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ABSTRACT

Generative process planning describes methods process engineers use to modify manufacturing (or process) plans
after a design is complete. A completed design may be the result from the introduction of a new product based on
an old design, assembly upgrade, or modified product designs used for a family of similar products. Typically, an
engineer designs an assembly and process plans are created capturing the manufacturing processes, including the
assembly sequence, the methods used to put the piece parts together, the cost of the piece parts, labor costs, etc.
When new products originate as a result of an upgrade, the geometry of parts may change, and/or additional com-
ponents and subassemblies are added to or are omitted from the original design. As a result, process engineers are
forced to create a "new" set of process plans, Often times, this is a tedious and time-consuming task, even if only a
single component is involved in the upgrade. The task is further complicated by the fact that the process engineer
is forced to manually generate these plans for each product upgrade. To the author's knowledge, no automatic as-
sembly planner has ever compensated for the automatic planning of generative processes based on geometric rea-
soning. To generate new assembly plans for the product upgrade, engineers have to manually re-specify the
manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly
planning algorithms based on component geometry have been developed to antomatically recognize design modifi-
cations and automatically apply previously defined manufacturing plan selection criteria and constraints.
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1. Introduction

This paper introduces methodologies that are natural algorithmic progressions of an automated assembly planner
towards fully automating generative process planning. Generative process planning describes the methods process
engineers use to modify manufacturing (or process) plans after a design is complete. Section 2 introduces an auto-
matic assembly planning system used as the framework for automating generative process planning and provides
an overview of motivational factors promoting the development of automatic generative process planning tech-
niques. Section 3 places the assembly planner in the context of generative process planning. It further introduces
geometric problems associated with top-level assembly planning and special-purpose routines implemented within
the assembly planner to solve those problems. Methods have been developed and are presented for automatically
saving, restoring, and propagating subassembly analyses for top-level assembly analysis. Section 4 describes the
implementation of manufacturing constraint rules enabling users to automatically "reconcile" existing constraints
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applied to an older version of an assembly to a new version of an assembly. Finally, Section 5 concludes the paper

and presents future research areas. R 'E @ Eg v E@
DEC 1 32000

The approach taken to manufacturing planning is obviously critical to the design, implementaticgrlanﬁae]f:)r&nance
of automatic generative process planning. At Sandia National Laboratories, researchers have developed an auto-
matic assembly planner, called Archimedes® [1]. This system was used as the basis for realizing automatic gen-
erative process planning.

2. Background and Motivation

2.1 Manufacturing Planning Approach

Archimedes is a constraint-based interactive assembly planning software tool used to plan, optimize, simulate,
visualize, and document sequences of assembly. Given a CAD model of the product, the program automatically
finds part-to-part contacts, generates collision-free insertion motions, and chooses assembly order. Disassembly
operations are generated using the Non-Directional Blocking Graph approach discussed in [2]. A graphics work-
station’s hardware Z-buffer is used to quickly find collisions between complex facetted models. The search space
implemented in the system is an AND/OR graph of subassembly states [3] and the operations used to construct
them from smaller subassemblies. During system application, the engineer specifies a quality metric in terms of
application-specific costs for standard assembly process steps, such as part insertion, fastening, and subassembly
inversion. Combined with an engineer’s knowledge of application-specific assembly process requirements, Ar-
chimedes allows systematic exploration of the space of possible assembly sequences. The engineer uses a simple
graphical interface to place geometric overrides and manufacturing constraints on the valid assembly sequences,
such as defining subassemblies, requiring that certain parts be placed consecutively with or before other parts, de-
claring preferred directions, etc. Two types of constraints on assembly plans are utilized by the system: strategic
and tactical. Strategic constraints apply to the entire assembly and its plan, while tactical constraints only apply to
certain subsets of parts. The constraint framework provides a library of constraint types from which a user can
instantiate on the assembly plan. This framework provides the underlying mechanics towards assembly optimiza-
tion and lends itself towards automatic planning for manufacturing generative processes.

2.2 Motivational Applications

The Archimedes System has been applied to hundreds of assemblies, ranging from automotive and aircraft to such
things as designing assembly sequences for several weapon safety devices and for the B61 bomb. The B61, with
improved non-nuclear components, has replaced the B53 in the U.S. stockpile. The scope of modifications made to
the B61 requires exhaustive testing to certify the modified bomb's safety, functionality, and reliability. In an early
experiment, assembly planner was applied to the B61 center-case. It was estimated that 2.5-3 person months were
required to manually create training documentation for retrofit operations using a commercial animation package.
In an effort to reduce this time, the planner was applied to the center-case assembly. The experiment showed that
there were many assembly planning issues associated with CAD revisions that went beyond the planner’s existing
capabilities. For instance, the first step required to apply the planner was to translate the CAD data to the ACIS
format. Initially, the entire center-case assembly, containing 547-parts, was selected for analysis; however, due to
CAD translation problems a 303-part subassembly was exercised during the experiment. Effectively, removing
parts modified the original design.

