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Abstract

Experimental work conducted by D. B. Adolf has shown that a separable K-BKZ constitutive
equation works reasonable well in predicting the stress relaxation observed in single step
strain experiments for carbon black filled rubber. However, the memory requirements and
numerical efficiency of the K-BKZ equation do not make it well suited for use in a produc-
tion, three-dimensional finite element code. As an alternative, D. J. Segalman, K. Zuo, and D.
Parsons have developed a “damage-like” constitutive equation which is computationally
attractive. This formalism has been installed in the JAS3D finite element code. The requisite
code inputs and numerical details of the constitutive integration are discussed, and solutions
to selected problems are presented. Comparisons are made to data collected from both single
and double step strain experiments.
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1. Introduction

The “Rheology of Green Carbon Black-Filled Rubber” has been summarized by D. B. Adolf
in a Sandia report [1]. Adolf found that the predictions from a separable K-BKZ constitutive
equation seemed to provide reasonable agreement with experimental data obtained from sin-
gle step strain, stress relaxation experiments. Although the K-BKZ formalism may be sug-
gested by the experimental data, the formalism poses severe computational hardships which
preclude its selection for implementation in a large-scale, three-dimensional finite element
code. To circumvent the numerical issues, D. J. Segalman, K. Zuo, and D. Parsons have
developed an alternative constitutive equation [2] which is computationally attractive. This
report provides documentation for the implementation of their alternative constitutive equa-
tion in the JAS3D finite element code.

2. Proposed Constitutive Equation

The proposed constitutive equation makes use of a “damage-like” parameter to account for
the apparent strain softening which occurs under deformation. Although this “damage”
parameter differs from traditional damage definitions in that it allows healing to occur, I shall
avoid the temptation to rename this quantity “Danage” after its “father”, Dan Segalman, as
suggested by D. B. Adolf.

The finite element implementation of the viscoelastic constitutive equation for rubber is
nearly incompressible. However, because there is a finite bulk modulus, the stress and strain
tensors are assumed to be partitioned into deviatoric components, s and ¢, respectively. The
constitutive equation for the deviatoric stress is expressed in a rate form consistent with the
superposition of Maxwell models so that

M

s(t) = Y 5(1) +2Ge(1) (D

i=1

Here, the stress is seen to be computed as a sum of “partial” stresses arising from the “M”
Maxwell models derived from the “M” terms in the Prony series expansion for the shear stress
relaxation modulus, G(t):

M
G(t) = G,,+ Y, Gyexp(-t/1;) )

i=1
The partial stresses evolve according to the governing rate equation:

ds; s de
-d-t_+"—c; -ZGig(af)a—t (3)
where G; and T; are the shear coefficients and relaxation times from the exponential expan-
sion of the shear relaxation modulus (Equation (2)), and g(d4) is a function of the damage
parameter, 4. The evolution equation for damage is defined to be
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¥, 2 - py )

where A, is the single relaxation time associated with healing of damage and D, is a damage
strain rate. Notice that the right hand side of Equation 4 is slightly different from the term
found in Reference 2. This generalization is consistent with the “current thinking” of Segal-
man. An L, norm is assumed. The damage strain rate is computed by appealing to the defini-
tion of a damage surface

le-exl = o )

where tensor ¢y and scalar e; are associated with kinematic and isotropic hardening, respec-
tively. The net damage strain rate is defined to be

de
DJ={E-§ﬁ ©)
if
de
3o N>0 )
and
l@ - 9}(‘ =€ (8)

Otherwise (i.e., when inside the damage surface),

D, =0 ©)

In these equations, N is the vector defining the outward normal to the damage surface

N = (e—-eg)/|e—ek] (10)

The evolution equations for ¢, and e, are

deg

—£ = (1-p)D, (1D
de, |
a ﬁ'D,{I (12) o
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when
D >0 (13)

To accommodate healing, the following decay equations must be satisfied:

deg
= = (-9 (14)
de;
when
D, = Q (16)

B, Ag > and A; are material constants. Notice that in Equation (15), the &, constant from Ref-
erence 2 has not been included in the current finite element implementation. This simplifica-
tion appears to be consistent with our expectations and with the data and fits used for
analyses. To ensure that strain states that are within the damage surface are not brought
against the damage surface by relaxation processes, the following condition also must be sat-
isfied:

