
SANDIA REPORT
\\”(SAND2000-2846-,
-..

‘? Unlirnjt~” Releasei~>Q

Application of Genetic

/
‘=ikr

Da iel W. Barnette{ Richard J. Pryor, and John T. Feddema

/ “Y ‘“”b> 4

/

Prepared by
/Sandia National L~boratories

/Albuquerque, yew Mexico 87185 and I+ermore, California 94550

Sandia is a ,,p~ltiprogram laborato~,o~erated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy-tinder Contract DE-AC04~94AL85000.

> /+

Approved fo public release; further dissemination unlimited.

/

ml‘ Sandia National laboratories/

/“

.

OEC I 2000

*’ .- —-. -.--—

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warran~, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
useftdness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any specitic commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. BOX 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Maik reports@,adonis.osti.gov
Online ordering: http:/ jwww.doe.govjbridge

Available to the public from
U,S. Department of Commerce
National Technical Information Service
5285 port Royd Rd
Springileld, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Maik ordersf@>tis.fedworld.gov
Online order: http: //www.ntis.gov/ordering. htm

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

-.T.-C,.” ., —- —,. —.-

SAND2000-2846
Unlimited Release

Printed November 2000

Development and Application of Genetic Algorithms
For Sandia’s RATLER Robotic Vehicles

Daniel W. Barnette
Parallel Computational Sciences Department

Richard J. Pryor
Evolutionary Computing Methods

John T. Feddema
Intelligent Systems Sensors & Controls

Sandia National Laboratories
PO BOX 5800

Albuquerque, New Mexico 87185-0316

ABSTRACT

This report describes the development and application of genetic algorithms for the
purpose of directing robotic vehicles to various signal sources. The use of such vehicles
for surveillance and detection operations has become increasingly important in defense
and humanitarian applications. The computationally parallel programming model as
implemented on Sandia’s parallel compute cluster Siberia and used to develop the genetic
algorithm is discussed in detail. The model generates a computer program that, when
loaded into a robotic vehicle’s on-board computer, is designed to guide the robot to
successfully accomplish its task. A significant finding is that a genetic algorithm derived
for a simple, steady state signal source is robust enough to be applied to much more
complex, time-varying signals. Also, algorithms for significantly noisy signals were
found to be difficult to generate and should be the focus of future research. The
methodology may be used for a genetic programming model to develop tracking
behaviors for autonomous, micro-scale robotic vehicles.

Acknowledgments

The authors wish to acknowledge the following:

Funding for this project was obtained through %ndia’s Laboratory Directed Research
and Development (LDRD) office (Project 10690, Task 03).

Johnny Hurtado, Department 15211, supplied the mathematical models for the signal
sources.

Wolfram Research’s Mathemutica 4.0 was used to generate signal source and simulated
robot path illustrations.

2

Contents

Acknowledgments

Introduction

The Genetic Algorithm

2

4

5

Program Representation of the Genetic Algorithm

Problem Setup

Signal Source Models

Results
A. Simulation: Genetic Algorithm for Non-Noisy Signal Sources
B. Field Test: Coupling the Genetic Algorithm with Sandia’s RATLERs
C. Simulation: Non-Noisy Genetic Algorithm Applied to Noisy Signals
D. Simulation: Genetic Algorithm for Noisy Signal Sources

Summary and Conclusions

References

Tables
1. Functions and Terminals Available for Genetic Algorithm Decision Tree
2. Equations for Signal Source Models
3. Configuration of Sandla’s Parallel Compute Clusters

Figures
1. Example of a 5-node, 3-level decision tree representing y=2.3 + 5.9x.
2. Select, top-view convergence sequences of a representative genetic algorithm.
3. Sandia’s parallel compute cluster, ALASKJVSIBERIA.
4. Various source signal models used.
5. Peak movement for the various signal source models.
6. Simulated vehicle movement for the signal source models.
7. Image of a typical RATLER vehicle.
8. Model O source illustrating algorithmic convergence for 5% signal noise and non-

convergence for 870 signal noise.

Appendices
A – CEDAR Pseudo-Code Program Listing
B – ROBOCOP.C Program Listing
C – ROBOCOP.C Sample Output Listing for Model O
D – A4athematica 4.0 Graphics Program Listing

Distribution

3

7

8

9

9
9

10
12
12

13

13

6
9

10

.y.-..— -~ .’..--. .-, ..?ma.rrm -., -- -:-7%7 .- 7.-,.= .,

Development and Application of Genetic Algorithms
For San&la’s RATLER Robotic Vehicles

Introduction

The emerging technical approach to deal with a challenging, possibly hostile,
environment is likely to involve a large number of small, but fairly intelligent, robots. It
is envisioned that these can covertly infiltrate a designated area, enter buildings, gather
appropriate information, and communicate with and learn from each other. They would
also communicate with a smaller number of on-the-scene soldiers backed up by powerful
off-line computers that can carry out large-scale information collection, analyses, and
simulations. Each robot would have on-board electronics, ground-positioning and
communication equipment, an obstacle detector, and some source-analysis capability.
Each robot would also have a motor, wheels, and a motor control system. Although the
deployed robots would behave autonomously, each robot would communicate
information with other robots during the task.

This report documents the effort to generate and apply a robust genetic algorithm to act
as a vehicle controlling program for robotic behavior. In a typical scenario, robots are
initially distributed randomly in a field and given the goal of locating the emitting source,
be it sound or smell. An onboard processor running the algorithm provides instructions to
the motor control system that directs the robot to the source location while navigating
around obstacles.

The controlling algorithm is generated by a computer code designed to assemble, test,
and compare many similar algorithms simultaneously. The code uses trial and error,
tournament play, and best fits to generate a decision tree appropriate for the task. Once
chosen, the decision tree then becomes the controlling algorithm of choice. The algorithm
in decision-tree form is then translated into high-level computer language such as
FORTRAN or C, compiled, and downloaded to the robotic vehicles deployed in the task.
The robotic vehicles are then controlled by execution of the code using onboard
processors, sensors, and memory.

The Sandia RATLER robotic vehicle serves as a research platform for the current effort.
Although the RATLER’s size precludes its large-scale use at present, further research
will see the capabilities of RATLER reduced to micro-scale vehicles. Operationally, it is
envisioned that tens to hundreds of these small robots would be deployed to complete a
given task.

4

The Genetic Algorithm

Building a genetic algorithm is a compute-intensive process by virtue of the fact that it
continually attempts to create successive generations of more fit algorithms.
Improvement occurs in discrete steps called generations. A generation is composed of a
population of individual algorithms each of which is a complete computer program. The
number of algorithms considered at one time varies based on the problem; however,
hundreds, if not thousands, of genetic algorithms can be considered simultaneously by
judicious use of parallel computers. Typically, some algorithms will be more effective
than others at doing the prescribed task. Each algorithm is scored for applicability, and its
fitness is given a numerical score such that the higher the fitness, the better the algorithm.
The goal is to generate an algorithm that correctly solves the problem of interest.
However, there is no guarantee that the chosen algorithm is necessarily the best – usually,
it suffices.

To create subsequent generations, genetic operators of selection, reproduction, crossover,
and mutation are used. The purpose of selection is to choose an algorithm from the
current population. In general, this algorithm will be better than most but it may not be
the very best. Reproduction moves a selected algorithm dh-ectly into the next generation.
Crossover uses the selection operator twice to select two algorithms from the current
population that will be combined in some way to form a hybrid algorithm that will be
placed in the next generation. Mutation uses the selection operator once to choose an
algorithm that will be changed in some way and placed in the next generation. The four
genetic operators are discussed in more detail by Koza[l] and Pryor[2]. The development
described above proceeds across many generations until a single algorithm is found that
meets a convergence criteria. This algorithm is then tested and, if found to be sufficiently
robus~ implemented as the robotic controlling program.

Pryor[2] gives an example of the program representation of a decision tree making up a
genetic algorithm. The basic buildlng block of a tree is called a node, with all nodes in
the tree having the same fixed structure. The first element of a node specifies the node
type, which can either be a function or a terminal. A function node performs a
mathematical or Boolean operation and generally has branches (nonzero pointers) that
point to other nodes. The number of branches depends on the kind of function, e.g., add,
subtract, multiply. A terminal node normally returns a value, does not have any branches
(all pointers are zero), and terminates that section of the tree. Other elements within a
node are a value position and pointers to other nodes. All of the nodes result in a decision
tree that performs a specified task. More detail is given in the next section.

Noise can have a significant impact in actual applications where genetic algorithms are
employed. Unless noise is accounted for during its creation, the genetic algorithm may
not be able to respond in an appropriate manner. Such was the case in the present
applications, as will be shown.

Table 1 lists functions allowed to make up the genetic algorithm.

5

—

Table 1: Functions and Terminals Available for Genetic Algorithm Decision Tree

No. Function Name Mathematical Expression Comments

FUNCTIONS:

E
1
2
3
4
5
6

7
8

F
9
10
11

I 12

RETURN Returns a value

ADD + Adds two values

SUBTRACT Subtracts two values
MULTIPLY * Multiplies two values

IFGTEQ IF (valuel >= value2) Compares two values

COMPUTE ANGLE Determines which direction robot

‘ORE A-REG
‘ORE B-REG
‘ORE C-REG

faces
ST Register for each robot

Register for each robot
Register for each robot

=
ST
ST
INTEGER ROUND value=F ‘LOOR(valuel+O.5) Round to nearest integer value

STORE AVG X-REG I (1 - K)*(AVG X-REG) Exponential moving average for value

+ K*(AVG X-REG) stored (K=O.5)

STORE AVG Y-REG (1 - K)*(AVG Y-REG) Exponential moving average for value

4=West 4) on grid

20 NEIGH 1 SIGNAL Signal detected by first nearest

I 21 / NEIGH 2 SIGNAL I / Signal detected by second nearest
neighbor

22 ROBUG SIGNAL Signal detected by robot
23 V-WALL XPOS North-South wall’s X location of

comer
24 V-WALL YPOS North-South wall’s Y location of

comer

25 H-WALL XPOS East-West wall’s X location of comer

26 H-WALL YPOS East-West wall’s Y location of comer

27 RECALL A-REG Use A-register’s contents

28 RECALL B-REG Use B-register’s contents

29 RECALL C-REG Use C-register’s contents

30 TURN NORTH Directs robot to face North

31 TURN EAST Directs robot to face East

32 TURN SOUTH Directs robot to face South

33 TURN WEST Directs robot to face West

34 TURN RIGHT Directs robot to turn right

35 MOVE AHEAD Directs robot to move ahead

36 VALUE Store a value

6

Program Representation of the Genetic Algorithm

This section describes how the genetic algorithm is representedby individual program
elements that make up a decision tree. Therepresentation should always allow complete
flexibility in defining programs, yet it must also ensure that the performance of the
genetic operations is not too cumbersome. A tree-like structure best meets these
requirements.

