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ABSTRACT

Developing accurate, physics based, micromechanical, powder consolidation and sintering models with a
minimum of experimentation constitutes an inverse and ill-posed problem that is most tractable through
the application of Bayesian inference and genetic algorithms (GA). In this work, 19 consolidation model
parameters are determined for two different Molybdenum (Me) powders. The two powders differ in
particle size distribution and morphology. Given limited and uncertain experimental densification data
sets for these two powders, the Bayesian enhanced GA optimizes the model parameters to specific ranges.
The evolved distribution of the model parameters is then used to predict relative densities for
consolidation and sintenng conditions in which no experimental data yet exists. More experiments are
necessary in the regimes of the resulting response surface with unacceptably high uncertainty. Thus, this
procedure allows models to co-evolve with experiments such that more accurate models can be developed
with a minimum of experimentation.

Additionally, this work will compare and contrast the implications of conducting principal component
(PC) analysis on the a posterior model covariance matrix versus the correlation matrix. Proper
interpretation of the PCs reveals information on parameter correlations as well as sensitivities, provided
the specific conditions in the optimization are met. These conditions will be discussed. Finally, the
influence of the different powder formation methodologies on the optimal consolidation parameters will
also be discussed.

INTRODUCTION

INTRODUCTION: MOLYBDENUM POWDER PROCESSING

Molybdenum (Me) has many applications in the field of ballistics, due to its high density (10.22 g/cc),
high melting point (2622C), high yield stress (758 Ml?a), and hardness at high temperatures. Mo also has
excellent thermal and electrical conductivity and good erosion resistance [1]. Unfortunately, these
qualities also contribute to Mo’s disadvantages, namely, high cost and processing difficulties.
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Isotropic component properties are advantageous for some ballistic applications Thus, given the higk, ~
strength and refractory nature of Mo, powder metallurgy is the preferred processing approach for
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producing Mo components with the desired isotropic qualities[2-4].

Ideally, proper process design allows for the production of parts with a specific relative density and
degree of grain growth and a minimum of processing time, temperature, pressure, and material waste. (3STJ
However, the development of accurate models that provide a sufficient level of predictability can require
expensive and time-consuming experimentation, which also is a factor in the overall waste stream and
cost of production. Consequently, there exists a need to quickly evolve accurate physics based computer
models with a minimum of experimentation. This goal has been shown to be achievable when model
development and experimental design are allowed to co-evolve. One approach to this co-evolution is
through the use of genetic algorithms and Bayesian inference.

INTRODUCTION: MICROMECHANICAL MODELING

Several types of computer models are commonly used to simulate powder consolidation. Ashby’s
micromechanical model assumes a dense random packing of monosized spheres that consolidate
according to the mechanisms of yielding, diffusion, creep, and grain growth when heated and pressed,

Such a model can be used to create densification and grain growth maps for HIPing [5]. There are,
however, limitations to micromechanical modeling. Namely> the model requires the optimization of 19
parameters, using experimental data sets that have a significant amount of uncertainty. This optimization
is further complicated by the fact that such a physics based model does not easily subscribe to standard
gradient based optimization techniques. Another constraint on the optimization technique used is that it
must provide a reasonable sensitivity analysis and measure of correlation. Additional] y, the values
published for variables in densification work often vary from the actual values for a researcher’s
particular powder. This is caused by differences in powder morphology, particle size distributions, and
forming methods. A procedure is needed that allows each researcher to optimize the model parameters
with experimental data for his specific powder.

It should also be noted that most adjustments of model parameters are executed with only densification
data. Thus grain growth or primary densification mechanism data are often ignored in the model
development. In the long term, this practice presents a problem since different parameters might fit the
densification data equally well but result in different dominant densification mechanisms and grain
growth maps.

Fitting the model to experimental data is an inverse and ill-posed problem requiring advanced
optimization techniques. This study used Bayesian enhanced genetic algorithms to optimize the
parameters of the micromechanical model. A brief description of Bayesian analysis and genetic
algorithms follows, an extensive explanation was presented elsewhere [6-8].

