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Vorticity formulations for the incompressible Navier-Stokes equations
have certain advantages over primitive—variéble formulations including the
fact that the number of equations to be solved is reduced. However, the
accurate implementation of the boundary conditions seems to continue to
be an impediment to the acceptance and use of numerical methods based
on vorticity formulations. Velocity boundary conditions can be implicitly
satisfied by maintaining the kinematic compatibility of the velocity and
vorticity fields as described by the generalized Helmholtz decomposition
(GHD). This can be accomplished in one of two ways by either solving for
boundary vorticity (leading to a Dirichlet boundary condition for the vor-
ticity equation) or solving for boundary vortex sheet strengths (leading to
a Neumann condition). In the past, vortex sheet strengths have often been
determined by solving an over-specified set of linear equations. The over-
specification arose because integral constraints were imposed on the vortex
sheet strengths. These integral constraints are not necessary and typically
are included to mitigate errors in determining the vortex sheet strengths
themselves. Further, the constraints overspecify the linear system requiring
least-squares solution techniques. To more accurately satisfy both compo-
nents of the velocity boundary conditions, a Galerkin formulation is applied
to the generalized Helmholtz decomposition. This formulation implicitly
satisfies an integral constraint that is more general than many of the inte-
gral constraints that have been explicitly imposed. Two implementations of
the Galerkin GHD are considered in the current work, one based on deter-
mining the boundary vorticity and one based on determining the boundary
vortex sheet strengths. A finite element method (FEM) is implemented to
solve the vorticity equation along with the boundary data generated from
the GHD.
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1. INTRODUCTION - S T ,
Vorticity formulations of the incompressible Navier-Stokes equations have distinct

advantages over velocity-pressure formulations. Some of these advantages include

a reduction in the number of equations to be solved through the elimination of the
pressure variable, identical satisfaction of the compressibility constraint and the
continuity equation, an implicitly higher-order approximation of the velocity com-
ponents, and, for exterior flow problems, a reduced computational domain. These
advantages remain largely untapped, however, since questions concerning how to
determine appropriate boundary conditions for vorticity formulations have not been
fully resolved {21]. The problem is that the boundary conditions for the Navier-
Stokes equations are typically given in terms of velocities, but boundary conditions
in terms of vorticity are required for vorticity formulations. Thus, it is necessary to '
deduce vorticity boundary conditions from not only the velocity boundary condi-
tions but also from the vorticity field in the domain. Vorticity boundary conditio.nsA
can be given either in terms of prescribed vorticity or prescribed normal gradient
(flux) of vorticity. The Navier-Stokes equations indicate that vorticity is created at
the boundary in a way that satisfies the velocity boundary conditions [2]. However,
neither the boundary vorticity nor its flux is generally known a priori, and hence,
additional kinematic and, in the case of vorticity flux, dynamic equations must be
introduced to relate boundary conditions to vorticity creation.

Many schemes to determine vorticity boundary conditions have been proposed
comprising a wide range of different approaéhes. Approaches relying on kine-
matics include streamfunction-vorticity methods [26, 22, 24, 25, 1, 13], velocity-
vorticity Cauchy methods [7], vorticity-velocity Poisson equation methods [5], Biot-
Savart methods [4], and generalized Helmholtz decomposition (GHD) methods
[29, 30, 31, 32, 18, 19, 28]. Other approaches are based on dynamics (Navier-Stokes
equations) on the boundary [12, 33]. Several reviews have been written on this

subject including those of Gresho [9], Puckett [23], Leonard [14, 15], and Sarpkaya
[27].
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Despite this large body of research, several questions concerning vorticity creation

remain either unresolved or obscure. These questions include:

» Is there a unique specification of boundary vorticity or flux to satisfy velocity
boundary conditions in each coordinate direction?

o Are integral constraints necessary when using the GHD to resolve vorticity cre-
ated on the boundary and how can these constraints be implemented in a numerica]
algorithm?

e Should both normal and tangential components of the velocity boundary con-
ditions be imposed or is it sufficient to impose only one component? If only one,
which one?

¢ Are kinematics sufficient to specify vorticity ﬂu:; creation or must dynamic
information be used?

¢ Is the value of vorticity on the boundary (Dirichlet condition) or its normal

derivative (Neumann condition) the appropriate boundary condition?

This paper discusses an approach which resolves many of these questions regarding
vorticity boundary conditions.

Ma.nyvof the above questions are interrelated. For example, the questions dealing
with the unique specification of vorticity and imposition of integral constraints are
related in that the integral constraint overspecifies the system of equations gener-
ated from the GHD. Hence, the solution may no longer be unique. Many investi-
gators indicate that an overspecified set of equations must be solved to determine
vorticity generation on the boundary including an integral constraint, although the
precise mathematical justification for such constraints is not clear. For example,
Wu [32] indicates that the linear system of eqﬁations based on a Helmholtz decom-
position is rank deficient. For closure, Wu specifies that the volume integral of the
vorticity field must be zero. Wu et al. [33] claim that a constraint is needed to
exclude spurious solutions that arise because of the fact that the vorticity equation
contains higher order derivatives of velocity. Sarpkaya [27] uses a constraint based
on the requirement that the pressure be single-valued on the boundary. Koumout-

sakos et al. [13] also indicate that an integral constraint is needed to obtain a

unique solution; they use a constraint based on Kelvin’s theorem. Quartapelle and
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Valz-Gris [25] indicate that in order to satisfy both normal and tangential velocity
boundary conditions for streamfunction-vorticity methods, vorticity created on the

boundary must satisfy an ad hoc integral constraint.

