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Vorticity formulations for the incompressible Navier-Stokes equations
have certain advantages over primitive-variable formulations including the
fact that the number of equations to be solved is reduced. However, the

accurate implementation of the boundary conditions seems to continue to
be an impediment to the acceptance and use of numerical methods based
on vorticity formulations. Velocity boundary conditions can be implicitly
satisfied by maintaining the kinematic compatibility of the velocity and
vort icity fields as described by the generalized Helmholtz decomposition
(GHD). This can be accomplished in one of two ways by either solving for
boundary vorticity (lead~ngto a Dirichlet boundary condition for the vor-
ticity equation) or solving for boundary vortex sheet strengths (leading to
a Neumann condition). In the past, vortex sheet strengths have often been

determined by solving an over-specified set of linear equations. The over-
specification arose because integral constraints were imposed on the vortex
sheet strengths. These inte&l constraints are not necessary and typically
are included to mitigate errors in determining the vortex sheet strengths
themselves. Further, the constraints overspecify the linear system requiring
least-squares solution techniques. To more accurately satisfy both comp~
nents of the velocity boundary conditions, a Galerkin formulation is applied
to the generalized Helmholtz decomposition. This formulation implicitly
satisfies an integral constraint that is more general than many of the inte-
gral constraints that have been explicitly imposed. Two implementations of

the Galerkln GHD me considered in the current work, one based on deter-
mining the boundary vorticity and one based on determining the boundary
vortex sheet strengtha. A firite element method (FEM) is implemented to
solve the vorticity equation along with the boundary data generated horn
the GHD.
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1. INTRODUCTION

Vorticity formulations of the incompressible Navier-Stokes equations have distinct

advantages over velocity-pressure formulations. Some of these advantages include

a reduction in the number of equations to be solved through the elimination of the

pressure variable, identical satisfaction of the compressibility constraint and the

continuity equation, an implicitly higher-order approximation of the velocity com-

ponents, and, for exterior flow problems, a reduced computational domain. These

advantages remain largely untapped, however, since questions concerning how to

determine appropriate boundary conditions for vorticity formulations have not been

fully resolved [21]. The problem is that the boundary conditions for the Navier-

Stokes equations are typically given in terms of velocities, but boundary condkions

in terms of vorticity are required for vorticity formulations. Thus, it is necessary to

deduce vorticity boundary conditions from not only the velocity boundary condi-

tions but also from the vorticity field in the domain. Vorticity boundary conditions

can be given either in terms of prescribed vorticity or prescribed normal gradient

(flux) of vorticity. The Navier-Stokes equations indicate that vorticity is created at

the boundaxy in a way that satisfies the velocity boundary conditions [2]. However,

neither the boundary vorticity nor its flux is generally known a priori, and hence,

additional kinematic and, in the case of vorticity flux, dynamic equations must be

introduced to relate boundary conditions to vorticity creation.

Many schemes to determine vorticity boundary conditions have been proposed

comprising a wide range of different approaches. Approaches relying on kine-

matics include streamfunction-vorticity methods [26, 22, 24, 25, 1, 13], velocity-

vorticity Cauchy methods [7], vorticity-velocity Poisson equation methods [5], Biot-

Savart methods [4], and generalized Hehnholtz decomposition (GHD) methods

[29, 30,31,32,18,19, 28]. Other approaches are based on dynamics (Navier-Stokes

equations) on the boundary [12, 33]. Several reviews have been written on this

subject including those of Gresho [9], Puckett [23], Leonard [14, 15], and Sarpkaya

[27].
.
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Despite this large body of resemch, several questions concerning vorticity creation

remain either unresolved or obscure. These questions include:

● Is there a unique specification of boundary vorticity or flux to satis~ velocity

boundary conditions in each coordinate direction?

● Are integral constraints necessary when using the GHD to resolve vorticity cre-

ated on the boundary and how can these constraints be implemented in a numerical

algorithm?

● Should both normal and tangential components of the velocity boundary con-

ditions be imposed or is it sufficient to impose only one component? If only one,

which one?

. Are kinematics sufficient to specify. vorticity flux creation or must dynamic

information be used?

● 1s the value of vorticity on

derivative (Neumann condition)

the boundary (Dirichlet condition) or its normal

the appropriate boundary condition?

This paper discusses an approach which resolves many of these questions regarding

vorticity boundaxy conditions.

Many of the above questions are interrelated. For example, the questions dealing

with the unique specification of vorticit y and imposition of integral constraints are

related in that the integral constraint overspecifies the system of equations gener-

ated from the GHD. Hence, the solution may no longer be unique. Many investi-

gators indicate that an overspecified set of equations must be solved to determine

vorticity generation on the boundary including an integral constraint, although the

precise mathematical justification for such constraints is not clear. For example,

Wu [32] indicates that the linear system of equations based on a Helmholtz decom-

position is rank deficient. For closure, Wu specifies that the volume integral of the

vorticity field must be zero. Wu et al. [33] claim that a constraint is needed to

exclude spurious solutions that arise because of the fact that the vorticit y equation

contains higher order derivatives of velocity. Sarpkaya [27] uses a constraint based

on the requirement that the pressure be single-valued on the boundary. Koumout-

sakos et al. [13] also indicate that an integral constraint is needed to obtain a

unique solution; they use a constraint based on Kelvin’s theorem. Quartapelle and
.
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Valz-Gris [25] indicate that in order to satisfy both normal and tangential velocity

boundary conditions for streamfunction-vorticity methods, vorticity created on the

boundary must satisfy an ad hoc integral constraint.

