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ABSTRACT

Sensitivity/uncertainty analyses are necessary to determine where to allocate resources for improved
predictions in support of our nation’s nuclear safety mission. Yet, sensitivity/uncertainty analyses are not
commonly performed on complex combustion models because the calculations are time consuming, CPU
intensive, nontrivial exercises that can lead to deceptive results. To illustrate these ideas, a variety of sensi-
tivity/uncertainty analyses were used to determine the uncertainty associated with thermal decomposition of
polyurethane foam exposed to high radiative flux boundary conditions. The polyurethane used in this study
is a rigid closed-cell foam used as an encapsulant. Related polyurethane binders such as Estane are used
in many energetic materials of interest to the JANNAF community.

The complex, finite element foam decomposition model used in this study has 25 input parameters that
include chemistry, polymer structure, and thermophysical properties. The response variable was selected
as the steady-state decomposition front velocity calculated as the derivative of the decomposition front loca-
tion versus time. An analytical mean value sensitivity/uncertainty (MV) analysis was used to determine the
standard deviation by taking numerical derivatives of the response variable with respect to each of the 25
input parameters. Since the response variable is also a derivative, the standard deviation was essentially
determined from a second derivative that was extremely sensitive to numerical noise. To minimize the nu-
merical noise, 50-um element dimensions and approximately 1-msec time steps were required to obtain
stable uncertainty resuits.

As an altemative method to determine the uncertainty and sensitivity in the decomposition front velocity,
surrogate response surfaces were generated for use with a constrained Latin Hypercube Sampling (LHS)
technique. Two surrogate response surfaces were investigated: 1) a linear surrogate response surface
(LIN) and 2) a quadratic response surface {QUAD). The LHS techniques do not require derivatives of the
response variable and are subsequently relatively insensitive to numerical noise. To compare the LIN and
QUAD methods to the MV method, a direct LHS analysis (DLHS) was performed using the full grid and time-
step resolved finite element model. The surrogate response models (LIN and QUAD) are shown to give
acceptable values of the mean and standard deviation when compared to the fully converged DLHS model.

1. INTRODUCTION

Figure 1.A shows a comparison between A} Decomposition front shape  B) Simple mesh
an X-ray and a 2-D finite element simulation of T..=1.000°C
an 8.8-cm diameter right circutar cylinder of A ad. BC
polyurethane foam encapsulating a solid 3.8-cm \
diameter by 6.4-cm long right circular cylinder of
304 stainless steel. The top of the foam has
been exposed to a radiation heat source. The
X-ray and model show exceptional agreement
when comparing the shape of the decomposi-
tion front after a 10-minute exposure to an inci-
dent flux of 25-W/cm®. The 2-D serial simula-
tion required 11 days and 16 hours of CPU time
on a 400-Mhz SUN-Ultra-2 using 11,209 ele-
ments. Even with massively parallel computers,
an uncertainty analysis for this CPU-intensive
model is difficult. A simple representation of the
complex model is needed for efficient sensitivity . . TP
analysis. Figure 1.B shows a single row of ele- Fig. 1. A) Original and B) simplified model
ments with a radiation boundary condition. This simple 1-D model will be used in lieu of the complex 2-D
model to do sensitivity/uncertainty analysis. Gartling et al.,' Chu et al.,?> and Hobbs et al.® give details about
the finite element model, decomposition experiments, and decomposition model, respectively.

" Approved for public release; distribution is unlimited.
' This work performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corpo-
ration, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-ACO4-34AL85000.
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2. NUMERICAL ISSUES

The response variable for the 1-D analysis was cho-
sen as the steady-state decomposition front velocity, cal-
culated as the derivative of the decomposition front location
versus the elapsed time for element death. Figure 2.A
shows the front location calculated using 25-um elements
exposed to a 1,000° C radiative temperature. The decom-
position front is located at the centroid of the element that
is exposed to the radiation boundary. Elements are re-
moved from the computational domain when the con-
densed mass fraction drops below 1 percent.