The planner was first applied to the original (larger) solid model to identify inconsistencies in the CAD model.
This allowed for the detection of critical design flaws to be caught early in the re-manufacturing phase and a re-
duction in scheduling and costs. Next, the system was used to test feasibility of disassembly, checking geometric
accessibility for part removal. Since the planner plans only for straight-line motions, and this assembly contained
numerous flexible parts, such as cables, that could not use straight-line assembly motions, the part-mating opera-
tions involving those parts were overrode. This was a long and tedious manual process. When it was decided to
exercise the smaller assembly, these same tedious steps had to be repeated, since the existing planning algorithms
could not reconcile the differences (part count, geometry, constraints and overrides) between the two assemblies
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automatically. This same problem was inherent in the application of the planner to the B61 nose assembly. Unlike
the center-case assembly, the nose assembly went through several revisions before finalization. However, just like
the center-case assembly application, for each revision the assembly planning steps had to be repeated (often dupli-
cated). To complicate matters further, the planner had to be applied to each subassembly even if they were identi-
cal. Further, when the two fully analyzed subassemblies were brought together to form a single assembly, instan-
tiation of all constraints had to be repeated manually instead of automatic inheritance.

3. Generative Process Planning Issues

Section 2.2 identifies three fundamental problems inherent in automatic generative process planning. These prob-
lems are not restricted to Archimedes. They represent a fundamental class of problems inherent in all assembly
planners and have plagued the manufacturing community for years. It is only recently, with the advancements in
computer technology, that these problems have been brought to the forefront. Section 3 is devoted to solving these
problems. The underlying principles, as they relate to automatic assembly analysis for generative process plan-
ning, are discussed and solutions to each are provided.

3.1 Re-design

Two fundamental issues associated with assembly design modification are geometry and function. For purposes of
assembly planning only the geometry is discussed. There are three geometry-related design modification principles
for any given assembly. An assembly may be modified by (1) removing part(s), (2) changing the shape of the
part(s), (3) adding parts(s), or by any combination of the three. From an assembly planning perspective, part re-
moval is the simplest form of modification to deal with, while the addition of parts is the most difficult.

To address the first, the removal of parts, a geometric override was added to the original Archimedes override ar-
chitecture that removes all associations of that part with others (e.g., part contacts, overrides, and constraints) and
effectively hides the part from the user's view. In the planner, routines to save and restore assembly plans, assem-
bly constraints, and geometric overrides are implemented at the top-level assembly. This allows a user to analyze
an assembly at the top-level and save all of the analysis information. When the system is applied to the same as-
sembly at a later time or to different generations of that assembly, the information may be invoked by restoring the
files, When the user loads the assembly, the constraint and override files are automatically loaded. The assembly
is represented by data bit-vector. The length of vector corresponds to the number of parts in the assembly. In all
constraints and overrides, a "0" in a particular bit means one thing about a part and a "I" means something else,
depending the type of constraint or override that is implemented. In this case, a "0" in the bit-vector notifies the
system that that particular part is no longer in the assembly. While the part is still present in the assembly tree (i.e.,
the length of the bit-vectors for all constraints and overrides is constant), for all intense purposes it has been re-
moved.

To address the second, changing component geometry, the Archimedes’ contact analysis routines, which automati-
cally check contacts between parts, is used. If the re-design alters the contacts between parts, the user is automati-
cally informed and given the opportunity to address the issue. The same is true for previously defined constraints
and overrides.

The third issue, the addition of parts, is the most difficult. Because the assembly planner plans for assemblies at
the top-level and the length of data bit-vector representing the number of parts at the top-level is fixed, the planner
can not plan for assembly upgrades at the top-level when the part count increases. This is a major research area on
its own, and attention to solving this problem should be given in the future,

3.2 Planning with Subassemblies

This section deals with generative process planning principles, 1 and 2 above. It is pointed out in the previous
section that the planner plans for assembly at the top-level of the assembly and does not allow the propagation of
information resulting from independent applications at the subassembly-level to the top-level. The first step to-
wards solving this problem was to incorporate save and restore routines for the constraints and overrides resulting
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from the application of Archimedes to the subassemblies, which would automatically load when Archimedes was
applied at the top level of the assembly. The underlying problem with this approach is how to resolve conflicts
between the constraints and overrides when they are propagated to the top. Section 4 addresses the conflict resolu-
tion issues. Here, methodologies incorporated into the planner for automatically propagating information gener-
ated at the subassembly-level to the top-level are presented.