The implementation of any integral constraint in addition to the GHD requires

solving an overspecified system of linear equations. Further, at each point on the

boundary, two components of vorticity or vorticity flux are unknown. Overspecifica-

tion can also occur by attempting to determine the unknown vorticity components

using velocity boundary conditions in all coordinate directions.

In this paper, an attempt is made to resolve many of the questions raised above.

Vorticity creation either in terms of vortex sheet strengths or boundary vorticity can

be accurately specified from purely kinematic considerations without the imposition

of WY integral constraints. However, in the case of vortex sheet strengths, dynamic

considerations are required to relate the vortex sheet strengths to the vorticity flux

at the boundary. Even though at each point along the boundary there are more

components of specified velocity than unknown components of either the vortex

sheet strengths or bound&y vorticity, a unique specification of the vorticity flux

or boundary vorticity exists that satisfies all components of the velocity boundary

conditions.

Two approaches for determining vorticity boundary conditions are considered

in this paper. Both are based on a Galerkin implementation of the generalized

Helmholtz decomposition (GHD). In the first approach, the GHD is augmented

to include the possibility of vortex sheets along the boundary. The vortex sheets

are then related to the vorticity flux yielding Neumann boundary conditions for

the vorticity equation. In the second approach, boundary vorticity is calculated

directly from the GHD yielding Dirichlet boundary conditions. In both cases, it is

shown that the normal component of the GHD yields a rank-deficient discretized

system of equations whereas the tangential component implicitly satisfies an inte-

gral constraint. The Galerkin implementation of the GHD is shown to satisfy the

velocity boundary conditions far better than the more common point-collocation

methods.

,.
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The ultimate purpose of resolving the issues of accurate specification of the vortic-

ity boundary conditions is to implement a method for determining these boundary

conditions into a numerical algorithm based on the vorticity form of the Navier-

Stokes equations. A Galerkin fi~te element method is presented for solving the

vorticity equation. The ‘accuracy of the formulation is demonstrated by considering

the tilven-lid cavity problem.

2. MATHEMATICAL FORMULATION

The vorticity form of the Navier-Stokes equations for an incompressible flow in

two-dimensions is given by

m
~ + (Z “V)LZ= VV2(Z (1)

where G is the velocity field, G = V x G is the vorticity field, t is time, p is the

constant density field, and v is the constant kinematic fluid viscosity. In the course

of solving Eq. 1, the velocity field, Z, must be determined from the vorticity field, G,

and the creation of vorticity on the boundary must be determined from the velocity

boundary conditions. In the present formulation, determining both the interior

velocity field and the creation of vorticity on the boundary are accomplished in a

unified manner using the generalized ‘Helmholtz decomposition (GHD).

The GHD can be viewed as the infinite domain solution to the vector Poisson

equation

V2t7=-Vx G+VD (2)

obtained by performing the curl operation on the equation definhg vorticity and

identifying D = V . ii. In the present work, D s O since only incompressible flows

are considered. The GHD has been derived independently by several investigators

includlng Wu and Thompson [29], Merino [18] (based on work by Bykhovskiy and

Smimov[3]), Uhlman and Grant [28] (based on work by Morse and Feshback [20]),

and Meir and Schmidt [17]. It is interesting to note that none of.these investigators

reference one another except Merino who briefly notes some of Wu’s work. A

complete derivation of the GHD can be found in Kempka et al. [11].
-
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The GHD for an incompressible fluid in two-dimensions is given by

where d is the unit normal vector on the boundary (pointing away from the fluid), !2

represents the two-dimensional domain, and 17is the boundary of fL The coefficient

a is a function of the location of the field point 2. For field points outside of the

. domain, a = O; for field points in the interior of the domain, a = 2m; for field

points on smooth portions of the boundary, a = x. At edges or corners, a can be

related to a local internal angle. However, in the following development, a method

is developed which circumvents having to evaluate a explicitly.

The GHD is valid only for certain cinematically admissible interior vorticity

fields, G, and velocity boundary conditions. For example, assume Eq. 3 is satisfied

at a given time, r, and consider an explicit time integration of the vorticity equation

(Eq. 1). After the vorticity field has been transported but without properly taking

into account the production and transport of vorticity at the boundary, Eq. 3

is no longer generally satisfied. There are essentially two ways that kinematic

compatibility can be reestablished by satisfying the GHD.

Perhaps the most direct approach is to use the GHD to calculate updated values

of the boundary vorticity [30, 10]. Th& leads to Dirichlet conditions for the vortic-

ity equation. For twodmensional problems, there are two components of the GHD

but only one component of unknown vorticity. Wu [32] states that the normal and

tangential component of the GHD are equivalent and either can be used to deter-

mine the boundary vorticity. In the following, it will be shown that, for Galerkin

implementations, the normal component of the GHD leads to rank deficiency of the

discretized linear system of equations. Despite the fact that the GHD represents

a Fredholm equation of the first kind for the vorticity, the singular nature of the

kernel function leads to a generally well-conditioned liiear equation set.

A more subtle use of the GHD to reestablish kinematic compatibility is to rep-

resent the circulation associated with the newly created vorticity by a vortex sheet

as proposed by Lighthill [16]. There is a jump in tangential velocity across the
.
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vortex sheet equal to the strength of the sheet. On the fluid side of the sheet, the

tangential velocity is specified while on the non-fluid side, the velocity is typically

taken to be zero. Conveniently enough, the boundary integrals in Eq. 3 represent

the motion induced by vortex sheets and source sheets with strengths ~ and a,

respectively, given by

~=iix(17nf– 2) and a=ii. (iinf -ii)

where, in the case of a stationary boundary, the non-fluid velocity

(4)

I&j =Oby

definition. That is, the boundary integrals represent jumps in normal and tangential

velocity on the boundary.