Figure 2.B shows decomposition front velocities cal-
culated using various element sizes. The average time
steps, decomposition front velocities, and CPU times for
the solutions shown in Fig. 2 are given in Table 1. The
Iarger time steps (large Al.ve) are based on the Gartling et
al.’ auto time stepping scheme with an integration conver-
gence tolerance of 10™®. The solutions obtained with
smaller time steps (small At..) are based on the same
convergence tolerance but are constrained to satisfy the
following derivative smoothness criterion:

At < 0.003Ax/V (1)

where At Ax, and V represent the time step, element size,
and the decomposition front velocity, respectively. In Fig.
2.B, the small time step solutions are smooth (solid lines,
0.5-mm and 1-mm) compared to the noisy solutions ob-
tained with larger time steps. The small time step curves for
25- and 50-um element solutions overlie each other, so the
less costly 50-um element using fixed time step results are
effectively converged. The noisy velocities in Fig. 2.B re-
sulted from taking excessively large time steps for the in-
stantaneous derivative calculation. Rather than impaosing
the time step constraint in Eq. (1), the integration conver-
gence tolerance could have been decreased with the same
expense of increased CPU cost.

The numerical noise is related to the discrete removal
of elements from the computational domain. Figure 3 shows
the temperature gradient in element No. 20 for a 650° C
radiation temperature using 0.6-mm elements. The first 20
elements are also shown in Fig. 3 centered about the time
of “element death.” The noise is associated with the death
of neighboring elements and is likely the source of the sen-
sitivity to the computational time step.

The remainder of this paper will focus on determination
of the standard deviation of the decomposition front velocity
and ranking the importance of the 25 model input parame-
ters using the MV, LIN, QUAD, and DLHS models. Fully
grid and time-step converged solutions using 50-um ele-
ments and ~1-msec time steps were used in the MV and
DLHS analyses. Larger time steps were used in the LIN
and QUAD methods. All methods give similar results since
the response function is nearly linear, however, the LIN
method was computationally less expensive.
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Table 1. Time step and CPU time

Grid | Large At,,. (auto) Small Atae (Eq. 1)
25 | Al,.=0.066 sec Atave = 0.00041 sec
pame oy = 1.12 em/min Vave = 1.10 cm/min

CPU =13 min CPU=5hrs
50 Atae = 0.076 sec Atave = 0.00082 sec
pum v =1.11 cm/min ve = 1.09 cm/min
CPU =6 min CPU=1hr
0.5 | Aty.=0.14 sec Alave = 0.0095 sec
mm | Va.=0.94 cm/min Vave = 0.91 ci/min
CPU =70 sec CPU =110 sec
1.0 | Atwe=0.202 sec Alave = 0.023 sec
mm | Vu.e=0.77 cm/min Vave = 0.76 ci/miin
CPU = 120 sec CPU =130 sec
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3. MODEL INPUT PARAMETERS

The means, M; and standard deviations, ¢, of the foam decomposition model’s 25 input parameters

are given in Table 2. The input parameters include: the initial density and temperature of the foam (p, and
To), the temperature-dependent thermal conductivity and specific heat of the foam (k and Cp), the coordina-
tion number of the polymer lattice (s+1), the initial lattice bridge population (L.}, the reaction enthalpy of the
foam (h,), the emissivity of the foam (g}, 16 activation energies (E), and the average standard deviation of all
the activation energies (E,). The input parameters are assumed to be independent random variables that
are normally distributed. Some of the mean input parameters - e.g. activation energies - were determined
by optimizing predicted mass loss to experimental Thermal Gravimetric Analysis (TGA) data. Other mean
input parameters, such as thermal conductivity and specific heat, were measured at Purdue’s Thermophysi-
cal Properties Research Laboratory. The standard deviations for the input parameters were taken to be
approximately 10 percent of the mean value for all parameters except for the initial temperature and the ac-
tivation energies, which are assumed to be within 3° C and 300 Kcal/moal, respectively.

Table 2. Means and standard deviations of input parameters

po,glcc | T K C, | s+1 ] L. | h, callem’ £ EP|ES | E° | EZ | ES

m; 0.353 300 1 1 2.8 0.78 15 0.8 | 488 | 505 ) 487 | 502 | 49.4

O 0.0252 3 0.1 01§ 02 { 0.05 1.5 0.05{ 0.3 03 | 03 0.3 0.3
Es ES Es Es’ | Ew | Ei E Ei | E | E’ | Ew | EF
my; 49.1 506 | 495 | 51.2 | 434 | 50.3 49.7 50.6 | 50.7 { 50.2 | 49.7 | 3.97
led 0.3 03 | 03 03 | 03 0.3 0.3 03 | 03] 03 | 03 [ 0.05

*The temperature-dependent thermal conductivity and heat capacity were multiplied by a dimensioniess factor.
®Activation energies in Kcal/mol