A2 Ay (17)

2.1 JAS3D Finite Element Implementation

The JAS3D subroutines which evaluate the constitutive equations for the material models are
passed the stresses at the beginning of a time step and must output the new stresses at the end
of the time step. By convention, the code architecture is set up to compute the Cauchy stress in
an unrotated configuration. The typical strain rate adopted for JAS3D constitutive equations is
the unrotated deformation rate tensor, d. Although the left stretch, V, and rotation, R, ten-
sors are available within the code for use in constructing other strain measures, a more gener-
alized strain measure has not been utilized in the rubber model largely because there are
insufficient large strain data to warrant further investigation. In any event, it is a minor matter
to change strain measures should it ultimately become necessary. For the current JAS3D
implementation, the following definitions have been employed:

28
1
=N

(18)
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= = d-1—= 19
dt d-1 3 (19
t d
¢
g(t) = | zdu (20)
0
- 3
The incremental stress change then can be expressed as
tr(Ac)

where As is the increment in deviatoric stress and the last term is the “pressure” change over
the time step. To compute the change in mean stress, an elastic bulk response is assumed so
that

AG
-Eﬂ = K{Ag;-AO} (23)

where K is the bulk modulus, A® is the change in volumetric thermal strain that occurs over
the time step, and indicial notation has been employed with repeated subscripts denoting sum-
mation.

A further assumption of the rubber model is that the material is thermorheologically simple.
This means that all relaxation times (i.e., those from stress relaxation and those from the dam-
age surface and healing) are functions of temperature and scale with a shift factor in logarithm
of time so that:

T,(T) = a(T)Ty(T, o) (24)
Equation (24) shows that the relaxation time at temperature T can be obtained from the relax-

ation time at some reference temperature, T, ¢, through a multiplicative shift factor, a(T),
which is defined by a WLF equation:

_CI(T —Tref)
(Cy+T-~T.p)

loga(T) = (25)

2.2 Integrators for Rate Equations

The rate equations for the deviatoric stress, damage, and damage surface parameters are all
first order differential equations of nominally the same form. The strategy for integrating
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these equations is a modified central difference algorithm that was developed for a viscoelas-
tic model of glass [3]. The algorithm is summarized below for the deviatoric stress:

{21.(T,,.) - At} 47.(T,..) Ae -
si(t) = — 2B s (1, )+ — B Gig(dyyg) 1o (A1) (26)
{27,(T,yg) + At} 21;(T,,,) + At ty
where
At=MIN(At,, 21,(T,,,)) 27

Here, the “avg” subscript denotes the average value over the time step from t, _; to t, . Using
the above algorithm, the change in deviatoric stress over a time step can be evaluated in a
form similar to that used in computing an increment of elastic stress:

As = 2GAe-H (28)

In this equation, the effective shear modulus and the recursive history term are defined by:

28(4 M Ga(T, A
GeffEGec+{__g( avg)}Z T avg) 0 29)
Aty T (21(T,,,) +Ab)
i 2At
H= 2{ - }gi(tn_l) (30)
S LRT(T,,) + A

The damage parameter, 4, can be computed in a fashion completely analogous to the devia-
toric stress

d(t)

n

~ {:ma,('rm)-AE‘{}‘{t | +{ 204(T,y)

B ~ — YD J(At 31
{20 (T,,,) + At} 2A /(T }l-—«{l( ) 31

)+ At

avg avg

where

Aty =MIN(Aty, 24 ((T,,,)) (32)

The equations for evaluating the drag strain, €y, and the back strain, ¢y, are different depend-

ing on whether the damage surface is growing or not. For the particular case when the damage
surface is growing, then

D/ >0 (33)

and the drag strain and back strain are computed by
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ey(ty) = ex(t,_1) + B|DAt, (34)

ex(ty) = eglt, )+ (1~ B)DJAtn (35)

Otherwise, when healing is underway, then

Dy =0 (36)

and the drag strain and back strain are computed by

{20(Tyye) — Ay}

e(t,) = eyt _) 37
{20(Tyy) + At}
2 (T,,.) — At At
elty) = ook ave) f‘}gK(tn_w{ s }{g(tn)+g<tn_1)} (38)
{20 (Tyyg) + At} 20 (T,yg) + Aty
where
Aty = MIN(AL, 2A(T, ) (39)
Aty = MIN(Aty, 2A4 (Ty,)) (40)