Circulation created on the boundary can be included by rewriting Eq. 3 to include

the vortex sheet of strength ~ as shown below

(5)

By adding a vortex sheet along the boundary which accounts for the production

of vorticity, the velocity boundary conditions can be satisfied after an explicit time

step of the vorticity equation by exactly canceling the induced slip velocity.

The solution of Eq. 5 yields the vortex sheet strengths, ~, representing the cre-

ation of vorticity during a given time step. Although the determination of the

vortex sheet strengths can be determined from purely kinematical considerations,

the relationship between the vortex sheet strength and the flux of vorticity from

the boundary into the domain depends on dynamics.

The definition of the vortex sheet, ~, is given by

7 = lhl-ica,dn-+d-zdn (6]

The subscript T in& indicates that the vorticity on the boundary must be in the

tangential direction. In discreet form
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where An represents the distance over whkh the vorticity will dlfluse in a time

interval At. Integrating thevorticity equation over asmallvolume V= AAn and

from t to t+ At yields

At solid boundaries where vorticity is produced, the flow is parallel in the limit as

An + O, and therefore, the convective flux of vorticity can be neglected in Eq. 8.

Hence, using the divergence theorem

t+fst

H
m, t+5t

—dVdt =
H

ad,
—dAdt

t vat t *van
(9)

Thk equation can be written in discrete form using a first-order approximation for

the time derivative as

Hence, using Eq. 7, the following expression is obtained

(lo)

(11)

That is, the vortex sheet strength can be related to the normal flux of vorticity on

the boundary which can now be used as a Neumann boundary condition for the

vorticity equation.

3. NUMERICAL IMPLEMENTATION

A Galerkin implementation of the GHD for determining either boundary vorticity

or vortex sheet strengths is first presented in thk section followed by some imple-

mentation issues associated with GHD. Next, a Galerkin fixite element method

(FEM) for solving the vorticity form of the Navier-Stokes equations is presented.

Finally, an outline of the numerical algorithm for solving the vorticity equation is

presented.

3.1. Galerkin Approximation of the GHD

One reason that may have been the cause of previous researchers imposing con-

straint equations on the GHD such as Stokes theorem is that the GHD itself was
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poorly approximated. Excess vorticity created at each time step can accumulate in

the interior of the flow domain causing a degradation of the solution over time. As

shown in subsection 3.3, a Galerkin approximation of the GHD provides far more

accurate results compared to the more popular point collocation methods.

A uniform approach can be taken to the discretization of either form of the GHD,

that is, with or without vortex sheet strengths (see Eqs. 3 and 5). Let C represent

either ii or C – ~ x fi depending on whether the Neumann (vortex sheet solution)

or Dirichlet (boundary vorticity solution) formulation is desired. In either case, the

GHD

The domain !2 is discretized into finite elements and the boundary of the domain

17is discretized into boundary elements. Within the eth finite element, the jth

component of G is approximated as

‘j(i) = ~ ‘fjsl (i) (13)
1=1

where wfj represents the value of the jth component of G at the lth node within

the eth finite element and S1 represents the biliniear Lagrangian shape function

associated with the finite element. Similarly, within the eth boundary element, the

jth component of ii is approximated as

where, in this case, v~j represents the value of the jth component of ii at the lth node

within the eth boundary element and lVl represents the linear Lagrangian shape

function associated with the boundary element. It is certainly possible to expand

the boundary and finite element libraries without much dficulty but as seen in the

results the linear boundary elements and bilinear finite elements provide excellent

results.
.
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Substituting Eqs. 13 and 14 into Eq. 12, the discretized form of the GHD can be

written using indlcial notation as

where eijk is the unit alternating tensor,

elements, NBl? represents the number of

(15)

NFE represents the number of finite

boundary elements, and di = xi – vi

where Z = (ZI, Z2) and ~= (VI,YZ).

Using the properties of the unit alternating tensor, this equation can be rewritten

as

NFE

x/

eijkwksdk dn
Ct(7)Vi(E) =

d.drgel %

vfkNldknj – v~iNzdknk – U~kNidink

+ ‘gl= drdr
dr. (16)

It is possible at this p6’int to multiply the above equation by the nodal basis

functions associated ‘with the boundary element shape functions N1 and perform a

second integral over the boundary 17in order to determine a Galerkin approximation

of the GHD. However, a single integral would result on the right hand side of the

equation whereas a double integral would result on the left hand side of the equation.

This is cumbersome, both from a programming and a bookkeeping point of view.

The term a(~)~i (i?) can be incorporated directly into the boundary integral by

considering rigid body arguments [6]. That is, if vi is constant, then the associated

vorticity field is identically zero. Hence,

(17)

/

dknk

/

(i27z1– d1n2 ~
CY(5)U2= –V2 —dr – VI (18)

r drdr r drdr

Consider the terms
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FIG. 1. Deformationof the domain $2to excludethe fieldpoint Z = (ZI,ZZ).The deformed

domain Qd has boundary I_’– r“ + r,.

As shown in Figure 1 on r,, dZ/m = –sin@, all/m = – COSO,nl =

– cos t?, and nz = – sin@. Hence,

I
dznl - dlnzm =

J
sin 0 cos O– cos 6 sin 0

drdr “m
dr=o (21)

r’ r.

