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GEOMETRIC REASONING IN GENERATIVE PROCESS PLANNING
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ABSTRACT

Generativeprocessplanning describesmethods process engineers use to moditj manufacturing (or process)plans
after a design is complete. A completeddesign maybe the result from the introduction of a new product based on
an old design, assemblyupgrade,or modifiedproduct designs used for a fi-unilyof similar products. Typically,an
engineerdesigns an assemblyand processplans are created capturing the manufacturingprocesses,including the
assemblysequence, the methods used to put the piece parts together, the cost of the piece parts, labor costs, etc.
When new productsoriginate as a result of an upgrade, the geometryof parts may change, and/or additional com-
ponentsand subassembliesare added to or are omitted from the original design. As a resultj processengineersare
forcedto createa “new”set of processplans. Oftentimes, this is a tedious and time-consumingtask, even if only a
single componentis involvedin the upgrade. The task is fhrther complicatedby the fact that the processengineer
is forcedto manually generatethese plans for each product upgrade. To the author’sknowledge,no automaticas-
semblyplanner has ever compensatedfor the automatic planning of generativeprocessesbased on geometric rea-
soning. To generate new assembly plans for the product upgrade, engineers have to manually re-specifj the
manufacturingplan selectioncriteria and re-run the planners. To remedythis problem, special-purposeassembly
planning algorithms based on componentgeometryhave been developedto automaticallyrecognizedesign modifi-
cationsand automaticallyapplypreviouslydefinedmanufacturingplan selectioncriteriaand constraints.
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1. Introduction

This paper introducesmethodologiesthat are natural algorithmic progressionsof an automated assemblyplanner
towards filly automatinggenerativeprocessplanning. Generativeprocessplanning describesthe methods process
engineersuse to modifymanufacturing(or process)plans atler a design is complete.Section2 introducesan auto-
matic assemblyplanning systemused as the hrnework for automating generativeprocessplanning and provides
an overviewof motivational factors promoting the developmentof automatic generative process planning tech-
niques. Section3 placesthe assemblyplanner in the context of generativeprocessplanning. It timtherintroduces
geometricproblemsassociatedwith top-levelassemblyplanning and special-purposeroutines implementedwithin
the assemblyplanner to solve those probiems. Methods have been developedand are presented for automatically
saving, restoring, and propagating subassemblyanalyses for top-level assemblyanalysis. Section 4 describesthe
implementationof manuhcturing constraint rules enabling users to automatically“reconcile”existing constraints
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appliedto an older versionof an assemblyto a new version of an assembly. Finally, Section 5 concludesthe paper
and presents fiture researchareas. ~~~~~~~~

2. Background and Motivation
DIX1g2M0

‘Qm&X&anceThe approachtaken to manufacturingplanning is obviouslycritical to the design, implementatlo
of automatic generativeprocess planning. At Sandia National Laboratories,researchershave developedan auto-
matic assemblyplanner, called Archimedes@[1]. This systemwas used as the basis for realizing automatic gen-
erativeprocessplanning.

2.1 Manufacturing Planning Approach

Archimedes is a constraint-based interactive assembly planning software tool used to plan, optimize, simulate,
visualize, and documentsequencesof assembly. Given a CAD model of the product the program automatically
finds part-to-part contacts, generates collision-freeinsertion motions, and chooses assembly order. Disassembly
operationsare generatedusing the Non-DirectionalBlocking Graph approachdiscussedin [2]. A graphics work-
station’s hardwareZ-bufferis used to quickly find collisionsbetweencomplex facettedmodels. The search space
implemented in the system is an AND/OR graph of subassemblystates [3] and the operations used to construct
them from smaller subassemblies. During system application, the engineer specifiesa quality metric in terms of
application-specificcosts for standard assemblyprocess steps, such as part insertion, fastening, and subassembly
inversion. Combined with an engineer’s knowledge of application-specificassembly process requirements, Ar-
chimedes allows systematicexplorationof the space of possible assemblysequences. The engineer uses a simple
graphical interface to place geometricoverrides and manufacturingconstraints on the valid assemblysequences,
such as defining subassemblies,requiring that certain parts be placed consecutivelywith or beforeother parts, de-
claring preferreddirections, etc. Two types of constraints on assemblyplans are utilized by the system: strategic
and tactical. Strategicconstraints applyto the entire assemblyand its plan, while tactical constraints only apply to
certain subsets of parts. The constraint frameworkprovides a library of constraint types from which a user can
instantiate on the assemblyplan. This frameworkprovidesthe underlyingmechanicstowards assemblyoptimiza-
tion and lends itself towardsautomaticplanning for manuf%turinggenerativeprocesses.

