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Abstract

We show that the combination of pulse-front slant, k-vector tilt, and crystal birefrin-

gence often permits exact matching of both phase and group velocities in three wave

mixing in birefringent crystals. This makes possible more efficient mixing of short

light pulses, and it permits efficient mixing of chirped or broad bandwidth light. We

analyze this process and present examples.

Differences in the group velocities of the three interacting waves in a nonlinear crystal

often limits the effective interaction length. For example, in mixing very short pulses,

temporal walk off can stretch the pulses in time unless the crystal is very short. Efficient

mixing with such short crystals requires high irradiances, but the irradiances are limited by

higher order nonlinear effects such as intensity-dependent refractive index and two-photon

absorption. Improved matching of the group velocities can alleviate this problem, allowing

longer crystal and lower irradiances. Similarly, for high energy pulses, practical limits on

crystal apertures mandate temporally stretching the pulses to reduce irradiances. For the

resulting chirped pulses, temporal walk off restricts the chirp range unless the group velocities

are well matchedl. In addition to perfectly matching the group velocities of all three waves,

it is sometimes useful to match two velocities, such as the signal and idler in parametric

amplification, permitting broadband parametric amplification2-5, or to arrange the velocities

of two inputs to bracket the generated sum frequency pulse, giving pulse compression under
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suitable circumstances.

The two paramters that can be manipulated for group velocity adjustment of three

fixed frequency pulses are the noncollinear phase matching angle and the pulse-front slant.

Figure 1 shows an example. The pump propagation vector, kP, is tilted by 6 relative to the

crystal’s optic axis. This angle is dictated by phase matching for a signal tilt of J relative

to the pump. The corresponding idler angle, y, must close the triangle of propagation

vectors. The pulses are assumed to have parallel envelopes indicated by the heavy line

slanted by ~ relative to a normal to the pump propagation vector. Independent adjustment

of c1and ~, while maintaining phase matching, allows flexible adjustment of the three group

velocities. Because evaluation of simultaneous phase and group velocity matching can be

tedious, we offer a computer program that computes noncollinear phase matching angles and

the corresponding group velocities, using as inputs the nonlinear crystal, the polarization

directions, the slant angle #, and the wavelengths.

In previous work 5-10 fs pulses between 500 and 700 nm were created by parametric

amplification of chirped signal light using a 150 fs, =390 nm, unchirped pump pulse3’4. The

signal and idler group velocities were matched using noncollinear propagation with both

pulse-fronts perpendicular to the signal k-vector.

the signal and idler. They used type I mixing in a 1

signal-to-pump angle of 3.7°. The amplified signal

The pump group velocity differed from

m thick, =32° cut, BBO crystal with a

light was compressed after amplification

to 5-10 fs. Riedle et al.2 give an approximate general expression for the signal-to-pump angle

required to group velocity match the signal and idler for type I mixing. Danielius et al.8

pointed out that the combination of pulse-front slant and birefringent walk off can be used

to adjust the group velocity of an extraordinary polarized wave in a birefringent crystal.

They used this to set the group velocity of the pump midway between the signal and idler

group velocities for collinear phase matching of type I mixing in BBO. For equal signal and

idler wavelengths this gives perfect group velocity matching. What has not been exploited

is that the combination of pulse-front slant and noncollinear phase matching provides great

flexibility in adjusting the group velocities of the three waves. We examine the possibilities
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!7iswciof this combination, with emphasis on exact group velocity matching of all thre w e f

arbitrary choices of wavelength.

We use the diagram in Fig. 2 to illustrate the calculation of the group velocity for a

slanted pulse as measured along the 2 direction which is not collinear with the propagation

vector that parallels v. Again the dark line represents the pulse front slanted at angle q5

relative to a normal to 2. The vector v, parallel to the k-vector of the carrier wave of the

pulse, represents the usual group velocity for a pulse with pulse front perpendicular to k. The

birefringent walk off angle is p, so the pulse envelope propagates along v’ which represents

the ordinary group velocity along the Poynting vector. We find the group velocity along the

i? direction as follows:

v’ = v/ Cos(p)

h = v’ sin(6 – p)

v. = v’ cos(d – p) – h tan(~)

cos(d – p) – tan@ sin(b – p)
VZ=v

Cos p

Using the small angle approximation for p, this can be written

Vz = v(cosd – tanq5sinil + p(sin~ + tan~cos d))

(1)

(2)

(3)

(4)

(5)

This is the velocity at which the pulse front sweeps along the 2 axis.

Alternatively, we can derive VZ analytically. The group velocity along the ; axis is given

by

1 dkz d(kcosb) ~ COS6 _ ~sindcl&—= —_ ——,— (6)
v~ dw did dw

A slanted pulse front implies

the presence of birefringence,

dw ./

angular dispersion of the frequencies comprising the pulse. In

the refractive index is angle dependent so we must account for

both the frequency and angle variation of k, so we rewrite the equation as
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(7)

Using the usual definitions of group velocity, v, and birefringent walk off, p, this can be

rewritten

;= (:+k’aces’-ksinl% (8)

To evaluate (d6/du), we imagine creating a slanted pulse inside a birefringent crystal by

diffracting anunslanted pulse off anembedded diffraction grating asshown in Fig. 2. A

pulse with slant angle ~ relative to its k vector will be created if the diffraction angle is @.

