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Strength Distributions and Size Effects for 2D and 3D
Composites with Weibull Fibers in an Elastic Matrix

Sivasambu Mahesh and S. Leigh Phoenix
Department of Theoretical and Applied Mechanics, Cornell University,
Ithaca NY 14853.

Irene J. Beyerlein
Structure/Property Relations, Los Alamos National Laboratory,
Los Alamos, NM 87545.

Abstract. Monte Carlo simulation and theoretical modeling are used to study the
statistical failure modes in unidirectional composites consisting of elastic fibers in an
elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and
3D composites, respectively. Failure is idealized using the chain-of-bundles model in
terms of J-bundles of length §, which is the length-scale of fiber load transfer. Within
each d-bundle, fiber load redistribution is determined by local load-sharing models
that approximate the in-plane fiber load redistribution from planar break clusters as
predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D,
respectively. Fiber elements have random strengths following either the Weibull or
the power-law distribution with shape and scale parameters p and o5, respectively.
Simulations of §-bundle failure, reveal two regimes. When fiber strength variability is
low (roughly p > 2) the dominant failure mode is by growing clusters of fiber breaks
up to instability. When this variability is high (roughly 0 < p < 1) cluster formation
is suppressed by a dispersed fiber failure mode. For these two cases, closed-form
approximations to the strength distribution of a §-bundle are developed under the
local load-sharing model and an equal load-sharing model of Daniels, respectively.
The results compare favorably with simulations on §-bundles with up to 1500 fibers.
The location of the transition in terms of p is affected by the upper tail properties
of the fiber strength distribution as well as the number of fibers.

1. Introduction

Quasistatic failure of unidirectional composite materials, which consist
of long aligned reinforcing fibers embedded in a matrix, is a complex
random process. This complexity stems from the occurrence of various
damage events preceding formation of a catastrophic crack, possibly
including fiber breakage, matrix yielding, matrix cracking, fiber-matrix
interfacial debonding, and fiber pull-out. Randomness, on the other
hand, arises from variability in geometric, constitutive and fracture
properties of the fibers, matrix and interface. Consequently the com-
posite strength becomes a random quantity so that nominally identical
specimens show statistical variation in their ultimate strengths.
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2 Mahesh, Phoenix, and Beyerlein

Randomness in a constituent (fiber or matrix) property does not nec-
essarily induce noticeable randomness in the corresponding composite
property. For instance, global composite stiffness is fairly deterministic
despite fluctuations in the local stiffness from material point to point as
these fluctuations tend to average out over a sufficiently large volume.
Composite strength, on the other hand, is largely determined by weak
extremes of local strength (typically over the size scale of 5 to 100
fibers), which can lead to propagating material instabilities. Thus, local
strength variability tends to persist through increasing size scale to
cause strength variability at the global scale.

Analytical or numerical determination of the strength distribution of
a composite structure, which reflects the full range of possible random
micromechanical failure phenomena, is presently infeasible for realistic
material volumes. Idealization of the local composite structure, con-
stituent properties and stress redistribution mechanisms is therefore
necessary. Sections 1.1-1.3 describe the idealizations made in this study
followed by Section 1.4, which describes relevant literature.

1.1. IDEALIZED COMPOSITE STRUCTURE AND FAILURE PROCESS

In idealizing the composite failure process we consider a composite con-
sisting of a parallel array of n stiff, brittle, elastic fibers of cross sectional
area Ay and length L, and embedded in a flexible, perfectly bonded,
elastic matrix. Two arrays are considered: a linear array forming a 2D
planar composite and a hexagonal array forming a 3D composite, as
shown in Figure 1. We assume a high fiber-matrix stiffness ratio so that
the fibers carry virtually all the tensile load. The composite is loaded
by applying a far-field, tensile stress o to the fibers so that total tensile
load is approximately no A¢. The matrix acts primarily to transfer load
locally from broken to intact fibers through shear. This is idealized in
terms of specific fiber load-sharing models in Section 1.2.

Variability is introduced by assuming that the fibers have random
flaws distributed along them. In our main model these flaws follow
Weibull-Poisson statistics. Thus, the strengths of individual fiber el-
ements of small length § are independent and identically distributed
(i.i.d.) random variables that follow the Weibull distribution

F(o) =1—exp{—(c/0s)’}, o >0, (1)

where p > 0 is the Weibull modulus or shape parameter and os is
the Weibull scale parameter. Accordingly the mean strength of a fiber
element is 05" (1 4+ 1/p) and the coefficient of variation (standard devi-

ation/mean) is \/F (142/p) /T (1+1/p)*® — 1. Except for very small p
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Figure 1. The two fiber arrays considered: (a) planar array and (b) hexagonal array.
The far-field stress applied to the fibers is o.

the mean differs very little from o45. Note also that small p corresponds
to large variability in fiber strength and vice versa.

By this model a length effect exists whereby o5 is related to the
fiber strength at a convenient test gage length Iy by o5 = oy, (lo/8)"/?
where 0y, is the Weibull scale parameter at /y. Later we take ¢ to be
a characteristic length of local fiber load transfer that depends on the
geometric and material constitutive parameters in the shear-lag model.
Thus o5 becomes a normalizing parameter for composite strength.

We also consider a variation on the Weibull distribution called the
power-law distribution

Fy(o) = {(%)p Hoso=o, 2

1 if o5 < 0.

Clearly as o | 0, F(0) ~ F,(c). Compared to the Weibull distribution
Eq. (1), however, Fy(o) limits the maximum fiber strength to os. In this
work we will compare results under Eq. (1) and Eq. (2) to understand
the role that exceptionally strong fibers in the Weibull distribution play
in §-bundle failure, especially when p is small.

When a moderate tensile stress is applied to a composite specimen,
fibers fail at random and the matrix surrounding each break serves to
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4 Mahesh, Phoenix, and Beyerlein

transfer the lost fiber load to neighboring fibers through shear deforma-
tion. This stress transfer tends to occur over a certain length scale, ¢,
which is of the order of a few fiber diameters. The resulting local stress
concentrations may cause neighboring fibers to fail without any further
increase in the applied stress. In turn, these new breaks may cause even
more breaks, and so on. After the formation of a certain number of
breaks, many in small transverse clusters of various sizes, the system
of fiber breaks may become stable. Then a small increment in applied
stress will be needed to induce new breaks, which may create even
more breaks due to increased stress concentrations. Eventually, after
some stress increment, the system of fiber breaks becomes unstable and
failure results from a cascade of breaks (possibly with cluster linking),
which forms a wandering transverse crack.

As has been common in the literature, we idealize this failure process
in terms of a longitudinal partition of m = L/§ transverse slabs or short
bundles of length 4, called §-bundles. The failure process within a given
d-bundle is treated as mechanically and statistically independent of that
in neighboring é-bundles. The composite is then treated as a weakest-
link arrangement of these J-bundles; that is, the composite fails when
the weakest d-bundle fails.

Modeling the failure process in a d-bundle requires the strength
statistics of its fibers of length ¢ as well as a model for redistribution
of stress from broken to intact elements, which we refer to as the
load-sharing model. This model should closely reflect the actual mi-
cromechanics of stress transfer around approximately transverse fiber
break arrays in a realistic mechanical model of the composite irrespec-
tive of partitioning it into J-bundles. Load-sharing models of varying
degrees of idealization that we use are described next. (Henceforth the
fiber elements within d-bundles will be referred to as fibers.)

1.2. FIBER STRESS REDISTRIBUTION AND LOAD-SHARING MODELS

The simplest load-sharing model is the equal load-sharing (ELS) rule
which we apply separately to each d-bundle. Under ELS, if a é-bundle
has n fibers and j fibers have failed, the load concentration factor on
each surviving fiber is s, ; = n/(n — j), while all failed fibers carry no
load. ELS is a reasonable assumption for a loose bundle of fibers (no
matrix) clamped uniformly at each end. However, when the fibers are
embedded in a matrix, the stress tends to concentrate on the intact
fibers closest to the breaks. Thus ELS is not a priori an accurate
mechanical description of stress redistribution at a composite cross-
section. Nevertheless, theoretical results under ELS will turn out to be
useful in interpreting dispersed fiber failure modes in a composite.
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To account for the localized nature of fiber stress redistribution,
local load-sharing (LLS) models have been devised, the simplest of
which we call the idealized local load-sharing (ILLS) model. In a 2D
planar composite, when fibers are broken within a given d-bundle, a
surviving fiber therein is assumed to have load concentration factor
K, = 1+ r/2 where r is the number of contiguous failed neighbors
counting on both sides. In this 1D rule, a failed fiber shifts half of
its load to the closest survivor on its left and half to the one on its
right; more distant survivors receive no load. In a 3D unidirectional
composite with fibers arranged in a hexagonal or square array, ILLS
applied to a §-bundle becomes 2D and load redistribution to nearest
survivors requires additional assumptions on assigning portions based
on the local configuration of failed fibers. For a large approximately
round cluster where all the lost load is redistributed onto the ring of
fibers around the circumference, K, = 1+ D/4 where r =~ nD?/4,
and thus, D has units yielding one fiber per unit cross-sectional area.
In reality, ILLS is too severe, i.e., the stress concentration on fibers
immediately adjacent to a break cluster is lower than ILLS assumes,
and the disparity increases with cluster size. Also, intact fibers more
distant from the cluster experience some overloading due to longer
range effects.

From a mechanics perspective, much more realistic load-sharing
models for §-bundles can be constructed from results based on shear-
lag analysis of stress transfer around single transverse arrangements of
fiber breaks in an infinite array of elastic fibers within an elastic matrix.
Such models have been developed by Hedgepeth (1961) for 2D planar
fiber arrays and by Hedgepeth and Van Dyke (1967) for 3D hexagonal
or square fiber arrays. In these models the axial fiber and matrix s-
hear stresses can be calculated at arbitrary locations in the composite.
However, we only make use of the fiber stresses calculated along the
transverse plane of the breaks, which reduces the resulting load-sharing
to 1D and 2D, respectively. Fibers within a d-bundle are treated as
though the calculated fiber loads apply uniformly over their full lengths
0. By these restrictions, the fiber overloading is monotonic, i.e., the load
in an intact fiber will be non-decreasing during the formation of new
breaks. We refer to the 1D load-sharing model derived from the 2D
case as Hedgepeth local load-sharing (HLLS) and the 2D model from
the 3D case as Hedgepeth and Van Dyke local load-sharing (HVLLS).

In the Monte-Carlo simulations of J-bundle failure we work with
complete numerical versions of 1D HLLS and 2D HVLLS. The stresses
are calculated numerically in every intact fiber for every arrangement of
breaks that occurs in the simulations. Fundamental analytical solutions
to the underlying shear-lag equations are coupled to a numerical weight-
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6 Mahesh, Phoenix, and Beyerlein

ed superposition method to treat each configuration as for example in
Beyerlein et al. (1996).

In developing probability models of the failure process, the above
approach unfortunately results in serious analytical difficulties that
require further idealizations to yield simpler rules for crucial config-
urations. In particular, only the stresses in intact neighbors adjacent
to certain idealized, contiguous break clusters are defined. In HLLS
a fiber next to an isolated group of r contiguous breaks is idealized
as having load concentration factor K, = y/1+ nr/4. In HVLLS the
load concentration on the fibers around an approximately circular clus-
ter of diameter D is approximated as K, = /1 + D/m where again
r =~ mD?/4. The square-root feature in terms of cluster diameter in-
dicates that these approximations are consistent with a continuum
fracture mechanics viewpoint. Section 2 elaborates on their basis.

1.3. COMPOSITE STRENGTH DISTRIBUTION AND MONTE CARLO
SIMULATION APPROACH

A key quantity of interest is the distribution function Gy (o) for 4-
bundle strength. By the weakest link formula and chain-of-bundles
assumption the strength of the composite of length L = md has distri-
bution function H,, (o) given simply by

Hpn(o) =1—[1-Gu(0)™, o >0. (3)

The key task is to determine G, (o) in terms of F (o) for fiber strength
and the load-sharing model for fibers in a J-bundle.