2.3 Nearly Incompressible Behavior

The viscoelastic constitutive equation can be written for an incremental update in terms of a
bulk modulus and an effective shear modulus

G(ty) = ity 1) + {ZGeffAe'ij - Hij(tn)} + Sin{Askk -A®} (41)

where the second term on the right-hand side is the deviatoric stress increment and the last
term is the volumetric (i.e., pressure) increment. When the bulk modulus is much larger than
the effective shear modulus, the material becomes “nearly” incompressible. The effective

Poisson’s ratio,V, , is a convenient metric of incompressibility:

3K - 2G¢

Vet = s

f = 33K + G,qp) (42)
As V. approaches 0.5, the material becomes incompressible. Finite element mechanicians
have struggled for many years with the numerical hardships involved in modeling nearly
incompressible materials as direct solvers are confronted with ill-conditioned matrices and
iterative methods must cope with a large spread in eigenvalues. S. W. Key has recently devel-
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oped and implemented a multi-level linearization capability within the JAS3D finite element
code which has enabled an augmented lagrangian algorithm to obtain solutions to nearly
incompressible problems [4]. This approach has already been employed for the nearly incom-
pressible elastic material (i.e., MAT4) in JAS3D. A similar approach has been followed to
accommodate the near incompressibility required for the rubber viscoelasticity.

The change in mean stress (hereafter referenced as pressure) is governed by the elastic equa-
tion:

Oty Tialty 1)
AP= - 0t = K{Agy, - AO) (43)

From this relation, the mechanical volume strain can be obtained in terms of the applied pres-
sure:
AP

{Agy A0} = = (44)

The finite element solution for nearly incompressible behavior is obtained by solving a
sequence of {j=1,2,...M} “better conditioned” model problems. From the sequence of
solutions to these model problems, the pressure is built up incrementally using a softer bulk
modulus to reduce the effective Poisson’s ratio and acquire a more numerically tractable sys-
tem of equations. A convenient way of scaling the bulk modulus is to specify a limit on the
maximum value of the effective Poisson’s ratio, say v, . Then a softer bulk modulus can be
defined by simply scaling the actual bulk modulus by a factor, o so that

Koore = 0K (45)
where
- 2Ge:ff(1 + Vmax) (46)
3K(1-2v,.)

The pressure change, AP, in the model problems is then evaluated as follows

AD.
AP = Apj+(ocK){(Askk—A@)—-%} @7)

where Ap. is the pressure increment obtained from the solution to the previous model prob-
lem. As each model problem solution is obtained, the pressure increment is updated:
Apj, = Ap;(1 - a) + aK{Ag,, - AO} (48)

In the limit as the sequence of model problems progresses, the change in the mechanical vol-

ume strain, Ae, , , diminishes:
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Ap.

which implies that
AP — Ap; = K{Agy, - AO} (50)

Hence, Equation (43) is ultimately satisfied. Within the context of the finite element code
implementation, a convergence criteria must be established for the sequence of model prob-
lems. This criteria is based on the L norm computed with respect to some user specified ref-
erence strain, €., so that convergence is achieved when the maximum relative volume strain
change is less than some acceptable tolerance:

AE:vol
MAX(——)< TOLERANCE (51

ref
where the maximum is taken over all finite elements of that material type.

2.4 Damage Function, g(d)

A definition of the damage function, g(4), is needed for the finite element implementation. By
evaluating the constitutive equations for a “step” shear strain and comparing the resulting
stress equation to the stress equation predicted by the K-BKZ model for an identical loading,
the damage function can be related directly to the damping function [5]:

g(d) = h(d)+d -h'(d) (52)
Note that the h’” in Equation (52) is the first derivative of the damping function. On the basis

of the data that Adolf has collected [1], the following functional form has been adopted for the
damping function as an explicit function of damage:

h(d) = A A 53
@ =1raz* ™ 3

where A,, A,, and A, are constants that must be input by the user as part of the material
input definitions. Note that the constants A; and A, must sum to 1.0 in order for the damping
function to be 1.0 when there is zero damage. By adopting the form of Equation (53) for the
damping function, Equation (52) can be rewritten in terms of h(d) only:

