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Abstract

We address the question of how to identify and
measure the degree of intelligence in systems.
We define the presence of intelligence as equiv-
alent to the presence of a control relation. We
contrast the distinct atomic semioic definitions
of models and controls, and discuss hierarchi-
cal and anticipatory control. We conclude with
a suggestion about moving towards quantitative
measures of the degree of such control in systems.

1 Introduction: A Control
Theory Framework for Intel-
ligence

We consider some of the challenges presented in
the white paper designed to prepare for this con-
ference [13]. I take the fundamental question to
be ‘(How can we as external observers measure

the degree of intelligence in a target system?”
One approach is to invoke the typical lists

which can characterize intelligent behavior, in-
cluding adaptability, complexity of internal mod-
els, problem solving ability, etc. But what is
fundamental to each of these? For example,
adaptability is the ability to adjust responses
to make them appropriate under variable condi-
tions. Problem solving is the ability to come to

*Prepared for the 2000 Workshop on Performance
Metrics for Intelligent Systems.

a correct choice about actions to achieve a par-
ticular goal, hereby solving the problem. And
finally, complexity of internal models must al-
ways be considered as relative to their ability to
predict the outcome of future behaviors.

Thus can see that fundamental to all of these
is the idea that intelligence requires the ability
of a system to make appropriate decisions given
the current set of circumstances [1, 2, 3]. On
analyzing this a bit further, we can identify the
following necessary components:

Measurement: The ability to know the current
set of circumstances.

Decision: The freedom to choose between one
of many possibilities.

Goal: The possibility that the choice made will
be either appropriate or inappropriate rela-
tive to a goal state.

Action: The ability for the decision to affect ex-
ternal and future events, in order for them
to be either closer to or further away from
the goal,

2 Intelligence
trol

as Semiotic Con-

to the scheme of an intel-We note the similarity
ligent system as outlined in the conference White



Paper [13]. Thisrequires a’’loop of closure” con-
sisting ofsix modules: a world interface, sensors,
perception, a world model, behavior generation,
and actuation. We understand this situation as
the existence of a semiotic control system. We
know briefly outline the theory of semiotic sys-
tems.

2.1 Semiotic Models and Controls

There is a rich literature (eg. [5, 15, 17, 18, 19]),
traceable back to the founders of systems theory
and cybernetics in the post-war period [4], which
has tried to construct a coherent philosophy of
science based on two fundamental concepts:

● Models as the basis not only for a consis-
tent epistemology of systems, but also as an
explanation of the special properties of liv-
ing and cognitive systems.

. Control systems as the canonical form of
organization involving purpose or function.

While controls and models are distinct kinds of
organization, what they share is a common ba-
sis in semiotic processes, in particular the use of
a measurement function to relate states of the
world to internal representations. Perhaps for
this reason there has been some ambiguity in
the literature about the specific nature of con-
trols and models, and more importantly how the
interact. This has led to confusion, for exam-
ple, about the role of feedback vs. feedforward
control, and endo-models within systems vs. exo-
models of systems.

Consider first a classical control system as
shown in Fig. 1. In the world (the system’s en-
vironment) the dynamical processes of “reality”
proceed outside the knowledge of the system.
Rather, all knowledge of the environment by the
system is mediated through the measurement
(perception) process, which provides a (partial)
representation of the environment to the system.
Based on this representation, the system then
chooses a particular action to take in the world,
which has consequences for the change in state

of the world and thereby states measured in the
future.
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Figure 1: Functional view of a control system.

To be in good control, the overall system must
form a negative feedback loop, so that distur-
bances and other external forces from “reality”
(for example noise or the actions of other exter-
nal control systems) are counteracted by com-
pensating actions so as to make the measured
state (the representation) as close as possible to
some desired state, or at least stable within some
region of its state space. If rather a positive
feedback relation holds, then such fluctuations
will be amplified, ultimately bringing some crit-
ical internal parameters beyond tolerable limits,
or otherwise exhausting some critical system re-
source, and thus leading to the destruction of the
system as a viable entity.