In our model and Monte Carlo simulations we will assume periodic
boundary conditions. Thus our 1D HLLS J-bundles will form a tube,
and under 2D HVLLS with hexagonal symmetry the simulation will be
on a rhombus patch with doubly-periodic boundary conditions.

The Monte-Carlo algorithm for simulating failure is described in
detail in Mahesh et al. (1999). In brief, to simulate the failure of a
single d-bundle, the first step is to assign numerical strength values to
each fiber as sampled from the fiber strength distribution, Eq. (1) or
Eq. (2). Then a load just sufficient to fail the weakest fiber is applied
to the J-bundle, and numerical stress redistribution is computed using
either HLLS or HVLLS. If the new fiber stresses exceed the strengths
of any other fibers then these too fail and stress redistribution for the
new configuration is computed. This iterative process of fiber failures
and stress redistribution is continued until either stability is reached or
the 0-bundle fails catastrophically. If it becomes stable, a load incre-
ment is applied to the §-bundle just sufficient to fail another fiber, and
the above process is repeated. Eventually, at some load increment, a
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cascade of fiber failures occurs as the d-bundle fails. The applied fiber
stress triggering the collapse is the strength of the J-bundle.

The Monte-Carlo algorithm involves repeating the above procedure
N (= 500) times for each (n,p) pair, yielding N individual é-bundle
strengths. The empirical strength distribution G, (o) is constructed by
plotting j/N against o) for j=1,... ,N where ;) is the strength of
the 5" weakest -bundle of the N simulated.

1.4. RESULTS AND INSIGHTS FROM PREVIOUS LITERATURE

Statistical modeling of the composite failure process has a long histo-
ry. Pioneering work using the chain-of-bundles framework was carried
out by Gucer and Gurland (1962), Rosen (1964) and Scop and Ar-
gon (1967), all using an ELS approach to d-bundle failure based on
work of Daniels (1945) and Coleman (1958). Zweben (1968), Scop and
Argon (1969), Zweben and Rosen (1970), and Argon (1974) pursued
LLS approaches to d-bundle failure variously building on the work-
s of Hedgepeth (1961) and Hedgepeth and Van Dyke (1967). These
works not only initiated the discussion of dispersed versus localized
cluster modes of fiber failure but also served to uncover the enor-
mous difficulties in performing probability calculations. Harlow and
Phoenix (1978a; 1978b; 1981), Smith (1980; 1983), Smith et al. (1983)
and Phoenix and Smith (1983) simplified LLS to ILLS to capture
the essence of localized fiber stress redistribution yet allow tractable
analysis. Some of the large-p asymptotic results were also developed
by Batdorf (1982) and Batdorf and Ghaffarian (1982) under relaxation
of the chain-of-bundles and ILLS assumptions. This served to point
out the robustness of the chain-of-bundles assumption as a means of
capturing the crucial step of transverse evolution of failure clusters up
to instability.

More rigorous analytical treatments for d-bundles under 1D ILLS
have also been carried out. See for example Kuo and Phoenix (1987),
Harlow and Phoenix (1991), Leath and Duxbury (1994), and Zhang
and Ding (1996). Other works such as those by Manders et al. (1982),
Goda and Phoenix (1994), Beyerlein and Phoenix (1997a; 1997b) and
Mahesh et al. (1999) have used Monte Carlo simulation interpreted
by approximate probability calculations to treat §-bundle failure under
more realistic HLLS and HVLLS models. A full 3D failure simulation
under a special version of HVLLS for square fiber arrays and avoiding
the chain-of-bundles assumption was carried out by Landis et al. (2000).
A lattice-based variation of HVLLS that also incorporated fiber slip
and pullout during failure was developed by Ibnabdeljalil and Curtin
(1997). An FEM-based, Monte Carlo model that also considered inter-

iter22.tex; 7/02/2001; 12:28; p.7



8 Mahesh, Phoenix, and Beyerlein

facial debonding was recently developed by Goda (1999). Overviews of
relevant literature have been published by Curtin (1999) and Phoenix
and Beyerlein (2000a).

The most important early work for ELS bundles (applied here to
d-bundles) was due to Daniels (1945) who showed that as the number
of fibers n increases, the distribution for the strength of a bundle con-
verges to a Gaussian or normal distribution with a fixed asymptotic
mean, and a standard deviation that decreases as 1/4/n. As Smith
(1982) and McCartney and Smith (1983) showed, the convergence of
Daniels’ Gaussian approximation to the true distribution is slow with
an error approximately proportional to n=1/6. By developing explicit
corrections to the mean and variance that were proportional to n=2/3,
they obtained dramatic improvements to the Gaussian approximation
that worked well even for bundles with as few as five Weibull fibers.
These accurate results will form the basis for interpreting the dispersed
fiber failure mode in our Monte Carlo simulations when p is small.

Harlow and Phoenix (1978a; 1978b) observed numerically that 1D
ILLS 4-bundles with Weibull fibers obey weakest-link scaling beyond
a certain size n. In particular, their strength distribution function,
G (0) behaves such that W, (o) =1 — [1 — Gy, (0)]"/™ rapidly becomes
independent of size n, converging as n — oo to a characteristic distri-
bution function W (o). This distribution embodied the key aspects of
the localized statistical failure process. Phoenix and Smith (1983) gave
a simple formula for constructing an accurate estimate of W (o) when
fibers have modest to small strength variability (larger p). Beyerlein and
Phoenix (1997a; 1997b) observed from Monte Carlo simulations that
d-bundles under a full implementation of 1D HLLS also show weakest-
link behavior, and they developed an expression for W (o) that matched
very well its empirical counterpart, Wi, (o).

1.5. OUTLINE OF THE PAPER AND MAIN RESULTS

In the next section we describe the governing equations and main re-
sults for the shear-lag models for fiber breaks in planar and hexagonal
arrays of fibers. The former forms the basis for 1D HLLS and the latter
for 2D HVLLS used in Sections 3 and 4. Section 3 summarizes the
Monte-Carlo simulation results using the framework in Mahesh et al.
(1999), and makes connection between the dominant failure mode in
a d-bundle, i.e., cluster growth for large p and dispersed fiber failure
for small p, and the behavior of its strength distribution. In Section 4,
we study the cluster growth failure mode and derive results for the
distribution function for composite strength in terms of a characteristic
distribution function W (o) for which we develop closed-form approxi-
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Strength Distributions and Size Effects for Composites 9

mations. We also develop results under the power-law distribution for
fiber strength and through comparison to those under the Weibull case,
as p decreases, we gain insight into the effects that a few extremely
strong fibers can have on the results. We also develop expressions for
the critical cluster size and size effect for composite strength. Section 5
focuses on the dispersed failure mode observed in the HVLLS and
HLLS simulations for small p, and uses results on ELS §-bundles to
form tight lower bounds on the failure probabilities. Section 6 presents
some analysis giving insight into the effects of p on probabilities and
patterns of cluster growth. The final section draws connections to other
work and summarizes insights achieved in the present work.

2. Load-Sharing Models for j-Bundles

We now elaborate on the basis for the local load-sharing models used in
the failure of §-bundles, earlier referred to as HLLS and HVLLS. The
description covers both numerical implementation and simplifications
needed for analytical probability modeling.

2.1. SHEAR-LAG MODEL FOR A 2D PLANAR FIBER ARRAY: BASIS
FOR HLLS

The shear-lag model for a 1D transverse array of breaks in a 2D planar
fiber array was first studied by Hedgepeth (1961). In the model, fibers
are assumed to deform in simple tension and the matrix deforms in
simple shear. The fibers are loaded uniformly at z = 00 under tensile
stress o, where z is distance along the fiber direction away from the
central transverse plane where breaks are located. We let Ff be the
fiber tensile modulus, and G, be the matrix shear modulus and assume
FE¢ > Gp,. Each fiber has cross sectional area Ay, the effective matrix
width between the fibers is w, the matrix thickness (perpendicular to
the plane of the fibers) is h, the center-to-center fiber spacing is d and
the fiber volume fraction is V;. A simple case is to assume h is also the
main fiber cross-sectional dimension. Then A; ~ h%, d ~ w + h, and
A, = wh, where Ay, is the cross sectional area of the matrix between
two fibers. Thus the fiber volume fraction is Vy = A¢/(As+ Am) = h/d.
Though exact for fibers of square cross section, these relations are useful
approximations for circular fibers with radius r¢ = h/2. To simplify the
discussion, all cross-sectional dimensions will be viewed as approximate,
and our primary interest will be in the effects of fiber fractures at a
length scale greater than the fiber diameter.

We ignore the part of the applied load carried by the matrix in
tension, as well as matrix tension effects in the stress transfer process.
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10 Mahesh, Phoenix, and Beyerlein

At the breaks we view the matrix as severed in the plane of the breaks
and ignore any local singular-like stress concentrations in the fiber at
a scale smaller than the fiber diameter. Many matrices locally yield
rather than support such stresses. Unless V; is small, ignoring matrix
tension has little effect on stress transfer.

We let 0,,(2) and uy(2) be the stress and displacement, respectively,
in fiber n at location z along the fiber, where —oco < z < oo and
ne€(..,—2,-1,0,1,...). In matrix bay n between fibers n and n+1,
the effective shear force per unit length ¢,(z) is given by

() = T 1(2) — un(2). @

The effective shear stress 7,(z) and shear strain v, (z) follow
™ (2) = Gmn(2) = qu(2)/h. (5)
Hooke’s law for the fiber gives

oulz) = B2, )

and equilibrium of forces on a fiber element leads to

2, (2
d dZ2( ) + Ggh(unH(Z) — 2up(2) + up—1(2)) = 0. (7)

EiAf

The boundary conditions are o,,(z = £00) = o for all fibers, ,,(0) =0
for the r fibers assumed to be broken on the z = 0 plane and u,(z) =0
for all intact fibers. We normalize the various quantities above using

P, = oy, /0,
Un = (un/0)(Et/0),
Tn = (hd/Ar)(1a/0), (8)
Lp=Unt1—Up= (’YVLGm/U) (hd/Af)’
f = 2:/(5,
where ¢ is the length scale of load transfer given by
6 = \/(EtArw/(Gmh) = \/Ar(Et/Gr) (w]h). 9)
These normalizations yield a non-dimensional Hooke’s law
_dUL(§)
Pa(e) = S5, (10)
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Strength Distributions and Size Effects for Composites 11

and a non-dimensional system of equations

d*Un(€)

—gz +Una(©) = 20n(€) + Un-1(6) =0, (1)

with normalized boundary conditions

P (tx) =1, —co<n<o
P,(0) =0, on all r broken fibers, (12)
U,(0) =0, for all other fibers.

For a single break at n = 0 and z = 0 this set of equations can be
solved for all z using discrete Fourier transform methods. This leads
to influence functions for the effects of a single break on stress and
displacements at all fiber and matrix locations. An arbitrary array of
multiple breaks lying within a single plane can then be handled using
a superposition of influence functions translated to the actual break lo-
cations and appropriately weighted to satisfy the boundary conditions.
This operation requires numerically solving an r X r matrix equation
where r is the number of breaks'. In the Monte Carlo simulations of
d-bundle failure, we use this method to numerically calculate the fiber
loads for all break arrays that occur. A similar approach was used in
Beyerlein et al. (1996) and Beyerlein and Phoenix (1997a; 1997b). This
constitutes the 1D load-sharing model called HLLS.