INTRODUCTION: BAYESIAN ANALYSIS

The parameters that require optimization form a model parameter vector:
M={ml, m2,...m1g}T

The data vector is defined as:
D={dl, d2,...d~}T

where N is the number of experimental data points.

The goal of Bayesian analysis is to accept or reject a particular model
(D) and prior knowledge about the problem using Bayes’ Theorem:

Eq. 1

Eq. 2

(M) given an experimental data set
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~(M , ~, = w . P(D IM)P(M)

P(D)
J( )P D,M dM “

Eq.3

cr(i@) is the posterior probability density (PPD). The theorem states that the conditional probability of a

particular model M being correct given the data D is the ratio of the probability density function (PDF) of
M and D to that of D alone. Although the individual components that make up the term P (D IM) are
probabilities, the term itself is not a PDF but a likelihood function, and thus does not integrate to 1.0.

Unlike classical fiequentist statistics, Bayesian analysis incorporates the researcher’s subjective
knowledge about the problem into the analysis, as shown by the dependence of the PPD on the prior PDF,
P(M). Also, the PPD is updated as new experimental data becomes available, while frequentists would
consider P(D) to be an unchanging distribution. Finally, a true frequentist considers it inappropriate to
assign a probability of correctness to a hypothesis.

Bayes’ theorem is a mathematical formulation of the scientific method. The theorem was first proposed
by Rev. Bayes in 1763[9], but has not been used until recently due to computational difficulties in solving
the probability integral:

P(D) = j P(D,M)dM, Eq.4

where the integral is formally carried over the entire N-dimensional model parameter space. An excellent
introduction to Bayesian statistics is given in chapter 4 of Antelman [10].

The fast and accurate approximation of an N-dimensional, discontinuous PDF is the topic of many papers.
Techniques for finding the PPD include Monte Carlo integration, Gibb’s sampling, and genetic
algorithms [11-15].

With an optimized PPD in hand, a number of characteristic metrics are easily obtained. For example, the
expectation model is derived from the PPD by:

(M) = JMO(M I D)dM. Eq. 5

The PPD is normalized prior to finding the expectation.

The a posterior model covariance matrix CMis given by:

CM= ~ (M - {M))(M - (M))T CT(MID)dM . Eq. 6

The standard deviation associated with the mean model is obtained through the square roots of the
diagonal elements of CM. Normalization of CMthrough:

,

“j= Fcb ‘
Eq. 7

produces the correlation matrix.

With CMand C; determined, principal component analysis (PCA) provides valuable insight on the degree

of variance and correlation among the variables. In PCA, the CMor CL is transformed into a new set of

axes that are orthogonal to each other and are ordered based on the variance associated with that axis.

The principle components are obtained by computing the set of eigenvalues (L) and corresponding

orthogonal eigenvectors (U)such that:

c~=u Au’ Eq. 8

is satisfied. In a d-dimensional variable space, there are d eigenvalues or principle components.
However, many principle components, derived from the correlation matrix, may have variances less than
one and thus the intrinsic dimensionality is k where k <d. The cut off eigenvalue of 1.0 is not rigorously
defined for all situations and thus some authors recommend a cut off of 0.7. In the case of the covariance

matrix, a cutoff of value of 0.7 ~ is recommended where ~ is the average eigenvalue[16].
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As implied above, PCA of C; does not necessarily generate the same eigenvalue distribution as that of

CM. This is especially true if the variables that constitute CMdiffer dramatically in value. In such a
situation, the principal components are usually dominated by the largest valued variables. For this reason
it is recommend that PCA be conducted on the correlation matrix.

Different forms of Bayesian analysis have been used in the materials science arena to assist in fitting
models to data such that the model obtains a quantifiable predictive capacity. In this work, the Bayesian
analysis is used to better understand the output of a genetic algorithm (GA). The GA is used to optimize
the parameters of a discontinuous physics based micromechanical powder densification model.