Now consider the canonical modeling relation
as shown in Fig. 2. As with the control rela-

tion, the processes of the world are still repre-
sented to the system only in virtue of measure-
ment processes. But now the decision relation is
replaced by a prediction relation, whose respon-
sibility is to produce a new representation which
is hypothesized to be equivalent (in some sense)
to some future observed state of the world. To
be a good model, the overall diagram must com-
mute, so that this equivalence is maintained.

As outlined here, models and controls are dis-
tinct and atomic kinds of organization. We have
argued [8] that this capability begins with living
systems, and perhaps defined the necessary and
sufficient conditions for living systems.
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Figure 2: Functional view of the modeling rela-
tion.

2.2 Hierarchical Control

Of course, all of the relations described here are
a great deal more complex in real intelligent sys-
tems. In particular, usually controls and models
are considered together. This concept is fully de-
veloped elsewhere [7, 9]. We now summarize the
primary results of these considerations.

First, the classical view of linear control sys-
tems theory [14] is recovered by introduced a
“computational” step which plays the role of cog-
nition, information processing, or knowledge de-
velopment. Typically, extra or external knowl-
edge about the state of the world or the desired
state of affairs is brought to bear, and provided
to the agent in some processed form, for example
as an error condition or distance from optimal
state. So now measured states are manipulated
and compared to a goal state.

In particular, we are impressed by Bill Pow-
ers system for hierarchical control [15, 16, 6],
which he has successfully generalized to explain
the architecture of neural organisms. As shown
in Fig. 3, he views the computer as a compara-
tor between the measured state and a hypothet-
ical set point or reference level (goal). This then
sends the second representation of an error signal
to the agent. He also explicitly includes reference
to the noise or disturbances always present in the
environment, against which the control system
is acting to maintain good control. For us, these
are bundled into the dynamics of the world.

Another great virtue of Powers’ control theory
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Figure 3: A Powers’ control system.

model is its hierarchical scalability. Fig. 4 shows
such a hierarchical control system, containing an
inner level 1 and the outer level 2. The first key
move here is to allow representations to be com-
bined to form higher level representations. In
the figure S1 and S2 are low distinct level sensors
providing low level representations Ill and R2 to
the’ inner and outer levels respectively. But RI
is also sent to the higher level S3, and together
they form a new high level representation R3.

The second step is the ability for the action of
one-control system to be the determination of the
set-point of another, thus allowing goals to de-
composed as a hierarchy of sub-goals. In the fig-
ure, the outer level uses R3 to generate the action
of fixing the set point of the lower level. Note
how this recovers Meystel et al’s “Feature 10” of
multiscale knowledge representation where the
action of a lower level system is actually the goal
of an upper level system [13].

Notice also that the overall topology of the
control loop is maintained. While ultimately the
lower level is responsible for taking action in the
world, it is doing so under the control of the com-
parison of a high-level goals against a high-level
representation. Neural organisms especially are
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Figure 4: Hierarchical nesting of Powers’ control
systems.

systems of this type, low-level motor and percep-
tual systems combining to accomplish very high-
level tasks. And of course, determination of the
outermost goal is not included within Powers’
formal model.

2.3 Anticipatory Control

While familiar to us as a standard engineering
discipline, a number of researchers are pursuing
the applicability of this kinds of semiotic control
[12]. It is also being generalized to a number of
other engineering [2] and scientific domains.

However, our normal sense of control combines
it with models, which are used to aid in decision-
making by predicting future states of anticipated
actions, using predict ion of future events to guide
actions. This is what Ashby refers to as “’cause
control” [4], or Rosen as ‘(anticipatory” [17], or
Klir as feedforward [10]. In this architecture an
endo-model embedded within a control system is
used to make a decision as to which action to
take, and thus acts in the role of the agent. It is

this view which most dominates our conception
of the nature of control in general.

