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(April 27, 2000) 

In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions 
modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a t 
dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach imple- 
mented on high-performance parallel computers. We perform, for the first time, a fully self-consistent 
simulation, in which the friction and diffusion coefficients are computed from first principles. We 
employ a two-dimensional domain decomposition approach within a message passing programming 
paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate 
details of the communication syntax as well as to enhance reusability and extensibility. Performance 
tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in 
progress to apply our technique to intrabeam scattering in accelerators. 

PACS numbers: 

I. INTRODUCTION 

Coulomb collisions play an important role in many 
areas of plasma physics, accelerator physics, and astro- 
physics. The long-range nature of the force leads to a 
fundamental difference between how such collisions need 
to be treated compared to the Boltzmann approach fa- 
miliar when dealing with dilute neutral gases. Since most 
collisions occur at large impact parameters, the particle 
deflection per collision is small. Moreover, at any given 
time, a particular particle is interacting with many other 
particles. For these reasons, a simple Boltzmann picture 
of the collisions is not applicable (the Boltzmann collision 
integral diverges at large distances). 

When 'soft' collisions such as those described above are 
encountered, the appropriate transport equation is of the 
Fokker-Planck form [l]. For the case of Coulomb colli- 
sions between charged particles, the derivation of the ap- 
propriate Fokker-Planck equation is somewhat delicate. 
Depending on one's taste and notions of rigor, several 
different methods may be employed: the fundamental 
Boltzmann kernel may be expanded in powers of momen- 
tum transfer a d  effectively linearized [2]; the BBGKY 
formalism may be utilized with an expansion in powers of 
the Coulomb logarithm used to truncate the expansion 
at second order [3]; and a simple master equation-like 
argument may also be used to derive the Fokker-Planck 
collision kernel [l]. Fortunately, all these derivations lead 
to essentially the same final result. 

In many cases of physical interest, such as intense 
beams, one needs to take into account the mean force 
field of all other particles on the particle of interest (the 
Vlasov-Poisson equation) as well as account for the soft 
collisions. The inclusion of a Fokker-Planck collision 
term on the right hand side of the Vlasov equation gives 
rise to the Landau equation. The Landau equation is a 

partial differential equation with self-consistently deter- 
mined systematic force terms as well as external fields, 
if present, and self-consistent friction and diffusion coef- 
ficients arising from the Fokker-Planck treatment of col- 
lisions. Determination of all the self-consistent contribu- 
tions requires the computation of convolution integrals 
in either real or velocity space. 

A successful approach to modeling the Vlasov-Poisson 
equation is the popular PIC technique where simulation 
particles are used to indirectly represent the phase space 
distribution function and the Poisson equation is solved 
on a spatial grid. The advantages of the PIC method in- 
clude its relative conceptual simplicity, high performance 
resulting from fast Poisson solvers, relatively low memory 
cost for the grid (O(Lk) where k is the number of spa- 
tial dimensions), and insensitivity to the generation of 
small-scale structure in the distribution function. More- 
over, PIC simulations for accelerator applications have 
been implemented efficiently on parallel computing plat- 
forms [4]. Fokker-Planck collisions can be included in the 
PIC method via the addition of friction and (multiplica- 
tive) stochastic forces in the equations of motion for the 
simulation particles: This is the Langevin approach to 
incorporating soft collisions. It should be kept in mind 
that numerical collisions are present in any PIC simula- 
tion of the type just described. Thus, it is appropriate to 
include the physical collisions only when the numerical 
collisions are strongly suppressed in the original Vlasov- 
Poisson simulation. This condition can be met in some 
situations of interest [5]. 

The main difficulty in carrying out the Langevin PIC 
program is the fact that the self-consistent friction and 
diffusion coefficients themselves depend on the veloc- 
ity, thus, in principle, for every simulation particle one 
needs to carry out two convolution integrals in velocity 
space followed by appropriate derivatives, also in velocity 
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space. Given the PIC point of view, one would wish to 
introduce a velocity grid associated with each spatial grid 
cell, carry out the convolutions on the velocity grid and 
then use interpolation to determine the appropriate fric- 
tion and diffusion coefficients for the simulation particles 
belonging to that particular spatial grid cell. These tasks 
have been viewed as being much too difficult to actually 
carry out: either the Spitzer approximation has been em- 
ployed [6] or an isotropic velocity distribution has been 
assumed for the scattering particles [7). 

