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Abstract

We show that the combination of pulse-front slant, k-vector tilt, and crystal birefrin-

gence often permits exact matching of both phase and group velocities in three wave -

mixing in birefringent crystals. This makes possible more efficient mixing of short

light pulses, and it permits efﬁcient mixing of chirped or broad bandwidth light. We

analyze this process and present examples.
Differences in the group velocities of the three interacting waves in a nonlinear crystal
often limits the effective interaction length. For example, in mixing very short pulses,
temporal walk off can stretch the pulses in time unless the crystal is very short. Efficient
mixing with such short crystals requires high irradiances, but the irradiances are limited by
higher order nonlinear effects such as intensity—dependent refractive index and two-photon
absorption. Improved matching of the group velocities can alleviate this problem, allowing
longer crystal and lower irradiances. Similarly, for high energy pulses, practical limits on
crystal apertures mandate temporally stretching the pulses to reduce irradiances. For the
resulting chirped pulses, temporal walk off restricts the chirp range unless the group velocities
are well matched?. In addition to perfectly matching the group velocities of all three waves,
it is sometimes useful to match two velocities, such as the signal and idler in parametric
amplification, permitting broadband parametric amplification?5, or to arrange the velocities

of two inputs to bracket the generated sum frequency pulse, giving pulse compression under
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suitable circumstances®.

The two paramters that can be manipulated for group velocity adjustment of three
fixed frequency pulses are the noncollinear phase matching angle and the pulse—fronf slant.
Figure 1 shows an example. The pump propagation vector, &, is tilted by 6 relative to the
crystal’s optic axis. This angle is dictated by phase matching for a signal tilt of ¢ relative
to the pump. The corresponding idler angle, v, must close the triangle of propagation
vectors. The pulses are assumed to have parallel envelopes indicated by the heavy line
slanted by ¢ relative to a normal to the pump propagation vector. Independent adjustment
of 4 and ¢, while maintaining phase matching, allows flexible adjustment of the three group
velocities. Because evaluation of simultaneous phase and group velocity matching can be
tedious, we offer a computer program that computes noncollinear phase matching angles and
the corresponding group velocities, using as inputs the nonlinear crystal, the polarization
directions, the slant angle ¢, and the wavelengths’.

In previous work 5-10 fs pulses between 500 and 700 nm were created by parametric
amplification of chirped signal light using a 150 fs, ~390 nm, unchirped pump pulse®*. The
signal and idler group velocities were matched using noncollinear propagation with both
pulse-fronts perpendicular to the signal k-vector. The pump group velocity differed from
the signal and idler. They used type I mixing in a 1 mm thick, ~32° cut, BBO crystal with a
signal-to-pump angle of 3.7°. The amplified signal light was compressed after amplification
to 5-10 fs. Riedle et al.? give an approximate general expression for the signal-to-pump angle
required to group velocity match the signal and idler for type I mixing. Danielius et al.®
pointed out that the combination of pulse-front slant and birefringent walk off can be used
to adjust the group velocity of an extraordinary polarized wave in a birefringent crystal.
They used this to set the group velocity of the pvump midway between the signal and idler
group velocities for collinear phase matching of type I mixing in BBO. For equal signal and
idler wavelengths this gives perfect group Velocity matching. What has not been exploited
is that the combination of pulse-front slant and noncollinear phase matching provides great

flexibility in adjusting the group velocities of the three waves. We examine the possibilities
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of this combination, with emphasis on exact group velocity matching of all thre
arbitrary choices of wavelength.

We use the diagram in Fig. 2 to illustrate the calculation of the group velocity for a
slanted pulse as méasured along the 2 direction which is not collinear with the propagation
vector that parallels v. Again the dark line represents the pulse front slanted at angle ¢
relative to a normal to 2. The vector v, parallel to the k-vector of the carrier wave of the
pulse, represents the usual group velocity for a pulse with pulse front perpendicular to k. The
birefringent walk off angle is p, so the pulse envelope propagates along v which represents
the ordinary group velocity along the Poynting vector. We find the group velocity along the

Z direction as follows:

o = v/ cos(p) 1
h = o'sin(5 — p) o | (2)
v, = v' cos(d — p) — htan(¢) (3)

vcos(é — p) — tan gsin(d — p)
CoS p ’

- (4)
Using the small angle approximation for p, this can be written

v, = v(cosd — tan ¢sind + p(sind + tan ¢ cosd)) | (5)

This is the velocity at which the pulse front sweeps along the Z axis.

Alternatively, we can derive v, analytically. The group velocity along the 2 axis is given

by
1 dk, d(k cos 6) _dk o .dé
;;__EJ_ T _@cosé—ksmddw. | ' (6)

A slanted pulse front implies angular dispersion of the frequencies comprising the pulse. In
the presence of birefringence, the refractive index is angle dependent so we must account for

both the frequency and angle variation of &k, so we rewrite the equation as
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;)—z = (a—w + 5‘5@') cosd — kSln(S%. (7)

do

Using the usual definitions of group velocity, v, and birefringent walk off, p, this can be

rewritten
1 1 dé .. do
o (;-!—kpg&)—) cosd—k51n5a. - (8)

To evaluate (dd/dw), we imagine creating a slanted pulse inside a birefringent crystal by
diffracting an unslanted pulse off an embedded diffraction grating as shown in Fig. 2. A
pulse with slant angle 1 relative to its k& vector will be created if the diffraction angle is 1.