In the probability analysis for HLLS under large p we use accurate
approximations to the load concentrations due to an isolated cluster
of r contiguous fiber breaks in a single plane, or r-cluster. Specifically
we want the peak load concentration factor (at the z = 0 plane) on
the nearest neighbor, denoted K,. We also want the load concentration
factor K, ; on fiber number s ahead of an r-cluster. Some results due
to Hedgepeth (1961) and Hikami and Chou (1990) are reviewed in
Beyerlein et al. (1996) and approximations were developed there using
Stirling’s formula. The approximations

Krz,/%ﬂ, (13)

(14)

and

K’I‘SzK’I‘ 71'(5—1)"'].’

! This method works for the more general problem in which the breaks do not
lie within a single plane (Beyerlein et al., 1996). In that case numerical integration
is required in evaluating the influence functions. In our case of aligned breaks the
influence functions are simple expressions.
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12 Mahesh, Phoenix, and Beyerlein

are minor improvements on theirs, which are extremely accurate even
for small r. For larger clusters the latter result is only useful for s within
about r/4 of the cluster edge, at which point the stress concentration
reaches the far-field value, unity, as seen in Beyerlein et al. (1996). Note
also that for the fiber subadjacent to the last break of a large r-cluster,
the load concentration is about one-half the value on the adjacent fiber.

2.2. SHEAR-LAG MODEL FOR A 3D HEXAGONAL FIBER ARRAY:
BASIS FOR HVLLS

In a 3D hexagonal array of fibers, as considered by Hedgepeth and
Van Dyke (1967) and shown in Figure 1, similar ideas apply as in the
previous section. The fibers are identified by the index pair, (m,n)
corresponding to axes in the transverse plane with included angle /3
radians. All displacement and stress quantities have subscript (m,n)
to replace n in the planar case and the normalizations are the same.
The main change relative to the planar fiber array is that the non-
dimensional differential equation for the dimensional displacement w,, ,
of fiber (m,n) becomes

&? U(m,n) (5)

de + (U(m+1,n) (f) + U(m,n+1)(£) + U(mfl,n) (5)

+ Upms1,0-1)(€) + Upm—1,041)(€) = 6U(mmy(€)) = 0.
(15)

Thus, six interfiber couplings exist for each fiber instead of two as in
a planar array. The boundary conditions are similar to those given by
Eq. (12) except the break array is 2D. The numerical implementation
in calculating the fiber stresses is also similar. This constitutes the 2D
load-sharing model called HVLLS.

In the probability analysis for HVLLS under large p we use accurate
approximations to the load concentrations due to an isolated cluster of
r contiguous fiber breaks in a single plane, or r-cluster. We focus on
the stress concentrations around a penny-shaped r-cluster. First we
define an effective fiber spacing d and a dimensionless diameter D of
the penny. The effective fiber spacing is chosen so that there is one fiber
per unit cross-sectional area. In a hexagonal array, one fiber and matrix
unit occupies area, V3d 2 /2 where d' is the center-to-center fiber spacing
so that d = (v/3/v2)d’ ~ 0.9306d'. We define D such that r = 7D?/4
so that the effective cluster diameter is Dd. The fibers surrounding the
r-cluster are subjected to the “effective” stress concentration

D 27
KTN\/?H_\/WH. (16)
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Strength Distributions and Size Effects for Composites 13

For the decay of the stress concentration with distance we find
Ky
V(s =1)+1’

is a reasonable approximation, where s is the number of effective fiber
spacings d (not necessarily an integer) a fiber is away from an effective
cluster radius R = (D —1)/2. For larger D this result is only valid for s
within about D/10 of the edge of the cluster, beyond which the stress
concentration drops very close to the far-field value, unity. See Mahesh
et al. (1999) and Phoenix and Beyerlein (2000a) for elaboration.

Ky s = (17)

3. Failure Mechanisms in §-bundles

We now describe certain qualitative trends observed in the Monte Carlo
simulations of J-bundle failure. The observed failure mechanisms ap-
pear to play a fundamental role in determining the behavior of the
strength distribution. The cause and effect relationship seems clearest
when viewed in terms of the variability in fiber strength through p.

3.1. SMALL VARIABILITY IN FIBER STRENGTH (LARGE p)

For p = 10, snapshots of the damage evolution en route to -bundle fail-
ure in median (N = 500) 2D and 3D specimens are shown in Figures 2
and 3, respectively, where the boundary conditions are periodic. In each
figure, the last stage corresponds to the pattern of breaks immediately
after the formation of an unstable configuration and before collapse.
We separately label the first fibers to fail after the point of instability.
Since the boundary conditions are periodic a break cluster appearing
at one edge (side or top) may be continued on the opposite edge.

When p is large (low variability in fiber strength), the tendency
to form break clusters and propagate them appears to be the domi-
nant failure mode (Figures 2 and 3). As breaks form under increasing
applied load, they overload their neighbors more intensely than more
distant fibers. The probability of failure of a neighbor is thus enhanced
since the neighboring fibers are unlikely to be much stronger than the
broken fiber. This leads to the formation of a cluster of breaks, which
in turn imparts even larger stress concentrations on its neighbors and
the cluster therefore propagates with increasing probability as it grows.
Eventually the cluster becomes unstable and fails the composite.

As mentioned, Harlow and Phoenix (1978b) observed that the strength
distribution of a composite with a cluster-forming failure mode lends
itself to weakest-link scaling analysis. They found that the cumulative
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Figure 2. Snapshots of the failure process in median strength (N = 50) 1D d-bundles
with 30 Weibull fibers for p = 10 and periodic boundary conditions. () intact fibers,
X broken fibers and () first fibers to fail after instability.

distribution function for the strength of a é-bundle under 1D ILLS has
the form

Gu(o)1—-[1 =W, >0, (18)

when the bundle size 7 is larger than a certain critical size, where W (o)
was earlier called the characteristic distribution function. The threshold
for n turns out to be the critical cluster size k(o) for instability in the
d-bundle, being approximately defined by Ko = oy.

Using Weibull coordinates, we have plotted in Figure 4 the empirical
weakest-link distributions

Wo(o) =1—[1—Gp(0)]'™, o>0, (19)

obtained from our Monte-Carlo failure simulations of the empirical
distribution function for é-bundle strength, G,(c), under 1D HLLS.
For p > 1 the Wn(o) curves for n = 225, 625 and 900 collapse onto
one characteristic curve W (o), but not for p = 1/2. The plotted re-
sults suggest that the cluster growth failure mode is active for p > 1.
From the d-bundle failure stresses observed in the simulations, rough
estimates of the corresponding critical cluster sizes k are obtained from
solving Ko = oy, using Eq. (13). In all cases k is at least an order of
magnitude smaller than the size of the smallest bundle n = 225. For
p = 1 it is less than 15 and is about 10 for p = 3. This suggests that
Eq. (18) applies for the d-bundle stress and size range shown, which is
significant since it gives a size scaling for the strength distribution in
terms of n. Figure 4 also shows a reversal in the weakening trend as p
decreases from 10 to 1 to a strengthening trend as p decreases below 1.
The latter is due to very strong fibers from the upper tail of the p = 0.5
Weibull distribution, which is examined further in Section 3.2.

For 2D é-bundles under HVLLS, empirical weakest-link distributions
Wi (o) are shown in Figure 5, and a similar collapse to W (o) is seen for
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Figure 3. Snapshots of the failure process in median strength (IV
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é-bundles with 900 Weibull fibers for p = 10 and periodic boundary conditions.
Q intact fibers, X) broken fibers, and () first fibers to fail after instability.

p = 5 and 10. For p = 2 and 3 the collapse is less sharp than in 1D, and
it worsens rapidly as p is decreased further. For 0 < p < 2, analysis
of the critical cluster size k from solving Kyo = o4, using Eq. (16),
shows that k approaches the size of the smallest bundle. Thus the
lack of collapse of the W),(o) curves to one master curve W (o) does
not necessarily imply that cluster growth dominated failure no longer

dominates, an issue we revisit later.

For larger p, the strength distribution for §-bundles under 2D HVLL-
S is governed by the lower tail of the fiber strength distribution, as is
seen by considering two modified Weibull distributions,

if 0 <o < oy,
ifos <o,

(20)
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Figure 4. Weakest-link scaling phenomenon in 1D §-bundles. The empirical weak-
est-link distributions, W, (¢), for sizes n = 225, 625 and 900 collapse onto one master
distribution, W (o), for p > 1 but not for p = 0.5. Also shown is the characteristic
distribution function, W (o), from the cluster growth model in Eq. (40).

and

0 if o <0,
Flo)=q1-1/e if0<0 <oy, (21)
F(o) if o5 <o,

where F(o) is the original Weibull distribution, Eq. (1). The former
reduces the strength of all fibers stronger than o; to exactly o5 in
the original Weibull distribution, and the latter weakens or pre-breaks
to zero strength all fibers weaker than os5. The simulation results in
Figure 6 show that the §-bundle strength distribution produced by F(o)
agrees nearly perfectly with that due to the original Weibull F (o) but
the same is not true of F (o) where a large strength reduction occurs.

3.2. LARGE VARIABILITY IN FIBER STRENGTH (SMALL p)

When p is small (large fiber variability), the cluster-driven breakdown
mechanism is subdued by a dispersed failure mode in a é-bundle. This
is seen in snapshots of the fiber failure sequence in 1D HLLS and 2D
HVLLS 4-bundles for p = 1, as shown in Figures 7 and 8, respectively.
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Figure 5. Weakest-link scaling phenomenon in 2D §-bundles. The weakest-link dis-
tribution, Wy (o), for composite sizes n = 225, 625 and 900 appears to converge onto
one master distribution, W (o), for p > 1.

A qualitative explanation for this is that the tendency to form and
grow clusters is suppressed by the tendency to form breaks dispersedly,
thereby undermining the ability of any one cluster to propagate. In-
stead, bundle failure results from the coalescence of small clusters and
dispersed breaks. Thus, when the fiber strength variability is large,
clusters of fiber breaks are less likely to propagate due to the presence
of occasional strong fibers that impede growth. Also, many weak fibers
fail under small applied loads causing the initial dispersed patterns.

Despite the dispersion of breaks in the failure mode of the 1D
d-bundles (Figure 7) with 30 fibers, there is convergence to a char-
acteristic distribution W (o) for sizes exceeding n = 225 (Figure 4).
This suggests that fiber breakage, despite beginning dispersedly ap-
proaches clustered growth after a certain number of dispersed breaks
have formed. This aspect will be revisited later.