The basic building block of a tree is called a node, with all nodes in the tree having the
same fixed structure. The first element of a node specifies the node type, which can either
be a fimction or a terminal. A function node performs a mathematical or Boolean
operation and generally has branches (nonzero pointers) that point to other nodes. The
number of branches depends on the kind of function, e.g., add, subt.racg multiply. A
terminal node normally returns a value, does not have any branches (all pointers are
zero), and terminates that section of the tree. Other elements within a node are a value
position and pointers to other nodes.

Consider the sample decision tree shown in Fig. 1. This tree has five nodes and is three
levels deep. The tree is evaluated by starting at its root, or top, and working downward
until a terminal node is reached. A terminal node returns a value that is then processed
upward in the tree.

To evaluate the sample tree, we begin at the first node denoted by Start, a function node,
whose kind is specified as Add. This kind of function node points to two other nodes that
return values to be summed by the Add node. At Pointer 1, there is a terminal node that
returns a constant value of 2.3. At Pointer 2, there is a function node whose kind is
Multiply. This node uses Pointers 3 and 4 to point to two Value nodes: one that returns
the value 5.9, and the other the value of a global variable x. These two values are

processed by the Multiply node, which returns the resultant along witi the value of 2.3 to
the Add node above it. The tree is equivalent to the expression

y=2.3+5.9x

where y is the value returned by the root node at the top of the tree.

Larger trees used in the robotics program have many more function and terminal types
than in the sample tree. The user specifies a maximum allowable number of nodes and
depths in the code that generates the genetic algorithm, but typical values are around 800
nodes with a maximum tree depth of 80 levels.

Problem Setup

The computer code CEDAR has been written to assemble and test genetic algorithms
using computer-simulated robots. A listing of pseudo-code for CEDAR is given in
Appendix A. Using CEDAR’s most current genetic algorithm, the computer-simulated
robots solve a set of 90 problems to determine robustness and best fit for search-and-find
behavior. At the start of each problem, the simulated robots are placed in arbitrary
positions onto a two-dimensional grid and are tasked with finding an arbitrarily placed
target. The option exists to arbitrarily place two walls onto the same grid to have the
robots learn to avoid obstacles. The walls, if simulated, follow the grid lines in either the
x or y directions. The goal for the simulated robots is to learn to navigate to the target and
to avoid walls if present. The robots have no foreknowledge of either their own positions
or the positions of the walls and the target.

Fig. 2 illustrates a representative configuration at startup. Select sequences of graphs
show how the simulated robots converge on the two targets. Two signal sources, or
targets, are shown in blue. Each signal represents a l/rz source whose strength is
indicated by gray contours. Red circles randomly spaced about the blue targets represent
the robots. In this application, walls were included in the simulation and are shown by
heavy, intersecting lines. The position of each robot is given by a coordinate pair (x,y)
which are positive integers. A robot’s orientation can be in one of four directions, N, S,
E, or W, where north is towards the top of the page. The direction impacts the robot’s
sensing ability: a robot is programmed to only sense an obstruction if it is positioned in
the direction the robot is facing. As shown in the sequence, the simulated robots
successfully avoid the walls and converge on the targets, i.e., the signal peaks.

Certain assumptions related to actual robots are inherent in the problem setup. For
example, it is assumed that memory on the robot’s on-board computer is limited, and
only four values of data are stored. Also, communication between robots is limited to the
two nearest neighbors. The data that can be communicated consist of positions and signal
strengths. Because of assumed limits in the motor control system, only one movement
instruction can be returned with each execution of the behavior program. This instruction
allows the robot to move ahead one grid point or to turn to a new direction while
maintaining position.

CEDAR’s computer simulations to generate a suitable genetic algorithm consisted of a
population of 200 to 500 robots on each processor, running up to 128 processors on
Sandia’s compute cluster Siberia (http://www.cs. sandia.xov/cplant). Obstructive walls
were sometimes included so that the simulated robots would learn to maneuver around
obstacles. A photograph of Siberi% a cluster visually similar to an older cluster named
Alaska, is presented in Fig. 3. Siberia and Alaska’s configuration at the time of this
writing is given in Table 3.

8

Table 2. Equations for Signal Source Models

Model # Equation(s)

o I l/r2

1 -e-2r2 [cos(m+ 20r +50 -t) -4]

2 - e-2r2[cosZcos(lOr - 4t)cos(5f3 - 4t) -4]

3

x’ y’
_ e%>) * [coslrcos(2x -4t) cos(4y - 4t) - 4] , x 20

O&
and

(-x’+) 1
–e [COSZCOS(2X-4t)cos(4y - 4t) -4], x< o

O&
where

rr= x +y ,f3=arctan(~), t=time, andcr=xz+2
x

Signal Source Models

A total of four signal source models were considered. The equations governing each are
given in Table 2. Mathematical representations of the models, generated using
Mat/zernatica[3], are shown in Fig. 4. The simplest model, Model O, consists of a l/r2
steady-state signal, as illustrated in Fig. 4a. Three time- and spatially-varying models
were also considered. Illustrated in Figs. 4b, c, and d are Models 1, 2, and 3, respective y.
Each of these functions has multiple local peaks that move around considerably as the
robots search for the most likely signal peak. A sample of the maximum-peak movement
for the unsteady models is given in Figs. 5% b, and c.

Results

A. Simulation: Genetic Algorithm for Non-Noisy Simal Sources

The first attempts at generating genetic algorithms centered on modeling each signal
source model. Wall-like obstructions were placed randomly on the grid so that the
simulated robots would learn to maneuver around them. This became a very
computationally intensive process since the signal sources for Models 1, 2, and 3 were
time-varying and complicated, especially near the multiple center peaks.

Various attempts were made to accelerate the convergence. For example, more functions,
such as exponential and sinusoidal, were added to the code from which the genetic
algorithm would be generated. The reasoning behind this approach was that if the
algorithm needed an exponential function that would otherwise be built from Taylor-
series-like terms, for example, then adding this function to the list of possible functions to

9

Table 3. Configuration of Sandia’s Parallel Compute Clusters
(go to http:llwww.es.sandia.govlcplant for more information).

ALAS KA SIBERIA

Processor DEC Alpha EV 56 DEC Alpha EV6

Processor speed 500 MHz 500 MHz

Operating system Linux Linux

Total number of nodes 270 592
Number of processors per node 1 1

Memory per node 196 MBytes 560 nodes have 256 MBytes;
32 nodes have 1 GByte

Parallel I/O bandwidth 40 MB ytes/sec over 4 40 MB ytes/sec over 4 network
(scalable) I network connections (enfs) I connections (enfs) I

be chosen would negate the necessity to build the Taylor series. However, this also
proved to be slowly convergent, possibly because the functions added too much
complexity to the simpler algorithm being generated at the time. Also, adding more
choices to the list of available functions algebraically increased the algorithm’s number
of options from which to choose as a decision tree was formed. That is, the function
could be considered for use in each node in a tree. As a result, convergence to a best-fit
algorithm became extremely tedious.

To alleviate the convergence problems, the authors decided to examine the possibilities
of using the algorithm generated for the steady-state Model O for the time-varying
models. No walls were simulated since it was decided that the to-be-conducted field tests
would not initially contain obstructions.

Simulated vehicle movement using the genetic algorithm derived for Model O was
generated using the code ROBOCOP, listed in Appendix B. The genetic algorithm
generated by CEDAR is inserted in the function MoveGA, the last function listed in
Appendix B, to complete the code. Sample output of ROBOCOP is presented in
Appendix C. The A4athematica program used to graphically display the results is given in
Appendix D.

The Model O result is illustrated in Fig. 6a, while the application of the identical
algorithm to the remaining models is shown in Figs. 6b, c, and d. As shown, the
algorithm worked very well for all signals for the sampling rates considered. This seems
a surprising result considering the complexity of the other models compared to Model O.
However, further thought leads one to conclude that a single-peak-finding algorithm for
steady-state signals may well be sufficient even for time-varying, multiple-peak signal
sources as long as sampling rates are high relative to peak movement.

B. Field Test: Coupling the Genetic Algorithm with Sandia’s RATLERs

The rovers used in the field tests were Sandia’s Robotic All-Terrain Lunar Exploration
Rover (RATLER) vehicles. Typical RATLER vehicles are shown in Fig. 7. The largest
are approximately the size of two shoeboxes placed side by side. RATLER vehicles were

10

developed by Sandia as a prototype vehicle for a lunar mission. Each vehicle is typically
equipped with an Intel 486 computer, differential GPS receiver, spread spectrum two-
way packet radio, electronic compass and tilt sensors, video camera, and RF video
transmitter. Three RATLERs of the type shown in Fig. 7a were used during the tests.
This was the minimum number needed for vehicle-to-vehicle communications as
provided for in the genetic algorithm.

The base station equipment with which the RATLERs stay in constant communication
consists of a Pentium laptop computer, spread spectrum two-way packet radio,
differential GPS base receiver, RF video receiver, and a battery power source. The
equipment is contained within a small trailer for mobility. The base station sends
commands and queries to the RATLERs over the packet radio. The communication
network is configured as a token ring. Hence, if the base station becomes non-functional,
the vehicles will continue to communicate. Also, if either the vehicle or base station
misses its turn to communicate, communications can be re-established after a specified
delay.