INTRODUCTION: GENETIC ALGORITHMS

Evolution is an intrinsically robust search and optimization procedure. Evolved organisms have
optimized solutions to complex problems at every level of organization, from organelles to ecosystems.
The problems that biota have solved and continue to improve upon, are typified by chaos, chance,
temporality, nonlinearly, and multidimeniionality. Such problems are intractable to deterministic
optimization techniques, especially in situations where heuristic solutions are not available.

GA’s are a type of evolutionary algorithm, algorithms that attempt to mimic the processes of evolution in
optimization. The essence of such a simulation lies in expressing the solution to a problem not as a single
value, but as a string of fundamental building blocks (genes). These building blocks can be manipulated
in much the same way as an extant species manipulates its gene pool, through selection and mating to
produce offspring more suited to the current environment. For example, consider xl, which is a member
of a population of feasible solutions to a problem, but not necessarily the optimal solution. The real value
of xl is expressed as a string of binary digits, e.g.: 011001110, that is L digits long. This binary string is
mapped to a real value of x1 such that the string 1111111 corresponds to the maximum value of x in the
search range, and 0000000 corresponds to the minimum x value. If a function requires the optimization of
more than one variable, f(x,y), then the total string for a specific member is formed by placing the binary
digits defining x and y back to back in one string. For example if xl = 001100 and yl = 110001, then the
string for member 1 would be 001100110001.

Manipulation of these strings occurs in much the same way chromosomes are manipulated in evolving
species. First, competition among members of the population determines who is most fit or optimal.
Second, the most optimal members are allowed to reproduce. Reproduction involves slicing the
chromosomes of the two members of the populations and then exchanging segments:

xl :10100011 il : lolo~

x~:llllolll + X*:1111OO11
Eq. 9

where xl and &, the resulting progeny, are placed in the next generation. The actual crossover site is

random] y selected with some probability, pC. Third, mutation occurs which in a positive] y entropic
system ensures genetic diversity in the subsequent generation. Mutation involves flipping the value of a
randomly selected bit, which is defined by some probability pm. The new population that evolves from
the selection, crossover, and mutation operators is defined as a generation. This cycle is repeated for a
number of generations as specified by the user [17]. The strength and novelty of the GA lays in how
selection of members is conducted when dealing with multiple, conflicting, poorly defined objectives.
The selection procedure uses a fuzzy logic normalization scheme as well as continuously updated
phenotypic niching. A more detailed discussion of the selection procedure is found elsewhere [6].

The GA acts as a Bayesian Inference Engine (BIE) in that it uses Bayes’ Theorem to select members in
the population for crossover, and thus the output of the GA is the PPD of Bayesian inference. The
production of a PPD allows for many of the statistical tools available in Bayesian statistics to be applied

to analyzing GA output. CM, CL, and <M> are derived from the PPD. Following the method outlined by

Sen and Stoffa [1 1-12], a 2-D array of M by B is reserved where M is the number of parameters and B is
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the number of values each variable can take (i.e. the number of bins). At each generation, an
unnormalized PPD is calculated for each model and stored in the proper position in the bin array for each
model parameter. At the end of the GA run, the model parameter PPD values are normalized. Each
component of the vector for a particular parameter is stored and summed with corresponding values from

other models, which provides <M>. CMis determined by summing up MMTcr(M) in a square array of

MM for each model and at the end of the run subtracting CM><M>T.

Once the PPD, ~>, and CMare sufficiently determined, the GA is stopped and optimal model parameter
vectors are selected and used in the physics of the forward problem for conditions that have not been
experimentally tested.