The implementation of any integral constraint in addition to the GHD requires
solving an overspecified system of linear equations. Further; at each point on the
bouﬁdary, two components of vorticity or vorticity flux are unknown. Overspecifica-
tion can also occur by attempting to determine the unknown vorticity components

using velocity boundary conditions in all coordinate directions.

In this paper, an attempt is made to resolve many of the questions raised above.
Vorticity creation either in terms of vortex sheet strengths or boundary vorticity can
be accurately specified from purely kinematic considerations without the impositioﬁ
of any integral constraints. However, in the case of vortex sheet strengths, dyx_lamic
considerations are required to relate the vortex sheet strengths to the vorticity flux
at the boundary. Even though at each point along the boundary there are more
components of specified velocity than unknown components of éither the vortex
sheet strengths or boundéfry vorticity, a unique specification of the vorticity flux
or boundary vorticity exists that satisfies all components of the velocity boundary

conditions.

Two approaches for determining vorticity boundary conditions are considered
in this paper. Both are based on a Galerkin implementation of the generalized
Helmholtz decomposition (GHD). In the first approach, the GHD is augmented
to include the possibility of vortex sheets along the boundary. The vortex sheets
are theﬁ related to the vorticity flux yieldiné Neumann boundary conditions for
the vorticity equation. In the second approach, boundary vorticity is calculated
directly from the GHD yielding Dirichlet boundary conditions. In both cases, it is
shown that the normal component of the GHD yields a rank-deficient discretized
system of equations whereas the tangential component implicitly satisfies an inte-
gral constraint. The Galerkin implementation of the GHD is shown to satisfy the
velocity boundary conditions far better than the more common point-collocation

methods.
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3

The ultimate purpose of resolving the issues of accurate specification of the vortic-
ity boundary conditions is to implement a method for determining these boundary
conditions into a numerical algorifhm based on the vorticity form of the Navier-
Stokes equations. A Galerkin finite element method is presented for solving the
vorticity equation. The éccuracy of the formulation is demonstrated by considering

the driven-lid cavity problem.

2. MATHEMATICAL FORMULATION
The vorticity form of the Navier-Stokes equations for an incompressible flow in

two-dimensions is given by

% + (@ V)@ =1V O
where 4 is the velocity field, & = V x 4 is the vorticity field, ¢ is time, p is the
constant density field, and v is the constant kinematic fluid viscosity. In the course
of solving Eq. 1, the velocity field, @, must be determined from the vorticity field, &,
and the creation of vorticity on the boundary must be determined from the velocity
boundary conditions. In “the present formulation, determining both the interior
velocity field and the creation of vorticity on the boundary are accomplished in a
unified manner using the generalized Helmholiz decomposition (GHD).

The GHD can be viewed as the infinite domain solution to the vector Poisson

equation
VE=-Vx&+VD : (2)

obtained by performing the curl operation on> the equation defining vorticity and
identifying D = V - @. In the present work, D = 0 since only incompressible ﬂow_s
are considered. The GHD has been derived independently by several investigators
including Wu and Thompson [29], Morino [18] (baséd on work by Bykhovskiy and
Smirnov(3]), Uhlman and Grant [28] (based on work by Morse and Feshback [20]),
and Meir and Schmidt [17]. It is interesting to note that none of these investigators
reference one another except Morino who briefly notes some of Wu’s work. A

complete derivation of the GHD can be found in Kempka et ol. [11].
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The GHD for an incompressible fluid in two-dimensions is given by

i = [ SO xFED [39) % @) x 7Z,9)
@) = [ St « [ SEG S
1) - @I,
- r 1‘2(5:';17) dr(i) . (3)

where 71 is the unit normal vector on the boundary (pointing away from the fluid), Q

represents the two-dimensiona:l domain, and I is the boundary of 2. The coefficient
a is a function of the location of the field point Z. For field points outside of the
. domain, a = 0; for field points in the interior of the domain, a = 27; for field
points on smooth portions of the boundary, a = x. At edges or corners, a can be
related to a local internal angle. However, in the following development, a method
is developed which circumvents having to evaluate « explicitly.

The GHD is valid only for certain kinematically admissible interior vorticity
fields, &, and velocity boundary conditions. For example, assume Eq. 3 is satisfied
at a given time, 7, and consider an explicit time integration of the vorticity equation
(Eq. 1). After the vorticity field has been transported but without properly taking
into account the production and transport of vorticity at the boundary, Eq. 3
is no longer generally satisfied. There are essentially two ways that kinematic
compatibility can be reestablished by satisfying the GHD.

Perhaps the most direct approach is to use the GHD to éalculate updated values
of the boundary vorticity [30, 10]. This leads to Dirichlet conditions for the vortic-
ity equation. For two-dimensional problems, there are two components of the GHD
but only one component of unknown vorticity. Wu [32] states that the normal and
tangential component of the GHD are equivalent and either can be used to deter-
mine the boundary vorticity. In the following-, it will be shown that, for Galerkin
implementations, the normal component of the GHD leads to rank deficiency of the
discretized linear system of equations. Despite the fact that the GHD represents
a Fredholm equation of the first kind for the vorticity, the singular nature of the
kernel function leads to a generally well-conditioned linear equation set.