In the limit as E + O, I’ – l_’*+ r, and hence

Therefore, inserting Eq. 22 into either Eq. 17 or Eq. 18 yields

(22)

(23)

.
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Using Eqs. 22 and 23, the left hand side of Eq. 16 can be incorporated into the

right hand side. The resulting integral equation is given by

‘BE [V;JV1(J) – wi(f)](dkni - clink) - [v:iN1(~ - vi(~)]dknk ~

/+Xr &dre=l .

(24)

This formulation not only has the advantage of not having to evaluate a(~ ex-

plicitly, but also regularizes the Cauchy Principal Value integral on the right hand

side of Eq. 16.

Now to obtain a Galerkin approximation, Eq. 23 is multiplied by the shape

functions i’Vm(Z) and integrated over the the boundary r. Assuming that

has support within the ~th boundary element and within that element

w(2) jr, = v~IVl (F)

the discretized Galerkin approximation for the GHD is given by

Nm(x)

(25)

3.2. Implementation Issues for the Solution of the GHD

There is some bookkeeping associated with the implementation of Eq. 25 for

solving for either the boundary vorticity or the vortex sheet strengths. In the

case of solving for the boundary vorticity, the interior nodal values of vorticity get

assembled as part of the load vector whereas the boundary nodal vahes of vorticity

represent the unknown vector. In the case of solving for the vortex sheet strengths,

the vector U is comprised of both known values of Z and unknown values of ~.
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Beyond the improvement in satisfying the velocity boundary conditions afforded

by the Galerkln implementation of the GHD as shown in the following subsection,

there is a conceptual advantage as well. As discussed in Section 2, the discretized

normal and tangential components of the GHD represent 2JV equations in ~ un-

knowns where N is the number of degrees of freedom used to represent the boundary

vorticity or vortex sheet strengths in discrete form. There have been questions in

the past concerning which component of the GHD (if either) is more appropriate

for solving for the unknown source densities.

First, consider the formulation to determine Neumann conditions by solving for

the vortex sheet strengths in the GHD. Starting from Eq. 16, a discretized form of

the Galerkln GHD double integral can be written as

Since IVI(z) + Nz(z) = 1 for any element, the column sum (cd. sum) of the

discretized equations to solve for the unknown vortex sheet strengths using either

the tangential or normal component of the GHD is given by

where p; represents the ith component of the vector@= (–n2, nl ) within the eth

element, Ns (yj is the nodal basis function comprised on N2 (@)from the element

on the left and N1 (v7 from the element on the right, l?=is the support of the nodal

basis function, and the vector ~ = (ql, qz) represents either ii or ~ depending on

whether the normal or tangential component of the GHD is desired. That is, taking

a column sum of the discretized equations is essentially equivalent to choosing two

adjacent I?f ’s in the inner integration in Eq. 26 and integrating over the entire

boundary in the outer integral (although the order of integration is interchanged in

Eq. 27).
.
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Since it has been shown that

and

choosing @= ii yields

CO1.sum = 2
/

a(flNs(~pi(j)ni(flW(j) = O
r.

(28)

since @is perpendicular to ii. On the other hand, choosing F= ~ yields

col.sum = 2
I

cr(@)Ns(~[~(flnl (~ – pl (fin2 (~]d17(E)
r.

= 2
J

a(~Ng(@lI’(j) (29)
r,

These results can also be interpreted physically. The column sum can be related

to the integral over the bo~ndary of the component of velocity corresponding to ~
,,

induced by a vortex sheet withh 17~. For the normal component of velocity, this

integral over the boundary can be related to the integral over the domain of the

divergence of the induced velocity by the divergence theorem. However, the integral

of the divergence of the induced velocity over the domain must be zero since the

flow field is incompressible. Similarly, for the tangential component of the velocity,

the integral of the tangential velocity over J7is related to the induced vorticity over

the domain by Stokes theorem which is nonzero.

Next, consider the formulation to determine Dirichlet boundary conditions by

solving for the boundary vorticity in the the GHD. Again, since N1 (z) + lV2(Z) =

1 for any element, the column sum of the discretized equations to solve for the

unknown boundary vorticity using either component of the GHD is given by
. ..

//
S’(fl(d1q2(Z) – d2q1(;)) ~(adn(n

col. sum =
drdr

(30)
n. r

where OS is the support of the nodal basis function S*. This nodal basis function

is typically the union of two of the bilinear shape fictions from adjacent fhite
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elements except for in corners of the domain. Choosing ~ = if, the column sum is

again seen to be zero from Eq. 22. Choosing @= ~ and

sum is given by

col. sum =
/

cl(~s’(y~dflc
$-1,

using Eq. 23, the column

(31)

This analysis shows that, for either formulation (i.e., determining boundary vor-

ticity or vortex sheet strengths), the normal component of the GHD yields rank-

deficient linear systems. In either case, the accuracy of the numerical quadrature

can be evaluated since the integrals in Eqs. 29 and 31 are easy to evaluate ana-

lytically and can be compared to the column sums resulting from the discretized

GHD. However, there is an important difference between Eqs. 29 and 31. In the

cme of Eq. 29, a(~ = T almost everywhere since the outer integral in Eq.. 27 is

over a portion of the boundary. On the other hand in the case of Eq. 31, CY(J)= 2m

almost everywhere since the outer integral in Eq. 27 is over a portion of the do-

main. Actual column sums are performed in Section 4 to show the accuracy of the

numerical integrations in the current implementation.
,,

3.3. Accuracy Assessment of the Galerkin GllD

A simple benchmark problem is considered to show the improvement in the nu-

merical results for the vortex sheet strengths using the Galerkin implementation

of the GHD compared to the results using the more traditional point-collocation

implementation. The benchmark problem consists of a uniform field of unit vor-

ticity in the unit square. The normal and tangential velocity components on one

side of the unit square induced by the unit vorticity is shown in F@.u-e 2. The

objective of this benchmark problem is to solve for the vortex sheet strengths on

the boundary that cancel out the induced components of velocity to essentially

yield no-slip boundary conditions. Recall that, analytically, if the tangential com-

ponent of the velocity boundary condition is satisfied by the GHD, then the normal

component must also be satisfied. In discrete systems, however, the tangential

component of velocity is not identically satisfied exactly, and hence, neither is the

normal component. Nevertheless, errors in both components are shown to decrease

with increasing grid resolution.
.
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FIG. 2. Induced normal and tangential velocity for the unit vorticity in unit square problem.