To gain further insight into the behavior of the empirical distribution
function for é-bundle strength, én(o), for small p, we have plotted
G (o) in Figure 9 under all three types of load-sharing: 1D HLLS, 2D
HVLLS and ELS (equal load-sharing) as described in Section 1.2. The
d-bundles all have n = 900 fibers, and normal (Gaussian) coordinates
have been used for plotting since the strength under ELS, a truly
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Figure 6. Dominance of the lower tail of the Weibull fiber strength distribution in
determining J-bundle strength for 2D HVLLS and larger p as seen from agreement
between simulations for F'(¢) and the original F(o) for p = 3 and 10.

dispersed failure mode, is very close to Gaussian (i.e., a straight line).
As p decreases, the strength distributions for all three types of load-
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Figure 7. Snapshots of the failure process in a median strength (N = 500) 2D HLLS
d-bundle with 30 Weibull fibers and p = 1 under periodic boundary conditions. O
intact fibers, (X) broken fibers, and () first fibers to fail after instability.

iter22.tex; 7/02/2001; 12:28; p.18



Strength Distributions and Size Effects for Composites

00000®00000000000RORO000000000
0®00000000000000000000®0RO000®
®0000800000®®00000000000R00R00
®00®000000R000®OORO00000RO0000
0000®00®000000R0R0000R0000RR0®
0®00000®000®0®00®0000000R0000®
000®®000®00000®000®000®0000000
0000000®0000®0000000R0V0RO0000
00®0000®0000000®0000®R®00000000
000®O0®O®0000000®00RO0ROV00RO000
000®O0®00000000®®0000R000000000
®000000000®0000000®000000R000®
®®00®0®®000008®®0R0000®0000000
000008®0000000000000®000000R00
®000000000®00000®0000000000R00
0®000000®®®®O00000000R000RO00R0
00®000000000®0000000000BRO0000
000®O0BO®®00®00000RORO0®0000000
®00®000®0000R00®00000000000008
®000000®®0008®®00R000000008R00
®®00®0000000080®0R0RO000R00LO®
®000000000000®0000000R0BRVO00®
000®000000000000R00RO00VORRO00®
000®0000000000R®0000RO000000000
0®0RO00®0®®O00000®000R0VORO0000
000000000®RO0RROVORVORO000®0000
0000®80R00RVRO®VOR®O0000000008
®®®00000000008®®®0®O00000000000
0®0000000®00R00®000BROV0000000
000000000000000®0RBRROV®0000R00

II

00000®00000000®ORRO®O000000000
0®®0000000RO0®®O000000RRRO00®®
®®000®0000R®®O00®®O000000R00®0O®
®00®000000RO000®ERRO00000RO0000
0®00®O00®O0000®®ORO000®0000B®OR®
0®00000®000®OR®00RO000R00R®O00®
0®O0®®O00®00000®000®000ABO00®00
00®0000®O000®O00000®®OROB®O000
00®O®O0O®O000000®O00®®®O0000000
00RB®®O®0000000ARO®OB®OROR®O00®
0®O®®®00000000®ERROO®000000®00
®000®®0000R0000ERB®O00000®00®®
®R00®EEEEORO0®E®®OR000®®00®0000
0000®®®000000®00RO00®000000®00
®000000000®O®O00®O00000000®®00
0B®O0O0®EEOERA®O®0000®O®000RO00®0
00RB®O®®O000®O®00000000RBOO®00
000RO®EE®OO®O0000RO®O®O®O000000
®00R®000®A®O0®O0®ORO00000000R0®
®000000®®000®®®O0RO000®000®®00
®®00®00®000000RERRO0V0000R00LO®
®000®00000R00R00RRO0VVOBRVORO®
00®®000000000000R00R00VBRVO00®
0®OB®O®O00®O000®O000®O00000®O000
0®OB®O®O®RO000®A®O00®O®O®O0000
000000000RBO®EOERR®O®0000®0000
0000®®O®O0R®®OO®ROB®O00000000®®
®®®0000000000®®E®O®O0®O000000®
0®O®O0000ROOB®O®RO00®®O®®O000000
000®0000®RO00®OROR®O®O®O000®®O

19

I11

00000®0®000000R0RRORO000000000
0®®0000000R00®®0000000VBRO00V®
®®00080®00R®R00O®0000000RVVR0®
®00®000®00R000OBRO000VORO0000
0®00®00®®R000®R0R0000R0R00R0®
0®00000®®00®0R00RRO00VV0RVRVO0
0®0®®000®0000R00RVROVAVO00B®O0
00®0000®0000R00000VRROV0RVO000
00®0®R®0®00000008R0VRRR®00RO0000
00®R®RO0®0000R00VR0VRROV0RVOR0®
0®0®®®0000000PE®RO0®000000R00
®000®8®000R0R00VVRVO00V00RR0V®
®00000RRE0R0VEV0R0VOVV00R0R00
0000®8®®®0000R00BROB®000000R00
®000080000R0R000VROBR0000BRRVO
0®00®RR0ORRVO®0000B0R000ROBO®O
00®REO0®®0000R0R00RVVRVOBRVOVO0
®00R0E®00V0R000RVRROV0000000
®ORR000VOVRO0VO®OORO00000008R0®
®000000®®0008PARRO000V0ROBR0O0
®®00®00®000000RORR0V00VIVRVVOO
®®00®00000R00Q00RR00VVOVRVVOO
®0®®0®00000000008R0ROVIVRVVLO
0®0®0B®000RO0®ROR®000®RO00000R0R00
0®0R®O0R0OVOVO00®O®O00R0V0RO0000
00000000080V RVOR0000®0000
0000®80R00RVROVAVRVO00000R00®®
®@®000®®000000OR0VRO0RV000BR00®
®00R0R0®R00R0RV00VRRR®V0000008
000®0000®RROVRVVORVVROVORO0R®0

v

00000000 RROO00000®O®00
0®RO®E00ERAO0®®0000000ERRAOEO
®EREO0EEE00ROO00®R0000000BOOE0®
®00REEEEORR00EEEA®O0000®0R00®00
0®00P0EEERAO00EEOR00B0EER00OO0®
0®B000EEE00P00ORRO000OA0ROO00O
0000000000000V O®0
00®0®O00®0000®00000AEEEAOB®OO®0
00RO0EEEO000000EROAEEEE0BAO0®0
0eREEE0R0E0AE00EROAEEEE0RO0OO
®EREEEE000A00EEERR00EEER00OO®0
®000®EE0RER0O0EEREO000AR0OB0®
®R00PEEEEORAEEEERR0OEEE0BO0O®0
©RO0REEEEE0R00ER0RRO0OE®0000®O®00
®00®®O0000RA000RR0OO0000BOO®0
0PROPEEEEREOO®0000®000RAOO0®0
00REEEEE0000H0RE0REEEEORAO0O®0
®R0PEEEEE00P0E00EREEE0ORBOO000
©0RREEEEEEEOE0OO0R00000000O0®
®0B0000EE0R0EEEERRO0A00O0R0OOO0
©98000000000000ORR0R00VVROOOOO
©900000000R0000RR0LER0VROOOO
©98@000000000000R0LORREOOO
0®0®O0B000REEOR000®OO0000®0B00
0®0REOEOERO®O00OERO00®0®0B000006
00R000000REEEE0EREOOO®0000®0B0d
0000®E0R00REE0EEREOO00000B00®d
®EREO0EEEE0000EEEREOO0O000®O00d
®e0REO0EEER00O0EE0ROOEO®0000000
[oY-JoL- YooY oY o - Y- oYY X Y- Y- Yo - Y- Y- X Y- Y- Yo - YoYoX Y- Yo}

Figure 8. Snapshots of the failure process in a median strength (N = 500) 2D HVLL-
S é-bundle with 900 Weibull fibers and p = 1 under periodic boundary conditions.
O intact fibers, (R) broken fibers, and () first fibers to fail after instability.

sharing converge. For 2D HVLLS the convergence is virtually complete
for p = 1 and for 1D HLLS, the convergence improves dramatically
between p = 1 and p = 1/2, though it is not quite complete even at
p = 1/2. Remarkably, as p decreases, the details of the load sharing
mechanism diminish in importance in determining the strength distri-
bution. Also, the ELS strength distribution acts as a lower bound on
the HVLLS distribution, becoming tight as p becomes small. It is an
open question whether ELS bundles always have lower probability of
failure than LLS bundles, as p decreases further.

Two cautionary points should be made. First, although the distri-
butions for §-bundle strength under HLLS and HVLLS approach those
for ELS, the patterns of fiber breaks in terms of cluster sizes are not the
same whereby ELS shows more dispersion. Second, if the bundle size
n were increased by orders of magnitude, the reduction in variability
for ELS is roughly 1/4/n, whereas for HVLLS and HLLS it may be
milder. In fact, HVLLS and HLLS may ultimately produce slightly
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Figure 9. Comparison of empirical strength distributions, én(a), for 900 fiber
d-bundles under ELS, 2D HVLLS and 1D HLLS on normal (Gaussian) probability
coordinates.

weaker bundles than ELS since the scale of load-sharing over groups of
fibers may be more limited than in ELS. Thus the large §-bundle may
act more like a chain of smaller d-bundles, each roughly following ELS.
We revisit this issue in Section 5.

For 2D HVLLS é-bundles, when 0 < p < 1, the strength distribu-
tion is dominated by the upper tail of the fiber strength distribution
within the range of our simulations. In Figure 10, we compare the
strength distributions produced by the upper and lower tail-modified
Weibull distribution Egs. (20) and (21) against those produced by the
original Weibull distribution, Eq. (1). As p decreases, the upper tail
dominance increases as the behavior becomes insensitive to the lower
tail suggesting that cluster propagation is stalled by occasional strong
fibers. This is the opposite to that seen in Figure 6 for larger p. Further
investigation of this issue is considered in Section 5.

4. Analysis of Composite Strength Distribution for Large p

We now develop closed-form analytical approximations to the charac-
teristic distribution function W (o) using a cluster growth approach as
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Figure 10. Dominance of the upper tail of the Weibull fiber strength distribution
on the empirical characteristic distribution function, W (o), for §-bundles with 900
fibers and p = 1 and 1/2. Shown are the original Weibull F(s), F(o) with strong
fibers reduced in strength, and F'(o) with weaker fibers reduced to zero strength.

originally described in Smith (1980) and Phoenix and Smith (1983).
The importance of this result is that the distribution function for the
strength of a large composite with n fibers of length L becomes

Hyn(o)=1—[1-W(o)™

~1—e M) o >0,

bl

(22)

where m = L/§ is the number of é-bundles in the composite. Notably
the resulting probability depends on the composite volume mn.

4.1. CHARACTERISTIC DISTRIBUTION W (o) UNDER 1D HLLS

To derive an approximation to W (o) in the case of 1D HLLS we model
d-bundle failure as a cascade of fiber failures. To begin, we approximate
the probability such a cascade occurs, starting with the failure of a given
fiber. The structure of such an event is that under stress o, a given fiber
fails, and its two immediate neighbors then suffer stress Kjo, of which
one fails. The pair of breaks formed causes one of the two adjacent
overloaded neighbors to fail under stress Koo, the resulting triplet then
fails one of its two overloaded neighbors under stress Kso, and so on
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until all n fibers have failed. Thus, W (o) is approximately
Wi(0) = F(o){1 - [1 - F(K10)?H{1 — [1 — F(K20)]*}
{1-[1 - F(Kn-10)"}

(1o [ () THT {2 (52) )

r=1

(23)

where K, is the stress concentration on the two fibers next to an r-
cluster as approximated by Eq. (13), and F(o) is given by Eq. (1).

Simplifying assumptions are made in writing Eq. (23). First, only the
failure of the fibers adjacent to an r-cluster are considered. Failure of
fibers further away is ignored even though such fibers are overloaded.
This is justified because, as r becomes large, the fibers neighboring
the cluster carry twice as much load as the fibers sub-adjacent to it,
according to Eq. (14). Thus for large p, the probability of failure of a
sub-adjacent fiber without the failure of the adjacent fiber is negligible.
Second, the formula assumes that fibers next to the cluster are virgin.
In other words, in evaluating the probability of failure of an overloaded
fiber at stress Ko, the event that it survived a lower stress Ko, j < ris
ignored. While the first assumption decreases the calculated probability
of failure relative to the true one, the second assumption increases it.
For large p, the errors thus committed are negligible.