A more subtle use of the GHD to reestablish kinematié compatibility is to rep-

resent the circulation associated with the newly created vorticity by a vortex sheet

as proposed by Lighthill [16]. There is a jump in tangential velocity across the
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vortex sheet equal to the strength of the sheet. On the fuid side of the sheet, the
tangential velocity is specified while on the non-fluid side, the velocity is typically
taken to be zero. Conveniently enough, the boundary integrals in Eq. 3 represent
the motion induced by vortex sheets and source sheets with strengths ¥ and o,

respectively, given by
¥ =M X (lns - %) and o =1+ (Tys — 1) . 4)

where, in the case of a stationary boundary, the non-fluid velocity 4,7y = 0 by
definition. That is, the boundary integrals represent jumps in normal and tangential
velocity on the boundary.

Circulation created on the boundary can be included by rewriting Eq. 3 to include

the vortex sheet of strength 4 as shown below

@@ - 7@ x 1@ = [ 2T ang)
(@@ — 7@ x 7A@) x AP} * FE,F)
+ / =(&,5) 4@
. [ B AQFED
[FL TP D 5)

By adding a vortex sheet along the boundary which accounts for the production
of vorticity, the velocity boundary conditions can be satisfied after an explicit time
step of the vorticity equation by exactly cancelling the induced slip velocity.

The solution of Eq. 5 yields the vortex sheet strengths, ¥, representing the cre-
ation of vorticity during a given time step. Although the determination of the
vortex sheet stréngths can be determined from purely kinematical considerations,
the relationship between the vortex sheet strength and the flux of vorticity from
the boundary into the domain depends on dynamics.

The definition of the vortex sheet, 4, is given by
¥= limw—-}oo,dn-)ﬂdjrdn . (6)

The subscript 7 in &, indicates that the vorticity on the boundary must be in the

tangential direction. In discreet form

A, = F/An (M
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1

where An represents the distance over which the vorticity will diffuse in a time
" interval At. Integrating the vorticity equation over a small volume V = AAn and
from t to t + At yields

t+4t D{:j t446¢
/ TVt = / / V25, dV dt ®)
t v Dt 1 v

At solid boundaries where vorticity is produced, the flow is parallel in the limit as
An — 0, and therefore, the convective flux of vorticity can be neglected in Eq. 8.

Hence, using the divergence theorem

-+t F; t44t 83 ‘
ZdVdt = / / v—dAdt 9
[ A ®)

. This equation can be written in discrete form using a first-order approximation for

the time derivative as

AG.V = u%“’

TAAt 1
= . (10)

Hence, using Eq. 7, the following expression is obtained

05, _ i
n ~ vAt

)

That is, the vortex sheet strength can be related to the normal flux of vorticity on
the boundary which can now be used as a Neumann boundary condition for the

vorticity equation.

3. NUMERICAL IMPLEMENTATION
A Galerkin implementation of the GHD for determining either boundary vorticity
or vortex sheet strengths is first presented in this section followed by some imple-
mentation issues associated with GHD. Next, a Galerkin finite element method
(FEM) for solving the vorticity form of the Navier-Stokes equations is presented.
Finally, an outline of the numerical algorithm for solving the vorticity equation is

presented.

3.1. Galerkin Approximation of the GHD

One reason that may have been the cause of previous researchers imposing con-

straint equations on the GHD such as Stokes theorem is that the GHD itself was
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poorly approximated. Excess vorticity created at each time step can accumulate in
the interior of the flow domain causing a degradation of the solution over time. -As
shown in subsection 3.3, a Galerkin approximation of the GHD provides far more
accurate results compared to the more popular point collocation methods.

A uniform approach can be taken to the discretization of either form of the GHD,
that is, with or without vortex sheet strengths (see Egs. 3 and 5). Let ¥ represent
either & or & — 4 x 7i depending on whether the Neumann (vortex sheet solution)
or Dirichlet (boundary vorticity solution) formulation is desired. In either case, the

GHD can be written as

«(2)7(E) = / %@dg@ N /r [5(@) x z((?]g ED )

@) - ADFED
- [Py @ 42

The domain {2 is discretized into finite elements and the boundary of the domain
I' is discretized into boundary elements. Within the eth finite element, the jth

component of & is approximated as

4
wi(d) = Y wiSi(#) (13)

=1
where wy; represents the valué of the jth component of & at the Ith node within
the eth finite element and S; represents the biliniear Lagrangian shape function
associated with the finite element. Similarly, within the eth boundary element, the

Jjth component of ¥ is approximated as

2 ’ .
HOEDIRAA) (14)

i=1

where, in this case, vf; represents the value of the jth component of ¥/ at the ith node
within the eth boundary element and N; represents the linear Lagrangian shape
function associated with the boundary element. It is certainly possible to expand
the boundary and finite element libraries without much difficulty but as seen in the
results the linear boundary elerhents and bilinear finite elements provide excellent

results.
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Substituting Egs. 13 and 14 into Eq. 12, the discretized form of the GHD can be
written using indicial notation as