2.2 Motivational Applications

The ArchimedesSystemhas been applied to hundreds of assemblies,ranging from automotiveand aircrafi to such
things as designing assemblysequencesfor several weapon safety devicesand for the B61 bomb. The B61, with
improvednon-nuclearcomponents,has replacedthe B53 in the U.S. stockpile. The scopeof modificationsmade to
the B61 requires exhaustivetesting to certi&the modifiedbomb’ssafety,fimctionality,and reliability. In an early
experiment,assemblyplanner was applied to the B61 center-case. It was estimatedthat 2.5-3 person months were
required to manually create training documentationfor retrofit operationsusing a commercialanimation package.
In an effort to reduce this time, the planner was applied to the center-caseassembly.The experiment showedthat
there weremany assemblyplanning issues associatedwith CAD revisionsthat went beyondthe planner’s existing
capabilities. For instance, the first step required to apply the planner was to translate the CAD data to the ACIS
format. Initially, the entire center-caseassembly,containing 547-parts, was selectedfor analysis however,due to
CAD translation problems a 303-part subassemblywas exercised during the experiment. Effectively,removing
parts modifiedthe original design.

The planner was first applied to the original (larger) solid model to identi~ inconsistenciesin the CAD model.
This allowedfor the detectionof critical design flaws to be caught early in the re-manui%cturingphase and a re-
duction in schedulingand costs. Next, the system was used to test feasibilityof disassembly,checkinggeometric
accessibilityfor part removal. Since the planner plans only for straight-line motions, and this assemblycontained
numerous flexibleparts, such as cables, that could not use straight-line assemblymotions, the part-mating opera-
tions involving those parts were overrode.This was a long and tedious manual process. When it was decided to
exercisethe srnalIerassembly,these same tedious steps had to be repeated, since the existing planning algorithms
could not reconcile the differences(part coun~ geometry, constraints and overrides)between the two assemblies



automatically. This same problemwas inherent in the applicationof the planner to the B61 nose assembly.Unlike
the center-caseassembly,the nose assemblywent through several revisions before finalization. However,just like
the center-caseassemblyapplication,for each revisionthe assemblyplanning steps had to be repeated(oftendupli-
cated). To complicatematters firther, the planner had to be applied to each subassemblyeven if they were identi-
cal. Further, when the two fully analyzedsubassemblieswere brought together to form a single assembly,instan-
tiation of all constraintshad to be repeatedmanually instead of automaticinheritance.

3. Generative Process Planning Issues

Section2.2 identifiesthree fundamentalproblems inherent in automaticgenerativeprocessplanning. These prob-
lems are not restricted to Archimedes. They represent a fundamental class of problems inherent in all assembly
planners and have plagued the manufacturingcommunityfor years. It is only recently,with the advancementsin
computertechnology,that these problemshave been brought to the forefront.Section3 is devotedto solving these
problems. The underlying principles, as they relate to automatic assemblyanalysis for generativeprocess plan-
ning, are discussedand solutionsto each are provided.

3.1 Re-design

Two fundamentalissues associatedwith assemblydesign modificationare geometryand function. For purposesof
assemblyplanning only the geometryis discussed. There are three geometry-relateddesign modificationprinciples
for any given assembly. An assemblymaybe modified by (1) removing part(s), (2) changing the shape of the
part(s), (3) adding parts(s), or by any combination of the three. From an assemblyplanning perspective,part re-
moval is the simplest form of modificationto deal with, while the addition of parts is the most difficult.