During field tests, the operator places the RATLERs in autonomous navigation mode. A
live video image from one of the vehicles can be displayed on the laptop along with the
current position of the vehicle on a Geographic Information System (GIS) map. Multiple
RATLERs are driven to operator-specified set points using differential GPS and a
magnetic compass, where they are allowed to navigate on their own to the source using
the genetic algorithm controlling program. The positioning accuracy of the vehicles is
typically 1 meter.

As a result of its success in finding the peaks of all signal models, the algorithm for
Model O was implemented on robotic rovers for field tests. The signal source was a loud
speaker placed in a large field so as to closely simulate the I/rz Model O source. The
RATLERs were placed in a random position about the source. The genetic algorithm
previously loaded into the RATLERs onboard memory was then executed and the
vehicles were allowed to move about as directed by the algorithm. No obstructions were
placed between the rovers and signal source.

Direct observations of the ensuing test were that the vehicles found the source but
wandered significantly beforehand. The wandering was attributed to signal noise that
may have been caused by nearby vehicle traffic, wind, and possibly electronic component
tolerances. Signal noise was not due to vehicle movement since signals were generated
only after each RATLER stopped momentarily. Base station equipment recorded the
noise to be as high as 10% of the signal source. Noise was not modeled in the initial
algorithm for Model O.

It was also discovered that a RATLER acting alone showed nearly identical behavior to
that when all three were attempting to locate the target. This apparently indicated that the
vehicles were not communicating with each other even though provisions such as
registers were made available with the functions given in Table 1. Computer simulations
using only one simulated robot reinforced the conclusion that the vehicles were not
communicating as originally believed. Implications are that the vehicles were acting

11

autonomously and not collectively, as should be in the case of a swarm of vehicles. It is
unknown why this occurred, but it is certainly an area for future research.

C. Simulation: Non-Noisy Genetic AIEorithm Armlied to Noisy Simals

Noise was introduced into the signal source used in Model O’s simulator. The original
genetic algorithm was then used to perform a post-mortem simulation and analysis of the
field tests. A random number generator was used to perturb the original signal within a
user-specified percentage at each time step. This would hopefully reveal the effects of
noise on the robot convergence path.

Results of the robot convergence path are illustrated in Fig. 8. Shown in Fig. 8a is the
convergence path for a 5% noise signal. The simulated rover finds the peak even though
the signal strength is slightly perturbed. However, an 8% perturbation causes the
simulated rover to never converge, as illustrated in Fig. 8b. Thus, the genetic algorithm
for Model O is apparently robust enough to handle small perturbations to around 5%.
However, higher perturbations cause the robot to wander as observed in the field test.

At this point, two alternatives became obvious to alleviate the wandering. The first
approach was to lower the signal noise in some way. This was quickly abandoned, since
the factors causing the noise levels were out of the operators’ control. It is also possible
that higher noise levels may exist during actual future applications and that these levels
could not be predicted beforehand.

The second approach was to introduce noise in the code that generates the genetic
algorithm.

D. Simulation: Genetic Algorithm for Noisy Simal Sources

It was thought that the genetic algorithm for Model O could be regenerated with the
ability to process noisy signals. The new algorithm, if successful, would allow the rovers
to find valid signal peaks even through a ‘dirty’ signal. Once again, so as not to add more
complexity to the problem, walls were not modeled.

Significant computer time was spent on this approach, but without much success. Project
deadlines prevented a thorough attack on this problem, but preliminary analyses indicated
simulated rovers would find their way to a fairly large distance from the peak, and no
closer. It is not entirely understood why this happened. However, better convergence
might be achieved if the algorithm ensured each rover communicated with some of its
nearest neighbors, thereby triangulating the signal source. As has been discussed, rover-
to-rover communications were apparently not occurring in the original Model O genetic
algorithm. Hence, another area of research should include a study of the ability of genetic
algorithms to intelligently process noisy signals.

12

Summary and Conclusions

This report documents a research effort in which a genetic algorithm code was developed
and ported to Sandia’s parallel compute clusters. The code was modified to use the MPI
message passing protocol. Efficiency was improved by reducing excessive message
passing between the master node and slave nodes; The ability to investigate time-varying
signal sources was added to the original code. Visualization schemes were developed and
implemented for investigating simulated robot behavior before ruining field tests with
actual hardware.

The result of this effort, a genetic algorithm, has been implemented in hardware as a
robot controlling program. Field tests were conducted using Sandia’s RATLER robotic
vehicles attempting to locate a low humming stereo speaker. Tests were successful,
though significant wandering was observed that was not evident during computer
simulations. This behavior is believed to be due to signal noise. Project deadlines
prevented generating a genetic algorithm that could filter noise and locate the peak
efficiently. It was also noticed that the algorithm resulted in autonomous, rather than
collective, robot behavior. The factors that govern this behavior should be a topic of
future research.

An interesting finding of this research was the fact that a genetic algorithm developed for
a simple test case proved very robust for more complex applications and signals.
Computer simulations showed that the algorithm developed for a simple 1A-2case proved
sufficient for much more complicated applications. This should be kept in mind in any
future research involving applying genetic algorithms to complicated applications: keep it
as simple as possible. Extensions of simple algorithms may be possible for much more
complicated applications.

In conclusion, the authors believe genetic algorithms have a strong fbture at Sandia,
especially when applied to problems that have no definitive analytical answers, but where
a ‘good’ solution will do. Future areas of research should include an approach that
ensures rover-to-rover communications and the study of the effects of noisy signals
obtaining acceptable rover behavior. It is hoped that this report gives impetus
additional research in these areas so that more robust genetic algorithms may
developed.

1.

2.

3.

References

on
to
be

Koza, J. R., Genetic Promammin~. On the Promammin~ of Computers bv Means
of Natural Selection, MIT Press, 1992.

Pryor, R. J., “Developing Robotic Behavior Using a Genetic Programming
Model,” SAND98-0074, Sandia National Laboratories, Albuquerque, New
Mexico, January 1998.

Wolfram, S., The Mathematical Book, 3rdedition, Wolfram Media & Cambridge
University Press, 1996.

13

[Intentionally Left Blank]

Start ~ Add

I I 1

II o I
I 1 1

‘ointer’n
Value

2.3
0
0
0
0

I

II Multiply

II o I
I I I

E
3
4
0
0

Pointer 3

I Value

I 5.9 I
Value of x

o
0
0
0
0

Figure 1. Example of a 5-node, 3-level decision tree representing y=2.3 + 5.9x.

15

. .

,- J40buoSlniiIlatOrj~”= –SE—— —-...———.—— . _. —_..._.._—.—

tell-: 0

WALLS

-. OI*IWal

1 II I,. .

& TARGETS

!,

3 .,
., ●!,m SIMULATED

. . ,r.’ ROBOTS
.-..—---

● II I

II
1

a) Step O

.@

❑’

step M.: 84

!.<,

‘.-.L
.:

* ., ._,. -.

Sc.Jrca DlsPlau w

c) Step 84

Figure 2. Select, top-view convergence sequences of a representative genetic algorithm.

16

Figure 3. Sandia’s parallel compute cluster, ALASKAKIBERIA. For more
details, go to web site http~/www.cs.sandia.gov/cplant.

17

....—...——

Y :,)

WQ

15

S,*1

50

a) Model O

Y ‘A

2

-Xl

b) Model 1

Figure 4. Various source signal models used.

18

Z

c) Model 2

1.5

-50

z

d) Model 3

Figure 4. Concluded

19

I

I

I

‘1

‘1

“1

a) Model 1, O<t< 10 sec

b) Model 2, Oet<10 sec

Figure 5. Peak movement for the various signal source models.

c) Model 3, O<t<10 sec

Figure 5. Concluded.

21

signal

10.z ssconds

200

150

\

100

50

0

a) Model O, t= 10.2 sec

20.2seconds

o

.50

b) Model 1, t=20.2 sec

Figure 6. Simulated vehicle movement for the signal source models.

22

15.1seconds

6

z

-50

c) Model 2, t= 16.1 sec

15.1seconds

15

z

-50

d) Model 3, t=15.1 sec

Figure 6. Concluded.

23

—.—

b)

Figure 7. RATLER vehicles developed at Sandia National Laboratories.

24

20.2seconds

200

15

Simal

50

a) 570 signal noise

20.2seconds

200

15

S19?M 1

50

b) 8% signal noise

Figure 8. Model O source illustrating algorithmic convergence for 5% signal noise and
non-convergence for 870 signal noise.

25

.—

.-

[Intentionally Left Blank]

26

Appendix A
CEDAR Pseudo-Code Program Listing

> # include Header files

> Define global variables

> #define Constants and parameters

I) main (unsigned int argc, char *argv[]) {

> Initialize Message Passing Interface (MPI) enviromnent
> if (NodeNum == O)
> HandleNodeZeroo;
> else
> HandleOtherNodeSO;

}

2) void HandleNodeZero () {

> Print initialized quantities
> Call ReadList{} to read the best tree, if output from previous run
> Call randomng{} to generate random number
> Loop over the number of generations:
> Loop over number of compute nodes
> Wait for incoming trees to node zero
> Check each incoming tree for fitness; if bes~ replace previous tree
> If maximum number of generations reached, send message to all nodes to quit
> Write the best tree to disk
> Return to main

}

3) void HandleOtherNodes () {

> Initialize trees, parameters
> Call randomng{} to generate random number
> Loop over population size

o Determine and store best tree on current compute node
> Loop over number of generations

o Implement mutation, reproduction, crossover to generate new tree
o Define current best tree

> Send best tree to node zero
> Quit searching for best tree when node Osays maximum number of generations

reached
> Return to main

}

4) double EvalTree (AtomType *ptr, long ntsx) {

> Loop over number of tests to run to determine best trees
o Define wall positions if used
o Define initial target position; initial robot positions

> Loop over number of cycles to be done for each test
> Loop over number of robots

A-1

.- ,--,--?rr :-. ~..,.-.--. YV ,r.vm: ,.im -3=.-7-.-,7? _ .. L . . ,.. s, -.my. — —-

o Determine signal strength measured by each robot
o Determine each robots’ nearest robot neighbors
o Move the robots according to current genetic algorithm
o End loop over cycles