NFE NBE

a(Z)vi(E) = z/ e:;kleSl(g')dde_*_ Z/’ e,mpekav,]N,(g')nkd P T
e=1
I%E/ vlJN’(an “Za T (15)
ex=1

where e;j; is the unit alternating tensor, NFE represents the number of finite
elements, NBE represents the number of boundary elements, and d; = z; — y;
where & = (Il,$2) and :17: (yl,'.l/2)-

Using the properties of the unit alternating tensor, this equation can be rewritten

as
NFE
e;ixwl.Sid
‘U,,(:E) — Z/ Jk l] 10k Q
NBE
+ Z/ 'UlkNldknz vhgldknk vka;dinde‘ (16)

It is possible at this pd'int to multiply the above equation by the nodal basis
_ functions associated with the boundary element shape functions N; and perform a
second integral over the boundary I in order to determine a Galerkin approximation
of the GHD. However, a single integral would result on the right hand side of the
equation whereas a double integral would result on the left hand side of the equation.
This is cumbersome, both from a programming and a bookkeeping point of view.
The term a(Z)v;(Z) can be incorporated directly into the boundary integral by
considering rigid body arguments [6]. That is, if v; is constant, then the associated

vorticity field is identically zero. Hence,

ding dany — ding
dar —_dr 1
a(:c)vl 1 . .4, + vUp . 4. d ( 7)
. dxns / dany —ding .
a(Z)vy = — ——dl -~ ———=dI’ 18
( ) 2 v r drdr v r drdr ( )

Consider the terms

dony —dyng . f L
/r s dl‘—/rw AdT (19)
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FIG. 1. Deformation of the domain §I to exclude the field point £ = (z1,z2). The deformed
domain Q4 has boundary I' — I'* + I'..

As shown in Figure 1 on I, d3/v/drd, = —sixi(), di/Vdrd, = —cosf, n; =

—cosf, and no = —sin8. Hence,
don; — ding sinf cosf® — cosfsinf :
< —Zdr= dl =0 21
/, drdr T. ) \/d,-d,- . ( )

In the limit as ¢ = 0, —I'* = I, and hence

d2n1 - dlnz
= dl' = v (22
/1: d.d, 0 (22)

Therefore, inserting Eq. 22 into either Eq. 17 or Eq. 18 yields

dknk

r drd.

a(Z) = — dr (23)
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Usin-g Egs. 22 and 23, the left hand side of Eq. 16 can be incorporated into the
right hand side. The resulting integral equation is given by .

NiE/‘ e,]kleSg('g')dk

— )
g=1
NBE —
+ Z / (Vi Ni(F) — vi(E))(dini — i r::) = [EN(G) = vil@))den o,

(24)

This formulation not orﬁy has the advantage of not having to evaluate a(Z) ex-
plicitly, but also regularizes the Cauchy Principal Value integral on the right hand
side of Eq. 16. ,

Now to obtain a Galerkin approximation, Eq. 23 is multiplied by the shape
functions N,,(Z) and integrated over the the boundary I'. Assuming that N (z)

has support within the fth boundary element and within that element
vk (Z) |r, = v}, Ni(2)

the discretized Galerkin approximation for the GHD is given by

. NFE
o 52 ruin [ 50
e o, Nu(@) — o Nu(@)(dens = dime)
+ ) [ Natp [ HEAD
NBE
_ = fvf, N1 (%) — UI,Nl(x)]dknk
; . N (E) . Td dr (25)

3.2. Implementation Issues for the Solution of the GHD
There is some bookkeeping associated with the implementation of Eq. 25 for
solving for either the boundary vorticity or the vortex sheet strengths. In the
case of solving for the boundary vorticity, the interior nodal values of vorticity get
assembled as part of the load vector whereas the boundary nodal values of vorticity
represent the unknown vector. In the case of solving for the vortex sheet strengths,

the vector ¥ is comprised of both known values of # and unknown values of §.
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Beyond the improvement in satisfying the velocity boundary conditions afforded
by the Galerkin implementation of the GHD as shown in the following subsection,
there is a conceptual advantage as well. As discussed in Section 2, the discretized
normal and tangential components of the GHD represent 2N equations in N un-
knowns where N is the number of degrees of freedom used to represent ;r,he boundary
vorticity or vortex sheet strengths in discrete form. There have been questions in
the past concerning which component of the GHD (if either) is more appropriate
for solving for the unknown source densities.

First, consider the formulation to determine Neumann conditions by solving for

the vortex sheet strengths in the GHD. Starting from Eq. 16, a discretized form of
the Galerkin GHD double integral can be written as

- NFE e,]kleS[dk .
: Ny (z)a@EWf(E)NdT (@) = Y Nm(z) —————dU(5)dl'(Z)
! g=1
NBE e Ry e )
+ Z Nm(l')/ ’UlkN[dk'n, vthdknk v,kN,d,nk dI‘(g‘)dI‘(:i‘) (26)
e=1 T. drd-

Since Ni{z) + Nao(z) = 1 for any element, the column sum (col. sum) of the
discretized equations to solve for the unknown vortex sheet strengths using either

the tangential or normal component of the GHD is given by

col. sum = /P o(Z)pl (Z)N*(2)g:(D)T(F)

