

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CHO

M00771255

USDOE CHICAGO OPERATIONS OFFICE

SPECIAL PROJECT - PAPER FORMAT

CONTRACT DELIVERABLES

DOCUMENT NOT SCANNED

Project start date: May 2002

DOE/ER/62698 -- 1
Turner

NUCLEAR APOJ: A LOW DOSE RADIATION
INDUCIBLE REGULATOR OF CELL DEATH

Final Report

for Period September 15, 1998 - September 14, 2001

Bruce J. Aronow

Email: bruce.aronow@chmcc.org
Children's Hospital Medical Center
3333 Burnet Avenue
Cincinnati, OH 45229

DOE Patent Clearance Granted
MPDvorscak
Mark P. Dvorscak
(630) 252-2393
E-mail: mark.dvorscak@ch.doe.gov
Office of Intellectual Property Law
DOE Chicago Operations Office
May 2 '02
Update

April 2, 2002

Prepared for

THE U.S. DEPARTMENT OF ENERGY
AWARD NO. DE-FG02-98ER62698

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately-owned rights.

Overview:

This project entitled "NUCLEAR APOJ: A LOW DOSE RADIATION-INDUCIBLE REGULATOR OF CELL DEATH" was a joint project between Dr. Bruce Aronow, Children's Hospital Medical Center, Cincinnati, Ohio, with Dr. David Boothman, at the Case Western Reserve University, Cleveland, Ohio. The project was devoted to testing the hypothesis that apoJ, also known as clusterin and XIP8 is an effector of programmed cell death in response to a DNA damage.

This project was based on preliminary data that was published by Dr. Boothman (Yang et al. 2000) which indicated a strong induction of apoJ gene expression, increased secretion of the protein, and accumulation of an apparently somewhat different form of the apoJ protein in the nucleus of MCF-7 breast carcinoma cells undergoing response to DNA damage. A clone expressing apoJ protein was isolated that was capable of interacting with Ku80, a component of the double strand break repair complex that is essential for the successful repair of rearranging immunoglobulin and T-cell receptor genes as evidenced by failure to produce mature B and T cells in the absence of Ku70. ApoJ clones isolated and characterized by Dr. Boothman bound strongly to a Ku-70 "bait" protein. Over-expression of these same clones in a cell line was capable of killing the cell. ApoJ is very strongly induced in many instances of programmed cell death and has been proposed repeatedly to play some sort of effector role in the process.

Our principle hypothesis for this study was that the strong induction of the apoJ gene and the particular expression of a nuclear form of the protein was potentially a causal factor in the decision point made by the cell as it attempts to repair double-strand breakage based DNA damage. The hypothesis was that if sufficiently high damage occurred, it would be deleterious to maintain the cell's viability through continued DNA repair. One method to inhibit DNA repair might be by inhibiting proteins such as Ku-70 that are necessary for double-strand break repair. If apoJ does play a critical role in tipping the decision balance over to cell death, we reasoned that deficiency of apoJ would cause increased accumulation of cells with DNA damage and that this might decrease cell death in response to DNA damage and increase tumor occurrence rates.

To test this hypothesis and its potential implications, we exposed wildtype and apoJ deficient animals that we constructed through gene targeting to increasing levels of ionizing radiation from a Cesium source. Data gathered under the support of this grant application initially indicated that apoJ deficient animals were more resistant to radiation, but as we accumulated more and more data points and covered a tighter exposure range, the genotype-based differences became insignificant. However, the possibility existed that because mortality based radiation-resistance could be attributable to mechanism for which nuclear apoJ was not rate determining, we maintained a very large of colony of apoJ knockout and wildtype animals in both the C57/Bl6 and Cv129 strain backgrounds that were exposed to sub-lethal levels of ionizing radiation to monitor for the occurrence of tumors. These animals were allowed to fully recover and age normally in either germ free or normal animal housing. Our results demonstrated no significant differences between wildtype and apoJ knockout animals over a period that extended up to 30

months for individual animals. We recorded similar weight gain, a relatively low mortality rate, and a similar mixture and rate of sarcoma and adenocarcinomas after surviving the initial ionizing radiation exposures. Thus we conclude that apoJ gene function, which was totally eliminated by our gene targeting, did not influence radiation sensitivity or serve as a tumor suppressor in response to DNA damage.

An additional aim that we approached was to identify gene regulatory elements within the apoJ gene responsive to radiation exposure. We have now identified cooperating regulatory elements in both proximal and distal promoter, first intron, and sixth intron that contribute to apoJ gene regulation. The proximal promoter in particular has a cluster of cis-elements that include AP-1, HSE (heat shock), and STAT responsive elements. We have mutated these separately and in combination and surprisingly when analyzed *in vivo* in transgenic mice there remains a considerable injury inducible capability of the promoter. The realization that cis-elements for apoptosis-related apoJ gene induction are distributed over large genomic regions and our inability to recognize functional control regions has prompted us to design a comparative genomics tool (<http://trafac.chmcc.org/>). The system is able to visualize clustered occurrences of cis-element motifs that are conserved in the context of conserved sequence blocks. We have begun to populate the database that underlies the application with many more genes, including groups of genes that we demonstrate are coordinately regulated using microarray analyses. Using genes with well defined regulatory regions and promoters as a training set, we are attempting to develop multigene cis element motif-cluster recognition algorithms that may predict cell type specific properties of undefined regulatory regions.