However, on modern parallel machines these prob- 
lems can be overcome (in large part) and the fully self- 
consistent friction and diffusion coefficients obtained nu- 
merically for any distribution. The purpose of the present 
paper is to explain and demonstrate how this can be 
achieved. In short, the key points are that the veloc- 
ity grids need not be very large (we found 323 to be 
sufficient), one may associate a single velocity grid not 
with a single spatial grid cell but with some number of 
them (a form of coarse-graining), the number of particles 
associated with each spatial 'super-cell' is large enough 
to guarantee low sampling noise in velocity space, and 
finally, the convolution and interpolation strategies al- 
ready implemented for the spatial part of the Vlasov- 
Poisson equation may be directly extended to velocity 
space. 

This paper is organized as follows. The Landau equa- 
tion and the numerical methods are presented in Section 
2. The parallel implementation is outlined in Section 3, 
performance tests given in Section 4, and results reported 
in Section 5. 

11. THE LANDAU EQUATION AND ITS 
NUMERICAL SOLUTION 

The Landau equation for the evolution of the single- 
particle distribution function is of the form: 

(1) 

where Fa is the dynamic friction coefficient and D is the 
diffusion coefficient. They are defined via 

G = / d33f(r, 3)lv - 31 

(3) 

(4) 

( 5 )  

with X being the Coulomb logarithm, and AD = Jm, the Debye length. The force F includes 
both the external force and the self-generated mean field 
space charge force which can be obtained from the Pois- 
son equation: 

and 

p(r) = d3dvf(r,v) J 

(7) 

Here, 4 is the electric potential and p is the charge den- 
sity. 

The stochastic (multiplicative noise) particle equations 
of motion that follow from the Landau equation are (Cf. 
Ref- PI) 

rt = v, 

where r(t) are Gaussian random variables with 

(ri(t)) = 0, (11) 
(12) (ri(t)rj(t)) = dijd(t - t t ) .  

The matrix Q is related to the diffusion coefficient D 
by Dij = &ik&jk.  The Q i k  can be obtained using an 
orthogonal transformation, taking the positive root of the 
eigenvalues and then transforming back. 

The friction and diffusion coefficients follow from Eqns. 
(2) - (6). Computation of H and G requires carrying out 
convolution integrals. To do this we employ a PIC charge 
deposition onto a velocity grid using a linear scheme to 
get the distribution function f on the grid. This is fol- 
lowed by a FFT-based convolution which requires dou- 
bling the computational grid in each velocity direction in 
order to correctly impose open boundary conditions [9]. 
The friction and diffusion coeficients can now be com- 
puted on the grid using second-order central h i t e  dif- 
ferences. These coefficients are then reinterpolated back 
onto the particles using the original linear PIC scheme. 
The self-generated space charge forces are also calculated 
by depositing particles onto a spatial grid following the 
PIC approach. The scalar potential in the Poisson equa- 
tion is solved following the same FFT-based method ex- 
plained above and the force on the particles obtained by 
numerical differentiation an reinterpolation. This force 
together with the external force field and the forces due to 
dynamic friction force and diffusion are used to advance 
the charged particles for one time-step using a (stochas- 
tic) leap-frog algorithm. 
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111. OBJECT- RIENTED PARALLEL 
IMPLEMENTATION 

