.

The untangling algorithm presented in this
section was tried successfully on tetrahedral
meshes like those given in Figure 6 and in Fig-
ure 3 of [4]. Since the meshes were untan-
gled to begin with, we invoked CUBIT’s 'ran-
domize’ algorithm which perturbs node loca-
tions randomly to create non-smooth, possi-
bly inverted meshes for testing of smoothing
and optimization schemes such as untangling.
The optimal meshes resulting from the untan-
gling algorithm were non-inverted regardless
of the starting point. This is unexpected in
light of the fact that the objective function is

Figure 5: Slice through fé‘?’) vs. A for Triangle
Mesh Showing Non-convezity

non-convex, yet one must keep in mind that
lack of convexity does not necessarily preclude
the possibility that all minimae are global min-
imae. Further work is needed to resolve this
question. From a practical standpoint, the un-
tangler works often enough to make it a useful
tool.

N ‘m&‘w Y
A».axm‘m% 3

Figuré 6: Tetrahedral Mesh on Hook Geometry

3. Hexahedral Mesh Untangling




For non-simplicial elements, the definition of
an inverted element is less straightforward.
For an arbitary quadrilateral or hexahedral
element one generally makes use in finite el-
ements of a mapping from a uniform master
element to the given physical element. The
determinant of the Jacobian of the mapping
measures the local volume at any point of the
element. Several definitions are possible: an
element could be considered inverted if (a) the
integral of the local volume over the element
is non-positive, (b} it has a non-positive lo-
cal volume at any of its Gaussian integration
points, (c) it has a non-positive local volume at
any of its corners, or (d) it has a non-positive
local volume at some other point or points in-
side the element. Because we desire to use un-
tangling as a pre-processor to optimization of
a barrier-based shape metric, the definition of
inverted must also permit good element shape.
Thus, for example, if one adopts {b) as the
definition of an inverted element, then untan-
gling will produce elements with positive vol-
ume at the gauss points, but not necessarily at
the element corners. The barrier-based shape
objective function would then only guarantee
that the shape-optimized mesh is non-inverted
at the element gauss points. In our experi-
ence, positive volume at the element corners
is a necessary, but not at all sufficient condi-
tion for achieving well-shaped hexahedral el-
ements. We thus we adopt (c¢) as the defi-
nition of an inverted non-simplicial element.
We note in passing that quadrilateral elements
that are non-inverted according to definition
(c) are non-inverted according to definitions
(a) and (b). Hexahedral elements that are

non-inverted according to definition (¢) almost
always are non-inverted according to definition
(b). In rare cases a hexahedral element may
be non-inverted according to (c), but inverted
according to (b) (see [12]).

Given definition (¢) for an inverted non-
simplicial element we define for each hexahe-

dral element H,,, eight volumes oy, k =
1,2,...,8, which correspond to the triple prod-
ucts derived from three edge vectors emanat-
ing from the k-th node of the m-th hex.* Then
our untangling objective function is

8

1 < _ _
fo=35 > D {lowm =BV | ~(axm — V)}

m=1k=1

At the global minimum the mesh satisfies
Op,m = BV > 0. The comments in the previ-
ous section analyzing the tetrahedral objective
function apply also to the hexahedral objective
function.

Level sets for the objective function with a
single free node attached to quadrilateral el-
ements are shown in Figures 7 and 8. Much
the same behavior is observed: there is still a
flat region containing the minimizing points. If
the mesh cannot be untangled, the objective
function is non-zero in the flat region. The
open circles in figures 3 and 4 denote bound-
ary nodes that are adjacent to the free nodé
while crosses denote boundary nodes that are
opposite to the free node. Thus it is evident
in Figure 8 that an untangled mesh cannot be
created due to the boundary point configura-
tion. The level sets are convex. The proof of
this fact goes much like the tetrahedral case:
the only difference is that in the quadrilateral
case the free node is attached to 3 ’triangles’
per element instead of just one (and four in
the hexahedral case). Though no example was
sought, it is believed that the objective func-
tion with p > 1 free nodes is non-convex.

Results with this objective function for
quadrilateral meshes was investigated in [7]
and in [10]. We turn here to the untangling of
3D hexahedral meshes. The untangler readily
untangled CUBIT mapped, submapped, and

4For quadrilateral elements, EZ=1 Zz=1 Ok =
4V, while for hexahedral elements there is no simple
relationship unless all the elements are parallelopipeds.
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Figure 7: Level Sets of fél) for Quadrilateral
Mesh - Non-Empty Feasible Region

swept meshes where it was clear that an untan-
gled mesh existed. Figures 9 and 10 illustrate
the success of the untangler on a hexahedral
mesh; the mesh was successfully untangled us-
ing a variety of initially tangled meshes. On
other geometries, a few badly tangled swept
meshes were not successfully untangled, but it
was not known if an untangled mesh existed in
these cases. The method was also tried with
success on the CUBIT HexTet algorithm with
Geode transistion elements [13].

A major disappointment was the inabil-
ity of the untangler to eliminate inverted
elements in many CUBIT Whisker-Weaved
meshes. Weaving generates connectivity for
all-hexahedral meshes given arbitrary quadri-
lateral surface meshes, but often fails to gen-
erate a mesh with positive Jacobians at the
element corners [3]. Although the untangler
often improved the minimum scaled-Jacobians
of weaved meshes from -0.90 to -0.010, there
were cases where little improvement could be
made. For example, the minimimum scaled ja-
cobian for a whisker-weaved mesh of the "hook’
geometry of Figure 6 was -0.93; the untan-
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Figure 8: Level Sets of fél) for Quadrilateral
Mesh - Empty Feasible Region

gler could only improve this to -0.8. A va-
riety of initial meshes was created from the
whisker-weaved mesh of the hook by random-
izing the node locations. None of these initial
starting points permitted the untangler to suc-
ceed. We also tried various schemes involving
the choice of the parameter f; for example,
an increasing sequence of values of 3 starting
from -1.0 and a decreasing sequence of values
starting from +1.0. Visual inspection of some
of the whisker-weaved meshes gave the impres-
sion that an untangled mesh did not exist. Be-
cause of the success of the untangler in untan-
gling meshes generated by methods other than
weaving, and the fact that untangle consis-
tently fails on a wide variety of weaved meshes,
we conclude that the difficulty lies with the
mesh connectivities generated by the current
CUBIT weaving algorithm. Since there is no
& priori test for whether or not a mesh can be
untangled, there is at present no way to con-
clusively settle the question of existence of an
untangled mesh for the weave examples tried.

In conclusion, we have shown that a




Figure 9: Hexahedral Mesh on Half-Torus Ge-
ometry - Before Untangle

global, well-motivated mesh untangling objec-
tive function exists that can be used to au-
tomatically untangle 3D meshes. The objec-
tive function is convex for a single free node,
but non-convex in general. In spite of this, we
are able to untangle a wide variety of tetrahe-
dral and hexahedral meshes, except those cre-
ated by the whisker-weaving algorithm. The
untangler has been used effectively on Swept
meshes as a pre-processor to mesh smoothing
via shape optimization.
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