Ay 2
g(d) = h(lf)—{A—l}‘[{h(ff)—Aa} (54)
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A plot of the damage function, g(d) as determined for compounds A and B [1] from a fit of the
damping function, h(d) is shown in Figure 1. For a single “step” shear strain experiment, the

BEGIN CRADA PROTECTION

1.0
]
1
0.8 + 4
1
0.6 - 1
< ]
N
(@)]
0.4 -
02| ]
0'0 S - L I S S
-5 -4 -3 -2 -1 0

LOG(d)

Figure 1. Plot of Damage Function for Compounds A and B

END CRADA PROTECTION
damage, 4, can be directly related to the norm of the strain tensor:

d = |e| (55)

3. Example Problems

To demonstrate the performance of the material model, three sets of problems were analyzed:
1) stress relaxation following single “step” strains, 2) stress relaxation following double
“step” strains, and 3) cyclic pressurization of a rubber strip. The first two problems were ana-
lyzed and compared to experimental data collected by D. Adolf and reported in references 1
and 2. The third problem was included as an illustrative example of how the model behaves.
The temperature for all analyses was assumed to be 30°C. The JAS3D input definitions for the
viscoelastic rubber material model are provided in APPENDIX A, and the state variables
employed in the model are defined in APPENDIX B.

3.1 Stress Relaxation Following Single “Step” Strains

The original data for the damping function was obtained from single “step” strain experiments
in which a shear strain was imposed as quickly as physically practical and the subsequent
decay in stress was measured. Although the test is described as a “step” strain experiment, the
strain is really applied as a rapid ramp. Since the finite element code must prescribe an actual
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BEGIN CRADA PROTECTION

Table 1. Material Properties for Filled, Green Rubber

i G; (dynes/cm?) T; (sec)

C, WLF COEF 6.6 1 1.7563E+07 3.0637E-02
C, WLF COEF ('C) 150 2 2.1123E+07 2.7725E-01
Tret ('C) 25 3 2.1200E+07 2.3679E+00
B 1 4 1.7805E+07 2.1083E+01
A (sec) 14080 5 1.2748E+07 2.1694E+02
Mg (sec) 14080 6 7.9129E+06 2.9641E+03
Ap (sec) 14080 7 4.2505E+06 6.9033E+04
K (dynes/cm?) 3.22E+10 8 2.1970E+06 6.4199E+06
Vinax 0.49

€ref 0.0001

A, 0.85

Ao 471.4

Ag 0.15

G_, (dynes/cm?) 0.0

END CRADA PROTECTION

ramp, the period of loading was assumed to be about 0.1 seconds. A list of the material prop-
erty values input into the JAS3D finite element code is provided in Table 1. Figure 2 contains
a comparison between the computed and measured values of the decaying shear relaxation
modulus for several different strain amplitudes. The 25% data was obtained and converted
from the results of a Goodyear tensile test. The agreement is quite good.

3.2 Stress Relaxation Following Double “Step” Strains

The four double “step” shear strain experiments reported in references 1 and 2 also have been
analyzed. For the finite element damage modeling, the “healing” relaxation times (i.e., A;,
Ak, and A ) were reduced to a value of 200 seconds to match the values used in the analyses
found in reference 2. Aside from this change, the material inputs were identical to those
defined in Table 1. The four double strain “steps” were:

1. 0.5%, 10 second delay, -1.0%

2. 1.0%, 10 second delay, -1.0%

3. 1.0%, 100 second delay, 1.0%

4. 2.0%, 100 second delay, -0.5%
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BEGIN CRADA PROTECTION

9 v v v L] L L v L
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LOG(TIME,sec)

Figure 2. Comparison Between Measured Shear Relaxation Modulus and Finite Element
Model Predictions for Various Strain Amplitudes in Single Step Shear Strain
Experiments