The vortex sheet strengths as calculated by the Galerkin and point-collocation

implementations of the GHD are shown in Figure 3. As seen in the Figure, the

Galerkin results using 20 and 100 elements per side are visually indistinguishable.

The results generated using the point-collocation method are seen to to oscillate

about the Galerkin results.

Possibly more important than the accuracy of the vortex sheet solution is how

well the no-slip boundary conditions are satisfied by the calculated vortex sheet

strengths. The absolute value of the tangential component of velocity computed

along one half of the side of the unit square is shown in Figure 4. The velocity cal-

culations are performed in postprocessing using the calculated values of the vortex

sheet strengths shown in Figure 3. As seen in the Figure, the Galerkin implemen-

tation of the GHD yields errors that are over 2 orders of magnitude smaller than
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FIG. 3. Vortex sheet strengths calculated for the uniform vorticity in unit square problem.

the point-collocation implementation for the same discretization. In fact, the errors

using a Galerkin implementation and 20 linear elements per side yields far better

solutions than the point-collocation formulation using 100 linear elements per side.

Similar results are shown for the normal component of velocity in Figure 5. Again,

the boundary condition in the normal direction is satisfied far better using the

Galerkin method compared to the point-collocation method. It is interesting to

note that the magnitude of error for the normal component of velocity is almost

the same as for the tangential component even though the actual condition imposed

numerically was for the tangential component. In fact, foi the Galerkin implemen-

tation using 100 elements per side, it appeam that the normal velocity condition is

satisfied slightly better than the tangential component.
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FIG. 4. Absolutevalue of the tangential componentof velocityalong one half side of the

unit square. Note, zero is the prescribed value.

3.4. CkderI& FEM Solution of the Vorticity Equation

The Galerkin finite element method used to solve the vorticity equation is out-

lined in this subsection. Multiplying the 21) vorticity equation (Eq. 1) by a weight-

ing function, w, and integrating over the domain yields

where u= and UY axe the components of the velocity vector ii. Integrating the

second-order terms by parts (applying Green’s theorem), the weak form of the

vorticity equation is written as

J
w~d~ +

/(
au

.Q at )
au dfl+‘ZWG+‘=w% (33)

H

auawn+au8W—— ——
v ax ax ay ay)/

dfl= wq~fir
Q r.

.
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FIG. 5. Absolutevalue of the normal componentof velocityalongone half side of the unit

square. Note, zero is the prescribed value.

where 17nis the portion of the boundary where Neumann conditions are prescribed

and the flux q. is defined by

qn = V(?i . V)(Z (34)

For Neumann problems, rn = 17and using Eq. 11, the vorticity flux is given in

terms of the vortex sheet strengths as

9n=&

For Dirichlet problems, the boundary vorticity

assurging all vortex sheet strengths are zero.

(35)

is calculated directed from the GHD

The weak form of the vorticity equation is discretized by subd~viding the domain

!2 into finite elements and subdividing the boundary I’ into boundary elements.

Using isopararnetric bilinear Lagrangian interpolation for the finite elements and
.

I



20 MARC S. INGBER, STEVEN N. KEMPKA
,

linear interpolation for the boundary elements, the weak form of the vorticity equa-

tion can be written in discrete form as

where n~e is the number of finite elements, nbe is the number of boundary elements,

w;, w:, Uezi, U;i represent the value of w, W, u=, and Uv, respectively, at & ~th

node within the eth finite element, Si represents the bilinear finite element shape

function, y? represents the value of y at the ith node within the eth boundary

element, and Ni represents the linear boundary element shape fimction.

For convenience, the element capacitance matrices, element stiffness matrices,

and element load vectors are defined by

(37)

The dkcretized weak form can now be written in the following convenient form
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After assembly and dividing through by the Galerkin vector {w}, the assembled

finite element equations become

[Kz + K, + KU i- KJ{w} + [Cl{ti} = {F} (44)

The dlscretized equation set (Eq. 44) is inherently nonlinear since the matrices

K. and K. contain the unknown velocity field components. In the current imple-

mentation, the velocity components in Ku and KV are evaluated using Eq. 3 for the

Dirichlet problem or Eq. 5 for the Neumann problem to evaluate the velocity com-

ponents. Time is discretized using an Euler explicit integrator which is first-order

accurate in time.

3.5. Outline of the Numerical Algorithm

The numerical algorithm for solving the vorticity form of the Navier-Stokes equa-

tions is briefly outlined in this subsection. First, the vortex sheet strengths or

boundary vorticity is calculated using the tangential component of the Galerkin

form of the GHD (Eq. 25) to determine either Neumann or Dirichlet boundary

conditions for the vorticity equation. Next, the internal velocities at the finite ek-

ment interior nodes are evaluated using the regular form of the GHD (either Eq. 3

or 5). Finally to complete the time step, the vorticity field is transported by solving

the explicit form of the finite element equations. After the explicit convection of

vorticity, the flow field is again cinematically incompatible without incorporating

newly formed vorticity or vortex sheet stren~hs at the boundary. ThE kinematic

incompatibility is resolved by going back to the first step.

