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Introduction

Prediction of polymer lifetimes is an important challenge for the
polymer industry, particularly for materials expected to perform reliably for
extended time periods (e.g., decades). It is also critically important for
comparing new material formulations during their development. This paper
_briefly reviews some of the state-of-the-art lifetime prediction methods
available for commercially formulatéd €lastothers “exposed to oxygen,
humidity and/or high-energy radiation environments. Important complications
and pitfalls associated with such methods are highlighted.

Discussion

Simplistic Arrhenius Approach. Historically, the vast majority of
accelerated aging studies have utilized the so-called Arthenius methodology.
In the simplest instance, this approach assumes that a chemical reaction is
responsible for the degradation and uses classical chemical rate theory to
predict that the reaction rate ~ exp(-E/RT), where E, is the activation energy
of the reaction, R is the gas constant and T is the absolute temperature. Plots
of the log of the rate constant (or the failure time for a degradation variable)
versus inverse T are predicted to give linear behavior. If confirmed, the linear
behavior. is then extrapolated to the use T to predict use lifetime. Figure 1
shows induction (failure) time data analyzed in this fashion for three
degradation parameters of an EPDM material. Arrhenius behavior is
confirmed for the induction time data and the linearity is extrapolated to
25°C, leading to a predicted lifetime of 55,000 years.
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Figure 1. Arthenius plot and extrapolation of EPDM induction times.

Although long life is predicted from the extrapolation, the large
extrapolation distance gives little confidence in the result. In fact, there are
numerous phenomena that can lead to non-Arrhenius behavior. Several of
these will be discussed briefly below, including the presence of more realistic
reaction kinetics that can lead to or predict non-Arrhenius behavior’ and
physical subtleties involving the sorbed concentration of reactant gas (heat of
solution effects for hydrolysis?, diffusion effects for oxidation®#). Many other
phenomena that can lead to- non-Arrhenius behavior will not be covered.
These include changes that often occur when the data region or extrapolation
range encompasses a polymer transition (7, or 7,,) and antioxidant
complications caused by solubility changes with T and evaporation effects.>

Solubility Effects. For aging in air, if [O,], the concentration of
dissolved O,, affects the oxidation rate, changing T usually leads to a change
in [0,]. Because Henry’s Law, which predicts a linear relationship between
-{0,] and gas phase O, partial pressure holds at each T, Arrhenius behavior is
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not impacted (the measured activation energy will equal the trueE, plus the

O, heat of solution). A more complicated situation occurs when hydrolysis

dominates the degradation of a material since Henry’s Law behavior is often
inappropriate. By understanding how water vapor sorption curves depend on
temperature, Arrhenius behavior can be recovered as long as data are taken
and analyzed at constant relative humidity (Fig. 2).2
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Figure 2. Arthenius plot at constant RH of reversion times for a polyurethane.

Realistic Oxidation Scheme for Stabilized Polymers. When oxygen is
present during degradation of polymers, oxidation effects normally dominate
degradation. Typical kinetic oxidation schemes are based on varjants of the
so-called basic auto-oxidation scheme (BAS) derived many decades ago by
Bolland’, Bateman® and co-workers. Analysis of this scheme! for stabilized
polymers leads to the following expression for the oxidation rate
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C, and C; are constants involving the rate constants of the individual reactions
in the kinetic scheme and [O,] is the dissolved O, concentration. This implies
that the oxidation rate will generally depend upon the concentration of
dissolved O,. At low [O,], the rate will be proportional to [O,]; at the other
limit of high [O,], the rate will be independent of [0,]. It is easy to show that
rigorously-Arrhenius behavior only occurs at the low [O,] limit.!

Time-temperature Superposition. Equation (1) -implies a constant
oxidation rate at each aging 7. this is consistent with experimental
observations on many stabilized elastomers.” Since this implies a constant
acceleration of the degradation when T increases, the time-dependent
degradation curves at two temperatures should be related by a constant
multiplicative shift factor defined as a;. This leads to a concept called time-
temperature superposition,”? where all of the data (as opposed to a typical
analysis which uses one processed data point per curve- see Fig.1) at the
experimental Ts are superposed to a reference 7 with empirically chosen shift
factors. Figure 3 shows superposed results for elongation data of a nitrile
rubber at a reference 7 of 64.5°C (the empirically derived a; values are noted
on the figure). When the empirical a; values are plotted on an Arrhenius plot
(Fig. 4, squares), the observed linearity confirms Arrhenius behavior.