END CRADA PROTECTION

The above notation denotes the initial strain, the ensuing time delay before applying the sec-
ond strain, and finally the magnitude of the second strain. The second strain magnitude is
specified as a relative strain (i.e., strain relative to the configuration attained following the
imposition of the first strain). This means that in case 1 the total strain after the second step
has been applied is actually -0.5%. In the finite element analyses, all strains were assumed to
be ramped over a time period of 0.1 seconds. Hence, contrary to the simplifications that were
made in the constitutive equations evaluated in reference 2 to obtain a solution to a mathemat-
ically pure step strain, the finite element analyses were based on finite ramps. The resulting
stress histories predicted by the finite element damage model for cases 1-4 are shown in Fig-
ures 3-6, respectively. In these figures, the linear viscoelastic responses, the K-BKZ predic-
tions, and the data obtained from the Adolf experiments (1] also are plotted for comparison.
Note that the entire computed stress history is plotted including the rise in stress generated by
both ramps and holds. Data are shown only for the relaxation following the second strain step.
A pronounced difference is seen between the nonlinear and linear predictions due to the
apparent “‘softening” created by straining. The agreement between damage predictions and
data is less favorable in the double step strain experiments than it was in the single step strain
tests. Double step strain is a much more rigorous test of the model. The fact that this correla-
tion is not as good as the results reported in reference 2 is most likely due to the difference in
loading rates (i.e., true step strain versus finite ramp). However, it is also worth mentioning
that Equation (4) is slightly different than the corresponding equation reported in reference 2.

23



BEGIN CRADA PROTECTION
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Figure 3. Finite Element Predictions and Data Obtained from Double Step Shear Strain
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Figure 4. Finite Element Predictions and Data Obtained from Double Step Shear Strain

Experiment: (1.0%, 10sec, -1.0%)

END CRADA PROTECTION
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BEGIN CRADA PROTECTION
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Figure 5. Finite Element Predictions and Data Obtained from Double Step Shear Strain
Experiment: (1.0%, 100sec, 1.0%)
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Figure 6. Finite Element Predictions and Data Obtained from Double Step Shear Strain
Experiment: (2.0%, 100sec, -0.5%)
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It is also known that healing is not governed by a single relaxation time. In fact, a spectrum of
relaxation times is needed to capture the observed behavior. This is an added enhancement
that affects these results and should be considered for future development.

3.3 Cyclic Pressurization of a Rubber Strip

The final example involves the cyclic pressurization of a rubber strip. The basic geometry and
boundary conditions for the problem are depicted in Figure 7. A rubber strip 25 cm long, 2 cm

25cm
< >
2cm¢§ N
) N
T T T T
P
- A
o
54E+5-
7]
8
)
o
L L ¥ T >
10 20 30 40
t (sec)

Figure 7. Geometry and Boundary Conditions for Analysis of Rubber Strip Subjected to
Cyclic Pressurization

high, and 1 cm thick is clamped at the ends and subjected to a cyclic pressure load as noted in
the figure. The maximum applied pressure (4.0E+5 dyncs/cm2) is applied and removed in
ramps of 10 seconds. The material properties for this analysis were assumed to be those
reported in Table 1 with the lambda relaxation times reduced to 200 seconds. Contour plots of
the maximum principal stress on the deformed mesh at times of 10 seconds (max pressure)
and 20 seconds (after first unloading) are shown in Figure 8 and Figure 9. As seen in these fig-
ures, the rubber strip undergoes substantial deformations. The deformed shape with zero pres-
sure at 20 seconds into the cycle arises from the viscoelastic residual stresses generated by the
cyclic loading and the unloading under a reduced (i.e., “damaged”) shear modulus. A plot of
the damage generated after the first load cycle is shown in Figure 10. The maximum damage
is attained at the time of maximum load when the strains are greatest. For the deformations
shown in Figure 8, the maximum bending strains (¢, and &,) are 20-25% and the maximum
x-y shear strain is 31%. At this level of damage, the material has reached the lower plateau in
Figure 1 where g(d) is about 0.15. A time history plot of the maximum deflection at the center
of the top of the rubber strip is shown in Figure 11. The ratchet-like behavior results from a
combination of viscoelasticity and damage. Although the deformation cycle begins with the
stiffness of the full shear modulus, the material quickly attains damage. Hence, the viscoelas-
ticity during the subsequent unloading and reloading is performed under the influence of a
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Figure 8. Contour Plot of Maximum Principal Stresses on Deformed Mesh at 10 Seconds

into the Pressure Cycle
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Figure 9. Contour Plot of Maximum Principal Stresses on Deformed Mesh at 20 Seconds

into the Pressure Cycle
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Figure 10. Contour Plot of Damage Parameter at 20 Seconds into the Pressure Cycle (After
First Unloading)
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Figure 11. Time History of Maximum Deflection at Center of the Rubber Strip
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“reduced” (i.e., in K-BKZ terminology it would be called “damped”) shear modulus. The
resulting load deflection response for the beam can be seen in the pressure-deflection plot
found in Figure 12.
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Figure 12. Pressure-Deflection History in Rubber Strip

