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Fabrication of Yb-123 Tapes

Srinath Athur, Uthamalingam Balachandran, and Kamel Salama

Abstract—While Bi-2223 tapes have been the workhorses
of the superconductor industry, their poor performance in
applied magnetic fields restrict their use to below 30 K. Melt-
processing of Ag-clad Yb-123 PIT tapes offers a simple and
scalable technique for fabricating long-length HTS
conductors capable of being used at 77 K. Under reduced
oxygen partial pressure, the peritectic temperature of Yb-123
is below the melting point of Ag, and this facilitates the
adaptation of melt-texturing methods for fabricating these
tapes. The effect of melt-processing temperature on current
density was also explored; a temperature of 965°C yielded
optimal critical current values. The critical current density
achieved at 4.2 K was 20,000 A/cm?, corresponding to a
critical current of 52 A. Based on the above results, an
optimal processing zone for melt-processing of Ag-clad
Yb-123 tapes was determined. These results hold promise for
melt-processing of Ag-clad Yb-123 tapes as an alternative to
Bi-2223 PIT technology.

Index Terms—high growth rates, melt-texturing, powder-in-
tube, Yb-123,

I. INTRODUCTION

O realize the potential of high-temperature
Tsuperconductors (HTS) for replacing copper in current-

carrying cables, it is imperative that cost-effective
processing techniques be developed to manufacture long-
length cables that do not compromise the performance of the
HTS conductors. While Ag-clad Bi-2223 tapes made by the
powder-in-tube (PIT) technique have been the workhorses of
the HTS industry so far, their poor flux-pinning properties
limit their critical current density (J.) in the presence of an
applied magnetic field [1,2]. Consequently, second-
generation wire technology development has focused on
YBa;Cu;O«x  (Y-123) coated conductors through novel
approaches such as IBAD and RABITS [3,4]. These
techniques offer enhanced performance compared to first-
generation conductors, but require cost-intensive processing
steps that cannot be offset by the superior properties of the
conductors. Melt-texturing has been shown to be a successful
processing method for achieving high J. values in RBa;Cu;0x
(R-123) compounds for applications such as trapped-field
magnets and levitators [5]. However, the meli-texturing
technique has not been adapted to conductor fabrication due
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to the nature of its processing conditions. The high
temperatures associated with the heat treatment, and the
presence of a high volume fraction of liquid phase at high
temperatures, necessitate the use of a flexible metallic
substrate or cladding material. The only economical material
benign to R-123 is Ag, but its use is curtailed in melt-

-processing because its melting point is lower than the heat

treatment temperatures for most R-123 systems. Among the
R-123 systems, YbBa,Cu;O. (Yb-123) has the lowest
peritectic decomposition temperature, and hence the lowest
expected processing temperature [6]. In order to use Ag as
cladding material in melt-processing, one is therefore limited
to Yb-123 as the choice of HTS material.

Very little work has been done on melt-processing of Yb-
123 thus far, primarily because of the apparent difficulty in
forming the Yb-123 phase [7]. Recently, Athur et al. [8]
reported synthesizing phase-pure Yb-123 powder by a simple
solid-state sintering technique. This paper reports on the
fabrication of Ag-clad Yb-123 tapes by the PIT process, and
the effects of melt-processing variables such as growth rate;
processing temperature, and atmosphere on the electrical
properties of the tapes.

H. EXPERIMENT

Fabrication of the tapes required four steps: powder
synthesis, tape fabrication, melt-processing, and annealing.

A. Powder Synthesis

The powder was synthesized through solid-state sintering
by using precursor Yb,0;, CuO, and BaCO; powders. The
sintering atmosphere was a flowing gas mixture of Ar + 1%
0, and the sintering temperature was 825°C. Details of the
synthesis route are provided in Ref, 8.

B. Tape Fabrication

A silver tube measuring 6.35 mm OD x 4.35 mm ID x
52.5 mm length was crimped at one end, filled with Yb-123
powder, hand-tapped to a packing density of =35%, and
closed. The tube was then subjected to a mechanical
deformation step that consisted of two stages, groove-rolling
during which the billet was reduced in cross-sectional area,
and a final flat-rolling that yielded the tape geometry. After
the groove-rolling, the cross-sectional dimensions were 2 x
2 mm, and after the flat-rolling, the tape had cross-sectional
dimensions of =3 mm x 250 pm. Small pieces were cut from
the as-rolled tape and weighed, and the core’s cross-sectional
area was measured to determine the packing efficiency of the
powder.

C. Melt-Processing

The melt-processing step was performed in a high-gradient
zone-melting fumace. Four-cm-long pieces of the as-rolled




tape were cut, mounted on an alumina rod, inserted into the

preheated furnace, held there for 30 min to bring the sample 0.001 rrrrrrer T T T e
to thermal equilibrium, and then moved through the fumace
at a controlled rate. The furmace gradient was determined to 0.000 - o
be 130-150°C/cm. Process variables such as oxygen partial R
pressure, pO,, processing temperature, T,, and growth rate, v, pp— .
were varied, and their effects were correlated to the electrical -0.001 « FC
properties of the tape. = *
B -0.002 - . *

