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ABSTRACT

The BGK and BGKC (Bhatnagar, Gross, Krook, and Cercignani) collision-term models
for the Boltzmann equation are compared to the more rigorous variable-hard-sphere (VHS)
collision-term model of Bird. The BGKC model is based on the well-known BGK model but
uses an ellipsoidal statistical (ES) distribution instead of a Maxwellian distribution so as to
incorporate both viscous effects and heat conduction accurately. The Direct Simulation Monte
Carlo (DSMC) method of Bird is used with the BGK, BGKC, and VHS collision terms to
simulate supersonic flow of a monatomic gas over a wedge. The BGKC results are consistently

in good agreement with the VHS results, whereas the BGK results show systematic differences.
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. INTRODUCTION

The issue of modeling collisional processes in a gas extends back to the earliest attempts
to solve the Boltzmann equation. One early approach involved replacing the integral collision
term of the Boltzmann equation for a monatomic gas with simpler forms that maintain most of
the fundamental properties of the original collision term. The rationale behind this type of
simplification is that most of the details of the collision term are not important for reproducing
macroscopic flow behavior. As well as enabling analytical results to be obtained under certain
circumstances, such simplifications can reduce the effort to compute collisions in numerical
simulations compared to the effort required by more rigorous approaches like the variable-hard-
sphere (VHS) model of Bird'. However, the accuracy of such simplificaﬁons remains an issue.

One of the most popular simplifications of this type is the BGK* model (Bhatnagar,
Gross, and Krook). Cercignani® has used the BGK model extensively to produce analytical
results and has also proposed an extension (herein termed the BGKC model) that uses an
ellipsoidal statistical (ES) distribution instead of a Maxwellian distribution to incorporate heat
conduction accurately. Liepmann, Narasimha, and Chahine* conducted an extensive study of the
BGK model applied to the shock-structure problem and found reasonable agreement with
Navier-Stokes results. More recently, Montanero et al’ implemented the BGK model using a
Direct Simulation Monte Carlo (DSMC) method and found good agreement with: analytical
solutions of the Boltzmann equation for near-equilibrium cases.

| In this paper, the BGK, BGKC, and VHS collision-term models are cdmpared. A DSMC

technique developed by Bird' and implemented by Bartel et al.% is used with the BGK, BGKC,
and VHS models to simulate supersonic flow of a monatomic gas over a wedge. The BGKC

results agree closely with the VHS results, but the BGK results show systematic differences.
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RECEIVED
Il. THEORETICAL CONSIDERATIONS » DEC 1§ 9 2000
A. The Boltzmann equation OST |
The velocity distribution function f provides a complete description of a dilute
monatomic gas at the molecular level.” The relationship between the velocity distribution

function and the variables it depends on is given by the Boltzmann equation:

J 0 0 0
—a;(nf)'*‘V'a—x(nf)"‘F'E(nf)—['a‘t("f)] > 1

collision
where 7 is time, x is the position in physical space, v is the molecular velocity, F is any external
force (here, velocity-independent), n is the number density, and the right-hand side is the integral

collision term:

[E(nf)} = [ [ n°( A1 - f)erodQdvy . @)

collision —oco 0

In the integral collision term, the distribution functions fand f are evaluated at the molecule’s
pre-collision velocity v and post-collision velocity v, respectively, and the distribution functions
f; and f;" are evaluated at the collision partner’s pre-collision velocity v; and post-collision
velocity vi', respectively. Also in the collision term, ¢, = v — wy] is the relative speed of the
colliding molecules, o is the cross section of the binary collision, and £2 is the solid angle. The
details of the binary collision are included in the collision cross section. ’
B. The BGK collision-term model

The complexity of the integral collision term led to the development of simplified models

that retain some of its properties but are not derived directly from it. Bhatnagar, Gross and

Krook® (BGK) proposed a simplification that takes the form
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P—(nf) =nv(fo = f), 2)

at jLollision

where f, is the Maxwellian distribution corresponding to the local temperature and average
velocity, and v is the relaxation rate of the initial distribution to the equilibrium distribution. In
this model, the term nvf, represents the collisions replenishing the distribution, and the term nvf
represents the collisions depleting the distribution. The physical interpretation of the BGK model
is that post-collision molecules are selected from a Maxwellian distribution at the local average
velocity and temperature. Examination of the BGK model indicates that it reproduces the
equilibrium solution f = f, and the conservation equations of mass, momentum, and energy at
equilibrium (Vincenti and Kruger’). The BGK model also satisfies the H-theorem and leads to
the Navier-Stokes equations when the Chapman-Enskog expansion is appligd.