We employ a two-dimensional domain-decomposition 
approach following Refs. [lo]. A schematic plot of the 
two-dimensional decomposition on the y-z plane is shown 
in Fig. 1. The solid grid lines define the computational 
domain grids. The dashed lines define the local compu- 
tational domain on each processor. The boundary grids 
are the outer-most grids inside the physical boundary. 
Guard grids are used for temporary storage of grid quan- 
tities from neighboring processors. The physical compu- 
tational domain is defined as a 3-dimensional rectangular 
box with range xmin 5 x F xmaz, ymin 5 Y F ymaz, 
and zmin 5 z 5 zmz. This domain is decomposed on 
the y - z plane into a number of small rectangular blocks 
and these blocks are mapped to a logical two-dimensional 
Cartesian processor grid, one rectangular block per pro- 
cessor. The range of a block on a single processor is 

zlcmin 5 z I zlcmaz. The subscripts lcmin and lcmaa: 
specify local minima and maxima. The mesh grid stores 
field-related quantities such as charge density and electric 
field. The number of grid points along three dimensions 
on a single processor is defined as: 

defined 85 xmin 5 3 I xmx, Mcmin I y L YlCWZ, and 

Nxtocal = int[ (z-z - xmin) /hx] + 1 
Nylocal = int[(ylcrnax - ~min) /h~]  - 

(13) 

(14) 

(15) 

int[(Yicmin - yrnin)/hy] + Ng 

int[(zlcmin - zmin)/hz] + Ng 
Nztocal = int[(zicmaz - zmin)/hz] - 

where hx, hy, and hz are the mesh sizes along the x, y 
and z directions, respectively. The quantity Ng refers 
to the number of guard grids in Nyhal and Nzlocal. 
Ns = 2 if the number of processors in that dimension 
is greater than 1; otherwise, Ng = 1. Particles with spa- 
tial positions within the local computational boundary 
are assigned to the processor containing that part of the 
physical domain. 

I I I : I  I I I I I I:I 1 I I 1 I : I I  I I 1 1 1  

7. 

FIG. 1. Schematic of the the 2-D domain decomposition in 
the y - z domain. 

The parallel computation starts with constructing a 
2-D logical Cartesian processor grid, reading input data 

from processor 0 and broadcasting it to the other proces- 
sors, setting up the local initial computational domain, 
initializing objects, and generating particles from the ini- 
tial distribution function. The particles generated on 
each processor advance following each time step. If a 
particle moves outside the local computational domain, 
it is sent to the corresponding processor where it is now 
located. A particle manager function handles explicit 
communication using MF’I. The y and z positions of ev- 
ery particle on each processor are checked. The particle 
is copied to one of its four buffers and sent to one of its 
four neighboring processors when its y or z position is 
outside the local computational domain. After a proces- 
sor receives the particles from its neighboring processors, 
it decides among those particles whether some of them 
will be further sent out or not. The outgoing particles 
are counted and copied into four temporary arrays. The 
remaining particles are copied into another temporary 
array. This process is repeated until there is no outgo- 
ing particle found on all processors. Finally, the particles 
in the temporary storage along with the particles left in 
the original particle array are copied into a new particle 
array. 

After each particle moves to its local computational 
domain, a linear particle-deposition scheme is carried out 
for all processors to obtain the charge density on the 
grid. Particles located between the boundary grid and 
computational domain boundary will also contribute to 
the charge density on the boundary grids of neighboring 
processors. Hence, explicit communication is required to 
send the charge density on the guard grids, which is from 
the local particle deposition, to  the boundary grids of 
neighboring processors to sum up the total charge density 
on the boundary grids. With the charge density on the 
grids, Hockney’s FFT algorithm [9] is used to solve the 
Poisson equation with open boundary conditions. This 
algorithm requires the original grid number to be doubled 
in each dimension. The charge density on the original 
grid is kept the same, and the charge density elsewhere 
is set to 0. The Green’s function on the original grid is 
defined as 

(16) 

where p = 1,. . . , N x L l  + 1, q = 1,. . . ,NyLcal + 1, 
T = 1,. . . , Nz,*,,, +l. Here, N X ? ~ ~ ~ ,  Ny~ocal, NzLa1 are 
the local computation grid numbers without including 
guard grids in all three dimensions. For points outside 
the original grid, symmetry is used to define the Green’s 
function according to 