In the context of a PPD evolved by a GA, PCA is a powerful tool that assists in overcoming many
deficiencies in GA’s. First, as the population evolves, the sum of the eigenvalues of CMapproaches a
limit. When the rate of change in the sum reaches an acceptable minimum, the GA can be stopped.
Second, the largest eigenvalues and their corresponding eigenvectors indicate the variables or groups of
variables with the greatest variance in the evolved population of models given the available data. Thus,
PCA acts as a sensitivity analysis for the variables in the model. Once the PPD is determined to be
reliable based on the stabilization of the eigenvalues, an optimum model is selected.

In this work, a GA is used to optimize the 19 parameters of a micromechanical powder densification
model given limited and uncertain densification data sets. With the parameters optimized, a formal
principle component analysis of the parameters is possible as well as the generation of densification and
uncertainty maps that act as an experimental design guide.

PROCEDURE

Two Molybdenum powders were used in this study. They were formed using different methods
and consequently have distinct physical characteristics., The properties of the powders can be found in
Table I. Mo 21373SC (SC in Table 1) was reduced from ammonium molybdate ((IWl&MoOG), and has a
fine particle size. Conversely, the Mo 528SOMP (SOMP in Table I) was spray dried with a binder and
reduced. This processing route resulted in the agglomeration of fine particles into a spherical morphology
thus giving a large apparent particle size as indicated in Figure 1 and Table I. According to Table I, both
powders have relatively low tap densities which will contribute to difficulties in fitting Ashby’s
micromechanical model to the densification data.

Table 1. Properties of Mo SC and Mo SOMP powders
Sc SOMP

Forming Process Reduced from Spray dried with a
I (NH,)2M00, I binder and reduced

Pycnometer density Q/cc) 10.46 10.11
Apparent Density (%pti) 18.4 22.3

Tap Density (%P,J 33.6 27.8. .. ! !

Fisher Number 7.8 4.5
Median Particle Size (Urn) 11.49 18.43

Particle Size Distribution 1-1oo 10-120
Surface Area (m*/g) 0.266 0.492

C (ppm) 7.54 7.77
0 (ppm) 1794 3937
N (ppm) 94.3 53
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Sc SOMP

Figure 1. SEM of Mo SC and Mo SOMP. While the SOMP particulate are 4-5 times larger than the SC
particulate, one should keep in mind that the SOMP particulate are actually agglomerates of particles
that are smaller than the SC particulate.

The first step in GA optimization was to determine the parameter ranges to be searched. The values used
in this study, as indicated in Table II, came from literature and the guidelines of Ashby’s work[5]. The
search range is used to define the limits of the randomly selected initial population. This initial
population (Generation O) is then inserted into the physics of the forward problem to provide densification
maps such as that shown in figure 2. In figure 2, the densities calculated for each temperature and
pressure are determined by assuming a 1 hour ramp up to the specified temperatures and pressures, 1 hour
hold, and 1 hour ramp down. Since a population of individuals was used in determining the average
densification map, there is also a corresponding error map associated with the average. The maximum
point in the error map indicates the area where more experimental data would be most helpful.

Table II. The a priori search ranges for each parameter in the micromechanical sintering model.
~MoSOMP IMo SC 1

# Parameter Units Lower Upper Lower Upper
bound bound bound bound

1 Surface Energy J/mz 1.00 3.00 1.00 5.00

2 Yield Stress MPa 300.0 1000.0 200.0 700.0
3 Temperature Dependence of Yield 0.40 0.60 0.10 0.60
4 PLC Component 2.00 6.00 2.00 6.00
5 PLC Reference Stress IWPa 50.00 150.00 100.00 200.00
6 PLC Activation Energy kJ/mol 300.00 500.00 350.00 450.00

7 Low T. to High T. Creep Transition K 1400.0 1500.0 1400.0 1500.0

8 C for Low T. Creep 0.60 0.80 0.40 0.80
9 Pre-exponent for Volume Diffusion m2/s 5.00e-5 9.00e-5 2.00e-5 7.00e-5

10 Act. Energy for Volume Diffusion kJ/mol 200.00 550.00 200.00 550.00
11 Pre-exponent for Boundary Diffusion m2/s 5.00e-14 6.00e-14 5.00e-14 6.00e-14