References:

Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ, Boothman DA. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. *Proc Natl Acad Sci U S A* 2000 May 23;97(11):5907-12

Aronow References (2000-2001)

McLaughlin L, Zhu G, Mistry M, Ley-Ebert C, Stuart WD, Groen PA, Witt SA, Kimball TR, Witte DP, Harmony JA, Aronow BJ. Apo J limits the severity of murine autoimmune myocarditis. *J Clin Invest.* 2000 106:1105-13

Leikauf GD, McDowell SA, Bachurski CJ, Aronow BJ, Gammon K, Wesselkamper SC, Hardie W, Wiest JS, Leikauf JE, Korfhagen TR, Prows DR. Functional genomics of oxidant-induced lung injury. *Adv Exp Med Biol.* 2001;500:479-87.

Aronow BJ, Richardson B, Handwerger S. Microarray analysis of trophoblast differentiation: gene expression reprogramming in key gene function categories. *Physiol Genomics.* 2001 Jul 17;6(2):105-16.

Brar AK, Handwerger S, Kessler CA, Aronow BJ. Gene induction and categorical reprogramming during *in vitro* human endometrial fibroblast decidualization. *Physiol Genomics.* 2001 7(2):135-148.

Aronow BJ, Toyokawa T, Canning A, Haghghi K, Delling U, Kranias E, Molkentin JD, Dorn GW. Divergent transcriptional responses to independent genetic causes of cardiac hypertrophy. *Physiol Genomics* 2001 Jun 6;6(1):19-28. See Accompanying Editorial pp 1-2).

Han BH, DeMattos RB, Dugan LL, Kim-Han JS, Brendza RP, Fryer JD, Kierson M, Cirrito J, Quick K, Harmony JA, Aronow BJ, Holtzman DM. Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. *Nature Medicine* 2001 3:338-343.

Wehrli P, Charnay Y, Vallet P, Zhu G, Harmony J, Aronow B, Tschopp J, Bouras C, Viard I, French L, Giannakopoulos P Inhibition of post-ischemic brain injury by clusterin .*Nature Medicine* 2001 7:977-978.

Tang Y, Lu A, Aronow BJ, Sharp FR. Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease *Ann Neurol* 2001 50:699-707. See Accompanying Editorial p.695.

Ogden SK, Lee KC, Wernke-Dollries K, Stratton SA, Aronow BJ, Barton MC. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression. *J Biol Chem* 2001 276(45):42057-62.

Bates MD, Erwin CR, Sanford LP, Wiginton DA, Steinbrecher KA, Bezerra JA, Schatzman LA, Ebert C, Williams SS, Warner BA, Cohen MB, Aronow BJ. Microarray-based gene expression profiling identifies novel genes and functional relationships in the adult mouse gastrointestinal tract *Gastroenterology* (in press 2002)

Kelly-Loughnane N, Sabla GE, Ley-Ebert C, Aronow BJ, Bezerra JA. Independent and overlapping transcriptional activation during liver development and regeneration in mice. *Hepatology* 2002 Mar 35(3):525-34. See Accompanying Editorial.

Aronow, BJ, Zhu G, Barrie A, Witte DP, Bissler J, Silksen J, Schwachau G, Harmony JAK, Rosenberg MJ. ApolipoproteinJ prevents a progressive glomerulopathy of aging. *Mol Cell Biol* 2002 Mar 22(6):1893-902.

Bailey RW, Aronow B, Harmony JA, Griswold MD. Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/ApoJ knock-out mice. *Biol Reprod* 2002 Apr 66(4):1042-53

Leikauf GD, McDowell SA, Wesselkamper SC, Miller CR, Hardie WD, Gammon K, Biswas PP, Korfhagen TR, Bachurski CJ, Wiest JS, Willeke K, Bingham E, Leikauf JE, Aronow BJ, Prows DR. Pathogenomic mechanisms for particulate matter induction of acute lung injury and inflammation in mice. *Res Rep Health Eff Inst* 2001 Dec 105:5-58 See editorial discussion 59-71.

Thornton S, Sowders D, Aronow B, Witte DP, Brunner HI, Giannini EH, Hirsch R. DNA microarray analysis reveals novel gene expression profiles in collagen induced arthritis. *Clinical Immunology* (in press 2002)

Tang Y, Lu A, Aronow BJ, Sharp FR. Brain genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: Expression pattern signatures of brain injury. *Eur J Neurol* (in press 2002).

Zhu G, Ley-Ebert C, Witte DP, Silksen J, Schwochau G, Rosenberg M, Harmony JAK, Aronow BJ. A repressor switch controls tissue specific and injury inducible gene expression. *Mol Cell Biol* (in revision 2001).