While Eq. (23) can be used directly to estimate W (o) numerically
for larger n, it is more illuminating to have a functional form for W (o)
independent of n. We now derive such an approximation especially
applicable in the lower tail (smaller o/os). When K,o < 05 we have

e[ 2 ()2 (50 - (50) ] e

This simplification is inaccurate when K,o becomes comparable to o.
In order to preserve accuracy in this range, we rewrite Eq. (23) as

wn={() T RO - ()
LI e ()]}

= {Wk(o’) (U)} {U1(0)} {P2(0)},
(25)

where k(o) is an appropriately chosen critical cluster size depend-
ing on o, as we describe shortly. Also we have preserved the explicit
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dependence on k of the first quantity, which can be written as

kp

Wi(o) = 28" YK Ky - Kj_1)P (%) . (26)
Note that the third product ¥s(o), in Eq. (25), is carried out to oo
instead of n since the terms in the product converge very rapidly to
unity and the product itself converges rapidly in n. Except for very
small n this replacement has negligible effect and has the benefit of

making W (o) explicitly independent of n.
One way to define k(o) might be to take it as the integer satisfying

F(Ky_10) < 1— % < F(Kyo). (27)

This, however, leads to a discontinuous W (o) because the 25~ factor in
Eq. (26) prevents W (o) from being continuous at exactly o /o5 = 1/Kj.
Smooth transitions, however, do occur at certain values of ¢ where the
right hand side of Eq. (26) has the same value for both k and & + 1,
i.e., for a transition o such that

kp (k+1)p
%=L (K1 Ky Ky_1)P (2) = (K Ky Kp)P (i)

g5 ag

. (28)

Taking the approximation Eq. (13) as the equality

K,:,/b:’”, (29)

o 2-1/p a

we then have

g _ _ , 30
os Ky, VE+b (30)

where
a=20"0/P/gl/2 and b=4/n. (31)

When o is decreased continuously the associated k£ cannot increase
continuously since it takes on only integer values. If we relax this re-
quirement and also permit k to vary continuously, we may replace o/o;
in Eq. (26) in terms of k£ according to Eq. (30). In addition, substituting
for K, using Eq. (29) we have Wi (o) only as a function of & whereby
okl

Gy 11

=1

Wy, = (r + b)?/2. (32)
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Evaluating the product in Eq. (32) yields

k—1
[T +b) =exp{ Zlog r+b)}

r=1 r=1

Nexp{ /logu+bdu— /u—l—b } (33)

(b R\ plk —1)
() el 52,

(b + 1)b+1/2 2
so that
Wi = C(k+b)®exp{—B(k+b)}, (34)
where
p=1.
p=p (é — i) and (35)

C = a?ePOt) (1 4 p)=AO+1/2)

To get a relationship between W), and o, we use Eq. (30) relating &k to
o, and upon simplification obtain

Wi (o) = C (?)% exp {—ﬂ (?)2} . (36)

Next we approximate ¥q(co) in Eq. (25). Using Eq. (30) we obtain

(37)
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Finally we evaluate ¥y(0), the third product in Eq. (25), which is
the probability of cluster stalling. Upon using Eq. (30) we obtain

wior= i fi-e{2(5))

j=k() 7
00 o\ P
zexp{— Z exp{—2 <@> }}
i=k(o) 7 (38)
00 p
zexp{— exp{—(b+u)”/2 (L> }du}
k(o) aocs
_ 2 aos 2
= exp {—;P(Q/Pa 1) (7) } )
where
I(p,1) :/ e “uPLdu (39)
1

is the incomplete gamma function. Substituting Eqgs. (36), (37) and
(38) into Eq. (25), i.e., Wo(0) = Wi(0)¥1(0)¥2(0), keeping only the
dominant term in Eq. (37) and dropping the subscript ‘c0’, we obtain

W(o) ~ C (?)w exp {—Bﬂ (?)2} , (40)

where

2\? P
B-1+ (p) [2(p+ 5 +1_'(2/p,1)] , (41)
and all other constants are as defined in Eq. (31) and Eq. (35). Note
the emergence of the quantity p/2 as an important parameter in B. As
p decreases below 2, B begins to grow rapidly, which lowers W (o).

Since there are n fibers in a d-bundle, a cascade can originate from
any one of them, and these events are taken as being statistically in-
dependent. This results in the approximation Eq. (18), and through
Eq. (3), to Hy, (o) for the full composite as given by Eq. (22).

To investigate the success of this result we compare W (o) to W (o),
which results from the convergence of the simulated Wy, (¢) of Eq. (19)
with increasing n. Figure 4 shows W (o) from Eq. (40) together with
W (o) from the Monte Carlo simulations. No adjustable parameters
are involved. For p = 1,3,5, and 10, the calculated and simulated
distributions are in remarkable agreement. For p = 0.5 the agreement
suddenly weakens where no n-independent W(U) appears. This lack of

iter22.tex; 7/02/2001; 12:28; p.25



26 Mahesh, Phoenix, and Beyerlein

agreement is consistent with our earlier observations in Figure 9 where
the distribution G, (o) for é-bundle strength was close to that for ELS,
which has a dispersed fiber failure mode. The value p = 2 does not
emerge as having a dominating effect. Surprisingly the model seems to
apply well for p = 1, and Figure 4 does not rule out its application for
p = 1/2. This issue is revisited in Section 5.

4.2. SIZE EFFECTS FOR CRITICAL CLUSTER AND COMPOSITE
STRENGTH UNDER HLLS

We next examine the size effect for the characteristic composite strength.
That is, for fixed probability of failure p, we ask how the composite
strength for the pth quantile scales in terms of number of fibers n and
length L = mé where m is the number of -bundles in the composite.
We take p =1 —1/e = 0.632, which would correspond to the Weibull
scale parameter for composite strength in a Weibull approximation to
Hp,n(0). We examine the dependence of the critical cluster size on n
at failure probability level p, and want to know the size of the critical
cluster at the point where it becomes unstable. Extending these results
to the full composite is simply a matter of replacing n by mn.
We know that

Gulo)m1—[1=W(o)]" = 1—e W), (42)

Equating this further to 1 —e™!, we find that the characteristic §-bundle
strength, denoted o7, is the stress o solving W (o) = 1/n where W (o) is
given by Eq. (40). While this equation can be inverted asymptotically
to get o7, it turns out to be useful to think also in terms of a critical

cluster size k* associated with failure probability p. This is obtained by
setting Wy = 1/n in Eq. (34), that is, £* must solve

(k* 4 b) 2P+ = 50, (43)

which is an implicit relation between £* and n.
To obtain an explicit relation between k* and n, we observe that

—¢log(k™ +b) + B(K* +b) =log(nC). (44)
Substituting k* + b = (1 + €) log(nC) /B and using log(1 + €) = € gives
the critical cluster size k* for a §-bundle approximately as

k*—l—b:(l—lre)%, (45)

where

o~ P 1logllog(nC)] —log(B)}

log(nC) — ¢ ’ (46)
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and log is the Napierian logarithm. To obtain an integer valued k*, one
must round up the k* from Eq. (45) to the next largest integer. To
obtain k* for the full composite simply replace n by mn in Eq. (45).
To obtain the characteristic strength o} of a -bundle we first use
Eqg. (30) to recast Eq. (45) in terms of o, yielding the critical stress

. _ p
ot = aag\/m. (47)

This expression, however, does not account for the crack stalling proba-
bility U5 (o). It can be interpreted as the stress associated with formation
of a cluster of critical size k* where the probability of further propaga-
tion becomes likely but not guaranteed to be catastrophic. Including
Uy(o) as well yields the characteristic J-bundle strength

. \/ BS
e =990 log(nC) (1 + (BB))”

where €(Bf) is given by Eq. (46) with § replaced by Bf. Again,
to obtain the characteristic composite strength, replace n by mn in
Eq. (48).

(48)

—— Model
Simulations

-1.6 I I I I
4 6 8 10 12 14

log(n)

Figure 11. Comparison of Eq. (47) with size effect predicted from the simulated
empirical strength distributions of a 900-fiber é-bundle under 1D HLLS.
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Figure 11 shows plots of the characteristic strength o versus ¢-
bundle size n based on Eq. (48). The agreement is good even for p =
1/2, which did not show failure by cluster growth over this range of n.

4.3. CHARACTERISTIC DISTRIBUTION W (o) UNDER 2D HVLLS

The approach taken to approximate W (o) for 2D HVLLS is identical
to that used in 1D HLLS except that the possible geometries of break
clusters introduce additional complexities. We model the cascade event
defining W (o) as the formation of a break cluster at stress o that
goes unstable. The diameter D of a tight circular cluster of r breaks
was defined earlier as 7D?/4 = r. The circumference of the circle,
7D = +/4rwr is approximately the number of intact fibers surrounding
this r-cluster. Let NV, be the number of these neighbors that are severely
overloaded. The first step is the failure of a given fiber in the é-bundle
under o, followed by the failure of one of its N1 = 6 equally overloaded
neighbors under stress Kio. The resulting pair of fiber breaks has eight
intact neighbors of which only No = 2 are severely overloaded under
stress Ko0. The next likely event is the failure of one of these, to form
a break triplet with N3 = 3 severely overloaded neighbors, of which one
fails, and so on. The critical event is thus the evolution of a growing
“tight” r-cluster (Figure 12), with each added break being the failure
of one of the N, severely overloaded fibers surrounding it.

1 K;
‘ ‘ 1 1.0000
2 1.1046
3 1.2337
@ @ 4 1.2828
5 1.3205
6 1.3644
7 1.5889
8 1.4107
9 1.4596
@ 10 1.6163

Figure 12. One possible sequence of tight cluster growth to 10 fiber breaks in a
hexagonal fiber array. The numbers (1,2,...,10) indicate break sequence. Also
included are the associated stress concentrations computed under HVLLS.
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As in the 1D case, we write this as

Wa(o) = F(o){1 — [1 - F(K10)]™}

x {1 —[1 = F(K0)]"} -+ {1 = [1 = F(Kp_10)]"'},
(49)

where K, is the stress concentration on the N, most severely overloaded
neighbors of a tight r-cluster. We introduce a two-parameter, power law
to account for the actual number of neighbors at high risk,

N, = nr7, (50)

with parameters 7 and ~y satisfying 7 > 0 and 0 < v < 1/2. This
power form for N, is essential for Wy(o) in Eq. (49) to agree with
the simulated W(U) distribution as p becomes small. Observe that if
= VA4r =~ 3.55 and v = 1/2, then N, is simply the total number of
intact fibers surrounding a circular r-cluster.
Applying approximations as in Section 4.1 we rewrite Eq. (49) as

v {(2) B o (B - (5]
LB oo (52

= {Wi(o)(0) } {Z1(0)} {T3(0)} .
(51)

Again the explicit dependence on k in the first product Wy(,)(o) is
retained, and it may be written as

o\ k°
Wk(O’) :N1N2---Nk,1(K1K2"'Kk_l)p (0'_5> . (52)

As in the case of 1D, we relate o to k by setting Wi (o) = Wiy1(0).
Doing so and recalling Eq. (16) for K., which we rewrite as

b
KT' = \/Fb—i_ ’

we obtain

Z = akP(VE + b)71/2, (54)

as
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where
a=vb/n'/? and b=x%?/2. (55)

Using Egs. (50), (53) and (54) in Eq. (52) and simplifying we obtain
[(k = DY TT525(V/7 + b)P/2

F T ke (VE £ byker2 (56)
We can evaluate Eq. (56) as follows: By Stirling’s formula,
(k —1)! = V2rkF 127k, (57)

Also,

k—

1 k—1
H(\/]_'+b) = exp{Zlog(ﬂ—l—b)}
7=0

Jj=0
k k
~ exp {/ log(v/u + b)du — / 1M\/E-i_lj)cl:c}
u=0 u=0 2 dI
_ (\/E-l- b)k—b2—1/2b(b2+1/2)

y exp{—%(\/E—l—b)Q—F%(\/E—l—b) - g}

Using these two approximations in Eq. (56) and noting that

—y/2 _ _ _L_AYN _
k72_(x/E+b)7[1 \/E+b] ~(Vk+b)77, (59)

while
exp{vk} = exp{7y[(VE + b)? — 2b(VE + b) + V?]}, (60)
we may reduce Eq. (56) to

Wk:C(\/E+b)_“"exp{—ﬁ1 («/E+b—%)2}, (61)

where

X2
o = @12 2074172 o {_bz (3_P n 7) n _3} ,

n 4 45
o=+ (/2 + 3), (62
PVET
Ba = b(p+ 27).
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To get an expression in terms of o, we first write Eq. (54) as

o b —2v/p
T (VE+ bl [1_ ] , 63
aoy ( ) VEk+b (63)

which can approximately be inverted to give
o \ ) py B2y o \P/(2B)
~— — + —= - — . (64
VEk+b (aa5) MY (B1 =) (aa5) (64)