> Determine the distance the robots are from the target
> End loop over tests
> Determine the fitness of each tree
> Return the fitness value

}

5) AtomType * GetBestTree (AtomType *bestIndiv) {
> Receive the best tree from compute Node O

}

6) void KillNodes () {
> Kill all compute nodes when finished

}

7) OSErr InitManager () {
> Initialize dynamic memory allocation

}

8) AtomType * myMalloc (void) {
> Initialize memory allocated for trees

}

9) void myFree(AtomType *ptr) {
> point to next location of free memory block

}

10) void HandleError (int errAction, OSErr err, char *script) {
> Error handling routine for CEDAR

}

11) doubIe RandomDouble (double star~ double stop){
> Determine random number to type double precision

}

12) long RandomLong (long istart, long istop) {
> Determine random number to type long

}

13) double randomng(int *pp) {
> Random number generator

}

14) double eval (AtomType *ptr, RoBugType *bug) {
> Compute the value of each tree node using assigned functional

}

15) long TreeSize (AtomType *ptr) {
> Compute the number of nodes in each tree structure

}

A-2

16) void CountNode (AtomType *ptr) {
> Count and set points for each node

}

17) long TreeDepth (AtomType *ptr) {
> Determine the number of levels of each tree

}

18) void NodeDepth (AtomType *ptr) {
> Determine depth of each tree node

}

19) void DeleteOffspring (AtomType *ptr) {
> Free memory from tree nodes no longer needed

}

20) AtomType * DuplicateTree (AtomType *fromptr) {
> Duplicate a tree node using CopyNode

}

21) void CopyNode (AtomType *fromptr, AtomType *ptr) {
> Free a block of memory
> Copy a tree node from one block of memory to another

}

22) AtomType * CrossOver (AtomType *ptrl, AtomType *ptr2) {
> Perform crossover algorithm on two tree nodes’ offspring

}

23) void PrintTree (AtomType *ptr) {
> Print size and depth of tree to appropriate output file

}

24) void PrintNode (AtomType *ptr) {
> Print tree nodes

}

25) AtomType * GenerateTree () {
> Initialize maximum depth of initial tree

}

26) void GenNode (AtomType *ptr) {
> Randomly generate tree nodes

}

27) void WnteCProgram (AtomType *ptr, long progIndex) {
> Output initialization information formatted in C

}

28) void ArrayNode (AtomType *ptr, long nsize) {
> determine memory pointem for tree nodes

}

A-3

-—.—-... ..——.— ———-———_-—— —.- . . .—.———— — ——

29) void WriteCProgramNode (AtomType *ptr, FILE *ProgramFP) {
> Output tree nodes formatted in C

}

30) void WnteFProgram (AtomType *ptr, long progIndex) {
> Output initialization information formatted in FORTRAN

}

31) void WriteFProgramNode (AtomType *ptr, FILE *ProgramFP) {
> Output tree nodes formatted in FORTRAN

}

32) long SelectTree (double fitness[]) {
> Determine which tree is best

}

33) AtomType * TreeToList (AtomType *ptr) {
> Determine absolute to relative memory address for each node

}

34) void ListNode (AtomType *ptr) {
> Determine pointer values for each tree’s nodes

}

35) void AbsToRelAdr(AtomType *ptr, long size) {
> Determine node’s relative address, given absolute address

}

36) void RelToAbsAdr (AtomType *ptr, long size) {
> Determine node’s absolute address, given relative address

}

37) void WriteList (AtomType *ptr, long listIndex) {
> Open and write list file

}

38) AtomType * ReadList (char ListFileName[]) {
> Open and read list file

}

39) void MutateTree (AtomType *ptr) {
> Determine pointer of tree node at which to begin mutation
> Determine level at which tree is mutated
> Generate new tree starting at mutation point

}

40) void ZeroHitCount (AtomType *ptr) {
> Zero node hit count

}

41) void ClearGrid (void) {
> Sets all points in the grid table to O

}

A-4

42) void ClearGridPoint (long xpoinq long ypoint) {
> Sets individual grid points in the grid table to O

}

43) long SetGridPoint (long xpoint, long ypoint) {
> Check fidelity of grid points to ensure grid points are within specified ranges
> Check that grid points to which robots can potentially move are not a wall point

}

A-5

Appendix B
ROBOCOP.C Program Listing

(as run for Model O)

/***** **/
p y

/* The GA Robug Simulator Program. *J

/* Thisisa testprogram before implementing *J

I* GA code on hardware */
I* */

/’ Last modified on: April, 2000 *J
J* *I

/* Developed by: q
/* D. Barnette *I
/* J. Feddema *J
I* *J
/***J

/********************************/
I* headertiles *J
/********************************/

#include “sys/stat.h”
#include “sysltypes.h”
#include “stdio.h”
#include “string.h”
#include “stdlib.h”
#include “signal.h”
#include “math.h”

/********************************/
p output files q
/********************************f

/* Home directory (use\\ for each\ needed) Y
char HomeDirectory[]=’’D:\Wrogram FiIes\UlevStudio\WlyProjects\Ulobu&Simulator\Y’;
FILE *outputFP;
char 0utputFileName[50];

/********************************/
p defines *I
/********************************/

#definegrid_dim_lat 11 /* number of latitude points*/
#define@d_dim_lon 11 /*numberoflongitude points*/
#define grid_spacing_lat_m 3 /*meters(integer values, >=l); spacing between
latitude grid points */
#define grid_spacin~lon_m 3 /* meters (integer values,>= 1); spacing between
longitude grid points */
#define grid_scale_delta_lat_mpmas 0.0310444444
#define grid_scde_delta_lon_mpmas 0.0254302890

/* 2.54303 cm=milliarcsecond latitude*/
/* 3.10444 cm=rnilliarcsecond longitude*/
/*2543 .03cm=l arcsec latitude =25.4321 meters */
/*3 104.44 cm= 1 mcsec longitude= 31.0424 meters*/
/* 0.0254303 m = 1 milliarcsecond latitude */

B-1

—.. .. —.-...—.— —.-— .-.——- .- —-—

/*0.0310444m = 1 milliarcsecond longitude Y
/* 3 meters= 117.9612 milliarcseconds latitude */
/* 3 meters= 96.6420 milliarcseconds longitude */

#define midpoint_lat (grid_dim_lat+ 1)/2
#define midpoint_lon (grid_dim_lon+ 1)/2

#define numvehicles 5 /* total number of vehicles */
#define this_vehicle_ID 3 /* choose number between Oand (numvehicles-1) */
#define REALLYBIGNUMBER 99999999999999.0 /* arbitrarily-big number *I
#define TEST2SEED 765 /* random number generator seed */
#define SignalStrengthMax 4095 /* robot hardware sees 0-4095 signal strength *I
#define GridMaxRadius 50 /* plus and minus values in meters in which robots are placed

relative to source Y

I* define target location *I
#define target_location_lat 126000000 /* Lat = 35 degs North in milliarcseconds*/
#define target_location_lon 921600000 I* Lon = 256 degs East *I

#define total_iterations 50 /* run this many iterations */
#define iterations_per_second 5 I* iterations per second *I
/* Note: total time= total_iterations / iterations_per_second Y

#define Pi 3.141592654

/**** ****************************/

I* Structs */
J********************************/

typedef struct RoBugLocation
{

long RoBugID;
long RoBugXPOS:
long RoBugYPOS;
long RoBugDIR;
double RoBugSIG;
long RoBugXVERT;
long RoBugYVERT;
long RoBugXHORZ;
long RoBugYHORZ;
long RoBugl XPOS;
long RoBugl YPOS;
double RoBuglSIG;
long RoBug2XPOS;
long RoBug2YPOS;
double RoBug2SIG;
double rdlegister;
double bRegiste~
double cRegister;

double Average_X_Registeu
double Average_Y_Registeu
long WallAhead;

) RoBugType;

/**** ****************************/
J* globals *J
J********************************/

B-2

float time;
double delta_lat, delta_lon;
int iseed;
double sseed;

/* static memory allocation */
/* RoBugType RoBug[numvehicles]; */

/* dynamic memory allocation*/
RoBugType *RoBug;

//In InitGA(), RoBug = (RoBugType *)malloc(numvehicles * sizeof(RoBugType));
// Called RoBug[i] in other routines.

J**** ****************************/

p routines *J
/**** ****************************/

int
void
void
void
void
void
double
double
long
double
double
double
double
double
double
double

SignalOne(long lat, long lon);
TestGA();
InitGA();
UpdateGA(long *dlat, long *dIon, int id, long lat, long Ion, int amplitude);
KillGA();
Update_VehicleGA(int id, long Iat, long Ion, int amplitude);
MoveGA(RoBugType *bug);
RandomDouble (double start, double stop);
RandomLong (long istart, long istop);
randomng(int *pp);
MoveAhead (bug);
TurnRight (bug);
TurnNorth (bug);
TurnEast (bug);
TurnSouth (bug);
TurnWest (bug);

// Suggestion put maino and TestGA() in another file

I***************************** main****************J

void maino

{
I* define output file name *I

sprintf(OutputFileName,” %sRobocopOutputModO.txt” ,HomeDirectory);

/* sprintf(OutputFileName,’’GPOutput”); */

I* open output data file *I
OutputFP=fopen(OutputFileName,’’w”);

iseed=TEST2SEED;

delta_lat = grid_spacing_lat_m / grid_scale_delta_lat_mpmas; // ~lli-~cseconds Per @d Point
deka_lon = _@d_spacing_lon_m / grid_scale_delta-lon-mpmas; // ~lli-flcseconds per b~d point

I* to console *I
printf(” total iterations= %dh’’,totrd_iterations);
printf(” iterations per second= %db’’,iterations_per_second);

B-3

printf(” number of vehicles = %db’’,numvehicles);
printf(” @d_spacingJat_m = %db’’,grid_spacing_lat_m);
printf(” grid_spacing_lon_m = %dln’’,grid_spacinQon-m);
printf(” ~tid_scale_delta_lat_mpmas = %iln’’,grid_scale-delta-lat_mpmas);
printf(” grid_scale_delta_lon_mpmas = %M’’,grid-scale-delta-lon-mpmas);
printf(” delta_lat (mas/lat@d_step) = %fln’’,deha_lat);
printf(” delta_lon (masAon~rid_step) = %fVLn’’,delta_lon);