Gp,q,r = G ~ N z - ~ c P , ~ , ~ ,  (17) 
Gp,q,r = Gp,2~y-q+2,r, (18) 
Gp,w = Gp,q12Nz-t+2, (19) 
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wherep = Nx,*,,+2,. . . ,2Nx, q = NyLcal+2,. . . ,2Ny, 
r = Nzfm,, + 2 , .  . . ,2Nz. Communication is required 
to double the original distributed 3-dimensional grid ex- 
plicitly. This can be avoided by including this pro- 
cess into the 3-dimensional FFT. In the 3-dimensional 
parallel FFT, we have taken advantage of the undis- 
tributed dimension along the x dimension, where a local 
serial FFT can be done in that dimension for all proces- 
sors. A local temporary two-dimensional array with size 
( ~ N x ,  Nyloca1) is defined to contain part of the charge 
density at fixed z .  The charge density on the original 
grid is copied into the (Nx,Nylocal) part of the tempo- 
rary array. The rest of the temporary array is filled with 
0. In regard to the FFT of the Green’s function, symme- 
try can again be used to obtain the values of the Green’s 
function in the region (Na: + 2,  Nyha l ) .  After the lo- 
cal two-dimensional FFT along x is done, it is copied 
back to a slice of a new 3-dimensional array with size 
( ~ N x ,  Nybcal, Nzlocal). A loop through Nzbcal gives the 
FFT along x for the three dimensional array. This is fol- 
lowed by a transpose to switch the x and y indices. Now, 
the 3-dimensional matrix has size (Ny,  NxLcal, Nzbcol) 
where Nz;,, is the new local number of grids in the z 
dimension along the y dimension processors. A similar 
procedure yields the FFT along the y direction for a dou- 
bled grid of size (2Ny, NxLcal, Nzl,l). Another trans- 
pose is used to switch the e/ and z indices and a local FFT 
along z with a double-size grid is done on all processors 
to finish the 3-dimensional FFT for the doublesize grid 
in all three dimensions. During the inverse parallel FFT, 
a reverse process is employed to obtain the potential on 
the original grids. 

From the potential on the grid, we calculate the elec- 
tric field using central finite differences. To calculate 
the electric field on a boundary grid, the potential on 
a boundary grid of neighboring processors is required. A 
communication pattern similar to that employed in the 
charge density summation on the boundary grids is used 
to send the potential from the boundary grids to the 
guard grids of neighboring processors. After the elec- 
tric field on the grids is obtained, the local particle-push 
requires interpolation from the grids onto the local parti- 
cles. Since we have used a linear PIC scheme, the electric 
field of particles between the boundary grid and compu- 
tational domain boundary will also depend on the electric 
field on the boundary grid of neighboring processors. A 
similar communication pattern is used to send the elec- 
tric field from the boundary grids to the guard grids of 
the neighboring processors. With the electric field on 
grids local to each processor, interpolation is done for 
all processors to obtain the spacecharge force on every 
particle. The dynamic friction coefficient and diffusion 
coefficient are calculated on each processor. The local 
computational grids are lumped into a small number of 
subdomains (the super-cells). Particles within each sub- 
domain will have the same friction and diffusion coeffi- 

cients. A three-dimensional velocity grid is built on each 
subdomain for all particles in this domain. Following the 
scheme described in Section 2 ,  we compute the friction 
and diffusion coefficients on all processors and reinterpo- 
late them back to the local particles. The local particles 
are then updated in velocity space. 

Dynamic load balancing is employed with adjustable 
frequency to keep the number of particles on each pro- 
cessor approximately equal. A density function is defined 
to find the local computational domain boundary so that 
the number of particles on each processor is roughly bal- 
anced. This number depends on the local integration of 
the charge density on each processor. To determine the 
local boundary, first, the three-dimensional charge den- 
sity is summed up along the x direction on each processor 
to obtain a two-dimensional density function. This func- 
tion is distributed locally among all processors. Then, 
the two-dimensional density hnction is summed up along 
the y direction to get the local one-dimensional charge 
density function along z. This density function is broad- 
cast to the processors along the y direction. The local 
charge density function is gathered along z and broad- 
cast to processors along the z direction to get a global 
z direction charge density distribution function on each 
processor. Using this global z direction density distri- 
bution, the local computational boundary in the z di- 
mension can be determined assuming that each proces- 
sor contains a fraction of the total number of particles, 
about equal to I/nproc,, where nproc, is the number of 
processors along the z direction in the two-dimensional 
Cartesian processor grid. A similar process is used to 
determine the local computational boundary in the y di- 
rection. Strictly speaking, the above algorithm will work 
correctly for a two-dimensional density distribution func- 
tion which can be separated as a product of two one- 
dimensional functions along each direction. However, our 
experience has been that this algorithm works reasonably 
well for a broad range of distributions. 