Diffraction must obey
k(6,%)sing = kg (9)

where k, is the grating vector, 27/d, d being distance between grating lines. Differentiating

with respect to w gives

Y

ok dy Ok d
(ra* o dw

9% dw 8w> sint + kcosv

= 0. | (10)

Again using the -definitions of group velocity and walk off, we find

@ _ —1( sin >

= — 11
dw kv \psin 4+ cos (11)

This means that in Eq. (8) we can make the substitution

s —1( sin ¢ >7 (12)

dw kv \psing + cos ¢

yielding the same result as Eq. (5).
If we can find a set of angles (4,7, ) that make v. equal for all three pulses while

also achieving phase matching, the pulses will stay overlapped in time as they propagate,

although they will separate laterally due to birefringence and beam tilt. Obviously for large

diameter beams this eliminates the problems associated with temporal walk off such as

temporal broadening and reduced efficiency due to limited overlap distances. This should




make possible more efficient mixing if the pulses have sufficient energy to permit large
diameters. For the high pulse energies of. terawatt systems, it is often necessary to stretch
the pulses in time to keep beam diameters small enough to match available crystal sizes.
The resulting chirped pulses are mixed and then compressed. Group velocity matching is
ideal for this as it permits the mixing of pulses with arbitrary chirps. This can be seen by
considering the phase mismatch with detuning of each wave ffom its carrier frequency. The

phase mismatch along the Z-axis to first order in frequency shift is

dkz dk)z dk.
Ak, = — [ == s — 2
k ( )pAwp ( )SAw , ( )iAw (13)

but if the group velocities along the Z-axis are all equal, this reduces to

Ak, = }—(Awp — Aw; — Aw;) (14)

Uy

so the only requirement for maintaining phase matching is that the frequencies satisfy (w, =
ws + w;). Further, it is easy to show that if you choose a 2’ axis tilted relative to 2,
group velocity matching along Z implies group velocity matching along 2’. This means that
transverse as well as longitudinal phase matching is maintained if the frequencies satisfy(w, =
ws +w;). Dispersive elements such as prisms or gratings can be used to induce slanted pulse
fronts for short pulses’. Using the same dispersion for chirped pulses sweeps the propagation
angles in concert with the frequencies so phase matching is maintained throughout.

Pulse slant also contributes an anomalous group velocity dispersion® which combines
with the usual group velocity dispersion to give a second order contribution to the phase

mismatch of

1 /d2%k, 1 /d%k, 1/d%,
M = 5(G7) (B = (37 ) (0w = (55 ) by 1o

that limits the permissible pulse length or chirp. Starting with

2k, d /1 ~1dv,
duﬂ”@( )_v_gdw (16)

(4

and using Eq. 11 we find




dw? VU, kvv,

Pk, __GVD 1 ( tan ¢ )( p — tan(¢ + 8) ) an
1+ ptang/ \14 ptan(¢p+46)/’
‘where GVD is the ordinary group velocity dispersion along its propagation vector for an

unslanted pulse

dv
GVD = o (18)

To illustrate the flexibility of noncollinear phase matching combined with pulse-front
slant, we used the SNLO function GVM to search for examples of group velocity matching
for all three waves for the process (800 nm<+1400 nm + 1867 nm). In table I we show a few
of the dozen plus successes.

We conclude that noncollinear mixing with slanted pulses gives great flexibility in ad-
justing the group velocities of the three interacting waves, including the possibility of exact
group velocity for almost any set of wavelengths. This makes possible more efficient mixing |
of short or chirped pulses, with reduced inﬁueﬁce from higher order processes of nonlinear
refractive index and two-photon absorption. We developed general expressions for the ef-
fective group velocity and group velocity dispersion of slanted pulses in birefringent crystal
and implemented them in SNLO7 to eliminate the tedium of searching for experimental

conditions that give a desired set of group velocities.
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FIGURES

Fig. 1. Phase matching diagram for noncollinear mixing. The signal wave propagation vector k,
is tilted by angle ¢ with respect to the pump vector kp; the idler wave propagation vector is tilted

-in the opposite direction by 7 such that the vectors form a closed triangle in order to phase match.

The pump propagation vector makes an angle of # with the optic axis of the crystal. The envelope
of each pulse is slanted by ¢ relative to a line normal to the k, direction. For convenience we call

the direction of k, the 2 axis.

Fig. 2. Diagram for calculation of the group velocity of a slanted pulse along the 2-axis. The
propagation vector is tilted by 4 relative to the Z-axis and the usual group velocity along this
direction is v. The birefringent walk off angle is p and the slant angle relative to the normal to the

Z-axis is ¢.




TABLES

Table'1. Examples of group-velocity-matched mixing of 800 nm, 1400 nm, and 1867 nm.

)

crystal 0 ) ¥ polarizations slant
(principal plane) (1867,1400,800 nm)
BBO 35.2° 2.34° 1.80° oee -10.5°
BBO 28.95° -1.8° -1.32° eoe -7.1°
CLBO 45.7° 1.58° 1.2° oee -17.8°
KTP(YZ) - 74.5° 6..82° 5.30° | €00 11.77°
LiIOs 26.4° 7.2° 5.37° ooe -0.19°