Dropping the last term leads to

i:(x/EJr —b—7>_ , (65)

aos

which for given ¢ results in a slightly lower value of k as compared to
Eq. (64). Substituting Eq. (64) into Eq. (61) for W), gives

Wk(a)(a) = CQ4(0) <L>W/(2ﬂl) eXp {—5191(0) (?)pwl},

aocs
(66)
where
bf)/ o P/(2,31) b2f)/ o ,0/,31 -
|y (o Y g oy (2 67
(o) ll " o} (aaa) " 267 (Br =) (GGJ) 67
and
2
|y be (o " g - (2 . (68
©1(0) [ 261 <a05> " 2687 (B =) aos (68)
Next we approximate the second product ¥;(o) in Eq. (51) as
k(o)—1
N; (K;jo\?
T, (o) = N L) ]
1) Jl;lo [ 2 ( a5

k(o)—1
S (Ko’
= 2 s
P rk(o)
zexp{—% (L) /0 u7(\/ﬂ+b)p/2du}

—2(5171”@2(0) (?)BLI} ;

(69)
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where the last step involves applying Eq. (64) and keeping only the
dominant terms, and where

L bp(Bitl) (o N\
©2l0) =1 261(261 +1) <a05> ' (70)

Finally we evaluate the third product ¥Us(c) in Eq. (51) as

Uy(o) = ':lo—o[ 1 —exp (—Nj (@)[)

a5

o {_jga) o {Nj (%Uy}} (71)
R exp {— /k:) exp {—u7(\/1_t+ b)°/? (%‘(s)p} du}
~ exp {—ér (5:1) 03(e) (?)Ml} ,
where
bp U (5:1) / o \P/@80)
Os(0) = 1 — () (E,;) . (72)

Multiplying Wi (o), ¥1(0), and ¥s(o) in Eq. (51) and dropping the
subscript ‘oo’ finally gives our main result

wio) = o) ()" e {—m(«f) (ﬂ)pml} R

aos o

where

1

Qo(0) = $101(0) + Ql; Oa(0) +T (% 1) 92(1“). (74)

Figure 13 compares two versions of W (o) in Eq. (73) against W (o)
from the Monte Carlo simulations, for p = 1,2, 3,5, and 10. The dashed
lines (Model 1) assume y = 1/2 and n = v/4m = 3.55 as is the case
in Eq. (50) if we assume all fibers in the first ring around the cluster
are equally at risk of failure. The solid lines (Model 2) assume 7 and
7 values corresponding to the respective p values as shown in the table
within the figure. The fit in the dashed line case, which is excellent for
p = 20 (not shown) and quite good for p = 10, rapidly deteriorates for

iter22.tex; 7/02/2001; 12:28; p.32



Strength Distributions and Size Effects for Composites 33

p < 5. However, except for p = 1 the agreement is excellent when 7y and
1 are adjusted as shown in the table. This suggests that the growth in
the number of neighbors to the cluster at high risk of failure must be
retarded after the first three or four breaks. For p < 3 it was retarded
completely by setting v = 0 and 7 = 6 so that the number of neighbors
remained fixed at 6 regardless of the cluster size.

-2 P T
- — Model 1
—— Model 2 .
4l n=15x15 |
+ n=25x25
—_ ¢] n =30 x 30
o f
|
— =8 b
20
Q
=
|
2o 10 1
2
—12}+ |
-14

log(a/a;)

Figure 13. Comparison of the theoretical W (o) from the cluster growth model
under 2D HVLLS and Weibull fibers with the empirical version W (o) obtained
from simulations. Model 1 assumes 7 = /47 and v = 0.5 for all p. In Model 2, the
parameters 77 and -y are adjusted for each p to provide the best fit as shown in the
table. Results corresponding to p = 0.5 are not shown because the plots of W (o)
for both models lie off scale.

Many approximations were made in deriving W (o) in Eq. (73), but
using the root equation, Eq. (49), does not improve the agreement
with the simulations. Furthermore we have assumed the clusters are
round, when in reality they will become increasingly irregular as p is
decreased. Thus for moderate p, i.e., 2 < p < 10, this irregularity may
mean that relatively fewer of the neighbors should be viewed as highly
stressed, perhaps only those that protrude the most into the cluster.
The emergence of powers of 7y less than 1/2 for smaller p may also mean
that the cluster roughness around the perimeter has fractal character as
it grows and this somehow determines the effective number of neighbors
at risk. In Section 6 we will suggest another possible explanation for
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the adjustment involving decreasing the value of v in Eq. (50) for
N,. Note also that the parameter 51 = (p + 47)/4 plays a role in
the behavior of W (o) through Qs(o), Eq. (74), as p and - diminish.
Curiously, when v = 0 we have 51 = p/4 suggesting that the value
p = 4 has special significance, as is also pursued further in Section 6.
We find that Q2(0) starts to increase rapidly when p diminishes below
4 reflecting an increased cluster stalling probability. This has the effect
of decreasing W (o), and thus, the probability of failure, though the
effect is not strong enough to explain the behavior of the simulations
for small p in Figure 13.

The weakness of the fit for p = 1 is consistent with the earlier
observation in Figure 9 that once p decreases below about 2, the ¢-
bundle failure distribution develops strong Gaussian character as seen
under ELS, which is truly a dispersed failure mode.

4.4. SIZE EFFECT FOR CRITICAL CLUSTER AND COMPOSITE
STRENGTH UNDER HVLLS

We now derive formulas for the variation of the critical cluster size k*
with the size n of §-bundles under 2D HVLLS and at failure probability
level p =1 — 1/e. We then derive the dependence of the characteristic
0-bundle strength ¢} on n. Converting this result to apply to the full
composite only requires replacing n by mn.

The first step is to set Wy = 1/n or, using Eq. (61), we have

0(«/E+b)“’exp{/31 (VEH—%)Q}:na (75)

For moderate k*, we note that vk* + b is close to (2/281, which
makes the exponential function in Eq. (75) amenable to a power series
expansion. Asymptotic inversion leads to

log (\/k_* + b) = log(nC) (—; log(wl)’ (76)

where the correction term log(w;) grows slowly with log(nC') following

log(wi) = (77)

The correction term wq, while small, can have a major effect on the
resulting k*. The above formula for k* works for a wide range of n (e.g.
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n < 10%). However, for larger n, an expansion arises of the form

\/I?+b=< l()géirfc)_p%)(l—a&), (78)

where the correction term wo is

plog (\/ —loggfc) + %)

Wy = 3 Tog(nC) . (79)
¢+ 2log(nC) + g2/ 225~
For astronomical n such as n > 10%® we have
1
Vi 4 b= log(nC) (80)

b

Substituting for k* in terms of o* we estimate the size effect for the
stress when the critical cluster forms. From Egs. (65) and (76) we get

—2p1/
o* = aog ((nCwl)l/‘p - %) p. (81)

For extremely large n, Egs. (65) and (78) lead to
—2B1/p
. log(nC) | B2 by
~ T2 0w -2 . 82
7 mae (( o} 261 (1= w2) P (62)

Finally, as n — oo, this behaves as

. B Bi/p
o* =aoy (log(nC)) . (83)

To obtain the characteristic stress for composite failure, o}, we
must account for ¥y(o) and ¥s(o) leading to complex expressions.
We estimate the main effect by noting that Q2(0) — B as 0 — 0 where

1 1 1
BZl-}-mﬁ-ﬁ—%F(E,l). (84)

Thus for large n we may obtain o from o* upon replacing log(nC)/f;
by log(nC)/(Bf1) in Egs. (82) and (83). For smaller n, of the order
used in our simulations, and larger values of p we can still use Eq. (81)
for o}. For smaller p, say p < 5 where B differs appreciably from one,
Egs. (82) and (83) may be applied but are likely to be very conservative
as Bf is a poor reflection of the full effect of Q2(c) in Eq. (73).
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-0.3

Simulations
— Model, Eq. (81)
- — - Model, Eq. (82)

p=10

-0.4

v,

log(n)

Figure 14. Comparison of the size effect predicted by the cluster growth model,
Egs. (81) and (82), with that derived from a W (o) interpretation of the empirical
strength distributions of a 900 fiber §-bundle under 2D HVLLS.

Figure 14 shows a plot of o} given by Eq. (81) against the size
effect predicted using simulations from the d-bundles of size n = 900
as though they posses weakest link character in terms of W (o), as is
supported by Figure 13. The size range covered is 100 < n < 1,000, 000,
which is the relevant range for Eq. (81). Clearly the formula works well
for p = 10 and reasonably well for p = 5, but breaks down for smaller p,
because of the above mentioned lack of treatment of the cluster stalling
probability in the derivation. For extremely large n, Eq. (82) with the
Bf1 modification shows the anticipated poorer performance. One one
hand, discrepancies in Figure 14 may be due approximation errors, but
on the other hand this could also serves to point out that composites of
the size that can presently be treated by Monte Carlo simulation may
not reveal the true size effect as might be relevant in applications.

4.5. POWER-LAW FIBER STRENGTH AND J-BUNDLE BEHAVIOR

In Section 4.1, we observed for 1D HLLS that the tight cluster growth
model accurately predicts the empirical strength distribution for p > 1,
but not for p < 1. In 2D HVLLS, when the fiber strength is Weibull,
Eq. (1), the tight cluster growth mode does not seem to apply to p < 2
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as seen in Figure 13. These departures may be due to non-tightness of
cluster growth, or to the presence of occasional strong fibers, or both.

To resolve this we consider a cluster growth failure model for a 6-
bundle with fiber strength that follows a power-law distribution, F}, (o),
given by Eq. (2). Using F(o) in the arguments to develop Eq. (51), we

o (2)" h[ m}
{ . ]U>p)M]} (85)

{mﬂuM%U}

where k;, (o) is such that K}, (,)0/0s = 1. Here Wk(a)(o) is still given
by Eq. (66), but the factor ¥s(o ) is different and is approximated as

_ 4b? as
%w—aﬂ—F@u()} (86)

g

where

o =8 (0 )y (10 +5)
_ (%)QB (nm(a) +1, %) 1-— 1<\/M+Ta>p (nkv(a) +1, %)

(87)

where B(a,b) = [ t471(1 — ¢)*~'dt is the beta function and I,(a,b) =
fpl t4~1(1—t)*~'dt/B(a,b) is the incomplete beta function. The critical
cluster size k(o) is

k(o) ~ {(a%)f’% 41’51 + b82ﬁ1 (a%)g’%}Q (88)

Figure 15 shows Wao(0) from Eq. (85) together with the W (o) distri-
butions obtained through Monte Carlo simulation, assuming the power-
law distribution F,(o) for fiber strength. For all three sizes shown, the
theoretical and empirical distributions agree even at p = 1, whereas in
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-2

T
—— Model

- n=15x15
-4H + mn=25x%x25
o0 n=230x30

_6F---P- M i
056 0
o 8 16 0 |
— 3 6 0
é 5 4 0.19
§0—10* 10 2.8°0.34 1
_12} ]
_14} ]
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-2.5 -2 -1.5 -1 -0.5 0
log(o/0;)

Figure 15. Comparison of the characteristic distribution function W(o) from the
cluster growth model under 2D HVLLS and power-law fiber strength Fj,(o) with
the empirical version W(a) obtained from Monte-Carlo simulations. The values of
(n,y) used here are identical to those in Figure 13 for Model 2.

Figure 13 assuming Weibull fibers they began to diverge at p = 2. Ap-
parently, as p decreases in the Weibull case, the stalling probability of a
growing cluster is increased by occasional strong fibers thus promoting
dispersed breaking, but this does not occur under the power-law version
of F,(0), which has no fibers with strength exceeding o;. Surprisingly,
even at p = (.5, reasonable agreement of the cluster growth model with
the simulations occurs under Fy(o).