4. Summary

A version of the D. J. Segalman, K. Zuo, and D. Parsons damage model has been added to the
JAS3D finite element code. Single and double “step” shear strain experiments have been ana-
lyzed and the model predictions have been compared to experimental results. As expected the
correlation for the single step tests is better than that found in the double step strain experi-
ments. A possible improvement could be obtained by adding a spectrum of relaxation times to
govern the healing of the damage function. At present, healing is governed by only a single
relaxation time. The data seems to require a broader fit.

Another logical extension of this work would be the extensions of the model to encompass the
green-to-cure behavior [5].
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APPENDIX A
JAS3D Inputs for VISCOELASTIC RUBBER Model

Material Type 30: Viscoelastic Rubber

C1 WLF COEF, C,
C2 WLF COEF, C,
WLF REF TEMP, T,
BETA, §

REF VOL STRAIN, ¢
ILAMBDA, A,

K LAMBDA, A
D LAMBDA, 1,
BULK MODULUS, K
MAX POISSONS RATIO, v
Al DAMP COEF, 4,

A2 DAMP COEF, 4,

A3 DAMP COEF, A,
RUBBERY SHEAR, G_,
SHEAR 1, G,

SHEAR 2, G,

SHEAR 3, G;

SHEAR 4, G,

SHEAR 5, Gs

SHEAR 6, G

SHEAR 7, G,

SHEAR 8, Gg

SHEAR 9, G

SHEAR 10, G,

SHEAR RELAX 1, 1,
SHEAR RELAX 2, 1,
SHEAR RELAX 3, 1,
SHEAR RELAX 4, T,
SHEAR RELAX 5, s
SHEAR RELAX 6, 1
SHEAR RELAX 7, 1,
SHEAR RELAX 8, g
SHEAR RELAX 9, 1,
SHEAR RELAX 10, 7,

ref
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APPENDIX B
JAS3D State Variables for VISCOELASTIC RUBBER

Material Type 30: Viscoelastic Rubber

VOLEPS, volume strain

AAVG, shift factor a(Tyyg)

EPSK1, x component of gy

EPSK2, y component of ¢y

EPSK3, z component of ¢y

EPSK4, xy component of ¢y

EPSKS, yz component of ey

EPSKS6, zx component of g

EPSI, ¢;

DAMAGE, D

SDCAYX1, x component of partial stress, s;, for Prony term i=1
SDCAYY]1, y component of partial stress, s., for Prony term i=1
SDCAYXY1, xy component of partial stress, s;, for Prony term i=1
SDCAYYZI1, yz component of partial stress, s;, for Prony term i=1
SDCAYZX1, zx component of partial stress, s;, for Prony term i=1
SDCAYX2, x component of partial stress, s;, for Prony term i=2
SDCAYY?2, y component of partial stress, s;, for Prony term i=2
SDCAYXY?2, xy component of partial stress, s;, for Prony term i=2
SDCAYYZ2, yz component of partial stress, s., for Prony term i=2
SDCAYZX?2, zx component of partial stress, s, for Prony term i=2

27

SDCAYXi, x component of partial stress, s, , for Prony term i
SDCAYYi, y component of partial stress, s, , for Prony term i
SDCAYXYi, xy component of partial stress, s;, for Prony term i
SDCAYYZi, yz component of partial stress, s, , for Prony term i
SDCAYZXi, zx component of partial stress, s;, for Prony term i
BLKSCALE, bulk modulus scale factor

GOFD, g(d)

SHEAREFF, component of effective shear modulus
AUGPRESS, Augmented Lagrange pressure increment

(where i goes up to 10)
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