3.2.1 Automatic Propagation

When the planner is applied at the subassembly-level, constraints and overrides are stored under the default name

of the subassembly (e.g., subassembly-name.constraints and subassembly-name. overrides). When loading an as-

sembly (the base assembly or top-level assembly), the subassembly constraints are automatically loaded using the

subassembly-name.constraints default file. For the constraint restoration subroutine that restores two subassembly

sets, bits in the data vector are set as follows for: (visible - 0 and group - 1). For the constraint restoration subrou-

tine that restores three subassembly sets, bits in the data vector are set as follows for: (visible - 1, secondgroup - 0,

and group - 0). For each subassembly file restoration, the number-of-parts bit for the full assembly set is equal to

the number of parts in the subassembly. The restoration algorithm modifies the subassembly’s portion of the as-

sembly data vector to be the same as that read from the subassembly file. Any parts in the vector not belonging to

the subassembly are set to 0. The algorithm changes the number-of-parts bit to equal the number of bits set in the

data vector.

When loading an assembly, the subassembly overrides are

'g ! H t also automatically loaded using the subassembly-

: i i i name.overrides default file. The subassembly overrides

. % S and T . \,@; are loaded with a new override class feature, called IsTo-

i & / g‘:’(’__ _.1 ’ = / pLevel, set 0 (or faise), to indicate that they were loaded

g ﬁ Y @ i from the subassembly's overrides file, not from the base
shaft

assembly's overrides file. Assembly overrides are created
with IsTopLevel set to 1 (frue). Only top-level overrides
are saved for an assembly. Conflicting overrides made at
the base assembly level take precedence over overrides
made locally to the subassembly.
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S=Ts 3.2.2 Demonstration of Propagation Effects

To illustrate the propagation of design modifications

imposed at the subassembly-level for later use in plan-

ning at the top-level, conceptual designs of two similar
assemblies, 4 and B, are shown in Figure 1. The only
difference between the two is the shape of the shaft. As-
semblies 4 and B are composed of three subassemblies
and 6 fasteners. Viewing the diagram from the bottom
up, the first three parts make up the first set of subas-
semblies, S; and T), S; <4, T; c B, S; = T;. The next
Assembly A Assembly B three parts make up the second set of subassemblies, S,
and Ty, S; < 4, T < B, S; = T,. All remaining parts

. N (with the exception of the fasteners) make up the third
Figure 1. Propagation effects for planning with subassemblies. set of subassemblies, S; and T, S; <4, T3 B, S; #7T;.

Suppose B is modified at the top-level by changing the shape of a part in T, as shown in Figure 2. Then the

change only affects B. However, if the B is modified at the subassembly-level (at T) then 4 is no longer feasible.

(S ()
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Figure 2, Design modification for Subassembly T:. Figure 3. Design modification for Subassembly §;.
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On the other hand, suppose 4 is modified by lengthening the shaft and by cutting a rectangular hole in the plate
to slide it into (see Figure 3). In this case, the change does not affect B at any level of planning.

4, Conflict Resolution

Rules were incorporated in assembly planner to automatically resolve conflicts between top-level and subassembly-
level constraints and overrides (when restoring, adding, editing, or activating) at the top-level of the assembly.
This section describes the implementation of the constraint and override rules enabling the planner to automati-
cally "reconcile” existing constraints and current constraints. Based on the various constraints and intended pur-
poses, three distinct methodologies were developed for implementing the rules. In defining these methodologies
for automatic generative process planning, the term current constraint refers to the constraint that is being added,
edited, or activated. The term existing constraint refers to the constraint that is in conflict with the current con-
straint, Tables 1-3 present the methodologies and associated rules.

Table 1. Methods that suspend existing constraints on conflict give top-level constraints precedence over subassembly constraints during restoration,
and new additions or edit changes precedence over existing.

Constraint Definitions and Rules

req_order_ Require some ordering between 2 or more liaison creations; typically stated in a Boolean form suchas 1 (2 and 3), oras a set of

liaison such Boolean statements involving many liaisons [4,5].
Rule: For2 REQ_ORDER._LIAISON constraints, if current group intersects with existing second group, and the current second
group intersections with existing group, then suspend the existing constraint.

req_order Require ordering between particular part insertions.

part Rule: For two REQ_ORDER_PART constraints, if the current group intersects with the existing second group, and the current
second group intersects with existing group, then suspend the existing constraint.

req paths Require that each assembly action be along one of the 6 coordinate directions of a given coordinate system, or a sclected subset

axial of these 6 directions.
Rule; Iftwo REQ_PATHS_AXIAL constraints intersect and their required paths are not equal, then suspend the existing con-
straint.