Diffraction must obey

where kg is the grating vector, 2m/d, d being distance between grating lines. Differentiating

with respect to u gives

Again

d+

z=

using the definitions of group velocity and walk off, we find

–1

-(

sin @

)kv psin@+cos@ “

This means that in Eq. (8) we can make the substitution

db –1 ( sin ~

)G= G psin$+cos$ ‘

(lo)

(11)

(12)

yielding the same result as Eq. (5),

If we can find. a set of angles (6, y, ~) that make ~’, equal for all three pulses while

also achieving phase matching, the pulses will stay overlapped in time as they propagate,

although they will separate laterally due to birefringence and beam tilt. Obviously for large

diameter beams this eliminates the problems associated with temporal walk off such as

temporal broadening and reduced efficiency due to limited overlap distances. This should

4



make possible more efficient mixing if the pulses have sufficient energy to permit large

diameters. For the high pulse energies of terawatt systems, it is often necessary to stretch ,

the pulses in time to keep beam diameters small enough to match available crystal sizes.

The resulting chirped pulses are mixed and then compressed. Group velocity matching is

ideal for this as it permits the mixing of pulses with arbitrary chirps. This can be seen by

considering the phase mismatch with detuning of each wave from its carrier frequency. The

phase mismatch along the ;-axis to first order in frequency shift is

“Z=c%)>”(%)sAws-dkz()—A“i
dwi

but if the group velocities along the .l%xis are all equal, this reduces to

AIcZ = +(AwP – Aws – Awi)
z

(13)

(14)

so the only requirement for maintaining phase matching is that the frequencies satisfy (WP=

w. + Wi). Further, it is easy to show that if you choose a .2’ axis tilted relative to ,2,

group velocity matching along 2 implies group velocity matching along 2’. This means that

transverse as well as longitudinal phase matching is maintained if the frequencies satisfy(wp =

w. + Wi). Dispersive elements such as prisms or gratings can be used to induce slanted pulse

fronts for short pulses 9. Using the same dispersion for chirped pulses sweeps the propagation

angles in concert with the frequencies so phase matching is maintained throughout.

Pulse slant

with the usual

mismatch of

also contributes an anomalous group velocity dispersing which combines

group velocity dispersion to give a second order contribution to the phase

that limits the permissible pulse length or chirp. Starting with

d2kz d 1

()

– 1 dvz—= —.
&2 &vz ‘~~

and using Eq. 11 we find

(15)

(16)
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d2kz GVD 1

(

tan ~
+—

)(

p – tan(~ + J)—= .—
&2 Vvz kvvz 1 + p tan ~ )l+ptan(#+J) ‘

(17)

.

\

6

where GVD is the ordinary group velocity dispersion along its propagation vector for an

unslanted pulse

(18)

To illustrate the flexibility of noncollinear phase matching combined with pulse-front

slant, we used the SNLO function GVM to search for examples of group velocity matching

for all three waves for the process (800 nm~1400 nm + 1867 nm). In table I we show a few

of the dozen pIus successes.

We conclude that noncollinear mixing with slanted pulses gives great flexibility in ad-

justing the group velocities of the three interacting waves, including the possibility of exact

group velocity for almost any set of wavelengths. T,his makes possible more efficient mixing

of short or chirped pulses, with reduced influence from higher order processes of nonlinear

refractive index and two-photon absorption. We developed general expressions for the ef-

fective group velocity and group velocity dispersion of slanted pulses in birefringent crystal

and implemented them in SNL07 to eliminate the tedium of searching for experimental

conditions that give a desired set of group velocities.
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FIGURES

Fig. 1. Phase matching diagram for noncollinear mixing. The signal wave propagation vector k.

is tilted by angle 6 with respect to the pump vector kP; the idler wave propagation vector is tilted

in the opposite direction by ~ such that the vectors form a closed triangle in order to phase match.

The pump propagation vector makes an angle of 6’ with the optic axis of the crystal. The envelope

of each pulse is slanted by @ relative to a line normal to the kP direction. For convenience we call

the direction of liPthe ~ axis.

Fig, 2. Diagram for calculation of the group velocity of a slanted pulse along the .%axis. The

propagation vector is tilted by J relative to the %xis and the usual group velocity along this

direction is v. The birefringent walk off angle is p and the slant angle relative to the normal to the

2-axis is ~,

>
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TABLES

Table “1. Examples of group-velocity-matched mixing of 800 nm, 1400 nm, and 1867 nm.

crystal e 6 7 polarizations slant

(principal plane) (1867,1400,800 nm)

BBO 35.2° 2.34° 1.80° oee -10.5°

BBO 28.95° -1.8° -1.32° eoe -7.1°

CLBO 45.7° 1.58° 1.2° oee -17.8°

KTP(YZ) 74.5° 6.82° 5.30° eoo 11.77°

Li103 26.4° 7.2° 5.37° ooe -0.19°
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