One difficulty with the BGK model involves the specification of the relaxation rate v,
which is not necessarily the same as the equilibrium collision frequency of the gas. One way to

specify the relaxation rate is in terms of the coefficient of viscosity

nkT
H=—
v

) €))

where T is the temperature and k is the Boltzmann constant. Alternatively, the relaxation rate can

be specified using the coefficient of thermal conductivity K:

K= E(ﬁ]ﬁ’i, @)

2lm ) v
where m is the mass of a molecule. Equations (3) and (4) lead to different relaxation rates unless

the Prandtl number of the gas is unity. Since the Prandtl number of most gases differs

appreciably from unity, this feature of the BGK model can be a disadvantage.
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It should be noted that the above choices for the relaxation rate do not depend on the
molecular velocity v directly but only on the local number density and temperature. This
behavior is different from the collision frequency for all molecular models apart from Maxwell
molecules. The use of a velocity-dependent relaxation rate in the BGK model is possible.
However, the BGK model is usually applied with a velocity-independent relaxation rate.
Following most previous applications of the BGK model>”, the velocity-independent relaxation
rate based on the viscosity, given by Equation (3), is used in this study.

C. The BGKC collision-term model

Cercignani® proposed a modification to the BGK model (herein termed the BGKC model)
that allows it to reproduce the viscosity and thermal conductivity inherent in the integral collision
term by introducing the Prandtl number as an explicit parameter. The BGKC generalization of
the BGK model is obtained by replacing the Maxwellian distribution with an anisotropic

Gaussian distribution, referred to as the ellipsoidal statistical (ES) distribution:
fo= ﬂ'"3/ 2 (det A)1 /2 exp(—- cTAc). (5
In this expression, the molecular thermal velocity ¢ is given by ¢ = v — u, where v and u are the

molecular velocity and the average molecular velocity, respectively. In the ES distribution, the

matrix A is given by the relation:

Al= %trace{ P

P
pPr:|I -2 - Pr)ﬁ; , ©6)

where I is the identity tensor, Pr is the Prandtl number, p is the mass density, and P is the

pressure tensor:

P_ j'cchdv . (7)
0
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Note in passing that the temperature T is related to the trace of the pressure tensor P:

kT = tracel:z] (8)
m Y

The BGKC model is an extension of the BGK model and reproduces the BGK model for
a Prandtl number of unity. Andries et al.® have shown that the BGKC model satisfies the H-
theorem and reproduces the correct moments of the Boltzmann equation just as the original BGK
model does.
iIl. NUMERICAL IMPLEMENTATION
A. DSMC method

The DSMC method is a well-established technique for simulating gas flows in which
mean-free-path effects are significant. The particular DSMC method used in this study is that of
Bird', the implementation of which is described more fully by Bartel ét al®

In brief, the DSMC method is applied as follows. The computational domain is populated
with “computational molecules”, each of which typically represents a large number of identical
real molecules (e.g., 10'®). During one time step, computational molecules move from one
location to another, interact with boundaries, experience collisions, and are sampled to
accumulate statistics. During a move, computational molecules travel at constant velocity for the
entire time step or until a boundary is encountered. In the latter situation, the appropriate
boundary condition is applied. Typical boundary conditions are “inflow” (computational
molecules enter the domain with a prescribed Maxwellian distribution), “outflow”
(computational molecules crossing this boundary are deleted, appropriate for supersonic

applications), “diffuse wall” (computational molecules are reflected with a prescribed

Maxwellian distribution), and “specular wall” (computational molecules are reflected with
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mirror symmetry). Following movement and boundary interactions, computational molecules
experience collisions, which change their velocities. It should be noted that computational
molecules have three-dimensional velocity vectors for collision purposes even if a two-
dimensional geometry is considered. After the collision phase, statistics (e.g., number density,
velocity, and temperature) are accumulated on the computational mesh, which exists only for this
purpose and for determining possible collisién pairs. To preclude nonphysical behavior, the mesh
cells are constrained to be well less than a mean free path, and the time step is similarly
constrained to be well less than a mean collision time.'

B. Selection of post-collision velocities

The selection of post-collision velocities differs for the BGK, BGKC, and VHS collision-
term models. In the VHS model,' pairs of computational molecules are randomly selected as
possible collision partners, and pairwise collisions are performed at the physically appropriate
rate. The collision probability is determined by the pair’s relative velocity, and the post-collision
velocity distribution in the center-of-mass frame is isotropic in solid angle. When a collision is
performed, post-collision velocities that cdnserve mass, momentum, and energy are selected
from the prescribed velocity distribution.

The BGK and BGKC models use a somewhat different approach for performing
collisions. In these two models, every computational molecule has the possibility of undergoing
a collision. As in the VHS collision term, these collisions are performed at the physically
appropriate rate. In contradistinction to the VHS collision term, post-collision velocities are
selected randomly from a prescribed velocity distribution that reproduces certain moments of the
actual velocity distribution. The BGK model uses a Maxwellian distribution that reproduces the

local number density, the average velocity, and the temperature, whereas the BGKC model uses
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an ES distribution, which reproduces these quantities but allows the Prandtl number to be
different from unity, as previously discussed.