In the current implementation of the numerical algorithm, both the discretized

FEM equations and discretized GHD equations are solved using an LU solver. The

decomposition is done outside the time loop. Further, all integrals for evaluating

the interior velocities are also performed outside the time loop. Hence, within the

time loop, the majority of calculation is matrix-vector multiplication and backwards

substitution.
-
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4. NUMERICAL EXAMPLE

The impulsively-started driven square cavity problem at a Reynolds number of

400 is considered to demonstrate the reliability and accuracy of the overall algo-

rithm. This example is difficult numerically because of the discontinuous boundary

conditions where the top lid meets the sidewalls and because of the discontinuity

between initial and boundary conditions. For a unit cavity, steady state is aclieved

in approximately 40 seconds. The current results are generated using a constant

time step of 0.001, 1600 finite elements, and 160 boundary elements (41x41 grid).

The measured CPU time for all calculations outside of the time loop was 93.4 sec-

onds. The CPU time per time step within the loop was 2.9 seconds showing the

efficiency of the current approach for running through the transient.

The streamline pattern and vorticity field generated using the current formulation

with Neumann boundary conditions, (that is, solving for the vortex sheet strengths),

are shown in Figures 6 and 7.

The velocity and vorticity fields are essentially the same at steady state for both

the Dirichlet and Neumann vorticity formulations since, at steady state, the GHD.,

should be satisfied after an explicit step in the vorticity equation without any vortex

sheets. The results shown in Figures 6 and 7 qualitatively look the same as the

results generated by Ghia, Ghla, and Shen [8] who used a multigrid finite difference

method (FDM) on a 129x129 grid.

To demonstrate the agreement between the current results and the multigrid

results, calculated values for the u-component of velocity along the vertical line

through the geometric center of the cavity is shown in Figure 8. Five sets of nu-

merical results are shown in the Figure. The results generated using the Dirichlet

and Neumann vorticity formulations on a 41x41 grid are visually indistinguishable

from the results generated by the multigrid finite difference method on a 129x129

grid. The convergence of the Dirichlet vorticity formation can be seen qualitatively

by viewing the 21x21 grid and 41x41 grid results. Finer discretizations for the vor-

ticity formulations produce results which are indistinguishable from the 41x41 grid

results. Finally, results generated by a primitive-variables FEM code using 400

hi-quadratic 9-node quadrilateral elements is also shown. The primitive-variable
.
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FIG. 6. Streamline pattern for flowin driven cavity,R = 400.

FEM code contained the identical set of nodes as the 41x41 vorticity FEM grids.

It is interesting to note that the 21x21 vorticity FEM results, which contains ap-

proximately 1/4 of the grid points compared to the prtiltive-variable FEM grid

and uses bilinear compared to biquadratic elements, provided more accurate results

than the primitive-variable FEM code.

To further show the accuracy of the current approach for solving the vorticity

equation, quantitative comparisons are made with the multigrid results for the

location and extent of primary and corner vortices in Table 1. The following com-

parisons are made between the current Dirichlet FEM vorticity solutions using a

41x41 uniform grid and the multigrid Mite difference solutions of Ghia et al. [8]

on a 129x129 grid. As seen in the Table, the comparison between the FEM and

FDM results is excellent. It is particularly noteworthy that the solutions using the
.
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,,

FIG. 7. Vorticity contoursfor flowin driven cavity, R = 400.

vorticit y formulation are able to provide an excellent resolution of the two bottom

secondary vortices on a relatively coarse grid.

The vortex sheet formulation of the GHD yields a Fredholm integral equation

of the second kind while the boundary vorticity formulation yields a Fredholm

integral equation of the first kind. As discussed above, an LU decomposition is

performed outside the time loop. For the 41x41 grid, the condition number for the

vortex sheet formulation was 6.68 whereas the condkion number for the boundary

vorticity formulation was 13.68. Both condition numbers are small for a system

of 1681 linear equations. The reason that the first kind formulation yields a small

condition number (on the same order as the second kind formulation) is because of

the singular nature of the Green’s function in the domain integral which results in

large diagonal matrix elements.
.
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FIG. 8. Steady-state results for u-componentof velocityalongthe vertical line through the

geometriccenter of the cavity.

The results due to Ghia, Ghia, and Shen and the primitive-variable FEM results

are steady state solutions. The vorticity FEM results are run through the transient

starting with an impulsively-started upper lid. A comparison of the Neumann vor-

ticity FEM and the Dirichlet vorticity FEM is performed for the transient solution.

The u-component of velocity is shown in Figure 9 at the point z = 0.5, y = 0.9

(the origin is located at the lower left hand corner of the cavity). Although there

are some differences between the two methods in the early transient, at the field

point (Z = 0.5, ~ = 0.9), the largest discrepancy in the u-component of velocity

at the field point after the first second is 0.0041%, the largest discrepancy in the

v-component .of velocity is 0.0013Y0, and the largest discrepancy in the vorticity is

0.0085%. Further, for more realistic situations in which the initial and boundary
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TABLE 1
Comparison of primary and secondary vortex data between Dirichlet

FEM vorticity solution and primitive variable FDM solution

of Ghia et al. [8].