req_stack Specifies a set of parts to be assembled one at a time in a given direction.
Rule: If2 REQ STACK. constraints intersect and their required trajectories are not equal, suspend the existing constraint.

req_sub seq Require that a particular assembly subsequence be used somewhere in the plan. This might be invoked because the sequence is
particularly efficient or reliable. The front-fill then back-fill subsequences of [6] are relatively complex examples.
Rule: If two REQ_SUBSEQ constraints are the same type (assembly or disassembly) and their groups intersect, then suspend
the existing constraint.

req_tool Requites that a collision-free placement ofa given tool use-volume must exist in the assembly during a certain operation. See
[7] for more details.
Rule: If two REQ _TOOL constraints primary parts are the same, suspend the existing constraint.

req_sub- Allows a user to specify the order in which a subsequence of parts is assembled.

sequence_parts | Rule: Iftwo REQ_SUBSEQUENCE_PARTS groups intersect, then suspend the existing constraint.

Tahle 2. Methods that suspend current constraints on conflict give subassembly-level constraints precedence over top-level constraints during restora-
tion, and existing constraints take precedence over new additions or edit changes.

Constraint Definitions and Rules

req_subassy Require a particular subassembly be used [8].

Rule: Iftwo REQ_SUBASSY constraints intersect, but neither is a subset of the other, then suspend the current constraint. If
the current REQ_SUBASSY intersects with an existing REQ_SUBASSY WHOLE, but neither is a subset of the other, then
suspend the current constraint.

req_subassy The same as REQ_SUBASSY,, but tells the planner in addition not generate a plan to construct subassembly.

_ whole Rule: Iftwo REQ_SUBASSY_WHOLE constraints intersect, but neither is a subset of the other, then suspend the current con-
straint. If current REQ_SUBASSY_ WHOLE intersects with an existing REQ_SUBASSY, but neither is a subset of the other,
then suspend the current constraint.

Table 3. Constraints/rules unioning top-level and subassembly constraints.
Constraint Definitions and Rules

req_order_first | Require that an assembly plan start with a given part.

Rule: If the current REQ_ORDER_FIRST intersects with an existing REQ_ORDER_FIRST, suspend the existing constraint.

Union current constraint with any existing REQ_ORDER_FIRST constraints and delete the existing constraints.
req_order_last Requires that a certain part or set of parts be placed last.

Rule: If the current REQ_ORDER_LAST constraint intersects with an existing REQ_ORDER_FIRST constraint, suspend the

existing constraint. Union the current constraint with any existing REQ_ORDER_LAST constraints and delete the existing

constraints.

réq_success ‘Allows the user to specify a part or collection of parts that must be removed from an assembled product. This is especially
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part useful for servicing/ repair,/upgrade
Rule: Union current constraint with any existing REQ SUCCESS PART constraints and delete the existing constraints.

Rules for resolving conflicts between subassembly overrides and top-level overrides are much simpler than the con-
straints. When applying the system to the assembly at the top-level, overrides for the subassemblies (parsing the
subassembly tree bottom-first, deleting similar overrides at it goes) are automatically loaded. The system then
loads the overrides for top-level assembly (deleting similar overrides, in this case any non-top-level overrides of
same type for the same part), if any exist. On restoring all top-level overrides from a file, the system removes all
top-level overrides and then loads in new top-level overrides (deleting similar overrides).

5. Conclusions and Future Work

A synopsis of problems and partial solutions associated with automating generative process planning has been pro-
vided. While many assembly planners exist, Archimedes is the only known system, which truly generates assembly
plans automatically; and, to the author's knowledge no automatic assembly planner has ever compensated for
automatic planning for generative processes. The methodologies presented in this paper are natural algorithmic
progressions of the Archimedes system towards fully automating generative process planning. The system has
been tested on numerous assemblies and has shown significant increases in efficiencies in planning for assembly
upgrades and the results are proportional with task difficulty. For example, it took approximately 1/2 day to ana-
lyze and instantiate constraints on the nose section of the B61 mentioned in Section 2.2. With the generative proc-
ess planning capabilities, this time was reduced to planning time only, approximately 1 minute. It is difficult to
obtain precise measures of efficiency since there are many variables affecting the process (e.g., user experience,
user familiarity with the assembly, assembly size, number of initial constraints and overrides, etc.).

Three geometry-related design modification principles were presented: modification by (1) removing part(s), (2)
changing the shape of the part(s), (3) adding parts(s), or by any combination of the three. Automatic planning
algorithms for (1) and (2) were presented and tested. Future work needs to be directed towards the development of
algorithms to fully automate the propagation of the assembly constraints and overrides when parts are added to an
assembly.
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