The following approach is used to select post-collision velocities in the BGK and BGKC
models. Since a Maxwellian distribution is used in the BGK model, the approach described in
Bird' for the VHS collision term can be used without modification. For the ES distribution used
in the BGKC model, the approach of Bird can be generalized in the following manner. Since by
construction the matrix A~ in the ES distribution is symmetric and non-negative definite
(actually positive definite except for pathological cases), a symmetric matrix S can be found such
that A~ = SS (e.g., Press et al.’). Defining a normalized thermal velocity vector C using the
linear transformation

c¢=SC, ®
the argument of the exponential function in Equation (6) becomes

cTAc=s0)Ts s yso=cTc. (10)
Since C satisfies a Maxwellian distribution, the approach of Bird' for the VHS collision term is
used to select post-collision values of C, and the corresponding ¢ values are determined from
Equation (9).

Computation of the matrix S can be accomplished in a variety of ways. For example, the
eigensystem corresponding to matrix A~ can be solved, and S can be directly constructed from
the resulting eigenvectors and eigenvalues (actually their square roots, as in Press et al’).

Alternatively, a Taylor-series approach can be used, for which the first term is given by:

1/2
s=[2"—T) {1—1(1‘“){ip—1” (11)
m 2\ Pr ||kTp

For the situations examined here, both methods are found to produce virtually identical results.
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C. Conservation of momentum and energy

If applied as described in the previous section, the BGK and BGKC models would
conserve momentum and energy only in a statistical sense, which could introduce an undesirable
random walk into the calculation.' This effect is minimized in the limit that the number of
computational molecules in a cell becomes very large. However, this approach is undesirable
from a computational point of view. An alternative approach is to calculate the total momentum
and energy in a cell before the collisions and to adjust the velocities of the computational
molecules in the cell after the collisions to ensure that momentum and energy are exactly
conserved. This can be accomplished as follows. The average velocity and the temperature of
each cell are determined for the pre-collision conditions (u and 7) and for the provisional post-
collision conditions (u, and T,). The final post-collision velocity v of each computational
molecule is determined from its provisional post-collision value v, according to:

1/2

v=u+(v, —up)[;:—p} (12)
This approach is used in all of the following BGK and BGKC simulations.
D. DSMC code

The DSMC code Icarus is used for the simulations presented in the following section.
Icarus was developed by Bartel ez al.® and implements Bird’s approach’ for two-dimensional and
axisymmetric simulations on massively parallel computers. The simulations presented here are
performed on 512 nodés of ASCI Red, a teraflop-capable parallel computer. A simulation
typically uses 3,500,000 computational molecules and requires 3.5 hours of run time to produce

statistically acceptable results. The BGK, BGKC, and VHS collision-term models are separate

options of Icarus.
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IV. COMPUTATIONAL APPLICATION
A. Test problem

A test problem has been developed and analyzed using the BGK, BGKC, and VHS
models. The problem involves supersonic flow of a monatomic gas over a wedge with a specular
surface (see Figure 1). In this situation, a finité—thickness oblique shock wave emanates from the
wedge vertex, and analytical results are available for the shock angle £ and the downstream

conditions in terms of the wedge angle @and the upstream conditions (e.g., Anderson'®):

cot B(M % sin? B-1)

y+1

tanf = .
TMZ—(Mzsinzﬁ—l)

(13)

where M is the upstream Mach number and y is the specific heat ratio. Of the two possible
solutions, the weak solution is obtained. Since these analytical results depend only on the
conservation of mass, momentum, and energy for a perfect gas, comparing computational and
analytical results enables verification that conservation is properly enforced. A full-flow-field
comparison of the BGK and BGKC simulations to the corresponding VHS simulations is a more
stringent test because the precise details of the flow field depend on the collision term.

Two cases are simulated with all three collision terms. The gas is taken to be argon, with
molecular collision parameters and a temperature-dependent viscosity as given by Bird' and with
upstream conditions as given in Table 1. In the BGKC simulations, the Prandtl number is set
equal to 2/3, as appropriate for a monatomic gas. Two values of the wedge angle @ are examined:
5° and 10°. Table 1 shows the analytical results for the corresponding downstream conditions.

The computational domain is shown schematically in Figure 1. The left side of the

domain is an inflow boundary: computational molecules enter the domain along this side with a




Paper submitted to Physics of Fluids -11- Gallis and Torczynski

Maxwellian velocity distribution corresponding to the upstream conditions. The right side of the
domain is an outflow boundary: computational molecules crossing this boundary are deleted
from the calculation, as is appropriate for supersonic outflow. The remaining boundaries are all
specular walls: molecules are reflected from these sides with mirror symmetry. The top boundary
is positioned far enough from the wedge so that the oblique shock wave does not reach this
boundary. The domain is initially populated everywhere with computational molecules at the
upstream conditions.