The simulation implemented uses object-oriented pro- 
gramming in C++. Based on our previous experience 
of object-oriented software design for linear accelerator 
beam dynamics simulations , we have defined a parti- 
cle manager class, Pte1mger.C to move particles among 
the processors, a field data exchanger class, Fldezch. C, 
to communicate the neighboring data, a utility class, 
Ut&@, to manage global communication in the matrix 
transpose, a input-output handler class, InOut. C to inter- 
face with the outside environment, and a two-dimensional 
Cartesian processor class, Pgrid2d.C. These classes work 
together as a low level class to encapsulate communica- 
tion details used in the parallel message passing program- 
ming paradigm. High level application classes, the beam 
class, field class and beam line element class, are built on 
top of the low level classes without knowing the details of 
the communication. Polymorphism is used to access con- 
crete beam line elements, e.g. quadrupole, in the beam 
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I line element class definition. A simulation manager class, 
AccSimulotor. C, is defined to run the simulation. 

IV. PERFORMANCE TESTING 

The parallel performance of the simulation code was 
tested on a distributed memory machine, the Cray T3E- 
900, and on a distributed shared memory machine, the 
SGI Origin 2000. Fig. 2 gives the time cost as a function 
of number of processors on these machines. The total nu- 
merical particle number is two million with a 64 x 64 x 64 
spatial grid for the electric field solver, 82 super-cells and 
a 32 x 32 x 32 velocity grid for the dynamic friction 
and diffusion coefficients. Good scalability is obtained 
on both machines. The slightly better performance on 
the SGI Origin may be due to the much larger secondary 
cache (4 MB) than that of Cray T3E (100 KB). To in- 
vestigate the effect of problem size on the scalability, we 
tested the code with an increased spatial grid 83 for the 
dynamic friction and diffusion coefficients. Fig. 3 gives 
the speedup (normalized by the time on eight processors) 
on the SGI Origin 2000 as a function of number of pro- 
cessors for two Merent problem sizes. Increasing the 
problem size improves the scalability of the code. For 
the final paper we will include similar tests carried out 
on the IBM SP3. 

- 
3 3 5  4 4.5 5 F.5 5 

bo(pE.I 

FIG. 2. Time cost as a function of number of processors on 
the Origin 2000 and the T3E900. 

FIG. 3. Speed-up as a function of processor number for two 
different problem sizes. 

V. RBSULTS 

As a test case we applied o w  method to compute the 
friction and diffusion coefficients for a Maxwellian veloc- 
ity distribution, the results of which are shown in Figs. 
4 - 6. The asymptotic fall-off in Fd/'u as l/v3 at  large v 
is seen nicely in Fig. 6. An important point that is also 
clearly demonstrated is the modest number of particles 
needed per spatial super-cell to reach convergence of the 
computed quantities. 

. .  
~~ 
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FIG. 4. Diagonal and off-diagonal diffusion coefficients for 
a Maxwellian distribution as a function of velocity. The ex- 
pected fall-off in the velocity is clearly seen and excellent re- 
sults are obtained even for a small number of sampled parti- 
cles (there is essentially no difference between 3000 and 1.25 
million particles). 
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FIG. 6. The friction coefficient divided by velocity as a 
function of velocity shown on a log-log scale demonstrating 
the expected l /v3  asymptotic fall-off. 

We are in the process of testing the time evolution of 
distributions. In the final paper we will show the ap- 
proach to thermal equilibrium of a spatially inhomoge- 
neous, initially anisotropic velocity distribution as an ex- 
ample of intrabeam scattering in accelerators. 
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