To addressthe first, the removal of parts, a geometricoverridewas added to the original Archimedesoverride ar-
chitecturethat removesall associationsof that part with others (e.g., part contacts,overrides,and constraints)and
effectivelyhides the part from the user’sview. In the planner, routines to save and restore assemblyplans, assem-
bly constraints, and geometricoverridesare implementedat the top-levelassembly. This allows a user to analyze
an assemblyat the top-leveland save all of the analysis information. Wlien the system is applied to the same as-
semblyat a later time or to differentgenerationsof that assembly,the informationmay be invokedby restoring the
files. When the user loads the assembly,the constraint and override files are automaticallyloaded. The assembly
is representedby data bit-vector. The length of vector correspondsto the number of parts in the assembly. In all
constraints and overrides, a “O”in a particular bit means one thing about a part and a “l”means something else,
dependingthe we of constraint or override that is implemented. In this case, a “O”in the bit-vectornotifies the
systemthat that particularpart is no longer in the assembly.While the part is still present in the assemblytree (i.e.,
the length of the bit-vectorsfor all constraints and overrides is constant), for all intense purposes it has been re-
moved.

To addressthe second,changing componentgeometry,the Archimedes’contactanalysis routines, which automati-
callycheckcontactsbetweenparts, is used. If the re-designalters the contactsbetweenparts, the user is automati-
cally informid and given the opportunityto address the issue. The same is true for previouslydefined constraints
and overrides.

The third issue, the addition of parts, is the most difficult. Becausethe assemblyplanner pkms for assembliesat
the top-leveland the length of data bit-vectorrepresentingthe number of parts at the top-levelis fixe&the planner
can not plan for assemblyupgradesat the top-levelwhen the part count increases. This is a major researcharea on
its own, and attention to solvingthis problemshouldbe given in the future.

3.2 Planning with Subassemblies

This section deals with generativeprocess planning principles, 1 and 2 above. It is pointed out in the previous
section that the planner pkms for assemblyat the top-levelof the assemblyand does not allow the propagationof
information resulting tlom independent applications at the subassembly-levelto the top-level. The first step to-
wards solving this problemwas to incorporatesave and restore routines for the constraints and overridesresulting
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from the application of Archimedesto the subassemblies,which would automaticallyload when Archimedeswas
applied at the top level of the assembly. The underlying problem with this approach is how to resolve conflicts
betweenthe constraintsand overrideswhen they are propagatedto the top. Section4 addressesthe conflictresolu-
tion issues. Here, methodologiesincorporatedinto the planner for automaticallypropagating information gener-
ated at the subassembly-levelto the top-levelare presented.

3.2.1 Automatic Propagation

When the planner is applied at the subassembly-level,constraints and overridesare stored under the dethult name
of the subassembly(e.g., subassembly-name.constraintsand subassembly-name.overrides). When loading an as-
sembly(the base assemblyor top-level assembly),the subassemblyconstraints are automatically loaded using the
subassembly-name.constraints default file. For the constraint restorationsubroutinethat restorestwo subassembly
sets, bits in the data vectorare set as followsfo~ (visible -0 and group - 1). For the constraint restoration subrou-
tine that restoresthree subassemblysets, bits in the data vector are set as followsfor: (visible -1, secondgroup-O,
and group - O). For each subassemblyfile restoration,the number-of-partsbit for the fill assemblyset is equal to
the number of parts in the subassembly. The restoration algorithm modifies the subassembly’sportion of the as-
semblydata vector to be the same as that read from the subassemblyfile. Any parts in the vector not belonging to
the subassemblyare set to O. The algorithm changes the number-of-partsbit to equal the number of bits set in the
data vector.

.-lmmmyA --fssemb(pB

Fignre 1. Propagation effeets for pbnmingwith subassemblies.

When loading an assembly,the subassemblyoverridesare
also automatically loaded using the subassembly-
name.overrides default file. The subassemblyoverrides
are loadedwith a new overrideclass feature, called IsTo-
pLevel, set O(or~alse), to indicate that they were loaded
from the subassembly’soverrides file, not from the base
assembl~s overridesfile. Assemblyoverridesare created
with IsTopLevelset to 1 (true). Only top-leveloverrides
are saved for an assembly.Conflicting overridesmade at
the base assembly level take precedence over overrides
made locallyto the subassembly.

