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Abstract 

Experimental work conducted by D. B. Adolf has shown that a separable K-BKZ constitutive 
equation works reasonable well in predicting the stress relaxation observed in single step 
strain experiments for carbon black filled rubber. However, the memory requirements and 
numerical efficiency of the K-BKZ equation do not make it well suited for use in a produc­
tion, three-dimensional finite element code. As an alternative, D. J. Segalman, K. Zuo, and D. 
Parsons have developed a "damage-like" constitutive equation which is computationally 
attractive. This formalism has been installed in the JAS3D finite element code. The requisite 
code inputs and numerical details of the constitutive integration are discussed, and solutions 
to selected problems are presented. Comparisons are made to data collected from both single 
and double step strain experiments. 
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1. Introduction 
The "Rheology of Green Carbon Black-Filled Rubber" has been summarized by D. B. Adolf 
in a Sandia report [l]. Adolf found that the predictions from a separable K-BKZ constitutive 
equation seemed to provide reasonable agreement with experimental data obtained from sin­
gle step strain, stress relaxation experiments. Although the K-BKZ formalism may be sug­
gested by the experimental data, the formalism poses severe computational hardships which 
preclude its selection for implementation in a large-scale, three-dimensional finite element 
code. To circumvent the numerical issues, D. J. Segalman, K. Zuo, and D. Parsons have 
developed an alternative constitutive equation [2] which is computationally attractive. This 
report provides documentation for the implementation of their alternative constitutive equa­
tion in the JAS3D finite element code. 

2. Proposed Constitutive Equation 
The proposed constitutive equation makes use of a "damage-like" parameter to account for 
the apparent strain softening which occurs under deformation. Although this "damage" 
parameter differs from traditional damage definitions in that it allows healing to occur, I shall 
avoid the temptation to rename this quantity "Danage" after its "father", Dan Segalman, as 
suggested by D. B. Adolf. 

The finite element implementation of the viscoelastic constitutive equation for rubber is 
nearly incompressible. However, because there is a finite bulk modulus, the stress and strain 
tensors are assumed to be partitioned into deviatoric components, § and ~ , respectively. The 
constitutive equation for the deviatoric stress is expressed in a rate form consistent with the 
superposition of Maxwell models so that 

M 

§(t) = 2, §j(t) + 2G00~(t) (1) 

i = 1 

Here, the stress is seen to be computed as a sum of "partial" stresses arising from the "M" 
Maxwell models derived from the "M" terms in the Prony series expansion for the shear stress 
relaxation modulus, G(t): 

M 

G(t) = G00 + I, Giexp(-t/1:i) 
i == 1 

The partial stresses evolve according to the governing rate equation: 

ds. s. de 
--:! + ~ = 2G-g(d')-= 
dt 'ti I dt 

(2) 

(3) 

where Gi and 'ti are the shear coefficients and relaxation times from the exponential expan­
sion of the shear relaxation modulus (Equation (2)), and g( d') is a function of the damage 
parameter, a. The evolution equation for damage is defined to be 
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(4) 

where At is the single relaxation time associated with healing of damage and Q" is a damage 
strain rate. Notice that the nght hand side of Equation 4 is slightly different from the term 
found in Reference 2. This generalization is consistent with the "current thinking" of Segal­
man. An L2 norm is assumed. The damage strain rate is computed by appealing to the defini­
tion of a damage surface 

(5) 

where tensor ~K and scalar e1 are associated with kinematic and isotropic hardening, respec­
tively. The net damage strain rate is defined to be 

if 

and 

D.,.={d~•N}N ~" dt ~ -

de 
-=•N>0 dt ~ 

Otherwise (i.e., when inside the damage surface), 

In these equations, ij is the vector defining the outward normal to the damage surface 

The evolution equations for ~K and e1 are 

14 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 



when 

(13) 

To accommodate healing, the following decay equations must be satisfied: 

(14) 

(15) 

when 

(16) 

P, AK, and A1 are material constants. Notice that in Equation (15), the e0 constant from Ref­
erence 2 has not been included in the current finite element implementation. This simplifica­
tion appears to be consistent with our expectations and with the data and fits used for 
analyses. To ensure that strain states that are within the damage surface are not brought 
against the damage surface by relaxation processes, the following condition also must be sat­
isfied: 

(17) 