12 Act, Energy for Boundary Diffusion kJ/mol 200.00 325.0 200.00 325.0

13 Pre-exponent for Surface Diffusion mzls 1.00e-9 2.00e-9 1.00e-9 2.00e-9

14 Act. Energy for Surface Diffusion kJ/mol 400.00 500.00 400.00 500.00
15 Pre-exponent for Boundary Mobility mzls 5.00e-14 6.00e-14 5.00e-14 6.00e-14

16 Act. Energy for Boundary Mobility Wmol 300.00 500.00 300.00 550.00
17 P&icle Size Radius m 15.Oe-6 25.Oe-6 5.Oe-6 15.Oe-6
18 Stage 1 Cut-off Relative Density 0.80 0.89 0.80 0.89
19 Stage 2 Cut-off Relative Density 0.90 0.99 0.90 0.99

With the initial population set, the GA can then use the objective data (experimental data points) to evolve
the population towards an optimal region in the search space. The experimental data points used in this
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study are listed in Table III. CIPing data was initially used for both the SOMT and SC powders. The
population size, mutation rate, and number of generations were also specified in the GA, as indicated in
Table IV.

After each generation, a Bayesian Analysis was conducted to determine how well the population was
evolving. Part of the Bayesian Analysis involved determining the eigenvalues of the a posterior model
covariance and correlation matrices. When the sum of the eigenvalues reached a limit, the GA could be
stopped and the evolved population could be used to create densification and error maps. The maps
(relative density vs. pressure and temperature) indicated the processing conditions under which the
optimized model was most uncertain. More data at these conditions that would be most useful in
developing a more accurate model. Consequently, this procedure provides a method for rapid model
development with a minimum of experimentation.

RESULTS AND DISCUSSION

RESULTS FOR M021373 SC

The density and error maps for the a priori model distribution for the SC powder are shown in Figure 2.
The largest standard error on the relative density map was O.131 which occurred in the sintering region.
The model was then optimized using only the Cl’Ping data of Table III. The expectation of the activation
energy of volume diffusion and yield stress were determined as a function of generation and are shown in

figures 3 and 4 respectively. The error bars denote 20. The fact that the yield stress is converging to a

single value but the other variables are not indicates that for this particular set of optimization data, yield
stress is the most sensitive parameter. However, such graphs as figures 3 and 4 do not reveal any
information regarding parameter correlation. Table V lists the eigenvalues for the 19 parameters derived
from the correlation matrix at generation 50. As indicated, in Table V all of the eigenvalues are near one.
This fact would imply that there is no apparent correlation between the variables for this particular data
set and thus in order to determine which variables are most sensitive or which densification mechanism is
active, one can simply look at the convergence ratio of each variable. Here, the convergence ratio is
defined as the variable search range divided by the standard deviation of the population. A convergence
ratio defined in this manner would have a value of 3.0 for a random distribution and have a larger value
for parameters with a high sensitivity. Figure 5 shows the convergence ratio for each variable as a
function of generation where the yield stress is the most sensitive parameter. This is not surprising since
in most CIPing conditions, densification is accomplished by particle yielding.

Contour graphs of the relative density and standard error for the SC powder optimized with only CIPing
data points are exhibited in Figure 6. The maximum uncertainty in Figure 6 has now dropped to 0.109 in
the sintering regime. Thus a sintering experiment at 2225 K for one hour was conducted. The sintering
and CIPing data were then used in the GA optimization. Table VI lists the eigenvalues resulting from this
optimization. Again, there is no clearl y dominant eigenvalue. This indicates that there is no apparent
correlation between the variables. However, as shown in Figure 7, the value of the volume diffusion
activation energy seems to be converging. Figure 8 shows the evolution of the sensitivity ratio for each
variable. Figure 8 indicates that the yield stress and volume diffusion activation energy are the most
sensitive or influential parameters. This would be expected from sintering data. The addition of sintering
data decreased the maximum standard error from 0.109 to 0.108 as shown in figure 9 and changed the
region of greatest error on the contour map. With the sintering data, the greatest error was found in the
HIPing regime. HIPing experiments should be executed next at 75 MPa and 1200 K to address the largest
model uncertainty.
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Table III. The initial experimental processing conditions and final densities used as optimization criteria.
Mo SOMP – CIPing data

