skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New Catalysts for Direct Methanol Oxidation Fuel Cells

Abstract

A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2}more » electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.« less

Authors:
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
770455
Report Number(s):
BNL-83311-1998
CRADA No. BNL-C-95-24
DOE Contract Number:  
AC02-98CH10886
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION

Citation Formats

Adzic, Radoslav. New Catalysts for Direct Methanol Oxidation Fuel Cells. United States: N. p., 1998. Web. doi:10.2172/770455.
Adzic, Radoslav. New Catalysts for Direct Methanol Oxidation Fuel Cells. United States. https://doi.org/10.2172/770455
Adzic, Radoslav. 1998. "New Catalysts for Direct Methanol Oxidation Fuel Cells". United States. https://doi.org/10.2172/770455. https://www.osti.gov/servlets/purl/770455.
@article{osti_770455,
title = {New Catalysts for Direct Methanol Oxidation Fuel Cells},
author = {Adzic, Radoslav},
abstractNote = {A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.},
doi = {10.2172/770455},
url = {https://www.osti.gov/biblio/770455}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Aug 01 00:00:00 EDT 1998},
month = {Sat Aug 01 00:00:00 EDT 1998}
}