_ /‘/pi(ﬂ')Ns(ﬁ')qi(f);:i;:u(i)—dink(ﬂ'))dr(f)dr(m

+ / /p,(ﬂ')N’(zT)dF(f)dr(m @7)

where p¢ represents the ith component of the vector § = (—n2,7;) within the eth

element, N¢ (%) is the nodal basis function comprised on N, (%) frbm the element
on the left and N;(7) from the element on the right, I, is the support of the nodal
basis function, and the vector § = (g1,¢2) represents either 7 ox.r t depending on
whether the normal or tangential component of the GHD is desired. That is, taking
a column sum of the discretized equations is essentially equivalent to choosing two
adjacent I'y’s in the inner integration in Eq. 26 and integrating over the entire
boundary in the outer integral (although the order of intégration is interchanged in
Eq. 27).
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Since it has been shown that

/ dany () — dina(%) dr(z) = 0
r

d.d,
and
dknk (I) -
————dI'(Z) = a(¥),

[ 2@ = ati

choosing § = 7 yields
col. sum = 2/1: a(F)N*(Ppi(@)n:(H)dL (§) =0 (28)

since § is perpendicular to 7. On the other hand, choosing § = { yields

col.sum = 2 [F @M @@ @) @) — P @2 @TE)

9 / a(§)N* @dT @) (29)
r,

These results can also be interpreted physically. The column sum can be related
to the integral over the bqpndary of the component of velocity corresponding to ¢
induced by a vortex sheet.within T's. For the normal component of velocity, this

. integral over the boundary can be related to the integral over the domain of the
divergence of the induced velocity by the divergence theorem. However, the integral
of the divergence of the induced velocity over the domain must be zero since the
flow field is incompressible. Similarly, for the tangential component of the velocity,
the integral of the tangential velocity over I is related to the induced vorticity over
the domain by Stokes theorem which is nonzero.

Next, consider the formulation to determine Dirichlet boundary conditions by
solving for the boundary vorticity in the the GHD. Again, since N;(z) + Na{z) =
1 for any element, the column sum of the discretized equations to solve for the
unknown boundary vorticity using either component of the GHD is given by

col. sum = / /Ss(lf)(dﬂh d2q1(f))dr(j')dﬂ(m (30)

1‘1‘

where Q) is the support of the nodal basis function S*. This nodal basis function

is typically the union of two of the bilinear shape functions from adjacent finite
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elements except for in corners of the domain. Choosing § = 7, the column sum is
again seen to be zero from Eq. 22. Choosing § = ¢ and using Eq. 23, the column

sum is given by

col. sum =‘/;2 a{§)S*(§)dS2, (31)

This analysis shows that, for either formulation (i.e., determining boundary vor-
ticity or vortex sheet strengths), the normal component of the GHD yields rank-
deficient linear systems. In either case, the accuracy of the numerical quadratures
can be evaluated since the integrals in Eqgs. 29 and 31 are easy to evaluate ana-
lytically and can be compared to the column sums resulting from the discretized
GHD. However, there is an important difference between Eqgs. 29 and 31. In the
case of Eq. 29, a(§) = m almost everywhere since the outer integral in Eq.. 27 is
over a portion of the boundary. On the other hand in the case of Eq. 31, a(j) = 2=
almost everywhere since the outer integral in Eq. 27 is over a portion of the do-
main. Actual column sums are performed in Section 4 to show the accuracy of the

numerical integrations in the current implementation.

3.3. Accuracy Assessment of the Galerkin GHD

A simple benchmark problem is considered to show the improvement in the nu-
merical results for the vortex sheet strengths using the Galerkin implementation
of the GHD compared to the results using the more traditional point-collocation
implementation. The benchmark problem consists of a uniform field of unit vor-
ticity in the unit squzire. The normal and tangential velocity components on one
side of the unit square induced by the unit vorticity is shown in Figure 2. The
objective of this benchmark problem is to solve for the vortex sheet strengths on
the boundary that cancel out the induced components of velocity to essentially
vield no-slip boundary conditions. Recall that, analytically, if the tangential com-
ponent of the velocity. boundary gondition is satisfied by the GHD, then the normal
component must also be satisfied. In discrete systems, however, the tangential
component of velocity is not identically satisfied exactly, and hence, neither is the
normal component. Nevertheless, errors in both components are shown to decrease

with increasing grid resolution.
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FIG. 2. Induced normal and tangential velocity for the unit vorticity in unit square problem.

The vortex sheet strengths as calculated by the Galerkin and point-collocation
implementations of the GHD are shown in Figure 3. As seen in the Figure, the
Galerkin results using 20 and 100 elements per side are visually indistinguishable.
The results generated using the point-collocation method are seen to to oscillate
about the Galerkin results.