10biective lTime (s) ~Temrx(K) lPress. (h@a) lFinal Rel. Dens.

10 1298 10.1 I I
I 13600 1298 134.47 I I
I 17200 10.1 10.324 I

2 0 298 0.1

3600 298 68.94

7200 298 0.1 0.42

13 10 1298 10.1 I
I !3600 1137.88 I I
I 17200 1298 10.1 10.487 I

4 0 298 0.1

3600 298 206.82

7200 298 0.1 0.525

5 0 298 0.1

3600 298 275.76
7200 298 0.1 0.621

10 10.1 I I
3600 298 344.7
7200 298 0.1 0.731

Mo SC - ClPing data
Objective lTime (s) lTemp. (K) lPress. (MPa) [Final Rel. Dens.

11 10 1298 10.1 I
!3600 1298 168.94 I I

I !7200 !298 10.1 10.543 I

2 0 298 0.1
3600 298 137.88
7200 298 0.1 0.596

3 0 298 0.1

3600 298 206.82

7200 298 0.1 0.704

4 10 1298 10.1

13600 1298 1275.76

I 17200 1298 10.1 10.7 I

5 0 298 0.1
3600 298 344.7
7200 298 0.1 0.704

Table IV. The GA parameters used in this optimization.
Parameter Value

bit Iemzthper variable 114 I
lPopulation size 1200 I

lBitwise mutation rate 11/100 I
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Figure 2a,b. Relative density (a) and standard error (b) contour maps for the a p-b-i distribution of the
SC powder. The figures were obtained by inserting the model parameter vectors that constituted the a
priori model distribution into the forward problem for the temperatures and pressures specified assuming
one hour ramp up, one hour hold, and one hour ramp down. More experiments are needed in regions with
high standard error.
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Figure 3. Expectation of activation energy of
volume diffusion versus generation for the SC
powder optimized using only CIPing data. Error
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Figure 4. Expectation of yield stress vs.

generation number with 2cr for the SC powder

optimized using only CIPing data. Population
converges quickly to a value, as shown by the

model insensitivity to this parameter. decrease in G.
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Table V. The eigenvalues derived from
the correlation matrix obtained from the

GA optimization with the SC powder
using only CIPing data.

The tabular form is for convenience of
presentation and not meant to imply a

relationship between the rows and columns
0.860209 0.879339 0.893018 0.904266
0.918605 0.932713 0.96610 0.978540
0.985476 1.00026 1.00224 1.00914
1.02058 1.02204 1.06048 1.07523
1.09433 1.11027 1.21443
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Figure 5. The convergence ratio of each
variable for the Mo SC powder model optimized
with only CIPing data.
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O.oco

w 100 150 200
Pressure (MPa}

b
Figure 6a,b. Contour graphs of the expected relative density (a) and associated standard error(b) for a
model system evolved using SC powder CIPing data as the objective data points.

Table V. The eigenvalues derived from the correlation matrix obtained from the GA optimization of the
SC powder using CIPing and sintering data. The tabular form is for convenience of presentation and not

meant to imply a relationship between the rows and columns
0.827451 0.862530 0.869453 0.885045 0.894858 0.918598 0.940347 0.956228
0.960296 0.968496 0.991068 1.00324 1.02953 1.03895 1.06367 1.10954
1.13362 1.17347 1.25542
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Figure 7. Expectation of the activation energy of
volume diffusion with the standard error
optimized using both CIPing and sintering data
for SC powder.
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Figure 8. The convergence ratio of each
variable for the Mo SC powder model optimized
with CIPing and sintering data.
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Figure 9a,b. Contour graphs of the expected relative density (a) and associated standard error(b) for a
model system evolved using both CIPing and sintering data for SC powder. The standard error graph
indicates a need for more experimentation under HIPing conditions.