5. Analysis of Composite Strength Distribution for Small p

In the case of dispersed fiber failure in a J-bundle, it is reasonable
to conjecture that for small enough p the details of the fiber load-
sharing model are not important provided that the model conserves
load. Thus we consider behavior under the equal load-sharing rule, or
ELS, where the stress concentration factor for each intact fiber in an
n-fiber 6-bundle with j broken fibers is k5 ; = n/(n — j), as described
in Section 1.2. Daniels (1945) showed that if the strengths of individ-
ual fibers are independent and identically distributed according to an
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arbitrary distribution function B(o), and certain conditions are met
such as limy,4o 0(1 — B(o)) = 0 and the peak in the maximum of this
function is unique, then the strength distribution G, (o) of a é-bundle
asymptotically converges, as n — oo, to the normal or Gaussian form
o((0— 3)/s%) where

g = p* = o(1 = B(o7)), (89)

and

st = o Y2\ /nB(o,)(1 - B(oy)), (90)

and where o, gives (1 — B(0)) its maximum value. Here ®(-) denotes
the standard Gaussian distribution.

3(z —u*/2qy, (91)

1 z

)==[ e
V21 J -
As mentioned in Section 1.4, Smith (1982) gave a correction to the
asymptotic mean to speed up convergence to the asymptotic limit.
Applying Daniels’ formula with Smith’s correction to the Weibull fiber
case, one obtains a very accurate prediction of the true strength distri-
bution, even for quite small n. The parameters of the resulting normal
strength distribution are then the asymptotic mean

1/3
= og(pe)~1* {1 +0.996n=2/ (2/7/p) / } : (92)

and the asymptotic standard deviation

sy = ogn_1/2p_1/p\/e_1/l’(1 — e~ 1/p). (93)

In Subsection 3.2 we observed from Monte Carlo simulations that,
when p | 0 and the variability in fiber strength increases, the é-bundle
strength distributions under both HLLS and HVLLS converge to the
Gaussian or normal form of ELS, for the bundle sizes n considered. Two
reasons were cited: The first was the tendency for small clusters to stall
from the dominance of strong fibers from the Weibull upper tail, and
the second was increasing numbers of very weak fibers causing many
more scattered clusters. The question arises as to whether this behavior
persists as n increases by orders of magnitude.

We conjecture that, no matter how small the value of p and no
matter how much initial dispersed fiber failure, if a §-bundle is large
enough final failure will eventually be locally initiated and a cluster will
eventually propagate catastrophically to fail the rest of the surviving
fibers. That is, unlike ELS, wherein material damage truly accrues glob-
ally, we conjecture that in HLLS and HVLLS there is a p-dependent
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size scale within which damage initiates and propagates. This must
remain a conjecture because we are unable to simulate J-bundles much
beyond n = 900, yet under 2D HVLLS and p = 0.5 the critical cluster
size is probably greater than 900 fibers. Nevertheless evidence for this
assertion is seen from simulations on large 1D HLLS §-bundles.

For 1D HLLS, Figure 16 shows the evolution of fiber breaks that
occur in the median strength (out of N = 500) §-bundle with n = 900
fibers and for p = 0.5, 1, and 10. For p = 0.5 a cluster does not initiate,
as the fiber failures are largely dispersed to the very end. This happens
even though the bundle size n = 900 is much larger than the critical
cluster size. The final load increment occurs when 90% of the fibers
have already failed. For p = 1, however, although breaks are initially
dispersed up to the failure of slightly less than half of the fibers, the
remaining fibers fail as a sharply growing cluster. For p = 10 there
are just a few initial dispersed breaks, but then a sharply growing,
catastrophic cluster develops near fiber number 600.

800 &. - : . 4 - ' LS : . -‘: . f .-.."“ :-‘ :'.“.-".-'r
600f L T I S
(a) , .y S g T
400? ‘ y D e P ~ - . . |
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0 et e e T e e T T e N e R
0 100 200 300 400 500 600 700 800 900
™7 R - : ~
800 E , -
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. e - ° % I I I I 1.

0 100 200 300 400 500 600 700 800 900
800t | /‘ 7
606 b
400 1
2001 \

= 1 1

1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

Figure 16. Fiber break sequence in median strength (among 500 simulations)
900-fiber é-bundles under 1D HLLS with (a) p = 0.5, (b) p = 1 and (c) p = 10.
A dot is plotted at coordinates (N, Ny) if fiber number N, is the N,-th to fail.
The first fiber to fail with the last load increment is labeled *. The strengths of
these specimen are 0.5089 for the p = 0.5 specimen, 0.3075 for p = 1, and 0.5964 for
p =10.
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For p = 1/2, Figure 17 shows the break evolution sequence for
the weakest and median among N = 100 J-bundles with n = 1500
fibers. The weakest specimen develops a cascading cluster after about
two-thirds of the fibers have failed. However, it develops considerable
dispersion at the cluster edge and eventually stalls. Further load incre-
ments lead to additional dispersed failures followed by a final cascading
cluster from a new location when only one-tenth of the fibers remain.
The median 1500 fiber specimen, however, initiates cluster growth after
about four-fifths of the fibers have failed and this cluster propagates
without stalling until the composite fails.

Comparing with Figure 16, the conclusion from Figure 17 is that for
small p the cluster growth mode may not dominate until the é-bundle
reaches a certain large size well beyond the critical cluster size. Even
then the network is drastically diluted by the dispersed failure mode.
As it weakens with increasing size, however, we conjecture that the
cluster growth mode will increasingly dominate, at least in 1D HLLS
bundles.
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Figure 17. Fiber break sequence in a 1500 fiber 6-bundle under HLLS for p = 0.5: (a)
weakest (lower tail) and (b) median specimen among 100 simulations. The strength
of the weakest specimen is 0.3872 and of the median specimen is 0.5053. The first
fiber to break with the last load increment is labeled *.

Although clusters may eventually form, there remains considerable
dispersion and diluting of the number of intact fibers under ELS-like
behavior. Thus the localized nature of the load-sharing rule is finally
superimposed onto a diluted set of fibers following ELS failure statis-
tics. One possibility for the breakdown mechanism is that local patches
begin to break down following the statistics of a scale limited version of
ELS, and if a patch is beyond critical size it propagates catastrophically.
The statistics of the weakest ELS-like patch determines the strength
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distribution of the §-bundle. A second possibility is that broad dilution
of the number of surviving fibers occurs due to ELS-like behavior and
local cluster growth eventually develops under a revised local load
sharing mechanism on the randomly diluted set of survivors. Along
these lines a 1D model under a tapered local load-sharing rule was
recently developed by Phoenix and Beyerlein (2000b) where a weakest-
link model with a characteristic distribution function W (o) was derived
of the form given by Eq. (40) for 1D HLLS. In their work a nontrivial
exponent arose from the local combinatorics of the dilution playing a
role similar to the values of (n,~) in Figures 13 and 15.

—— Daniels Model
* M = Nmin X Mmin |
+n=25x25
O0mn=230x30
T

0.6 0.7

0.5
o/os

Figure 18. Comparison of ®((c — un)/syn) given by Daniels’ formula for ELS
d-bundles, Eq. (95), with weak-linked strength distributions obtained from simula-
tions. Strength distributions for sizes n = 625 and 900 are weak-linked to size n2,;, as
listed in the figure. For p = 2, 3, and 5, the distributions of n = 625 and 900 -bundles
when weak-linked to size n2; appear to collapse into the strength distribution of a
d-bundle with n2;, fibers chosen to be the smallest with this property. For p = 0.5
and 1 no such collapse is observed. For p = 0.5 the agreement of the strength
distribution of the n = 625 é-bundle and the n = 900 §-bundle weak-linked to size
625 is spurious. Such agreement is not observed for a 2500 fiber §-bundle weak-linked
to size 625.

A model consistent with the first scenario is that failure initiates

following an ELS-like failure mechanism in a patch of 7 fibers smaller
than n when sufficiently large. The strength of this patch has Gaussian
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character, and é-bundle failure corresponds to the failure of the weakest
of the m = n/n, n-fiber patches. That is,

Gn(0) =1~ {1 = @[(0 — p3)/s7)]}™, (94)

where ®(-) denotes the standard normal distribution and p and o are
defined in Egs. (92) and (93). For small o, we may replace ®(-) with

~ 1
D(z) = Al

which is the asymptotic form of the lower tail of the standard normal
distribution. Likewise, that for the composite, Hy, (o), is simply the
above result with 7 replaced by mm. Use of this result in other com-
posite settings is found in Phoenix et al. (1997). The parameters of the
Gaussian weakest-link distribution are given by the Smith corrected,
Daniels formula Eq. (92) and (93).

In Figure 18, for p = 1, 2, 3, and 5 we have plotted the strength
distribution of the smallest sized é-bundle (n; x m1) to which weak-
link scaled distributions for larger bundles collapse. This minimum
d-bundle size approximately corresponds to the critical cluster size
defined previously. We also show the distributions of larger bundles
of size (ny X my) or (ng x ng) weak-linked to the size (n; x n1). Note
that as p is decreased, the weak-linked distributions become increas-
ingly Gaussian (indicated by the straightness of the strength distribu-
tion on normal coordinates) and are better approximated by the ELS
asymptotic distribution, though a shift exists for p > 1.

In the case p = 0.5, despite the excellent agreement of the 900-
fiber, weak-linked strength distribution with the 625-fiber, weak-linked
distribution, it turns out that they do not agree with a 2500-fiber,
weak-linked d-bundle strength distribution (of which limited results
were generated but are not shown). This suggests that the smallest
catastrophic failure event of the bundle occurs over more than 625 or
perhaps even 900 fibers. The same may also hold in the p = 1 case.
However, for p > 2, the maximum simulation cell size of n = 30 x 30
seems to be adequate to contain the catastrophic failure event.

In the cases p < 1 it is unclear if the upper-tail, strong fiber dom-
inance will continue for much larger bundles (with smaller strengths).
Unfortunately, simulating such bundles is presently computationally
infeasible. If it is so that the weakest link involves strong fibers and ELS
dispersed failure over limited scale, Eq. (94) will hold for the §-bundle
strength distribution. If not, the weakest link mechanism will revert to
the cluster growth model, though with dispersed fiber breaking ahead
of the cluster tip, and Eq. (73) may hold when modified to account for
the extensive dilution by fiber breaks.

exp(—22/2), (95)
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6. Analysis of Effect of p on Statistical Failure Mode

We have seen that §-bundle failure for both 1D HLLS and 2D HVLLS
shows a transition from a break cluster growth mode to a dispersed fiber
failure mode somewhere in the neighborhood of p = 1 to 2. We now
investigate certain statistical aspects of cluster growth that may suggest
the potential for such a transition. While the stress concentrations on
the neighbors of an r-cluster increase their probabilities of failure, the
extent appears to depend on p thus influencing the onset of instability.

6.1. EFFECT OF p ON TENDENCY FOR CLUSTER STALLING

To investigate the effect of decreasing p on r-cluster growth, we add one
break to form an (r+ 1)-cluster and let A(r,n’) be the mean number of
additional fibers among its n’ nearest intact neighbors that will fail due
to the increased load from the break, assuming all fibers have survived
the previous load. We let the applied fiber stress ¢ be small enough that
the fiber failure probability F'(K,o) from Eq. (1) is well approximated
by F(K,0) = (K,0/05)” in the case of Weibull fibers and is exact in
the case of power-law fibers. Then,

A(r,n') m (K7, — KP) (0/05)". (96)

Since K41 > K, > 1, we see that Kf+1 — K? is an increasing function
of p so that for fixed n' and o, A(r,n) increases with p. Thus, when
p is small the addition of a fiber break to an r-cluster causes fewer
neighbors to fail due to overloads.