3.2.2 Demonstration of Propagation Effects

To illustrate the propagation of design modifications
imposed at the subassembly-levelfor later use in pkm-
ning at the top-level, conceptualdesigns of two similar
assemblies,A and B, are shown in Figure 1. The only
differencebetweenthe two is the shapeof the shaft As-
sembliesA and B are composedof three subassemblies
and 6 fasteners.Viewing the diagram from the bottom
up, the first three parts make up the first set of subas-
semblies,SI and TI, S1 cA, TI c B, SI = TI. The next
three parts make up the secondset of subassemblies,S2
and Tz, S2 cA, T2c B, SZ = T2. All remaining parts
(with the exceptionof the l%steners)make up the third
set of subassemblies,S3and T3,& cA, T3cB, S3 # T3.

SupposeB is modified at the top-level by changing the shape of a part in Tzas shown in Figure 2. Then the
changeonly affectsB. However,ifthe B is modifiedat the subassembly-level(at T2)then A is no longer feasible.

Figure 2. Design modification for Subassembly Tz.

Q ‘C5i9
Figure 3. Design modification for Subassembly SI.



On the other hand, supuoseA is modifiedby lengthening the shafl and by cutting a rectangularhole in the plate
to slide it into (see”Fig&e3). In this case, the change doesnot affectB at any levelof planning.

4. Conflict Resolution

Rules were incorporatedin assemblyplanner to automaticallyresolveconflictsbetweentop-leveland subassembly-
Ievel constraints and overrides (when restoring, adding, editing, or activating) at the top-level of the assembly.
This section describesthe implementationof the constraint and override rules enabling the planner to automati-
cally “reconcile”existing constraints and current constraints. Based on the various constraints and intended pur-
poses, three distinct methodologieswere developedfor implementing the rules. In defining these methodologies
for automaticgenerativeprocessplanning; the term current constraint refers to the constraint that is being added,
edited, or activated.The term existing constraint refers to the constraint that is in conflict with the current con-
straint. Tables 1-3presentthe methodologiesand associatedrules.

Table 1. Methods that suspend existing constraints on eontlict give top-level constraints precedenceover subassemblyconstraints during reatorationj
and new additionsor edit changesprecedenceover existing.

Constraint Detinitioos and Rnles
req_order_ Require some orderingbchvceo2 or more liaison crcatio=, typically stated in a Boolean firm such as 1 (2 and 3), or as a set of
liaison such Boolean statements involvingmany liaisons [4,5].

Rrde:For 2 REQORDER_LIAISON cmstrair@ ifcurrent group i@mects with existing secondgronp, and the current second
group intersectionswith exrstmggroup, then suspend the existingconstnin~

req_ordcr Require ordering betweenparticular part insertions.
P@ Rule: For two REQORDER_PART constminm ifthe current gronp intemcctswith the existingsecondgroup, and the current

secondgroup intersectsw-th emsting group, then Suspend the existingconstraint

IwJti Require that each aswnbly action he along one of the 6 coordinatedirectionsof a given coordinatesystmwor a selectedsubset
ofthesc 6 dkCtiOOS.

Rtde: If two REQPATEE_AXIAL constmintsintersectand their required paths are not equal, then suspendthe exisdmgcon-
straint.

req_stack Specitiesa set of parts to be assembledone at a time in a given direction.
Rr.de:If2 REQ STACK cmstraints intersectand their required i@ctorics are not CJWLSUSQCOd the existingconstraint.

req_srrbscq Require that a particular assemblysubsequencebc used somewherein the plan. This m“ghtbe invokedbecausethe sequenceis
particularly efficientor reliable. The dent-till then back-fill subsequencesof [6] are relatively cmnplcxexamples.
Rule: Iftwo REQSUBSEQ constraintsare the same type (assemblyor disaswmbly) and their groups interse@then suspend
the existingcmstmint.

req_tool Requires that a collision-b placementof a giventool use-volumemust exist in the assemblyduring a certain operation. See
~ tbrmoredetaik.
Rnle: If two REQ TOOL constmintsprimary parts are the same, suspend the existingconstraint.

~sub- Allows a nserto spcci@the order in which a subsequenceof parts is assembled.
sequence_pm-b Rule: Iftwo REQ SUBSEQUENCE PARTS groups inter’w%then suspendthe cxkting constraint.