D. Annealing E Je+0 !

The melt-processed tapes were subjected to an oxygen -0.003 * 205 - =
annealing to convert the tetragonal phase to the . ¢ =
superconducting orthorhombic phase. . o8 .
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current, I, were measured by the four-point method. T ®)
Transport L. was measured at various temperatures from 77 K~ o

down to 42 K. AC susceptibility measurements were used  Fig. 1. AC susceptibility measurements (pO, = 0.01 atm).
to determine T.. Electron probe microanalysis (EPMA) was

used to study the phase assemblage of the melt-processed 510° y - T ——
superconducting core, and SEM was used to examine the
microstructure of the superconductors. : 410% |
g
II. RESULTS AND DISCUSSION S 310°
A. Effect of pO, § .
Three melt-processing atmospheres were studied, with pO, § 210
values of 0.21, 0.01, and 0.001 aim, respectively.
110°
1. T, Measurements
There was little change in the T. when the pO. was
varied. Fig. 1 shows magnetization behavior for a sample o1 100 150 200 250 300
processed in 0.01 atm, while Fig. 2 shows a resistive plot for Temperature(k)
a sample processed in 0.001 atm. In both cases, T oaser Was Fig. 2. Resistive plot (pO; = 0.001 atm).
~82 K. However, the broad transition in the magnetization
curve indicates inhomogeneity in the sample due to the 30 i , . ] .
presence of regions with differing T. values. On the other
hand, in 0.001 atm, the transition is fairly sharp (within 25 ]
2 K), showing a well-connected percolative path.
200
2. J. Measurements
While the J; values in the first two cases remained fairly ~ 15}
low, significant increase in J. was observed at a pO, of 0.001 % 0.21 atm
atm. Fig. 3 shows a V-I plot for tapes that were melt- S 10f
processed at 0.21 and 0.01 atm. Both samples carried very s
little current at 77 and 65 K. However, when the melt-
processing pO. was reduced to 0.001 atm, the J. at 65 K 0
increased significantly (Fig. 4). At 4.2 K, sample A had an
I. of 52 A, which was equivalent to a J. value of 20,000 .5 . " . . .
Alem?. 0 200 400 600 800 1000 1200
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Fig. 3. V-Iplot at 65 K (pO,=0.21 and 0.01 atm).
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Fig. 4. V-I plot at 77 and 65 K (pO,= 0.001 atm).

3. SEM/EPMA

EPMA revealed the oxide core to be multiphasic,
containing (apart from Yb-123) Yb-211, BaCuO,, and CuO
(Fig. 5). Significant fractions of voids, pores, and cracks
were also observed. Wave length dispersive spectroscopic
anlaysis (WDS) shows the Yb-123 to be nonstoichiometric,
with a slight Ba deficiency and some Yb and Cu excess.

BE 10um
Fig. 5. Backscattered electron image (BEI) of tape processed
in 0.001 atm. Gray regions: Yb-123; White: Yb-211; Black:
CuO or pores.

B. Effect of T.
1. J. Measurements

For a pO; of 0.001 atm and v of | mm/h during melt-

processing, the I was optimized for different T. values. The
optimal T, was found to be 965°C. Figs. 6a-e show V-I
plots for T, values of 920, 935, 950, 965, and 980°C. As
can be seen from the figures, there is not much variation in I,
although the highest I, value was measured at 965°C to be
7 A, corresponding to a J. of 3500 A/cm” at 65 K.

The tape melt-processed at a T, of 965°C (referred to as
tape A) was also characterized for [; at 4.2 K and was found to
carry an I, of 52 A, corresponding to a J. of 20,000 A/ecm’,
Fig. 7 shows a V- plot for the measurement at 4.2 K. J.
measurements at intermediate temperatures between 77 and
65 K were also done, and Fig. 8 shows a plot of J. versus
temperature, T, for the tape processed at 965°C, 1 mm/h, and
pO. of 0.001 atm.
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Fig. 6. V-1 plots at 77 and 65 K for tapes melt-processed at
T, of (a) 920, (b) 935, (c) 950, (d) 965, and (¢) 980°C,
respectively.
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The variation of J. with T shows a dependence similar to
the variation of J. with magnetic field for weak-linked
material, indicating the possible presence of similar weak
links in the tape. It is therefore likely that textured domains
in the sample are fairly small, with a large fraction of
nonsuperconducting secondary phases present in the
microstructure. This was confirmed by the photomicrograph
in Fig 5. Thus, the J. enhancement upon reducing the pO.
during melt-processing to 0.001 atm is probably due to
densification and liquid-phase-assisted sintering.
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Fig. 7. Pulse V-I plot at 4.2 K for tape A melt-processed in
pO; of 0.001 atm at T, of 965°C and v of 1 mm/h.
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Fig. 8. J versus T plot for tape A.

IV. CONCLUSIONS

An alternative processing route for fabricating long-length
Ag-clad Yb-123 conductors was explored by amalgamating
the PIT process with the melt-texturing technique. It was
found that pO, played a crucial role in the Yb-23 powder
synthesis and in the melt-processing step. J. values of
=3,500 A/cm’ at 65 K were achieved in these tapes, and T,
values of =82 K were measured. The highest I achieved at
65 Kwas 11 A;at 42 K, it was 52 A. SEM imaging of the
tape cross sections showed the presence of secondary phases
such as Yb-211, BaCuO,, and CuQ, as well as voids and
porosities. Large melt-textured domains typical of other R-
123 compounds such as Y-123 and Nd-123 were not present,
indicating lack of optimization of texturing process.
Optimization of processing conditions to increase the textured
volume in the superconducting core can lead to significant
enhancement of J, lending promise to the development of
this technique as a viable and economical alternative to first-
and second-generation conductor technology.
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