Possibly more important than the accuracy of the vortex sheet solution is how
well the no-slip boundary conditions are satisfied by the calculated vortex sheet
strengths. The absolute value 4of the tangential component of velocity computed
along one half of the side of the unit square is shown in Figure 4. The velocit.y cal-
culations are performed in postprocessing using the calculated values of the vortex
sheet strengths shown in Figure 3. As seen in the Figure, the Galerkin implemen-
tation of the GHD yields errors that are over 2 orders of magnitude smaller than




CALERKIN IMPLEMENTATION OF THE GHD 17

0
: ——8—— 20 elements per side, Galerkin 1
it — & 100 elements per side, Galerkin v
-0.05 ‘ ——o———— 100 elements per side, point collocation |
-
£ - il I
D 0.1 ‘ X
& C i
& F N I
w-0.15F
o N é
2 b °\¢ i
s F M I
T.o025F Vi) M
O - A o M
> - S i
-03}F h“‘ o o 11 1LY
- © ‘fv‘i!,l AL 1,!, il
-0.35 STV
I S VO R H T DO N l [ S R N DUNO S B
0 0.25 0.5 0.75 1

Location on Side of Square

FIG. 3. Vortex sheet strengths calculated for the uniform vorticity in unit square problem.

the point-collocation implementation for the same discretization. In fact, the errors
using a Galerkin implementation and 20 linear elements per side yields far better
solutions than the point-collocation formulation using 100 linear elements per side.
Similar results are shown for the normal component of velocity in Figure 5. Again,
the boundary condition in the normal direction is satisfied far better using the
Galerkin method compared to the point-collocation method. It is interesting to
note that the magnitude of error for the normal component of velocity is almost
the same as for the tangential component even though the actual condition imf)osed
numerically was for the tangential component. In fact, for the Galerkin implemen-
tation using 100 elements per side, it appears that the normal velocity condition is

satisfied slightly better than the tangential component.
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3.4. Galerkin FEM Solution of the Vorticity Equation
The Galerkin finite element method used to solve the vorticity equation is out-
lined in this subsection. Multiplying the 2D vorticity equation (Eq. 1) by a weight-

ing function, w, and integrating over the domain yields

dw dw ow | 62w 3
wadﬂ+/ [umwa -*-'u.,,u)(9 ]dQ /Q[+uwa Wy 2]dQ 32)

where u; and u, are the components of the velocity vector ii. Integrating the

second-order terms by parts (applying Green’s theorem), the weak form of the

. vorticity equation is written as

0w Ow Ow '
Lwa—dﬂ +/ (u:waz + uyway) aQ + (33)

fwdw Owodw
AV(EEZ+3y3 )dQ Aannﬂ
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where T, is the portion of the boundary where Neumann conditions are prescribed

and the flux g, is defined by
gn=v(@-V)d (34)

For Neumann problems, I', = I' and using Eq. 11, the vorticity flux is given in

terms of the vortex sheet strengths as

=1
dn = At (35)

For Dirichlet problems, the boundary vorticity is calculated directed from the GHD
assuming all vortex sheet strengths are zero. .

The weak form of the vorticity equation is discretized by subdividing the domain
Q) into finite elements and subdividing the boundary I" into boundary elements.

Using isoparametric bilinear Lagrangian interpolation for the finite elements and
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linear interpolation for the boundary elements, the weak form of the vorticity equa-

tion can be written in discrete form as

nbe nfe

Zw/Nf dF'yk_Zw

nfe
. [ 85:85; 8585 \ .
+e=zl(‘wil/ o, —a;—a—z—'i-a—y-ay dQ)w]

nfe
( / s; —u,ksk +5: %S uy,,sk) a0

(36)

where nfe is the number of finite elements, nbe is the ﬁumber of boundary elements,

wi, Wi, uz;, ug; represent the value of w, w, uz, and u,, respectively, at the ith
node within the eth finite element, S; represents the bilinear finite element shape
function, 7§ represents the value of 4 at the ith node within the eth boundary
element, and NV; represents the linear boundary element shape function.

For convenience, the element capacitance matrices, element stiffness matrices,

and element load vectors are defined by

©)s= [ sisidn @7
. 0S; 5S¢
(kg =v [ GEZ2an (38)
0Ss 8S;
A 14
(Ky).’l v Q. ay ay Q (39)
4
(KD =Y ute [ S1pdsgan (40)
k=1 .
: 5: '
Ky=S ue / 5: 224 geqn 41
(Ko =3 uie | 515051 (1)
1
(F)= gk [ Newgar (42)

The discretized weak form can now be written in the following convenient form

nfe nfe nbe
Ewe(Ce)v“’ + Zw {(K2)i; + (K3)ij + (KS)ij + (KS)is} wi = Zwe(FC)z
ex=1

(43)
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After assembly and dividing through by the Galerkin vector {w}, the assembled

finite element equations become

[Kz + Ky + Ky + Kol{w} + [CH{w} = {F} (44)

The discretized equation set (Eq. 44) is inherently nonlinear since the matrices
K, and K, contain the unknown velocity field components. In the current imple-
mentation, the velocity components in K, and K, are evaluated using Eq. 3 for the
Dirichlet problem or Eq. 5 for the Neumann problem to evaluate the velocity com-
ponents. Time is discretized using an Euler explicit integrator which is first-order

accurate in time.

3.5. Outline of the Numerical Algorithm

The numerical algorithm for solving the vorticity form of the Navier-Stokes equa-
tions is briefly outlined m this subsection. First, the vortex sheet strengths or
boundary vorticity is calculated using the tangential component of the Galerkin
form of the GHD (Eq. 25) to determine either Neumann or Dirichlet boundary
conditions for the vorticity equation. Next, the internal velocities at the finite ele-
ment interior nodes are evaluated using the regular form of the GHD (either Eq. 3
or 5). Finally to complete the time step, the vorticity field is transported by solving
the explicit form of the finite element equatibns. After the explicit convection of
vorticity, the flow ﬁéld is again kinematically incompatible without incorporating
newly formed vorticity or vortex sheet strengths at the boundary. This kinematic
incompatibility is resolved by going back to the first step.