/*to OutputFileName */
fprintf(OutputFP,” total iterations= %db’’,total_iterations);
fprintf(OutputFP,” iterations per second = %dW’,iterations_per-second);
fprintf(OutputFP,” number of vehicles = %db’’,numvehicles);
fprintf(OutputFP,” grid_spacing_lat_m = %dln’’,grid_spacing-km);
fprintf(OutputFP,” grid_spacing_lon_m = %dW’,grid_spacing-lon-m);
fprintf(OutputFP,” grid_scale_delta_lat_mpmas = %fln’’,grid_scale_delta-.-lat_mpm@;
fprintf(OutputFP,” grid_scde_delta_lon_mpmas = %tln’’,@d_scrde_delta-lon-mpmm);
fprintf(OutputFP,” delta_lat (mas/lat-gid_step) = %fi’’,deklat);
fprintf(OutputFP,” deha_lon (mas/lon_grid_step) = %fWn’’,delta_lon);

TestGA();

}

(*******%********************* TestGA ****************/

void TestGA()

{
unsigned int timestep;
int vehicle;
long lat, Ion, dlat, dlon;
int amplitude, neighbor l_ID, neighbor2_ID;

InitGA();

/* check if the value ‘this_vehicle_ID’ is out of range */
if(this_vehicle_ID >= numvehicles IIthis_vehicle_ID <0)
{

pnntf(’in Quantity this_vehicle_ID out of rangeh“);
printf(” numvehicles = %db’’,numvehicles);
printf(” this_vehicle_ID = %dh’’,this_vehicle–ID);
exit(l);

}

I* print heading for output *I
printf(”b h >> Locations of all vehicles except vehicle # %d h“,this-vehicle_ID);
printf(” Time Veh Dir Lat Lon Target_lat Target_lon”

“ Signal X dist(m) Y dist(m)~”);
fprintf(OutputFP,”k h >> Locations of all vehicles except vehicle # %d b“,this_vehicle_ID);
fprintf(OutputFP,” Time Veh Dir Lat Lon Target_lat Target_lon”

“ Signal X dist(m) Y dish”);

I* For other stationary vehicles *I
for(vehicle=O; vehicle< numvehicles; vehicle++)
{

if(vehicle != this_vehicle_ID)

{
/* locate vehicles within+ or - GridMaxRadius meters of specified target location*/

B-4

lat=target_location_Iat + RandomDouble(-GridMaxRadius,GridMaxRadius) /
grid_scale_delta_l at_mpmas;

lon=target_location_lon -t-RandomDouble(-GridMaxRadius,GridMaxRadius) /
grid_scale_del ta_lon_mpmas;

/* get signal amplitude for each robot Y
amplitude = SignalOne(lat, lon);

/* update the robot’s struct */

Update_VehicleGA(vehicle, Iat, ion, amplitude);

printf(“%6d %3d %5d %lOld %lOld %10ld %10ld %10.5f %8.4f %8.4f b“,
O,vehicle, RoBug[vehicle]. RoBugDIR, lat, Ion,
target_location_lat, target_location_lon,
RoBug[vehicle].RoBugSIG,

-(Ion - target_location_lon) *grid_scale_delta_lon_mpmas,
(Iat - target_location_lat) *grid_scale_delta_lat_mpmas

fprintf(OutputFP?’’%6d %3d %5d %lOld %lOld %lOld %lOld %10.5f %8.4f %8.4f h“,
O,vehicle, RoBug[vehicle]. RoBugDIR, lat, ion,
target_location_lat, target_location_lon,
RoBug[vehicle]. RoBugSIG,
-(ion - target_location_lon)*grid_scale_delta_lon_mpmas,
(Iat - target_location_lat) *grid_sctie_delta_lat_mpmas
);

}
}

/* For this vehicle*/
lat=target_location_lat +

grid_scale_delta_lat_mpmas;
RandomLong(-GridMaxRadius,GridMaxRadius) /

lon=target_location_lon + RandomLong(-GridMaxRadius,GridMaxRadius) /
grid_scale_delta_lon_mpmas;

RoBug[this_vehicle_ID] .RoBugXPOS = lon / delta_lon;
RoBug[this_vehicle_ID] .RoBugYPOS = Iat / delta_lat;

/* print heading for output*/
printf(”b h >> Coordinate time history of vehicle # %d hN,this-vehicle_ID);
pnntf(” [1 is where the robot WAS; 2 is current Iocation]b”);
printf(” Time Nbrl Nbr2 Dir Latl LOn1 Lat2 Lon2°

“ TargetLat TargetLon Signl Xdist(m) Ydist(m)b”);

f@intf(OutputFP,”b k >> Coordinate time history of vehicle # %d b“,this_vehicle_ID);
fprintf(OutputFP,” 1 is where the robot WAS; 2 is current Iocationb”);
fprintf(OutputFP,” Time Nbrl Nbr2 Dir Lat 1 Lonl Lat2 Lon2°

“ TargetLat TargetLon Signl Xdist(m) Ydist(m)h”);

P’ time loop*/
for (timestep=O; timestepeIOOOO;timestep++)
{

time=(float)timestep/iterations_per_seconrl

amplitude= Signa]one(lat,Ion);

UpdateGA(&dlat, &dlon, this_vehicle_ID, lat, ion, amplitude,
&neighborI_ID, &neighbor2_ID);

printf(“%5.2f %3d %3d %3d %lOld %lOld % 10ld %lOld %lOld %lOld %6. lf %8.4f
%8.4fb”,

time, neighborl_ID, neighbor2_ID, RoBu~[this–VehiC1e_lDl.ROBUgDIR!
Iat, Ion, dlat, dlon,
t~get_location_lat, tqet_location_lon,
RoBug[this_vehicle_ID] .RoBugSIG,
-(dlon - target_location_lon) *=tid_scale_delta_lon_mpmas,
(dlat - target_location_lat) *grid_scale_deha-lat-mpmas
);

fprintf(OutputFP,’’%5.2f %3d %3d %3d %10ld % 10ld %10ld % 10ld %10ld % 10ld
%6.lf %8.4f %8.4f h“,

time, neighborl_ID, neighbor2_ID,RoBug[this_vehicle–IDl. RoBugDIR,
Iat, ion, dlat, dlon,
tmget_location_lat, t~get_location_lon,
RoBug[this_vehicle_ID] .RoBugSIG,
-(dlon - target_location_lon) *grid_scale_delta_lon_mprnas,
(dlat - target_location_lat) *grid_scale_deha-ktt-rnpmas

);

/* Assume we ge there immediately”/
lat = dla~
lon = dlon;

if(timestep = total_iterations) {
printf(’’ENDb”);
fprintf(OutputFP,’’END”);
exit(l);

}

}

I* UpdateGA(&dlat, &dIon, vehicle, RoBugLocal[vehicle] .lat, RoBugLocal[vehicle].ion,
RoBugLocal[vehicle] .amplitude);
*/

KillGA(); // Note change ***
}

/**** ****+******************+* Rando@ouble ****************/

double RandomDouble (double start, double stop)
{

/* return (start+(stop-start) *rando/32767.O); Y

I* dwb *I
return (start+(stop-start) *randomng(&iseed));

}

long RandomLong (long istart, long istop)
{

int i;

B-6

long delta;
double random;

i=O;
do {

/* delta=(istop-istart+ 1) * (rando/32767.0); */
i++;

if(i>100) {
printf(” %%%%% FUNCTION NOT FINDING RANDOM NUMBER BETWEEN LIMITS! b“);
printf(” In RandomLong, i = %d b“,i);
printf(” >>>> RL: istart, istop, delta = %d %d %d h“,

istart,istop,delta);
printf(” >>>> iseed, &iseed = %d, %d b“,iseed, &iseed);
exit(1);

}

I* dwb *I
random=randomng(& iseed);
delta=(istop-istart+l) * random;

) while (istart+delta e istart IIistart+delta > istop);

return (istart+delta);

}

/*****$k*$k********r~dom number generator******************/

double randomng(int *pp)
{

J*

returns a value between Oand 1
mm = length of unsigned long integer
aa= number to ensure good random number generation

*J

double aa = 16807.0;
double mm= 2147483647.0;

J* double sseet */
J* int iseed; Y

sseed=*pp;

/* printf(” >> pp = %d h“, pp);
printf(” >> *pp = %d h“,*pp);
fflush(stdout);

*J

sseed=fmod(aa*sseed, mm);
iseed=sseed;

J* RandomPointer = &isee~ */
/* printf(” >> iseed = %d h“,iseed); */
J*

printf(” >>?? sseed, mm = %f, %f b“,sseed,mm);

printf(” >>?? iseed = %d h“,iseed);
fflush(stdout);

*/

/* for double random(int *pp) */
return sseed/rnm;

/* for int random(int *pp) Y
I* return iseed; */

}

J***************************** Signa]one ****************/

int SignalOne(long lat, long ion) {

double signal_strength, rsqr, rsqrMax;
int signal;
float xdiff, ydiffi

/* Calculate signal strength for all robots */

xdiff = (Ion - twget_location_lon) * grid_scale_delta_lon_mpmas;
ydiff = (lat - ~get_location_lat) * grid_scale_delta_lat_mpmas ;

rsqr=xdif~xdiff+ydif~ydiffi

I* if (rsqr > rsqrMax) rsqrMax=rsqv *I

I*. ---- ---*/

I* 1. Signal strength: l/(r**2) *I
I* Signal strength needs to vary between Oand 1 *I

I* original signal in GA code *I
I* signal_strength= 1.O/(rsqr+ 1.); */

I* Sional strength appropriate for this code *I
/* Fir l/r**2 equation for 4095 when r= 1 meter and 50 when r=50 meters*/
/* sign~_S~en~thz(rSqrMm- rSqr)/rsqrMax; */ /* values between Oand 1 */
J* signal=Sign~S~engthMax * s@~_strength; *//*valuesbetween Oand SignalStrengthMax */

signal=4045.8092 * (1. / rsqr)+49. 1908;
signal=4095*(-0.5 *sqrt(rsqr)/50+ 1.);
if(signai>4095) signal=4095;

if(signal <0) {
printf(”bb Signal is less than zero in func. SignalOneb”);
printf(” signal= %db’’,signal);
exit(1);