2.1 JAS3D Finite Element Implementation 

The JAS3D subroutines which evaluate the constitutive equations for the material models are 
passed the stresses at the beginning of a time step and must output the new stresses at the end 
of the time step. By convention, the code architecture is set up to compute the Cauchy stress in 
an unrotated configuration. The typical strain rate adopted for JAS3D constitutive equations is 
the unrotated deformation rate tensor, g. Although the left stretch, Y, and rotation, )3., ten­
sors are available within the code for use in constructing other strain measures, a more gener­
alized strain measure has not been utilized in the rubber model largely because there are 
insufficient large strain data to warrant further investigation. In any event, it is a minor matter 
to change strain measures should it ultimately become necessary. For the current JAS3D 
implementation, the following definitions have been employed: 

(18) 
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t 

Ide 
~(t) = dtdu 

0 

s = cr-Itr(q) 
- ~ - 3 

The incremental stress change then can be expressed as 

tr(Acr) 
q(tn) = q(tn_l)+A§+! 3-

(19) 

(20) 

(21) 

(22) 

where A§ is the increment in deviatoric stress and the last term is the "pressure" change over 
the time step. To compute the change in mean stress, an elastic bulk response is assumed so 
that 

Acr .. 
_JJ = K{Ae .. -A0} 

3 JJ 
(23) 

where K is the bulk modulus, A0 is the change in volumetric thermal strain that occurs over 
the time step, and indicial notation has been employed with repeated subscripts denoting sum­
mation. 

A further assumption of the rubber model is that the material is thermorheologically simple. 
This means that all relaxation times (i.e., those from stress relaxation and those from the dam­
age surface and healing) are functions of temperature and scale with a shift factor in logarithm 
of time so that: 

(24) 

Equation (24) shows that the relaxation time at temperature T can be obtained from the relax­
ation time at some reference temperature, T ref, through a multiplicative shift factor, a(T), 
which is defined by a WLF equation: 

(25) 

2.2 Integrators for Rate Equations 

The rate equations for the deviatoric stress, damage, and damage surface parameters are all 
first order differential equations of nominally the same form. The strategy for integrating 
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these equations is a modified central difference algorithm that was developed for a viscoelas­
tic model of glass [3]. The algorithm is summarized below for the deviatoric stress: 

(26) 

where 

(27) 

Here, the "avg" subscript denotes the average value over the time step from tn _ 1 to tn. Using 
the above algorithm, the change in deviatoric stress over a time step can be evaluated in a 
form similar to that used in computing an increment of elastic stress: 

(28) 

In this equation, the effective shear modulus and the recursive history term are defined by: 

(29) 

(30) 

The damage parameter, a, can be computed in a fashion completely analogous to the devia­
toric stress 

(31) 

where 

(32) 

The equations for evaluating the drag strain, e1, and the back strain, ~K, are different depend­

ing on whether the damage surface is growing or not. For the particular case when the damage 
surface is growing, then 

(33) 

and the drag strain and back strain are computed by 
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(34) 

(35) 

Otherwise, when healing is underway, then 

(36) 

and the drag strain and back strain are computed by 

{ 2A1(T avg) - L~\} 
e1(tn) = ~ el(tn- 1) 

{2A1(Tavg) + ~t1} 
(37) 

(38) 

where 

(39) 

(40) 

2.3 Nearly Incompressible Behavior 

The viscoelastic constitutive equation can be written for an incremental update in terms of a 
bulk modulus and an effective shear modulus 

(41) 

where the second term on the right-hand side is the deviatoric stress increment and the last 
term is the volumetric (i.e., pressure) increment. When the bulk modulus is much larger than 
the effective shear modulus, the material becomes "nearly" incompressible. The effective 
Poisson's ratio, v eff , is a convenient metric of incompressibility: 

3K-2Geff 
veff=2(3K+G) 

eff 
(42) 

As v eff approaches 0.5, the material becomes incompressible. Finite element mechanicians 
have struggled for many years with the numerical hardships involved in modeling nearly 
incompressible materials as direct solvers are confronted with ill-conditioned matrices and 
iterative methods must cope with a large spread in eigenvalues. S. W. Key has recently devel-
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oped and implemented a multi-level linearization capability within the JAS3D finite element 
code which has enabled an augmented lagrangian algorithm to obtain solutions to nearly 
incompressible problems [4]. This approach has already been employed for the nearly incom­
pressible elastic material (i.e., MAT4) in JAS3D. A similar approach has been followed to 
accommodate the near incompressibility required for the rubber viscoelasticity. 