In the current implementation of the numerical algorithm, both the discretized
FEM equations and discretized GHD equations are solved using an LU solver. The
decomposition is done outside the time loop. Further, all integrals for evalﬁating
the interior velocities are also performed outside the time loop. Hence, within the
time loop, the majority of calculation is matrix-vector multiplication and backwards

substitution.
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4. NUMERICAL EXAMPLE

The impulsively-started driven square cavity problem at a Reynolds number of
400 is considered to demonstrate the reliability and accuracy of the overall algo-
rithm. This example is difficult numerically because of the discontinuous boundary
conditions where the top lid meets the sidewalls and because of the discontinuity
between initial and boundary conditions. ¥or a unit cavity, steady state is achieved
in approximately 40 seconds. The current results are generated using a constant
time step of 0.001, 1600 finite elements, and 160 boundary elements (41x41 grid).
The measured CPU time for all calculations outside of the time loop was 93.4 sec-
onds. The CPU time per time step within the loop was 2.9 seconds showing the

efficiency of the current approach for running through the transient.

The streamline pattern and vorticity field generated using the current formulation
with Neumann boundary conditions, (that is, solving for the vortex sheet strengths),

are shown in Figures 6 and 7.

The velocity and vorticity fields are essentially the same at steady state for both
the Dirichlet and Neumam} vorticity formulations since, at steady state, the GHD
should be satisfied after an'.explicit step in the vorticity equation without any vortex
sheets. The results shown in Figﬁres 6 and 7 qualitatively look the same as the
results generat;ad by Ghia, Ghia, and Shen [8] who used a multigrid finite difference
method (FDM) on a 129x129 grid.

To demonstrate the agreement between the current results and the multigrid
results, calculated values for the u-component of velocity along the vertical line
_ through the geometric ceﬁter of the cavity is shown in Figure 8. Five sets of nu-
merical results are shown in the Figure. The results generated using the Dirichlet
and Neumann vorticity formulations on a 41x41 grid are visually indistinguishable
from the results generated by the multigrid finite difference method on a 129x129
grid. The convergence of the Dirichlet vorticity formation can be seen qualitatively
by viewing the 21x21 grid and 41x41 grid results. Finer discretizations for th(; vor-
ticity formulations produce results which are indistinguishable from the 41x41 grid
results. Finally, results generated by a primitive-variables FEM code using 400

bi-quadratic 9-node quadrilateral elements is also shown. The primitive-variable
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S

FIG. 6. Streamline pattern for flow in driven cavity, R = 400.

FEM code contained the identical set of nodes as the 41x41 vorticity FEM grids.
It is interesting to note that the 21x21 vorticity FEM results, which contains ap-
proximately 1/4 of the grid points compared to the primitive-variable FEM grid
and uses bilinear compared to biquadratic elements, provided more accurate results
than the primitive-variable FEM code.

To further show the accuracy of the ecurrent approach for solving the vorticity
equation, quantitative comparisons are made with the multigrid ‘results for the
location and extent of primary and corner vortices in Table 1. The following com-
parisons are made between the current Dirichlet FEM vorticity solutions using a
41x41 uniform grid and the multigrid finite difference solutions of Ghia et al. [8]
on a 129x129 grid. As seen in the Table, the comparison between the FEM and
FDM results is excellent. It is particularly noteworthy that the solutions using the
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FIG. 7. Vorticity contours for flow in driven cavity, ® = 400.

vorticity formulation are able to provide an excellent resolution of the two bottom
secondary vortices on a relatively coarse grid.

The vortex sheet formulation of the GHD yields a Fredholm integral equation
of the second kind while the boundary vorticity formulation yields a Fredholm
integral equation of the first kind. As discussed above, an LU decomposition is
performed outside the time ioop. For the 41x41 grid, the condition number for the
vortex sheet formulation was 6.68 whereas the condition number for the boundary
vorticity formulation was 13.68. Both condition numbers are small for a system
of 1681 linearA equations. The reason that the first kind formulation yields a gmall
condition number (on the same order as the second kind formulation) is because of
the singular nature of the Green’s function in the domain integral which results in

large diagonal matrix elements.
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FIG. 8.  Steady-state results for u-component of velocity along the vertical line through the
geometric center of the cavity.

The results due to Ghia, Ghia, and Shen and the primitive-variable FEM results
are steady state solutions. The vorticity FEM results are run through the transient
starting with an impulsively-started upper lid. A comparison of the Neumann vor-
ticity FEM and the Dirichlet vorticity FEM is performed for the transient solution.
The u-component of velocity is shown in Figure 9 at the point z = 0.5,y = 0.9
(the origin is located at the lower left hand corner of the cavity). Although there
are some differences between the two methods in the early transient, at the field
point (z = 0.5,y = 0.9), the largest discrepancy in the u-component of velocity
at the field point after the first second is 0.0041%, the largest discrepancy in the
v-component of velocity is 0.0013%, and the largest discrepancy in the vorticity is

0.0085%. Further, for more realistic situations in which the initial and boundary
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TABLE 1
Comparison of primary and secondary vortex data between Dirichlet

FEM vorticify solution and primitive variable FDM solution

of Ghia et al. [8].