Results for M0528 SOMP

Contour maps of the relative density and the associated standard error for the a priori distribution of the
SOMP powder are shown in Figure 10. The relative density contour graph was obtained by inserting the
model parameter vectors that constituted the a priori model distribution into the forward problem for the
temperatures and pressures specified assuming a one hour ramp up, one hour hold, and one hour ramp
down.

Like the SC powder, many of the parameters did not converge to one value, which indicated the
insensitivity of the model to these parameters with the data utilized. Graphs of the expectation of
activation energy of volume diffusion and yield stress are shown in Figures 11 and 12, respectively.
From Figures 11 and 12 and similar graphs for the rest of the variables, the most influential parameter for
the model was the yield stress. The activation energy of volume diffusion did not have a large effect upon
the model, as was expected with the sole use of CIPing data points.
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Figure 10a,b. Relative density (a) and standard error (b) contour maps for the a prim-i distribution of the
SOMP powder. The figures were obtained by inserting the model parameter vectors that constituted the a
priori model distribution into the forward problem for the temperatures and pressures specified assuming
one hour ramp up, one hour hold, and one hour ramp down. More experiments are needed in regions with
high standard error.

m~ I
450 r I I I I

o 10 20 30 40 50 0 10 20 30 40 50
Generation Generation

Figure 11. Expectation of activation energy of Figure 12. Expectation of yield stress vs.
volume diffusion versus generation for the generation number with standard error (20) for
SOMP powder optimized using only CIPing the SOMP powder optimized using only CIPing
data. Error bars represent 20. The standard data. Population converges quickly to a value,
deviation remains high, indicating model as shown by the decrease in standard error.
insensitivity to this parameter.

As was the case with the SC powder, PCA indicated no significant correlations in the modeI given the
CIPing data set. Likewise, the sensitivity analysis again indicated the most sensitive parameter to be the
yield stress.
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Densification and error maps for the Mo SOMP powder with CIPing data are shown in Figure 13. The
greatest standard error increased from 0.139 in the a priori distribution to 0.154 with the CIPing data.
The largest uncertainty is found at high temperatures, over 2000 K, and low pressures. Experimental data
at these conditions would produce the greatest reduction in error in the model. Accordingly, a sintering
experiment, at 2225 K for one hour, was performed, and the results were added to the objectives of the



J

;A. A similar analysis was performed on the results of the optimization that utilized both CIPing and
intenng data as was done with only CIPing data.
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‘igure 13a,b. Contour graphs of the expected relative density (a) and associated standard error(b) for a
nodels ystem evolved using SOMP powder CIPing data as the objective data points.

‘he yield stress was optimized to the same value with both sets of data. However, as was the case of the
;C powder, the activation energy of volume diffusion converged with the addition of sintering data. The
:ontour graphs of relative density and standard error from integrating sintering data into the objectives are
:xhibited in Figure 14. The standard error was reduced from 0.154 with only CIPing data to 0.047 with
he incorporation of the sintering data, and the maximum error moved to the HIPing regime.
experiments should be conducted next at around 75 MPa and 1500 K.
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‘igure 14a,b. Contour graphs of the expected relative density (a) and associated standard error(b) for a
nodel system evolved using both CIPing and sintering data for SOMP powder. The standard error graph
ndicates a need for more experimentation under HIPing conditions.