The change in mean stress (hereafter referenced as pressure) is governed by the elastic equa­
tion: 

(43) 

From this relation, the mechanical volume strain can be obtained in terms of the applied pres­
sure: 

(44) 

The finite element solution for nearly incompressible behavior is obtained by solving a 
sequence of {j = 1, 2, ... M} "better conditioned" model problems. From the sequence of 
solutions to these model problems, the pressure is built up incrementally using a softer bulk 
modulus to reduce the effective Poisson's ratio and acquire a more numerically tractable sys­
tem of equations. A convenient way of scaling the bulk modulus is to specify a limit on the 
maximum value of the effective Poisson's ratio, say v max . Then a softer bulk modulus can be 
defined by simply scaling the actual bulk modulus by a factor, a so that 

Ksoft = aK (45) 

where 

(46) 

The pressure change, ~p , in the model problems is then evaluated as follows 

(47) 

where dpj is the pressure increment obtained from the solution to the previous model prob­
lem. As each model problem solution is obtained, the pressure increment is updated: 

(48) 

In the limit as the sequence of model problems progresses, the change in the mechanical vol­
ume strain, devol, diminishes: 
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(49) 

which implies that 

(50) 

Hence, Equation (43) is ultimately satisfied. Within the context of the finite element code 
implementation, a convergence criteria must be established for the sequence of model prob­
lems. This criteria is based on the L00 norm computed with respect to some user specified ref­
erence strain, Eref , so that convergence is achieved when the maximum relative volume strain 
change is less than some acceptable tolerance: 

MAX(~Evol)<TOLERANCE 
Eref · 

where the maximum is taken over all finite elements of that material type. 

2.4 Damage Function, g(d) 

(51) 

A definition of the damage function, g( a), is needed for the finite element implementation. By 
evaluating the constitutive equations for a "step" shear strain and comparing the resulting 
stress equation to the stress equation predicted by the K-BKZ model for an identical loading, 
the damage function can be related directly to the damping function [5]: 

g(a) = h(a)+a•h'(a) (52) 

Note that the h' in Equation (52) is the first derivative of the damping function. On the basis 
of the data that Adolf has collected [ 1], the following functional form has been adopted for the 
damping function as an explicit function of damage: 

(53) 

where A 1 , A2 , and A3 are constants that must be input by the user as part of the material 
input definitions. Note that the constants A1 and A3 must sum to 1.0 in order for the damping 
function to be 1.0 when there is zero damage. By adopting the form of Equation (53) for the 
damping function, Equation (52) can be rewritten in terms of h(d) only: 

(54) 
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A plot of the damage function, g( a) as determined for compounds A and B [ 1] from a fit of the 
damping function, h( a) is shown in Figure 1. For a single "step" shear strain experiment, the 

BEGIN CRADA PROTECTION 

0.8 

0.6 

0.4 

0.2 

0.0 ~~~~~~~~__,__~~~--'--~~~----'--~~~__, 
-5 -4 -3 -2 -1 

LOG(dj 

Figure 1. Plot of Damage Function for Compounds A and B 

END CRADA PROTECTION 

damage, a, can be directly related to the norm of the strain tensor: 

0 

(55) 

3. Example Problems 
To demonstrate the performance of the material model, three sets of problems were analyzed: 
1) stress relaxation following single "step" strains, 2) stress relaxation following double 
"step" strains, and 3) cyclic pressurization of a rubber strip. The first two problems were ana­
lyzed and compared to experimental data collected by D. Adolf and reported in references 1 
and 2. The third problem was included as an illustrative example of how the model behaves. 
The temperature for all analyses was assumed to be 30°C. The JAS3D input definitions for the 
viscoelastic rubber material model are provided in APPENDIX A, and the state variables 
employed in the model are defined in APPENDIX B. 

3.1 Stress Relaxation Following Single "Step" Strains 

The original data for the damping function was obtained from single "step" strain experiments 
in which a shear strain was imposed as quickly as physically practical and the subsequent 
decay in stress was measured. Although the test is described as a "step" strain experiment, the 
strain is really applied as a rapid ramp. Since the finite element code must prescribe an actual 
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BEGIN CRADA PROTECTION 

Table 1. Material Properties for Filled, Green Rubber 

i Gi (dynes/cm2) 'ti (sec) 