Tahk 2. Methods that susncnd current constraintson cmflict give &basscmbly-levelconstraintsprccedmce over top-level constmints durioz restora-
tio~ and existingemstrah’ts take precedenceover new additio~ or edit cbang&.

Constraint Defirdtiom and Rules
reqsubassy Require a particular subassemblybe used [8].

Rnle: Iftwo REQSUBASSY comtmints interw% but neither is a subset of the other, then suspendthe current constraint. If
the torrent REQSUBASSY intcmc& with an existingREQSUBASSY WHOLE, but neither is a SOW of the other, then
suspendthe current eonstmint.

~subassy The same as REQSUBASSY, but teUsthe planner in addition not generatea plan to cmslruct subassembly.
_ whole Rrde: Iftwo REQSUBASSY_WHOLE wnstmirm iotc=xZ bw neither is a SUM of the other, then m-d tie ~t con-

straint. Ifcurrent REQSUBASSY_WHOLE interxcls with an existingREQSUBASSY, but neither is a subset of the other,
then sospcnd the current constraint

Table 3. Constmintskdesurdonbrgtop-leveland subassemblyconstraints.
Constraint Detiitions and Rnles

rcq_order_first Require that an assemblyplan start with a givenpart.
Rule: Ifthe current REQORDER_~T intersectswith an existingREQORDER_FIRST, suspendthe existingconstmirrt.
Union current constraintwith any emstingREQ ORDER FIRST constraintsand deletethe existing carstraints.

req_order_last Requires that a certain part orx?t ofparts be placed last.
Rule: Ifthe current REQORDER_LAST constraint in~ WM ~ -g REQORD~-~T co-L suwd the
existing amstmint. Union Ureerrrmatconstraint with any exislingREQORDER_LAST cmsbaints and deletethe existing
CmStrr&ts.

req success I Allows theusertospceifja part or eollwtion of parts that mustbc removedtlom an assembledproduct. This is especially {
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port usefil for servicin~ repairjupgmde
Rule: Unioncurrent emstroint W-thany existingREQ SUCCESS PART emshaints and delete the existingeonstxaint& I

Rules for resolvingconflictsbetweensubassemblyoverridesand top-leveioverridesare much simpler than the con-
straints. When applying the system to the assemblyat the top-level, overrides for the subassemblies(parsing the
subassemblytree bottom-first, deleting similar overrides at it goes) are automatically loaded. The system then
loads the overrides for top-level assembly(deleting similar overrides, in this case any non-top-leveloverrides of
same type for the same part), if any exist. On restoring all top-leveloverrides from a file, the systemremovesall
top-leveloverridesand then loads in newtop-leveloverrides(deletingsimih-iroverrides).

5. Conclusions and Future Work

A synopsisof problemsand partial solutionsassociatedwith automatinggenerativeprocessplanning has been pro-
vided. Whilemany assemblyplanners exist, Archimedesis the only known system,which truly generatesassembly
plans automatically and, to the author’s knowledge no automatic assembly planner has ever compensated for
automatic planning for generativeprocesses. The methodologiespresented in this paper are natural algorithmic
progressionsof the Archimedes system towards filly automating generative process planning. The system has
been tested on numerous assembliesand has shown significant increases in efficienciesin planning for assembly
upgradesand the results are proportionalwith task difficulty. For example, it took approximately1/2 day to ana-
lyzeand instantiate constraintson the nose sectionof the B61 mentioned in Section2.2. With the generativeproc-
ess planning capabilities,this time was reduced to planning time only, approximately1 minute. It is difficult to
obtain precise measures of efficiencysince there are many variables affecting the process (e.g., user experience,
user familiaritywith the assembly,assemldysize, numberof initial constraintsand overrides,etc.).

Three geometry-relateddesign modificationprinciples were presented modification by (1) removing part(s), (2)
changing the shape of the part(s), (3) adding parts(s), or by any combination of the three. Automatic planning
algorithms for”(1) and (2) were presentedand tested. Future work needs to be directedtowards the developmentof
algorithms to fidly automatethe propagationof the assemblyconstraintsand overrideswhen parts are added to an
assembly.
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