}

return signal;

}

/**** ************************* InitGA ****************/

B-8

void InitGA()

{
int ..1,

/* dynamically allocate storage to Robug for all vehicles */

/* (The value of RoBug is a pointer to the allocated memory) */
RoBug = (RoBugType *)malloc(numvehicles * sizeof(RoBugType));

/* Memory check for malloc Y
if(!RoBug)
{

printf(’in Memory allocation erro~ program halted b“);
exit(l);

}

/* initialize bug position parameters */
/* Zero everything in struct but ID and DIR Y

for (i=O; i < numvehicles; i++)
{

/*id the vehicle Y
RoBug[i].RoBugID=i;

/* initial heading where rattlers need to go */
RoBug[i].RoBugDIR=RandornLong(l,4);

/* printf(” RoBug[i].RoBugDIR = %d W’,RoBug[i].RoBugDIR);
*J

/* Random placement of bugs over grid, spaced randomly within -GndMaxRadius
to +GridMaxRadius meters of each other*/

RoBug[i].RoBugXPOS=O;
RoBug[i].RoBugYPOS=O;

I* signal received by robug *I
RoBug[i].RoBuglSIG=O;

/* wall position*/
RoBug[i].RoBugXVERT=O;
RoBug[i].RoBugYVERT=O;
RoBug[i].RoBugXHORZ=O;
RoBug[i].RoBugYHORZ=O;

I* nearest neighbors *I
RoBug[i].RoBuglXPOS=O;
RoBug[i].RoBuglYPOS=O;
RoBug[i].RoBugl SIG=O;
RoBug[i].RoBug2XPOS=O;
RoBug[i].RoBug2YPOS=O;
RoBug[i].RoBug2SIG-O;

/* zero the registers*/
RoBug[i].aRegister=O.O;
RoBug[i].bRegister=O.O;
RoBug[i].cRegister=O.O;

RoBug[i].Average_X_RegisteMl.();
RoBug[i].Average_Y_Registe~O.O;

B-9

----- — ..——.. ..— —..— —

1

}

/**** ************************* updateGA ****************I

void UpdateGA(

I* desired outputs *I
/* units: dlat, dlon: rnilliarcseconds */
long *dlat, long *dlon,

I* inputs *I
/* current position, orientation, signal strength for ‘this_vehicle’ */
/* amplitude varies 0-4095 Y
int id,
long Iat, long ion, int amplitude,

/* id of the two nearest neighbors with which the main vehicle communicates */
int *neighborl, int *neighbor2)
{

int i, j, jminl, jmin2;
double rrnin. rsqr;
long xdiff, ydiffi

/* scale by delta_lon to get XPOS into grid units; needed for MOVEGA where an

increment of 1 implies one ~tid unit V
I*

RoBug[id].RoBugXPOS = lon / delta_lon;
RoBug[id].RoBugYPOS = lat / delta_lat;

*J

RoBug[id].RoBugSIG = (double) amplitude;/*/ SignalStrengthMax*/

/* Assume no wall ahead, WallAhead=O (false); if wall. WallAhead= 1 (trUe) */
RoBug[id].WallAhead = O;

/* Calculate nearest neighbors */

/* update bug neighbors only for ‘this_vehicle_ID’ for this simulation */

I* for(i=O; icnumvehicles; i++) { */
i=id;
jminl=i;
jmin2=i;

/* find 1st nearest bug*/
rrnin=REALLYBIGNUMBER;
for (j=O;j < numvehicles; j++)

{
if (j != i)

i
xdiff=RoBug[i]. RoBugXPOS - RoBugti].RoBugXPOS;
ydiff=RoBug[i]. RoBugYPOS - RoBugti].RoBugYPOS;
rsq~xdif~xdiff+ydi f~ydiffi
if (rsqr e rmin)

{
jminl=j;

B-10

rmin=rsqr;
}

)
)

RoBug[i].RoBugl XPOS = RoBugUminl].RoBugXPOS;
RoBug[i].RoBugl YPOS = RoBug~min 1].RoBugYPOS;
RoBug[i].RoBuglSIG = RoBugtiminl].RoBugSIG;

*neighbor l=jminl;

I* find 2nd nearest bug *I
rrnin=REALLYBIGNUMBER; ,

for (j=O;j < numvehicles; j++)

{
if~ !=i &&j !=jminl)

{
xdiff=RoBug[i]. RoBugXPOS-RoBugti] .RoBugXPOS;
ydiff=RoBug[i]. RoBugYPOS-RoBugti] .RoBugYPOS;
rsqr=xdiff*xdiff+ydifPydiffi
if (rsqr e rmin)

{
jmin2=j;
rmin=rsqr;

}
}

}
RoBug[i].RoBug2XPOS=RoBugtimin2].RoBugXPOS;
RoBug[i].RoBug2YPOS=RoBug(jmin2].RoBugYPOS;
RoBug[i].RoBug2SIG=RoBug@in2] .RoBugSIG;
*neighbor2=jmin2;

I* } *f

/* call the routine generated by CEDAR */
MoveGA(&RoBug[id]);

*dIon = (double) RoBug[id].RoBugXPOS * delta_lon;
*dlat = (double) RoBug[id].RoBugYPOS * delta_lat;

}

/**** ~*~*~*****~**** ~***~~***~ ~]l(_jA *~*S#******%G!=K**/

void KillGA()

{
free ((char *)RoBug);

)

/**** ***** *X*XX*** *******XXX** update vehicleGA ~~~~~~~~~~~~~ic~~f

void Update_VehicleGA(int id, long lat, lon~lon, int amplitude)

)* update other vehicles*/
/* nondimensionrdize XPOS and YPOS to grid spacings for GA algorithm*/
/* unscale SIG for GA algorithm */

RoBug[id].RoBugXPOS = lon / delta_lon;
RoBug[id].RoBugYPOS = lat / delta_laq
RoBug[id].RoBugSIG = (double)amplitude; /* / SignalStrengthMax; */

/* Assume no wall ahead, WrdIAhead=O(false); if wall, WallAhead=l (true) */

B-11

-.:..= .,..,..... - ,,..—-.7vm--> -<.=.>--.-.-, ?.-. ,-------- ,..-...-.—-.-.-— .- -. ..-=—-— -,—- — .-

RoBug[id].WallAhead = O;

1

/***e**e*e*~e*ea****e*~*~~**** Movefiead***~~*~************$**/

double MoveAhead(RoBugType *bug){
double value;

if (!bug->WalMhead) {
switch (bug->RoBugDIR) {

case 1:/*movenorth*/
bug->RoBugYPOS++;
br~,

ease2: I* move east *I
bug->RoBugXPOS++;
break;

case 3: I* move south *I
bug->RoBugYPOS--;
bre~

case 4: I* move west *I
bug->RoBugXpO$_.;

break;
default:

exit(1);
break

}
value = 1.0;

}
else {

value = -1.0;
}

return valu~
}

/***% ***** e**** %****~********* ‘rumRlght e~****e~****+*********/

double TumRight(RoBugType *bug) {
long direct;
double value;

direct=bug->RoBugDIR;
direct++-;
if (dkect = 5) direct= 1;
bug->RoBugDIR = direct;

value= l.;

return value;

}

/**** ***~* *~*** ***** **~** *~**~ TumNo*h **~**~***~***~********/

double TumNorth(RoBugType *bug) {

B-12

double value;

bug->RoBugDIR = 1;
J* RetumFlag=l; V

value= 1;

return value;

}

bug->RoBugDIR = 2;
J* RetumFlag=l; */

value= 1;

return value;
}

bug->RoBugDIR= 3;
/* ReturnFlag= 1; */

value=l;

return value;
)

bug->RoBugDIR = ~
J* ReturnFlag= l; */

value=l;

return value;
}

/~*** ****~ *~~**~~**~****~ *%~*~ MoveGA ~H+c**~*w~~~*w/

doubIe MoveGA(RoBugType *bug) {

/*>> INSERT GENETIC ALGORITHM HERE <<*/

}

/* THE END*/

B-13

. . . ,.

ROBOCOP.C
Appendix C

Sample Output Listing for Model O
total iterations = 50
iterations per second = 5
number of vehicles = 5
grid_spacing_lat_m = 3
grid_spacing_lon_m = 3
grid_scale_delta_lat_mpmas = 0.031044
grid_scale_delta_lon_mpmas = 0.025430
delta_lat (mas/lat_grid_step) = 96.635648
delta_lon (mas/lon_grid_step) = 117.969560

>> Locations of all vehicles except vehicle # 3
Time Veh Dir Lat Lon Target_lat

00 1 126000012 921601923 126000000
01 3 125999457 921600636 126000000
02 1 125998518 921599524 126000000
04 3 125999528 921600741 126000000

>> Coordinate time history of vehicle # 3
1 is where the robot WAS; 2 is currant location
Time Nbrl Nbr2 Dir Latl Lonl Lat2
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
6.00
6.20
6.40
6.60
6.80
7.00
7.20
7.40
7.60
7.80
8.00
8.20
8.40
8.60
8.80
9.00
9.20
9.40
9.60
9.80

10.00

044
044
044
414
414
414
414
414
144
144
144
144
144
144
141
141
141
141
141
142
142
142
143
143
143
144
144
144
141
141
141
142
142
142
143
143
143
144
144
144
141
141
141
142
142
142
143
143
143
144
144

125999838
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999839
125999935
126000032
126000129
126000129
126000129
126000129
126000129
126000032
125999935
125999935
125999935
125999935
125999935
126000032
126000129
126000129
126000129
126000129
126000129
126000032
125999935
125999935
125999935
125999935
125999935
126000032
126000129
126000129
126000129
126000129
126000129
126000032
125999935
125999935