We may specialize Eq. (96) to the case of a penny-shaped r-cluster
in a 2D planar fracture surface. In this case, n' = 2/7r and we get
using Eq. (16)

p/2 p/2 P
A(r, 2¢/7T) z2\/ﬁ{<1+ LW) = <1+72r3—\7:) } (1) ,

a5

p
& Cpr%_% <1> for large 7.
(97)

Thus the number of breaks around a large cluster tends to increases
with r for p > 2 but decreases with r for p < 2 where the cluster will
tend to stall.

This argument, however, does not account for the fact that the
addition of a single break at the cluster edge will expose a few fibers
in its vicinity to a much larger jump in stress of the order of from
(1/2)K,0/os to Ky+10/05, and the associated probability of failure
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for each of these is of order (K,;10/05)?, which does not show this
transition to an expected decrease as p decreases. This aspect of the
problem may explain the need for Eq. (50), and the values of N, based
on the values 1 and «y given in Figures 13 and 15 seem reasonable in

this light.

p=05
c=0.0977
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000
00000000000000000000000000000&
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0000®000000®00B000000E0E0000
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000000000000000000000000000000

Figure 19. Transition from dispersed fiber failure to cluster enlargement around an
initial, tight 239-break cluster, which occurs as p increases.

6.2. EFFECT OF p ON BREAK DISPERSION NEAR CLUSTER EDGE

Another important aspect to consider as p decreases is the location of
new breaks due to an r-cluster introduced into a d-bundle. Figure 19
shows a simulation of the fiber failures that immediately occur due to
the presence of a penny-shaped cluster of r = 239 breaks introduced
into a 2D 4-bundle under the numerical version HVLLS. In each of
the four cases, the fiber strengths were derived from the same set of
uniformly distributed random numbers U;, so the Weibull strength of
the j-th fiber in each case is (—log(U;))!/#. The applied stress o was
chosen in each of the four cases so that the probability of failure of a
fiber adjacent to the cluster edge was about 1/2, i.e., (Ka390/05)? =~
0.69, where K39 = 2.56 from Eq. (16). These breaks would typically
cause even more breaks without a change in applied load, but these
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secondary breaks are not shown. Observe that for the same approximate
number of fiber failures in the ring around the cluster, serving to extend
it, an increasing number of fibers fail away from the cluster as p is
decreased. Many of the ones appearing for p = 1/2,1 and 3 would have
occurred anyway under the applied stress o/os with probability F(o)
given by Eq. (1). Nevertheless, as p decreases, dispersive effects at the
edge begin to appear.

To understand these dispersive effects, we may evaluate the prob-
ability of failure of a fiber at distance s away from an r-cluster. Its
probability of failure is (K, s0/04)f or, using Eq. (17),

1 P2 1 K.o\P
Pr{fiber failure at distance s} = (7> (—T> . (98)
1+7w(s—1) of)

This result holds approximately for 1 < s < eD where € is about 1/10,
and D = 2y/r/n is the cluster diameter. This is roughly the range of
influence of the cluster “tip” (analogous to the K-field in linear elastic
fracture mechanics). Clearly the first factor in Eq. (98) increases with
decreasing p and leads to an increased number of fiber failures away
from the cluster edge as compared to fibers right at the edge (s = 1).
Beyond this range the stress is close to the far field value, . In the
present case r = 239, D = 18, and the range is 1 < s < 2 covering just
two fibers from the edge. Nevertheless one can see increasing numbers
of breaks near the edge in the sub-adjacent neighbors as p decreases.

We can use Eq. (98) to illustrate a more subtle aspect of the effect of
p as suggested in Figure 19. Suppose that as p is decreased, the applied
stress o is chosen such that (K,0/05)? = C < 1, where C is indepen-
dent of p. We may estimate the number of fibers that immediately fail
due to the introduction of the penny-shaped r-cluster where r is large.
This requires evaluating the integral

(Kra>p/f2\/T/_7f 2n(s + V/r/m)
1

o5 (14 7(s —1))r/2 %

where 27(s++/r /) is the number of fibers in a ring of radius s+ /7 /7
outside the cluster and the rest of the integrand is the probability of a
fiber failure in that ring. Upon evaluating the integral we notice that
the result asymptotically has the factor r!=#/4. Thus as r increases
this integral behaves differently for p > 4 versus p < 4, converging
in the former case and diverging in the latter. This suggests that as
p decreases below 4, in the vicinity of a large 2D break cluster under
HVLLS, new breaks are more likely away from the cluster than around
its edge. Repeating this calculation for a 1D cluster of r breaks under
HLLS, one finds that p = 2 is the transition value for divergence.
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On the other hand, as a d-bundle fails when o is increased, intact
fibers will typically have survived previous stress levels. Thus a variant
of the above calculation is to assume that all fibers have been “proof-
tested” just enough to support stress o on the d-bundle with the penny-
shaped r-cluster, and that a small stress increment Ag is required to
induce failures. It can be shown that p effectively is replaced by p — 1
in the result so the threshold for divergence increases to p = 5 in 2D
HVLLS and p = 3 in 1D HLLS.

Suemasu (1982) conducted an investigation somewhat like the one
above, except that he concentrated on the stress transferred from only
one break to other fibers over the whole composite. In the plane of
the break this overload scales as s~ in the 1D HLLS case and s~3 in
2D HVLLS. To this he added the applied stress ¢, which the fibers
were assumed to have previously survived. Because he integrated the
decaying overload along fibers (far outside our §-bundles) he concluded
for all p > 0 that divergence occurs in the number of flaws broken in all
fibers over the whole composite due to one break. However, repeating
his calculation over fibers within a §-bundle leads to convergence for
all p > 0, so little insight into the role of p is gained without focusing
on large clusters with 1/4/s fiber stress decay at their edges.

These arguments indicate that during d-bundle failure under in-
creasing o, the tendency towards dispersed fiber failures versus cluster
growth increases as p decreases, but the values of p determined above
are too high to directly explain the transition. Also, when p is small,
the probability of finding very weak fibers below strength ¢ is much
more than when p is large, and thus many dispersed fiber breaks are
to be expected. This aspect appears to be borne out by Figures 3 and
7, and Figure 19 as well as by inspection of many simulations.

In addition to p, the number of fibers n in the §-bundle also plays
a role in the occurrence of a dispersed versus a cluster growth failure
mode. Smaller composites tend to be stronger, and thus, show a higher
proportion of dispersed fiber breaks caused by the applied stress o.
Also, clusters are smaller when they become unstable. In larger com-
posites, the cluster size required for instability is larger, mainly because
the applied stress o is smaller (i.e., the composite is weaker) and a
higher stress concentration at the cluster edge is needed to fail fibers.
Nevertheless, it appears that no matter how large the cluster is before
instability, the tendency when p is small is to form dispersed breaks at
the cluster edge as it grows, thus spreading the stress redistribution.
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7. Conclusions and Relations to Other Results

In Egs. (40) and (73) we have the weakest-link, characteristic distribu-
tion function W (o) for 1D and 2D d-bundles under HLLS and HVLLS,
respectively. These bundles are links in the chain-of-bundles model for
the failure of large 2D and 3D unidirectional composites, respectively.
For sufficiently large Weibull modulus p, say p > 2 in 3D compos-
ites and p > 1 in 2D planar composites, the strength distribution
of a composite of length L = md and with n fibers is Hy, ,(0) =~
1 —(1—-W(o))™. When p decreases below these values, however,
the details of the load-sharing become increasingly unimportant, and
the d-bundle strength distribution for fixed n is not only increasingly
Gaussian up to quite large n but also converges to that for ELS whose
analytical form was given. For fixed p, however, this Gaussian nature is
expected to persist only up to a d-bundle size of the order of the critical
cluster size increased to eliminate the likelihood of stalling. Then the
distribution function for J-bundle strength appears to be that for a
chain of Gaussian ‘patches’ of 7 fibers in the §-bundle, particularly
under 2D HVLLS. Thus the composite can be viewed as a weakest-link
arrangement of mm such Gaussian patches. As the number of fibers n
in the composite increases by orders of magnitude, it is not clear that
this Gaussian nature will persist, especially in 1D HLLS.

Simpler versions of the form for W (o), Eq. (40), have been derived
in related failure models where elements have strength 0 or 1 with prob-
ability p and 1 — p, respectively. See for example Duxbury and Leath
(1987), Harlow and Phoenix (1991) and Phoenix and Beyerlein (2000b),
where in the latter two works power prefactors were obtained in W (o)
as here. Very recent work, carried out by Wu and Leath (2000a; 2000b)
under similar assumptions, has yielded distribution forms very similar
to those here. Earlier versions are also given in Phoenix and Beyerlein
(2000a). In the time dependent setting, analogous versions, W (t), have
been obtained without a power prefactor by Curtin and Scher (1997)
and Curtin et al. (1997), and with a power factor by Newman and
Phoenix (2001). In these works hard transitions to Gaussian lifetime
behavior were noted when a breakdown parameter decreased below a
certain critical value.

Fiber break clusters need not lie in a transverse plane but can wander
out of plane since new breaks can form next to old ones anywhere
within length §. However the tendency towards alignment is fairly
strong unless the variability in fiber strength is large. Nevertheless,
the idea of using a single length-scale ¢ for fiber load transfer may be
unrealistic when large break clusters develop before instability. Thus
the chain-of-bundles concept may be too restrictive in certain cases
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and the load-sharing model may require revision beyond using the fiber
load values obtained along a single break plane.

To account for some of these features, simulation results have been
generated by Landis et al. (2000) for a true 3D model using a modified,
square array version of HVLLS with eight matrix shear couplings rather
than four. Their results were successfully modeled by Phoenix and Bey-
erlein (2000a) using the Gaussian-link approach of the dispersed failure
mode at the end of the last section, but generalized to elastic global
load-sharing. Using the W (o) cluster growth approach here Phoenix
and Beyerlein (2000a) were only able to model quite well their results
for p = 20 but not p = 10 and 5 where misfits similar to those appearing
in Figure 13 occurred. As here, using Eq. (50) for N, and adjusting 7
and n may greatly improve the fit, but nevertheless, the range for p
corresponding to a dispersed failure mode may have a higher transition
value than observed here.

We also mention work by Ibnabdeljalil and Curtin (1997) for a
lattice-based model similar to HVLLS but with the added features
of fiber slip and pullout at breaks causing tractions across the final
fracture plane. Their Monte Carlo simulation results for p = 5 and
10 were successfully modeled using the Gaussian-link approach of the
dispersed failure mode described at the end of the previous section, but
generalized to global load-sharing as in Curtin (1991) and Phoenix et
al. (1997)). Using a version of the cluster growth model here, which
assumes v = 1/2 in W (o), Phoenix and Beyerlein (2000a) were able to
model fairly well their results for p = 10 but not p = 5 where misfits
occurred similar to those appearing in Figure 13. Again, using Eq. (50)
and adjusting v and 1 may greatly improve the fit but once more the
transition p value for a dispersed failure mode may be higher than
observed here. In practice there may actually be considerable overlap
in the ranges for p where the two models may apply.

We have set the length of a d-bundle to be § of Eq. (9). In reality this
definition tends to produce too large a composite failure probability in
the chain-of-bundles model because of the stress decay along a fiber
from its peak in actual composites. This reduces the probability of
finding a flaw. A more realistic definition of § involves p (or one can
modify the definition of K, also involving p) as discussed in Phoenix
and Beyerlein (2000a). Except for a shift in stress scale and change
in the value of m, revising the definition of § has negligible effect on
our results. Although we use the same characteristic length scale, ¢,
in HLLS and HVLLS, the physical decay length along a fiber is about
one-half that in the HLLS case for the same volume fraction of fiber
since there are three times as many fiber-to-fiber couplings in HVLLS.
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