Diffusion-Limited Oxidation (DLO) Effects. We saw above that the
oxidation rate can depend and, in fact, does depend"? on the dissolved O,
concentration for stabilized elastomers. This ‘implies that DLO effects can
occur whenever the rate of oxidation in the material exceeds the rate at which
the dissolved O, can be replenished by diffusion from the surrounding air
atmosphere.>*? It turns out that such DLO effects are commonly observed for
accelerated aging of elastomers."*® These effects can be monitored
‘experimentally by several methods,!! including modulus profiling.?Modulus
profiling results® showing important DLO effects are plotted in Fig. 5 for the
nitrile rubber material aged for selected times at 125°C. Such DLO effects
can also be predicted quantitatively from modeling if estimates or
measurements of the O, consumption rate and permeability coefficient are
available.*® It may at first seem surprising that the nitrile material gives
excellent +-T superposition (Fig. 3) and Arrhenius behavior (squares in Fig. 4)
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given the importance of DLO effects (Fig. 5). This turns out to be fortuitous '

for this and many other oven-aged elastomers since the elongation is usually
dominated by surface hardening, which is unaffected by DLO.*®
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Figure 3. Time-temperature superposed elongation results for a nitrile rubber.
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Figure 4. Arrhenius plots of nitrile rubber shift factors for elongation and
oxygen consumption.
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Figure 5. Modulus profiles for nitrile rubber versus aging time at 125°C.

Ultrasensitive O, Consumption to Test Extrapolation Assumption. A
final problem with the Arrhenius approach is the unconfirmed extrapolation
of high T accelerated results to much lower 75 (Figs. 1 and 4). To minimize
the extrapolation, long-term accelerated data should be obtained, as was done
(up to ~2 year exposures) for the EPDM (Fig. 1) and the nitrile (Fig. 3)
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materials. Clearly, an ultrasensitive analytical technique related to the
degradation mechanism is needed to access 75 in the extrapolation regions.
One approach that has been successful is O, consumption measurements that
typically allow data to be taken at 75 40.to 60°C lower than the lower T limit
of conventional measurements."® Such measurements were made from 96°C
down to 23°C for the nitrile material.” After +-T superposition of the results,
shift factors for O, consumption were derived. When plotted on Fig. 4 (solid
circles), it is clear that the oxidation mechanism has the same E, down to
room temperature, confirming the extrapolation of mechanical properties.
Similar experiments on the EPDM material showed that the E, dropped
substantially in the extrapolation region, leading to a significant reduction in
the predicted room temperature lifetime.!

Combined Radiation and Temperature Environments. Predicting
lifetimes can get even more complex when an additional environmental stress
enters in addition to T and gaseous reactant (¢.g., O, or H,0). For example,
for materials aging in nuclear power plants, high-energy radiation can become
significant in addition to 7 and O,. Even though such situations would seem
to be intractable, it is often possible to derive sufficient knowledge of the
underlying chemistry'* such that quantitative models for multi-stress
environments can be derived and confirmed.’® This work allowed us to
explain degradation rates that were observed to occur 10 to 100 times faster
than expected. :

Conclusions
Regardless of the stress environments acting on polymers, it should be

‘clear that #-7T superposition is the analysis method of choice when attempting

to understand and extrapolate the T dependence of degradation. It is also
critically important to monitor/understand DLO effects, minimize
extrapolation distances and use ultrasensitive analytical techniques to probe
the extrapolation region. Although a great deal has been learned about better
methods for predicting polymer lifetimes, much more research needs to be
accomplished in this important area. More work focussing on understanding
the complex chemical pathways underlying degradation will aid in developing -
better extrapolation approaches. Additional ultrasensitive - methods for
following degradation at low temperatures will allow more confident
extrapolations.
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