C1 WLFCOEF 6.6 1 1.7563E+07 3.0637E-02 

C2 WLF COEF (°C) 150 2 2.1123E+07 2.7725E-01 

Tref (°C) 25 3 2.1200E+07 2.3679E+00 

~ 1 4 1.7805E+07 2.1083E+01 

11 (sec) 14080 5 1.2748E+07 2.1694E+02 

AK (sec) 14080 6 7.9129E+06 2.9641E+03 

Ao (sec) 14080 7 4.2505E+06 6.9033E+04 

K (dynes/cm2) 3.22E+10 8 2.1970E+06 6.4199E+06 

Vmax 0.49 

Eref 0.0001 

A1 0.85 

A2 471.4 

A3 0.15 

G 00 ( dynes/cm2) 0.0 

END CRADA PROTECTION 

ramp, the period of loading was assumed to be about 0.1 seconds. A list of the material prop­
erty values input into the JAS3D finite element code is provided in Table 1. Figure 2 contains 
a comparison between the computed and measured values of the decaying shear relaxation 
modulus for several different strain amplitudes. The 25% data was obtained and converted 
from the results of a Goodyear tensile test. The agreement is quite good. 

3.2 Stress Relaxation Following Double "Step" Strains 

The four double "step" shear strain experiments reported in references 1 and 2 also have been 
analyzed. For the finite element damage modeling, the "healing" relaxation times (i.e., 1..1 , 

"'K , and A, ) were reduced to a value of 200 seconds to match the values used in the analyses 
found in reference 2. Aside from this change, the material inputs were identical to those 
defined in Table 1. The four double strain "steps" were: 

1. 0.5%, 10 second delay, -1.0% 

2. 1.0%, 10 second delay, -1.0% 

3. 1.0%, 100 second delay, 1.0% 

4. 2.0%, 100 second delay, -0.5% 
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BEGIN CRADA PROTECTION 

9 ------~--......--.....-.....-........ -.---.-----,-.-.--.--.--.---,---, 

-N ... ... 
es 
~ 
G> 
C 
>­,::, 

ci 
01 
0 
..I 

-UnearData 
-0.2%Data 
-0.5%Data 
-1.0%Data 
-2.0%Data 
-25%Data 
--- Unaar FEM 
--- 0.2%FEM 
--- 0.5%FEM 
--- 1.0%FEM 
--- 2..0%FEM 
--- 25%FEM 

-........ _____ ........ 
6 ____ ..__...__.._.....__.__.__ ________ __.___.___.___.__ ____ _.. 

-1 0 1 2 3 4 
LOG(TIME,sec} 

Figure 2. Comparison Between Measured Shear Relaxation Modulus and Finite Element 
Model Predictions for Various Strain Amplitudes in Single Step Shear Strain 
Experiments 

END CRADA PROTECTION 

The above notation denotes the initial strain, the ensuing time delay before applying the sec­
ond strain, and finally the magnitude of the second strain. The second strain magnitude is 
specified as a relative strain (i.e., strain relative to the configuration attained following the 
imposition of the first strain). This means that in case 1 the total strain after the second step 
has been applied is actually -0.5%. In the finite element analyses, all strains were assumed to 
be ramped over a time period of 0.1 seconds. Hence, contrary to the simplifications that were 
made in the constitutive equations evaluated in reference 2 to obtain a solution to a mathemat­
ically pure step strain, the finite element analyses were based on finite ramps. The resulting 
stress histories predicted by the finite element damage model for cases 1-4 are shown in Fig­
ures 3-6, respectively. In these figures, the linear viscoelastic responses, the K-BKZ predic­
tions, and the data obtained from the Adolf experiments [l] also are plotted for comparison. 
Note that the entire computed stress history is plotted including the rise in stress generated by 
both ramps and holds. Data are shown only for the relaxation following the second strain step. 
A pronounced difference is seen between the nonlinear and linear predictions due to the 
apparent "softening" created by straining. The agreement between damage predictions and 
data is less favorable in the double step strain experiments than it was in the single step strain 
tests. Double step strain is a much more rigorous test of the model. The fact that this correla­
tion is not as good as the results reported in reference 2 is most likely due to the difference in 
loading rates (i.e., true step strain versus finite ramp). However, it is also worth mentioning 
that Equation ( 4) is slightly different than the corresponding equation reported in reference 2. 
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BEGIN CRADA PROTECTION 

6e+05 
-- Linear VE 

4e+05 
-- Damage 
---- K-BKZ 
-- Data 

- 2e+05 
$'I .. e 
~ Oe+OO 
Cl> 

Damage 

C ::,.. :s -2e+05 en en e -"' -4e+05 

-6e+05 

-8e+05 
-2 -1 0 1 2 3 4 

LOG (Time, sec) 