)iscussion

is expected, both powders had similar a priori densification maps. For both the SC and the SOMP
~owders, areas at high temperature and high pressure as well as low temperature and low pressure had the
ame predicted relative density and standard error for all three distributions, namely, the a priori, CIPing,
,nd sintering distributions. There are two reasons for this similarity in the contour plots. First, at low
emperature and pressures, yielding was the only densification mechanism active, so under these
onditions, the model essentially had only one variable to optimize, the yield stress. When the powder
nodels were subjected to sufficiently high temperatures and pressures they densified. Since the relative
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density cannot exceed one, there was a large area on the contour graphs with a relative density of one and

. associated uncertainty of zero.

The individual powder characteristics significantly influenced the optimized model parameters. The
average values attained by the GA for yield stress (SC: 310, SOMP:590) were considerably different for
the two powders. Mo SC was much closer to the published value of 225.00 MPa than Mo SOMP. With
the additional sintering data, activation energy of volume diffusion converged to a similar value for both
for powders (275 kJ/mol). Ashby’s value for the activation energy of volume diffusion, 405 kJ/mol, was
greater than the value attained by the GA with the CIPing and sintering data. This was not wholly a
characteristic of the specific powder, but was also an artifact of the model. The model assumed the
particles to be fully dense, which was not correct in the case of agglomerates of the SOMP powder. This
discrepancy would cause values for activation energies of diffusion to appear smaller than the physical
value. Distinct values of parameters were attained for the SC and SOMP powders due to physical
differences in the powders, assumptions of the model, and the need for more experimental data.
As seen in Figure 1, the particles of the SOMP powder are actually agglomerates, not fully dense
particles. This inconsistency might account for part of the discrepancy between the yield stress values for
the two powders. Additionally, the effects of impurities in the powders were not included in the model.
The higher oxygen content in the SOMP powder should raise the apparent value of the yield stress.
Likewise, the presence of a protective oxide layer would act as a barrier to diffusion thus significantly
raising the optimal apparent diffusive activation energy of the powder. The reason this did not occur in
the optimization was that the agglomerated particles had an unusually high amount of surface energy per
unit volume available as a driving force for sintering that was not suggested by the large apparent particle
size.

In this work a number of points were brought up that warrant further in depth discussion. One of these
points is the fact that the maximum uncertainty of the SOMP study actually went up when CIPing data
was used in the optimization. The most likely explanation for this is the fact that the increase in error is
simply the result random variation owing to the stochastic nature of the GA procedure itself. It is
important to keep in mind that while the maximum error apparently did go up, the uncertainty in the
model within the CIPing region of the densification map decreased significantly.

While PCA has been shown to be helpful in determining the degree of correlation of variables, the fact
remains that the full utility of PCA in this work has not been exploited or explained in great detail.
Optimization of data with a high degree correlation among the variables will display eigenvalues that
converge to respective limits with each generation and thus when the sum of the eigenvalues reaches a
limit, the optimization can be considered complete. Unfortunately, this work did not have significant
correlation in any of the optimization and thus the convergence criteria could not be adequately shown.

The results of this study show that the GA/BIE technique does an adequate job of handling the inverse
and ill-posed problem of optimizing the parameters of the micromechanical HIP model. Furthermore, this
work shows that the GA technique is sensitive to minute differences in similar powders and that these
differences have the ability to substantially impact the powders’ optimal processing conditions. This
work also emphasizes the intrinsic limitations of the current model. Namely, a more detailed description
of individual powder characteristics such as size distributions and morphologies needs to be incorporated.

CONCLUSIONS

In this study, a Bayesian enhanced GA was used to determine the values of nineteen micromechanical
modeling parameters for the sintering of two molybdenum powders. The parameters were then used in
the physics of the forward problem to create densification and error maps that indicated the processing
regions most in need of more experimental data. Bayesian analysis of the GA output enabled a sensitivityy
analysis and determination of a GA stopping criteria. This sensitivity analysis is instrumental in
identifying not only the active densification mechanisms for each powder but also in understanding how
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the morphological differences between the powders contributed to the final discrepancies in relative
density even though both Mo samples had the same processing histories.
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