Dirichlet FEM Results | Multigrid FDM Results

{x,y) coordinates

of primary vortex (0.5535,0.6066) (0.5547,0.6055)
Length of bottom left
vortex on lower wall 0.1098 0.1081
Height of bottom left
vortex along side wall 0.1312 0.1273

Length of bottom right

vortex on lower wall 0.2676 ' 0.2617
Height of bottom right
vortex along side wall 0.3272 0.3203

data are not discontinuous, this level of agreement between the two methods could
be expected even in the very early transient. '
Finally as discussed in subsection 3.2, the accuracy of the numerical quadratures
used in the discretized Galerkin GHD can be assessed by taking column sums of
the associated linear system of equations. Analytic values for the column sums
can be determined for the Dirichlet problem from Eq. 31 and fof the Neumann
problem from Eq. 29. For the Dirichlet problem on the uniform 21x21 grid, the
analytic column sum is given by #/800 for finite element nodal basis functions
associated with corner nodes and /400 for finite element nodal basis functions
associated with edge nodes. The calculated column sums for finite element nodal
basis functions associated with corner nodes agreed to 14 significant figures. The
result to 6 significant figures is given by 3.92732E-3 which shows a relative'error
of 8.4599E-5 compared to the analytic value. The calculated column sums for
nodal basis functions associated with edge nodes agreed to 6 significant figures

given by 7.85397E-3 which shows a relative error of 1.2528E-6. For the Neumann

-
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FIG. 9. Transient results for the u-component of velocity at the point z = 0.5,y = 0.9.

The inset is a blow-up of the plot for early times.

problem on the uniform 21x21 grid, the analytic column sum is given by « /20 for all
boundary element nodal basis functions associated with corner nodes and # /10 for
all other boundary element nodal basis functions. The calculated column sums for
the boundary element nodal basis functions associated with corner nodes agreed
to 14 significant figures. The result to 6 significant figures is given by 0.157182
which shows a relative error of 6.5165E-4 with the analytic value. The calculated
column sums for all other boundary element nodal basis functions agreed to 11
significant figures. This result to 6 significant figures is given by 0.314159 ﬁrhich
shows a relative error of 2.7827E-8. These calculated column sums demonstrate the
accuracy with which both the domain and boundary integrals are performed in the
Galerkin GHD.
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5. CONCLUSIONS

Two approaches for determining boundary conditions appropriate for the vor-
ticity form of the Navier-Stokes equations are presented in this research. Both
approaches are based on a Galerkin implementation for the generalized Helmholtz
decomposition (GHD). There are several advantages both numerically and concep-
tually in using a Galerkin formulation as opposed to the more traditional point-

collocation formulations.

The aécuracy of the Galerkin formulation is shown to be far more accurate than
the point-collotation formulation. Many researchers in the past have added con-
straint equations when attempting to 'ufxplement the GHD to solve for vortex sheet
strengths. It is possible that a constraint such as imposing Stokes theorem was nec-
essary for point-collocation methods in order that excess vorticity not accumulate
within the domain over time because of poorly approximated vorticity creation on

the boundary. No constraint equations are implemented in the current formulation.

There has been considerable debate in the literature concerning wﬁich component
of the GHD should be impi)sed in order to satisfy the velocity boundary conditions.
The conceptual advantage of the Galerkin formulation is that it can be proven that
the normal component leads to a rank-deficient set of linear equations. Further,
the tangential component leads to an integral ‘constraint that is implicitly satisfied
by the GHD. This constraint equation can be related to column sums associated
with the linear equations which can be used to test the accuracy of the integral
evaluations of the GHD. Although the tangential component of the GHD is used
by necessity to determine either boundary vorticity or vortex sheet strengths, the
level of accuracy in satisfying the velocity boundary conditions in the tangential

and normal directions are of the same order of magnitude.

There is extra computational expense in implementing the Ga.lerk'in formulation
of the GHD compared to the point-collocation formulation. However, this‘com-
putational expense is performed only once outside the time loop. Further, it is
quite likely that the Galerkin formulation would actually be less expensive for a

comparable level of accuracy.
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Th‘ere has also been some debate in the literature whether it was more appro-
priate to determine boundary vorticity yielding Dirichlet boundary conditions or
determine vortex sheet strengths yielding Neumann boundary conditions. A direct
comparison is performed in this research (perhaps for the first time) showing that
the two approaches are essentially equiva.lént yielding numerical results that are
typically only a fraction of a percent apart. Solving for boundary vorticity results
in a Fredholm integral equation of the first kind whereas solving for vortex sheetA
strengths results in a Fredholm integral equation of the second kind. Typically,
Fredholm integral equations of the second kind result in more stable numerical
methods characterized by well-conditioned discretized linear systems. However, in
the casev of the GHD because of the singular nature of the domain integrand, both
approaches yield very well conditioned discretized linear equations.

A Galerkin finite element method is implemented to solve the vorticity equation
using the GHD to provide appropriate boundary conditions as discussed above.
The vorticity equation is linearized again using the GHD to determine the interior
velocities. The driven cavity problem at a Reynolds number of 400 is considered
as a benchmark. Both vorticity formulations (Neumann and Dirichlet) are shown
to provide more accurate results than a primitive variable formulation for the same
level of discretization. In fact, the vorticity formulations using 1681 grid points
compared very favorably to a multigrid finite difference method using 16,641 grid

points.
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