I DiricMet FEM Results Multigrid FDM Results

(x,y) coordinates

of primary vortex (0.5535,0.6066) (0.5547,0.6055)

Length of bottom left

vortex on lower wall 0.1098 0.1081

Height of bottom left

vortex along side wall 0.1312 0.1273

Length of bottom right

vortex on lower wall 0.2676 0.2617

Height of bottom right

vortex along side wall 0.3272 0.3203

.,

data are not discontinuous, this level of agreement between the two methods could

be expected even in the very early transient.

Finally as discussed in subsection 3.2, the accuracy of the numerical quadrature

used in the discretized Galerkin GHD can be assessed by taking column sums of

the associated linear system of equations. Analytic values for the column sums

can be determined for the Dirichlet problem from Eq. 31 and for the Neumann

problem from Eq. 29. For the Dirichlet problem on the uniform 21x21 grid, the

analytic column sum is given by 7r/800 for finite” element nodal basis functions

associated with corner nodes and 7r/400 for finite element nodal basis functions

associated with edge nodes. The calculated column sums for finite element nodal

basis functions associated with corner nodes agreed to 14 significant figures. The

result to 6 significant figures is given by 3.92732E3 which shows a relative error

of 8.4599E5 compared to the analytic value. The calculated column sums for

nodal basis functions” associated with edge nodes agreed to 6 significant figures

given by 7.85397E3 which shows a relative error of 1.2528E6. For the Neumann
.
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FIG. 9. Transient results for the a-component of velocityat the point z = 0.5,y = 0.9.

The inset is a blow-upof the plot for early times.

problem on the uniform 21x21 grid, the analytic column sum is given by 7r/20 for all

boundary element nodal basis functions associated with corner nodes and x/10 for

all other boundary element nodal basis functions. The calculated column sums for

the boundary element nodal basis functions associated with corner nodes agreed

to 14 significant figures. The result to 6 significant figures is given by 0.157182

which shows a relative error of 6.5165E4 with the analytic value. The calculated

column sums for all other boundary element nodal basis fi.mctions agreed to 11

significant figures. This result to 6 significant figures is given by 0.314159 which

shows a relative error of 2.7827E8. These calculated column sums demonstrate the

accuracy with which both the domain and boundary integrals are performed in the

GaIerkin GHD.
-
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5. CONCLUSIONS

Two approaches for determining boundary conditions appropriate for the vor-

ticity form of the Navier-Stokes equations are presented in this research. Both

approaches are based on a Galerkin implementation for the generaEzed Helmholtz

decomposition (GHD). There are several advantages both numerically and concep-

tually in using a GaJerkin formulation as opposed to the more traditional point-

collocation formulations.

The accuracy of the Galerkin formulation is shown to be far more accurate than

the point-collocation formulation. Many researchers in the past have added con-

straint equations when attempting to implement the GHD to solve for vortex sheet

strengths. It is possible that a constraint such as imposing Stokes theorem was nec-

essary for point-collocation methods in order that excess vorticity not accumulate

within the domain over time because of poorly approximated vorticity creation on

the boundary. No constraint equations are implemented in the current formulation.

There has been considerable debate in the literature concerning which component

of the GHD should be imp’~sed in order to satisfy the velocity boundary conditions.

The conceptual ad~ntage of the Galerkin formulation is that it can be proven that

the normal component leads to a rank-deficient set of linear equations. Further,

the tangential component leads to an integral constraint that is implicitly satisfied

by the GHD. This constraint equation can be related to column sums associated

with the linear equations which can be used to test the accuracy of the integral

evaluations of the GHD. Although the tangential component of the GHD is used

by necessity to determine either boundary vorticity or vortex sheet strengths, the

level of accuracy in satisfying the velocity boundary conditions in the tangential

and normal directions are of the same order of magnitude.

There is extra computational expense in implementing the Galerkin formulation

of the GHD compared to the point-collocation formulation. However, th~ com-

putational expense is performed only once outside the time loop. Further, it is

quite likely that the Galerkin formulation would actually be less expensive for a

comparable level of accuracy.
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There has also been some debate in the literature whether it was more appro-
.

priate to determine boundary vorticity yielding Dirichlet boundary conditions or

determine vortex sheet strengths yielding Neumann boundary conditions. A direct

comparison is performed in this research (perhaps for the first time) showing that

the two approaches are essentially equivalent yielding numerical results that are

typically only a fraction of a percent apart. Solving for boundary vorticity results

in a FYedholm integral equation of the first kind whereas solving for vortex sheet

strengths results in a Fredholm integral equation of the second kind. Typically,

Fredholm integral equations of the second kind result in more stable numerical

methods characterized by well-conditioned discretized linear systems. However, in

the case of the GHD because of the singular nature of the domain integrand, both

approaches yield very well conditioned discretized linear equations.

A Galerkin finite element method is implemented to solve the vorticity equation

using the GHD to provide appropriate boundary conditions as discussed above.

The vorticity equation is linearized again using the GHD to determine the interior

velocities. The driven cavity problem at a Reynolds number of 400 is considered

as a benchmark. Both vorticity formulations (Neumann and Dirichlet) are shown

to provide more accurate results than a primitive variable formulation for the same

level of discretization. In fact, the vorticity formulations using 1681 grid points

compared very favorably to a multigrid finite difference method using 16,641 grid

points.

ACKNOWLEDGMENT

This work was supported by Sandia National Laboratories, a multiprogram laboratory operated

by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under

Contract DEAC04-94AL85000.

REFERENCES

1. Anderson, C. R., Vorticity boundary conditions and boundary vorticity generation for two-

dimensional viscous incompressible flow, J. Cornput. Phys. 80, 72 (1989).