Figure 3. Finite Element Predictions and Data Obtained from Double Step Shear Strain 
Experiment: (0.5%, 10sec, -1.0%) 

9e+05 
-- Linear VE 
-- Damage 
---- K-BKZ 

6e+05 -- Data -i" .. 
E 3e+05 i 
Cl> 

~ Damage ,:, -0 Oe+OO ,-----Ill e Linear VE -en 

-3e+05 
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-2 -1 0 1 2 3 4 

LOG (Time, sec) 

Figure 4. Finite Element Predictions and Data Obtained from Double Step Shear Strain 
Experiment: (1.0%, 10sec, -1.0%) 

END CRADA PROTECTION 
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BEGIN CRADA PROTECTION 
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Figure 5. Finite Element Predictions and Data Obtained from Double Step Shear Strain 
Experiment: (1.0%, 100sec, 1.0%) 
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Figure 6. Finite Element Predictions and Data Obtained from Double Step Shear Strain 
Experiment: (2.0%, 100sec, -0.5%) 

END CRADA PROTECTION 
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It is also known that healing is not governed by a single relaxation time. In fact, a spectrum of 
relaxation times is needed to capture the observed behavior. This is an added enhancement 
that affects these results and should be considered for future development. 

3.3 Cyclic Pressurization of a Rubber Strip 

The final example involves the cyclic pressurization of a rubber strip. The basic geometry and 
boundary conditions for the problem are depicted in Figure 7. A rubber strip 25 cm long, 2 cm 

25 cm 

2cmt@ 

T T T T i T T ~ 
p 

---NS 
~ 4E+5 

er., 
~ 
i:: 
;;,-_ 

"O .,_,, 
0... 

10 20 30 40 

t (sec) 

Figure 7. Geometry and Boundary Conditions for Analysis of Rubber Strip Subjected to 
Cyclic Pressurization 

high, and 1 cm thick is clamped at the ends and subjected to a cyclic pressure load as noted in 
the figure. The maximum applied pressure (4.0E+5 dynes/cm2) is applied and removed in 
ramps of 10 seconds. The material properties for this analysis were assumed to be those 
reported in Table 1 with the lambda relaxation times reduced to 200 seconds. Contour plots of 
the maximum principal stress on the deformed mesh at times of 10 seconds (max pressure) 
and 20 seconds (after first unloading) are shown in Figure 8 and Figure 9. As seen in these fig­
ures, the rubber strip undergoes substantial deformations. The deformed shape with zero pres­
sure at 20 seconds into the cycle arises from the viscoelastic residual stresses generated by the 
cyclic loading and the unloading under a reduced (i.e., "damaged") shear modulus. A plot of 
the damage generated after the first load cycle is shown in Figure 10. The maximum damage 
is attained at the time of maximum load when the strains are greatest. For the deformations 
shown in Figure 8, the maximum bending strains (Ex and E2 ) are 20-25% and the maximum 
x-y shear strain is 31 %. At this level of damage, the material has reached the lower plateau in 
Figure 1 where g(d) is about 0.15. A time history plot of the maximum deflection at the center 
of the top of the rubber strip is shown in Figure 11. The ratchet-like behavior results from a 
combination of viscoelasticity and damage. Although the deformation cycle begins with the 
stiffness of the full shear modulus, the material quickly attains damage. Hence, the viscoelas­
ticity during the subsequent unloading and reloading is performed under the influence of a 
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SMAX (dynes/cm2) 
R = 0.00E+6 
B = l.25E+ 6 
C = 2.50E•6 
0 = 3.75£+6 
E = 5.00E+6 
f = 6.25£+6 
G = 7.SOE+6 
H = 8.75E•6 
I= !O.OOE+6 

e = - l.17E+6 
llE = 1 D .19E +6 

TIME 10.00 

L. 
Figure 8. Contour Plot of Maximum Principal Stresses on Deformed Mesh at 10 Seconds 

into the Pressure Cycle 

SMAX (dynes/cm2) 
A= -100.0E:+3 
B • O.OE+3 
C • 100.0E:+3 
D = 200.0E:•3 
£ = 300.0E:•3 
f = <\OO.OE+3 
G = 500.0E:+3 
H = 600.0E+3 
I• 700.0E:+3 

(!l -!93.7E•3 * = 738.SE:+3 

TIME 20.00 

L. 
Figure 9. Contour Plot of Maximum Principal Stresses on Deformed Mesh at 20 Seconds 

into the Pressure Cycle 
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DAMAGE 
A= 0.0000 
8 = 0.0600 
C = 0.1200 
0•0.1800 
E: = 0.2400 
f = 0.3000 
G = 0.3600 
H = 0.4200 