However, this architecture is actually highly
complex and special. It is shown in Fig. 5, where
now the agent is replaced by an inner system
which is both a model and a control system (the
arrows have been reflected diagonally to make
the graph planar and ease the drawing). This
inner system is a control system in the sense that
there are states of its “world”, its “dynamics”,
and an “agent” making decisions.

However, it is also a model in that the states
of its “world” are in fact representations, and
its “dynamics” is actually a prediction function.
The inner system is totally contained within the
outer system, and runs at a much faster time
scale in a kind of modeling “imagination”. The
representation R from the sensors is used to in-

stantiate this model, which takes imaginary ac-
tions resulting in imaginary stability within the
model. Once this stability is achieved, then that
action is exported to the real world.

Note that the outer control loop here is simple,
lacking computation. In Powers’ terms, there is
no set point which the state of the internal model
is being compared to. But this could be present
in a slight elaboration where an imaginary mea-
surement is taken from “world’” and compared
to some set point. The outer error signal would
then be fed to change the imagined actions inside
the model until stability is achieved.

3 Tests for the Presence of
Control

Thus we have now transformed the original ques-
tion of “how do we measure intelligence?” to
“How can we as external observers determine
whether a target system manifests control rela-

tions with its environment ?“ and “How can we
then measure the degree and modalities of that
relation?” I would then offer some ideas based
on the work of Powers and his colleague Rick
Marken [11, 15, 16].
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They address the question from the follow-
ing perspective. Control relations, in virtue of
the stability of the controled variables in the en-
vironment, have many of the characteristics of
other equilibrium phenomena. Both the thermo-
stat and the ball rolling to a stop at the bottom
of a hill evidence this kind of stability behavior.
In the first case, the ball does not want to roll
down the hill, but in a very real sense, the ther-
mostat does want to regulate its “perception” of
the state of the room temperature.

So how can we distinguish a complex dynamic
equilibrium from a control relation? Powers and
Marken do this distinguishing on the basis of
what they call The Test. It involves the sys-
tem acting in a way which is counter to physical
law: if the ball jailed to roil down the hill, we’d
be surprised, thus we hypothesize that such a
ball is manifesting a control relation. Similarly,
we would normally expect a room to come to
equilibrium with its environment. When it does
not, and we believe our dynamical model, then
we would hypothesize the presence of a control

Figure 5: Anticipatory control.

device, and we might investigate and discover a
thermostat. The “intelligence” of such systems
is based on their manifesting a semiotic relation
which has been selected by evolution or by de-
signers, allowing the system to “choose” to act
counter to physical law.

Now the rub is that this Test thereby requires
the prior presence of a model of what the sys-
tem should be doing, so that we can be surprised
when it fails to do so. Thus our recognition of a
control relation in an exogenous system requires
of us an exogenous model of reality, whether or
not the system has any endogenous model itself.

4 Towards a Measure of
Control-Based Intelligence

So now, given this semiotic control-based view
of intelligence, we wish to go on and attempt to
quantify and characterize the degree and kind of
control relations present. Thus the problem of
measuring intelligence revolves around our abil-
ity to measure:
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●

●

●

●

●

●

The amount of phenomena under control;

The number of environmental distinctions
measured by the system;

The complexity of modalities of measure-
ment and control;

The complexity of the environmental variety
available to the measurement and control of
the system;

If hierarchical control is present, what is the

depth of the hierarchy of control; and

If anticipatory control is present, what is the
complexity of the internal, endogenous mod-
els?

No doubt in both real and designed systems
these are all related to each other in complex
ways. However, each of these quantitative terms
is effectively a statistical information measure,
a measure of variety or freedom. Thus th are
ammenable to information-theoretical measures
like entropies, based on quantities of variety, dis-
tinctions, and constraints which a control system
can recognize in its environment and then act on
in appropriate ways.
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