921601572
921601441
921601323
921601205
921601087
921600969
921600851
921600733
921600615
921600497
921600379
921600261
921600143
921600025
921599907
921599907
921599907
921599907
921599907
921599907
921599907
921600025
921600143
921600143
921600143
921600143
921600143
921600025
921599907
921599907
921599907
921599907
921599907
921600025
921600143
921600143
921600143
921600143
921600143
921600025
921599907
921599907
921599907
921599907
921599907
921600025
921600143
921600143
921600143
921600143
921600143

125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999742
125999839
125999935
126000032
126000129
126000129
126000129
126000129
126000129
126000032
125999935
125999935
125999935
125999935
125999935
126000032
126000129
126000129
126000129
126000129
126000129
126000032
125999935
125999935
125999935
125999935
125999935
126000032
126000129
126000129
126000129
126000129
126000129
126000032
125999935
125999935
125999935

Tarqet_lon Siqnal X dist(m) Y dist(m)
92i60iiOO0 2092.60000 -48.9024” 0.3725
921600000 3138.00000 -16.1737 -16.8571
921600000 2146.00000 12.1048 -46.0079
921600000 3117.00000 -18.8438 -14.6530

Lon2 TargetLat TargetLon Signl
921601441
921601323
921601205
921601087
921600969
921600851
921600733
921600615
921600497
921600379
921600261
921600143
921600025
921599907
921599907
921599907
921599907
921599907
921599907
921599907
921600025
921600143
921600143
921600143
921600143
921600143
921600025
921599907
921599907
921599907
921599907
921599907
921600025
921600143
921600143
921600143
921600143
921600143
921600025
921599907
921599907
921599907
921599907
921599907
921600025
921600143
921600143
921600143
921600143
921600143
921600025

126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000
126000000

Xdist(m) Ydist(m)
921600000 2445.0 -36.6450
921600000 2558.0 -33.6443
921600000 2678.0 -30.6435
921600000 2797.0 -27.6427
921600000 2916.0 -24.6420
921600000 3033.0 -21.6412
921600000 3150.0 -18.6404
921600000 3264.0 -15.6396
921600000 3375.0 -12.6389
921600000 3482.0 -9.6381
921600000 3581.0 -6.6373
921600000 3669.0 -3.6365
921600000 3734.0 -0.6358
921600000 3765.0 2.3650
921600000 3753.0 2.3650
921600000 3753.0 2.3650
921600000 3868.0 2.3650
921600000 3967.0 2.3650
921600000 3989.0 2.3650
921600000 3904.0 2.3650
921600000 3904.0 -0.6358
921600000 3928.0 -3.6365
921600000 3873.0 -3.6365
921600000 3873.0 -3.6365
921600000 3940.0 -3.6365
921600000 3924.0 -3.6365
921600000 3924.0 -0.6358
921600000 4008.0 2.3650
921600000 3967.0 2.3650
921600000 3967.0 2.3650
921600000 3989.0 2.3650
921600000 3904.0 2.3650
921600000 3904.0 -0.6358
921600000 3928.0 -3.6365
921600000 3873.0 -3.6365
921600000 3873.0 -3.6365
921600000 3940.0 -3.6365
921600000 3924.0 -3.6365
921600000 3924.0 -0.6358
921600000 4008.0 2.3650
921600000 3967.0 2.3650
921600000 3967.0 2.3650
921600000 3989.0 2.3650
921600000 3904.0 2.3650
921600000 3904.0 -0.6358
921600000 3928.0 -3.6365
921600000 3873.0 -3.6365
921600000 3873.0 -3.6365
921600000 3940.0 -3.6365
921600000 3924.0 -3.6365
921600000 3924.0 -0.6358

-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-8.0095
-4.9982
-2.0179
0.9934
4.0047
4.0047
4.0047
4.0047
4.0047
0.9934

-2.0179
-2.0179
-2.0179
-2.0179
-2.0179
0.9934
4.0047
4.0047
4.0047
4.0047
4.0047
0.9934
-2.0179
-2.0179
-2.0179
-2.0179
-2.0179
0.9934
4.0047
4.0047
4.0047
4.0047
4.0047
0.9934

-2.0179
-2.0179
-2.0179

SND

c-1

--<- .,-.,. ,,,,..,~+q-,~..,,, ,.?:........ .-.l%’x.m--%-p,r,..~ -1- ,-..fe?z71zvl.v., ,-m7- -..+e-r--- ,, -— —---

Appendix D
Mathematical 4.0 Graphics Program Listing

(as used for Model O)

Clear[]

(* Author: Daniel W. Barnette, Sandia National Laboratories
*)

(* The list of data, DataLkt, extracted from ROBOCOP.C output, contains the following items:

Vehicle
-————————..———— —————

column

1
2
3
4
5
6
7
8
9
10
11
12
13

*)

Clear[

Data

Time
Neighborl (fust closest)
Neighbor2 (second closest)
Direction robot is facing
Latitude (rnilliarcseconds)
Longitude (rnilliarcseconds)
Latitude (milliarcseconds)
Longitude (rnilliarcseconds)
Target Latitude (rnilliarcseconds)
Target Longitude (milliarcseconds)
Signal (varies horn Oto 4095)
X distance from target (meters)
Y distance from target (meters)

OtherVehiclesPlot,
VehiclePlot,
DataFile,
DataWord,
Description 1, Description,
TodaysDateAndTime,
RowsCohmms,
NumVehicles,
TotalIterations,
IterationsPerSecond
1

Date[]

Description = “Genetic Algorithms Simulator”;

Description = “Signal Source: l/r**2”;

TodaysDateAndTlme:= (
Temp = Date[];
StringForm[

““ Date: “r ‘r’ Time: “:” :“”,
Description 1,

OtherVehicles
.——————————
Data

Time
Vehicle No.
Direction
Latitude
Longitude
Tmget ~titude
T~get Longitude
signal strength
X distance from target
Y distance from target

D-1
,

_ ____ .,. .,,..=___,_._., ~..-—...—...———.

Temp[[2]], Temp[[3]], Temp[[l]],
Temp[[4]], Temp[[5]], Temp[[6]l

)]

(* Uncomment following to check if file can be opened; for debugging code*)

(* ! !“d:~mgam \

filesWevStudioMyProjectsWobu~SimulatorWobocopOutputModO.txt'' *)

DataFde =
OpenRead[’’d:Wrogram \

RlesWevStudioMyProjectsRobu~SimulatorWobocopOutputModO.txt'']

DataWord = “NULL”;

While[
DataWord != “=”,
DataWord = Read[Data171e,Word];
1

TotalIterations = Read[DataFile, Number]

DataWord = “NULL”;

While[
DataWord != “=”,
DataWord = Read[Data131e,Word];
1

IterationsPerSecond = Read[DataFile, Number]

DataWord = “NULL”;

While[
DataWord != “=” ,
DataWord = Read[DataFile, Word];
1

NumVehicles = Read[DataHle, Number]

While[
DataWord != “Time”,
Skip[DatalWe, Record];
DataWord = Read[DataFile, Word];
1

Skip[DataFde, Record]

OtherVehiclesPlot =
Table[Read[DatalWe, Number], {NumOfDataLines,

NumVehicles - 1}, {NumOfDataColumns, 10}];

TableForm[OtherVehiclesPlot]

D-2

Do[
OtherVehiclesPlot[[i]] = Append[OtherVehiclesPlot[[il], O],
{i, NumVehicles -1}
1

Table[Dimensions[OtherVehiclesPlot]]

TableForm[OtherVehiclesPlot]

While[
DataWord != “Dir”,
DataWord = Read[DataFile, Word];
1

Skip[DataFHe, Record]

VehiclePlot =
Table[

Read[DataIWe, Number], {NumOfDataLines,
TotalIterations + 1}, {NumOfDataColumns, 13}];

RowsColumns = Table[Dimensions[VehiclePlot]];

Close[DataFile]

RowsColumns

Do[
VehiclePlot[[i]] = Append[VehiclePlot[[i]], O],
{i, TotalIterations + 1}
1

TableForm[VehiclePlot]

(*
Get Graphics packages needed for plots
*)

e< Graphics’Graphics3D

cc Graphics’ Amow’

(“<e Graphics’Polyhedra’ “)

<C Graphics’ Animation’

SignalMax = 200

Signal[x_, y_l := (signal= (4045.8092 *(l./(x*x + Y*Y+ 0.0001)) + 49.1908);
Iflsignal > SignalMax, SignalMax, signal])

signalTable = Table[{x, y, Signal[x, y] }, {x, -50,50, 2}, {y, -50,50, 2}];

signalPIot =
ListSurfacePlot3D[signalTable, PlotRange -> {O,200}, Axes -> True,

ColorFunction -> Hue, ImageSize ->500,
BoxRatios -> {1.1, 1.1, 1} (* DisplayFunction -> Identity*)]

Signalcontour =

ContourPlot[Signal[x, y], {x, -50, 50}, {y, -50, 50}, PlotPoints ->25,
ColorFunction -> GrayLevel, ContourLines -> True, Contours ->10,
ContourShading -> False, ImageSize -> 500]

Clear[signalShadow]

sign~shadow =
ShadowPlot3D[Signrd[x, y] -77, {x, -50, 50}, {y, -50, 50],

PlotPoints ->40, ShadowMesh -> False, Axes -> True,
AxesLabel -> {X, Y, Signal}, ImageSize ->600, ShadowPosition ->1,
SurfaceMesh -> True, ViewPoint -> {1.464,-2.702, 1.417}
1;

(*
SpinShow[signalShadow, Frames ->30, ViewPoint ->{ 1.464,-2.702, 1.417},

SpinTilt -> {O,O), SpinDistance ->5, Axes -> False, ImageSize ->600

*;

(*

plotTet = Polyhedron[Tetrahedron, {O.O,SignalMax }, 2, Boxed -> True,
ImageSize ->400,

PlotRange -> {{-50. 50}, {-50, 50}, {SignalMax -50, SignalMax + 50}],
Axes -> True, FaceGrids -> {{O,0,-1 }}

*)]

Clear[plotOO,plotOl, plot 10, plotl 1, plot421, plot521]