19• 0.0907 
lK• O.'IB 13 

TIME 20.00 

L. 
Figure 10. Contour Plot of Damage Parameter at 20 Seconds into the Pressure Cycle (After 

First Unloading) 
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Figure 11. Time History of Maximum Deflection at Center of the Rubber Strip 
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"reduced" (i.e., in K-BKZ terminology it would be called "damped") shear modulus. The 
resulting load deflection response for the beam can be seen in the pressure-deflection plot 
found in Figure 12. 
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Figure 12. Pressure-Deflection History in Rubber Strip 

4. Summary 
A version of the D. J. Segalman, K. Zuo, and D. Parsons damage model has been added to the 
JAS3D finite element code. Single and double "step" shear strain experiments have been ana­
lyzed and the model predictions have been compared to experimental results. As expected the 
correlation for the single step tests is better than that found in the double step strain experi­
ments. A possible improvement could be obtained by adding a spectrum of relaxation times to 
govern the healing of the damage function. At present, healing is governed by only a single 
relaxation time. The data seems to require a broader fit. 

Another logical extension of this work would be the extensions of the model to encompass the 
green-to-cure behavior [5]. 
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APPENDIX A 

JAS3D Inputs for VISCOELASTIC RUBBER Model 

Material Type 30: Viscoelastic Rubber 

Cl WLF COEF, C1 

C2 WLF COEF, C2 
WLF REF TEMP, T,ef 

BETA,~ 
REF VOL STRAIN, Eref 
I LAMBDA, "-i 
K LAMBDA, "-K 

D LAMBDA, "-n 
BULK MODULUS, K 
MAX POISSONS RA TIO, v 
Al DAMPCOEF,A1 

A2 DAMP COEF,A2 

A3 DAMP COEF, A3 
RUBBERY SHEAR, G00 

SHEAR 1, G1 

SHEAR 2, G2 
SHEAR 3, G3 
SHEAR 4, G4 
SHEAR 5, G5 
SHEAR 6, G6 
SHEAR 7, G7 
SHEAR 8, Gs 
SHEAR 9, G9 

SHEAR 10, G10 
SHEAR RELAX 1, -c1 
SHEAR RELAX 2, 't2 

SHEAR RELAX 3, 't3 

SHEAR RELAX 4, -c4 

SHEAR RELAX 5, 'ts 

SHEAR RELAX 6, -c6 

SHEAR RELAX 7, -c7 

SHEAR RELAX 8, -c8 

SHEAR RELAX 9, 't9 

SHEAR RELAX 10, t 10 
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APPENDIXB 

JAS3D State Variables for VISCOELASTIC RUBBER 

Material Type 30: Viscoelastic Rubber 

VOLEPS, volume strain 
AAVG, shift factor a(Tavg) 
EPSKl, x component of ~K 

EPSK2, y component of ~K 

EPSK3, z component of ~K 

EPSK4, xy component of ~K 

EPSK5, yz component of ~K 

EPSK6, zx component of ~K 

EPSI, e1 

DAMAGE,D 
SDCA YXl, x component of partial stress, §i, for Prony term i=l 
SDCA YY 1, y component of partial stress, §i , for Prony term i= 1 
SDCA YXY 1, xy component of partial stress, §i , for Prony term i= 1 
SDCAYYZl, yz component of partial stress, §i, for Prony term i=l 
SDCAYZXl, zx component of partial stress, §i, for Prony term i=l 
SDCA YX2, x component of partial stress, §i , for Prony term i=2 
SDCA YY2, y component of partial stress, §i , for Prony term i=2 
SDCA YXY2, xy component of partial stress, §i , for Prony term i=2 
SDCA YYZ2, yz component of partial stress, §i , for Prony term i=2 
SDCA YZX2, zx component of partial stress, §i , for Prony term i=2 

SDCA YXi, x component of partial stress, §i , for Prony term i 
SDCA YYi, y component of partial stress, §i , for Prony term i 
SDCA YXYi, xy component of partial stress, §i , for Prony term i 
SDCA YYZi, yz component of partial stress, §i , for Prony term i 
SDCA YZXi, zx component of partial stress, §i , for Prony term i 
BLKSCALE, bulk modulus scale factor 
GOFD, g(d) 

SHEAREFF, component of effective shear modulus 
AUGPRESS, Augmented Lagrange pressure increment 

(where i goes up to 10) 
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