2. Batchelor, G. K., An Introduction to i%d Mechanics (Cambridge University Press, 1967).

3. Bykhovskiy, E. B. and N. V. Smimov, On orthogonal expansions of the space of vector func-

tions whichare square-summableovera givendomain and the vector analysisoperators,NASA

TM-77051(1983).



30 MARC S. INGBER, STEVEN N. KEMPKA.

4. Chorin, A. J. and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Second

Edition (Springer-Verlag, Berlin, 1990).

5. Daube, O., Rwolution of the 2D Navier-Stokes equations in velocity-vorticity form by means

of an influence matrix, J. Comput. Phys. 103, 402 (1992).

6. Brebbia, C. A. and J. Dominguez, Boundary Elements Elements. An Introductory Course,

(McGraw-Hill, New York, 1989).

7. Gatski, T. B., C. E. Grosch, and M. E. Rose, The numerical solution of the Navier-Stokes

equations for 3-dimensional, unsteady, incompressible flows by compact scheme, J. Fluid Mech.

82,298 (1989).

8. Ghia, U., Ghia, K. N., and Shin, C. T., High-Re solutions for incompressible flow using the

Navier-Stokes equations and a multigrid method, J. Comp. Phys. 48,387 (1982).

9. Gresho, P. M., Incompressible fluid dynamics: Some fundamental formulation issues, Ann.

Rev. Fluid” Mech. 23, 413 (1991).

10. Hribersek, M. and Skerget, L., Iterative methods in solving Navier-Stokes equations by the

boundary element method, M. .7. Num. Meth. Engrg. 39, 115 (1996).

11. Kempka, S. N., Glass, M. W., Strickland, J. H., and Ingber, M. S., Accuracy considerations

for implementing velocity boundary conditions in vorticity formulations, Sandia National Lab-

oratories Report SAND96-0583, Albuquerque, NM, (1996).

12. Kinney, R. B. and M. A. Paolino, Flow transient near the leading edge of a flat plate moving

through a viscous fluid, AS~E J. Appl. Mech. 41,919 (1974).

13. Koumoutsakos, P., A. Leonard, and F. Pepin, Boundary conditions for viscous vortex methods,

J. Comput. Phys. 113, 52 (1994).

14. Leonard, A., Vortex methods for flow simulation, J. Comput. Phys. 37, 289 (1980).

15. Leonard, A., Computing t,hree-dimensional incompressible flow with vortex elements, Ann.

Reu. Fluid Mech. 17, 523 (1985).

16. Lighthill, M. J., Chapter II. Introduction: Boundary Layer Theory, in Laminar Boundary

Layers, Rosenhead, L., Editor, (Clarendon Press 1963).

17. Meir, A. J. and P. G. Schmidt, Variational methods for stationary MHP flow under natural

interface conditions, J. Nonlin. Anal. 26(4), 659 (1996).

18. Merino, L., Helmholtz decomposition revisited: Vofiicity generation and trailing edge condi-

tion, Cornput. Mech. 1, 65 (1986).

19. Merino, L., Boundary integral equations in aerodynamics, Appl. Mech. Rev. 46(8), 445 (1993).

20. Morse, P. M. and H. Feshback, Methods of ‘Theoretical Physics, Part II, (McGraw-Hill, New

York, 1953).

21. Ostrikov, N. N. and E. M. Zhmulin, Vortex dynamics of viscous fluid flows. Part 1. Two-

dimensional flows, J. FL Mech. 276,81 (1994).

22. Parmentier, E. M. and K. E. Torrance, Cinematically consistent velocity fields for hydrody-

namic calculations in curvilinear coordinates, J. Comput.Phys. 19,404 (1975).



GALERKIN IMPLEMENTATION OF THE GHD 31

23. Puckett, E. G., Vortex methods: An introduction and survey of selected research topics,

in Incompressible Computational Fluid D~namics, edited by Gunzburger, M. D. and R. A.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Nicolaides (Cambridge University Press 1993).

Quartapelle, L., Vorticity conditioning in the computation of two-dimensional viscous flows,

.7. Comput. Phys. 40,453 (1981).

Quartapelle, L. and F. Valz-Gris, Projection conditions on the vorticity in viscous incompress-

ible flows, Int. J. Num. Meths. F1uids 1, 129 (1981).

Roache, P., Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1972.

%rpkaya, T., Vortex element methods for flow simulation, Adu. Appl. Mech. 31, 113 (1994).

Uhlman, J. S. and J. Grant, A new method for implementation of boundary conditions in the

discrete vortex element method, ASME Fluids Engrg. Sprg. Mtg., Washington, D. C., 1993.

Wu, J. C. and J. F. Thompson, Numerical solutions of time-dependent incompressible Navier-

Stokes equations using an integro-differential formulation, Comput. Fluids 1, 197 (1973).

Wu, J. C., Numerical boundary conditions for viscous flow problems, AZAA J. 14,1042 (1976).

Wu, J. C. and U. Gulcat, Separate treatment of attached and detached flow regions in general

viscous flows, AIAA J. 19(1), 20 (1981).

Wu, J. C., Boundary elements and viscous flows, in Boundary Element Technology VII, Breb-

bia, C. A. and M. S. Ingber, Eds., 3-18, (Elsevier Applied Science, Amsterdam, 1992).

Wu, J. Z., X. Wu, H. Ma, and J. Wu, Dynamic vorticity condition: Theoretical analysis and

numerical implementation, Jnt. .7. Num A4eths. Fluids 19, 905 (1994).