(* Initial Bug Location*)

plotoo =
ScatterPlot3D[

{
{
VehiclePlot[[l, 12]],
VehiclePlot[[l, 13]],
VehiclePlot[[1, 14]] +

Signal[VehiclePlot[[l, 12]], VehiclePlot[[

{}’
VehiclePlot[[1, 12]],
VehiclePlot[[1, 13]],

3]]] -72

VehiclePlot[(1, 1411+
Signal[Veh~clePl&[[1, 12]], VehiclePlot[[l, 13]]] -72

)
1>

PlotRange ->{ {-50, 50}, {-50, 50}, {-50, +50}},
PlotStyle -> {GrayLevel[O.], PointSize[0.02], Thickness[O.0051} ,
DisplayFunction -> Identity
1

ploto 1 =

D-4

ScatterPlot3D[

{
{VehiclePlot[[l, 12]],
VehiclePlot[[1, 13]],
VehiclePlot[[l, 14]] -i-SignalMax

}>
{
VehiclePlot[[l, 12]],
VehiclePlot[[l, 13]],
VehicleP1ot[[1, 14]] -t SignalMax}

}>
PlotRange ->{ {-50, 50}, {-50, 50}, {SignalMax -50, SignalMax + 50} },
PlotStyle -> (GrayLevel[O.], PointSize[0.02], Thickness[O.005]} ,
DisplayFunction -> Identity
1

(* Other Bug Locations*)

plot 10= ScatterPlot3D[
Table[

{
OtherVehiclesPlot[[i, 9]],
OtherVehiclesPlot[[i, 10]],
OtherVehiclesPlot[[i, 11]] +

Signal[OtherVehiclesPlot[[i, 9]], OtherVehiclesPlot[[i, 10]]] -72

{i!’NumVehicles - 1}
1>

PlotStyle -> {Hue[O.6], PointSize[0.02] }, PlotJoined -> False,
PlotRange -> ({-50, 50], {-50, 50}, {-50, 50)},
DisplayFunction -> Identity
1

plotl 1 = ScatterPlot3D[
Table[{

OtherVehiclesPlot[[i, 9]],
OtherVehiclesPlot[[i, 10]],
OtherVehiclesPlot[[i, 11]] + SignalMax

{i!’NumVehicles - 1}
1!

PlotStyle -> {Hue[O.6],PointSize[0.02] }, PlotJoined -> False,
PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax -50, SignalMax + 50} },
DisplayFunction -> Identity
1

plot421 = ScatterPlot3D[
{

{
VehiclePlot[[l, 12]],
VehiclePlot[[l, 13]],
VehiclePlot[[1, 14]] + SignalMax

{)’
OtherVehiclesPlot[[l, 9]],
OtherVehiclesPlot[[l, 10]],

D-5

---7 -., .- .--,.--=/., ----- ..-— ----- f -- .. --------- , -—----—— ----- ,.
——..—— .—— ..—. —

OtherVehiclesPlot[[1, 11]] + SignalMax
}

}>
PlotRange ->{ {-50, 50), {-50, 50}, {SignalMax -50, SignalMax + 50)),
PlotJoined -> True,
PlotStyle -> {GrayLevel[O.], PointSize[0.02], Thickness[O.005],

Dashing[{0.002,0.008,0.002, 0.008} 1} , DisplayFunction -> Identity

1

plot521 = ScatterPlot3D[

{
{

VehiclePlot[[l, 12]],
VehiclePlot[[l, 13]],
VehiclePlot[[1, 14]] + SignalMax

},
{
OtherVehiclesPlot[[4, 9]],
OtherVehiclesPlot[[4, 10]],
OtherVehiclesPlot[[4, 11]] + SignalMax

}!
PlotRange -> {{-50, 50}, (-50, 50}, {SignalMax -50, SignalMax + 50} },
PlotJoined -> True.
PlotStyle -> (GrayLevel[O.], PointSize[0.02], Thickness[O.005],

Dashing[{ 0.01, 0.01]]} , DisplayFunction -> Identity
1

signalSpin =
Show[signalShadow, plotOO,plotOI, plot lO, plot 11, plot421, plot521,

DisplayFunction -> $DisplayFunction, ViewPoint -> {1.384,-2.555, 1.734),
ImageSize ->600,
PlotLabel -> StyleForm[“Initial Conditions”, “Section”]]

SpinShow[signalSpin, Frames ->30, ViewPoint -> {1.384,-2.555, 1.734},
SpinTilt -> {O,O},SpinDistance ->5, Axes -> False, ImageSize ->600
1

Clear[plot 100, plotlOl, plot200, plot300, plot301, plot400, plot401]

gr = Do[
(

plot100 = ScatterPlot3D[
Table[{

VehiclePlot[[i, 12]],
VehiclePlot[[i, 13]],
VehiclePlot[[i, 14]] + SignalMax

{i!~,j}] ,
PlotJoined -> False,
PlotStyle ->{ PointSize[0.02], Thickness[O.005], Hue[O.61),
PlotRange -> {{-50, 50), {-50, 50}, {Signa4Max -50,

SignalMax + 5(I}} , DisplayFunction -> Identity

1;

D-6

pIotlO1 = ScatterPlot3D[
Table[{

VehiclePlot[[i, 12]],
VehiclePlot[[i, 13]],

VehiclePlot[[i, 14]]+
Signal[VehiclePlot[[i, 12]], VehiclePlot[[i, 13]]] -72
}!

{i, jjj}] ,
PlotJoined -> False,
PlotStyle ->{ PointSize[0.02], Thickness[O.005], Hue[O.6]),
PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax -50,

SignalMax + 50} } , DisplayFunction -> Identity
1;

plot300 = ScatterPlot3D[
Table[{

VehiclePlot[[i, 12]],
VehiclePlot[[i, 13]],
VehiclePlot[[i, 14]] + SignalMax

{i:~}],
PlotJoined -> True,
PlotStyle ->{ PointSize[0.5], Thickness[O.008], Hue[O.17]},
PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax -50,

SignalMax + 50} }, DisplayFunction -> Identity
1;

plot301 = ScatterPlot3D[
Table[{

VehiclePlot[[i, 12]],
VehiclePlot[[i, 13]],

VehiclePlot[[i, 14]]+
Signal[VehiclePlot[[i, 12]], VehiclePlot[[i, 13]]] -72

{1’j}] ,
PlotJoined -> True,
PlotStyle ->{ PointSize[0.5], Thickness[O.008], Hue[O.17]},
PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax -50,

SignalMax + 50)) , DisplayFunction -> Identity
1;

(* Show nearest neighbors with connecting lines*)

For[k = 1, k < NumVehicles, k++,
If [

VehiclePlot[(j, 2]]== OtherVehiclesPlot[[k, 2]],
plot400 = ScatterPlot3D[

{
{
VehiclePlot[~, 12]],
VehiclePlot[U, 13]],
VehiclePlot[lj, 14]]+ SignalMax
},

D-7

.- , 777-, $., r,.. ?..T.,T,. ., .? ..-., .--= -.---, —--- . ..- ..—: . .-.--. —-- .—— —

{
OtherVehiclesPlot[[k, 9]],
OtherVehiclesPlot[[k, 10]],
OtherVehiclesPlot[[k, 11]] + SignalMax

}!

PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax -50,
Sign~M~ + 50]}, PlotJoined -> True,

PlotStyle -> {GrayLevel[O.], PointSize[0.02], Thickness[O.0051,
Dashing[{0.002, 0.008,0.002, 0.008}]} ,

DisplayFunction -> Identity

1;]

If [
VehiclePlot[u, 3]]== OtherVehiclesPlot[[k, 211,
plot401 = ScatterPlot3D[

{
{
VehiclePlot[O, 12]],
VehiclePlot[lj, 13]],
VehiclePlot[u, 14]]+ SignalMax

{}’
OtherVehiclesPlot[[k, 911,
OtherVehiclesPlot[[k, 10]],
OtherVehiclesPlot[[k, 11]] + SignalMax

}!

PlotRange -> {{-50, 50}, {-50, 50}, {SignalMax -50,
SignalM~ + 50) }, plotioined -> True,

PlotStyle -> {GrayLevel[O.], PointSize[0.02], Thickness[O.005],
Dashing[{0.01, 0.01}]} , DisplayFunction -> Identity

1;]
1;

Show[
sign~shadow, plotoo,”ploto 1, plot 10, plot 11, plot 100, plot 101,
plot300, plot301, plot400, plot401 ,
DisplayFunction -> $DisplayFunction,
ViewPoint -> {1.433,-2.646, 1.548],
PlotLabel ->

StyleForm[NCj/IterationsPerSecond] “ seconds”, “Section”l,
ImageSize ->600

1

{~~RowsColumns[[1]]]

1

(* The End *)

D-8

EXTERNAL DISTRIBUTION:

CQ!2kS Name/Entity:

4 Santa Fe Institute
Attn: Melanie Mitchell (2 copies)

James Crutchfield (2 copies)
1399 Hyde Park Road
Santa Fe, New Mexico 87501

—-. ,.,- —.-.——.—-.—.——

. .. --—

INTERNAL DISTRIBUTION:

Copies:

1

1
1
5
1
1
1
1
1
10
1
1
1
1
1
1
1

1

5
1
1
1
1
1

1

2

1

Mail
stop:

1002

0316
0318
0318
0318
0318
0318
0825
0321
1111
1110
1109
1111
0441
0819
0820
0439

1003
1003
1003
1003
1004
1010
0839

9018

0899

0612

Name/Org:

P. Eicker, 15200

S. S. Dosanjh, 9221
G. S. Davidson, 9212
R. J. Pryor, 9212
M. Boslough, 9212
K. Boyack,9212
R. Hightower,9212
W. H. Rutledge, 9115
W. J. Camp. 9200
D. W. Bamette. 9221
D. E. Womble, 9222
A. L. Hale. 9224
G. S. Heffelfinger, 9225
R. W. Leland, 9226
E. Boucherand. 9231
P. Barrington, 9232
D. R. Martinez, 9234

R. Robinett, 15211
J. Hurtado, 15211
J. Feddema, 15211
C. Lewis, 15211
D. Schoenwald, 15221
G. R. Eisler, 15222
G. Yonas, 16000

Central Technical
Files, 8945-1
Technical Library,
9616
Review & Approval
Desk, 9612
For DOE/OSTI