The following values for numerical parameters are used in all three types of simulations.
The time step is 10 ns, and about 30 computational molecules per cell are used on average. The
mesh cells are approximately square, with a side length of about 0.025 mm. The wedge vertex is
1 mm from the inflow boundary, 10 mm from the outflow boundary, and 6 mm from the
boundary opposite the wedge. Increasing or decreasing each of these values by at least a factor of
2 is found to produce nearly identical flow fields. Since the upstream mean free path is 0.1 mm,
the cells and time step are small enough to satisfy the criteria’ that computational molecules
travel less than a mean free path per time step and that cell sizes are less than a mean free path
(even downstream of the shock wave).

Steady-state flow fields are obtained in the following manner. Steady-state conditions are
achieved throughout the domain by 20,000 time steps (0.2 ms). The flow field is averaged for an
additional 120,000 time steps (1.2 ms) to obtain statistically accurate results. It should be noted

that during the first 20,000 time steps the computational-molecule population of the domain is

purged and renewed almost 25 times.
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B. Simulation results

Figures 2 and 3 show number-density and temperature contours, respectively, for the 5°
wedge obtained using the BGK, BGKC, and VHS collision terms, and Figures 4 and 5 show the
corresponding results for the 10° wedge. As expected, all simulations yield oblique shock waves
emanating from the wedge vertex, and the shock angle and downstream number density and
temperature are seen to increase with increasing wedge angle. For both wedge angles, the BGK,
BGKC, and VHS collision terms all obtain the correct shock angle and the correct downstream
conditions (see Table 1), indicating that the BGK, BGKC, and VHS collision terms properly
conserve momentum and energy.

From comparing the full flow fields, it is clear that the BGKC results agree quite closely
with the VHS results but the BGK results do not. Moreover, the discrepancy between the BGK
results and the VHS results becomes larger as the shock strength is increased (by increasing the
wedge angle). In the number-density and temperature plots (Figures 2-5), the BGK collision term
is seen to produce slightly thinner shock waves than the BGKC and VHS collision terms. Also,
the temperature contours along the wedge surface are more closely spaced in the BGK results
than they are in the BGKC and VHS results. These observations are in harmony with the fact that
the thermal conductivity in the BGK model, which has a Prandtl number of unity, is two-thirds
- of the value used by the BGKC model, which has a Prandtl number of 2/3.

V. CONCLUSIONS |

The BGK and BGKC (Bhatnagar, Gross, Krook, and Cercignani) collision-term models

have been examined and compared to the more rigorous variable-hard-sphere (VHS) model for

the integral collision term of the Boltzmann equation. Simulations of supersonic flow of a

monatomic gas over a wedge indicate that the BGKC model, which explicitly incorporates the
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Prandt] number of the gas, produces results that are in close agreement with the VHS results. The
BGK results differ systematically from the VHS results in a manner that is attributed to the
spurious value of unity for the Prandtl number. The BGKC model thus offers the possibility of a
simplified collision term that yields good agreement with the rigorous form.

Future research should focus on several areas. First, the limit of validity for the BGKC
model needs to be firmly established. Second, it is desirable to extend the BGKC model to
include molecules with internal degrees of freedom, such as diatomic molecules. Third, the
possibility of improviné the BGKC model by using a velocity-dependent relaxation rate should
be investigated.
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Quantity Variable Upstream Downstream Downstream
Wedge angle 7] - 5.0° 10.0°
Shock angle B - 14.6° 19.6°
Number density n 1.00x102 m> | 1.54x10”m> | 2.11x10? m>

| Temperature T 180.K 246. K 336.K

.| Pressure P 24.9 Pa 52.3 Pa 97.7 Pa
Sound speed a 250. m/s 292. m/s 341. m/s
Velocity u 1365. m/s 1340. m/s 1304. m/s
Mach number M 5463 4.591 3.823

Table 1. Parameters for simulation cases: argon, mass m = 6.63x1072° kg, y=5/3.
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Figure 1. Schematic diagram showing supersonic flow of a monatomic gas over a wedge.
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Figure 2. BGK, BGKC, and VHS number-density (#/m®) contours for a 5° wedge.
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Figure 3. BGK, BGKC, and VHS temperature (K) contours for a 5° wedge.
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Figure 4. BGK, BGKC, and VHS number-density (#/m”) contours for a 10° wedge.
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Figure 5. BGK, BGKC, and VHS temperature (K) contours for a 10° wedge.