3. MEAN VALUE SENSITIVITY/UNCERTAINTY ANALYSIS

In the mean value (MV) method, the mean decomposition front velocity, v, and the standard deviation
of the decomposition front velocity, ov, can be determined from a simple Taylor series expansion of the front

velocity, V(C), about the mean of the individual random variables or input parameters, ¢, by neglecting
higher order terms as follows:

e =VQ@|zen @
n 8V = 2

Equation (2) is a single-sample approximation of the mean decomposition front velocity calculated with the
finite element model with all input parameters equal to the mean values, M. In Eq. (3), ov is the standard
deviation of the decompossition front velocity (response variable) and o is the standard deviation of the /-
input parameter (random variable). The derivatives in Eq. (3) were obtained using a central differencing
technique with a finite difference step size of 0.001 times the mean input parameter. For each temperature,
51 function evaluations (two for each random variable plus one evaluation using the mean input values)
were required to obtain the derivatives for the 25 random variables.

The relative importance of each input variable to the uncertainty in the decomposition front velocity can be
determined from the sensitivity coefficients, v, defined as:

N

i IV
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and

=1 | (6)
i=1

The input variables that contribute the most to the uncertainty in the decomposition front velocity also have
the largest absolute sensitivity values. The sign of the sensitivity coefficients indicate that an increase in the
input parameter causes an increase in the response function. A negative sensitivity coefficient indicates that
an increase in the input parameter causes a decrease in the response function. The square of the sensitiv-

ity coefficient multiplied by 100 gives an importance factor, 100 x “{12 , that can be used to easily identify
which input variables are important.

Figure 4 shows the mean decomposition front velocity with a 1.96-c band and the standard deviation of
the front velocity, the importance of the most significant input parameters, and various sensitivity coefficients
as a function of the radiative boundary temperature. The most important input parameters are the emissivity
of the foam followed by the foam heat capacity and density. The lattice coordination number and the activa-
tion energies associated with Reactions 5, 6, and 9 are also important factors in Fig. 4.B. An increase in
emissivity will cause the decomposition front velocity to increase, whereas an increase in density or heat
capacity will cause the decomposition front velocity to decrease.
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3. SENSITIVITY/UNCERTAINTY ANALYSIS USING SURROGATE RESPONSE SURFACES

Surrogate response surfaces can also be used for sensitivity/uncertainty analysis by using Latin Hyper-
cube Sampling (LHS) techniques. Similar to the MV technique discussed in Section 2, surrogate response
surfaces should only be used when the response is nearly linear. Highly nonlinear response functions re-
quire advanced techniques as discussed by Robinson.* One advantage of using surrogate response sur-
faces is that the derivative of the response variable is not needed for the sensitivity/uncertainty analysis.
Another important feature of the surrogate-LHS technique is that the method typically requires fewer func-
tional evaluations using the finite element model than the traditional MV methods and gives similar accuracy.

The objective of the surrogate LHS uncertainty analysis, as discussed by Romero and Bankston,* is to
adequately represent the system response over the relevant parameter space with a simple analytical func-
tion that can be used efficiently in an LHS simulation. For example, the simplest representation of the de-
composition front velocity as a function of the 25 input parameters is the following linear response function:




25
Viw =3, + 9 _ai (¢ — M), @)

i=1

where Vi is the linear approximation of the decomposition front velocity fit to results from the 1-D finite
element model. This “level 1” response surface can be used to evaluate the derivative in Eq. (3) to give

25
ogun = (0ig 2. (8)

i=1

The a coefficients can easily be determined with 26 functional evaluations using the full finite element model.

One velocity evaluation is determined using the mean of all the input parameters. The remaining 25 velocifx
evaluations are determined using the mean of all the input parameters except for the i parameter. The
parameter is taken at the mean value plus some fraction of the standard deviation of the input parameter,

1o, Unfortunately, an established technique for selecting T does not exist. In this work, a T value of 2 was
used as recommended by Romero.” Guan and Melcher® recently showed that different values of  for non-

linear response surfaces could give significantly different sensitivity results. However, since the response
surface in the current paper is sufficiently linear, a value of 2 is adequate.

The a coefficients can be determined as follows:

8= Vo =V(¥)|car ©
and
a = (V™ =V, l(70;) for i =1, 25, (10)

where V; is the decomposition front velocity calculated with the 1-D finite element model using the mean
value of each input parameter; V"™ is the decomposition front velocity calculated with the input parameter

iequal to the mean plus T standard deviations with all other input parameters evaluated at the mean.

By leveraging the 25 “level 1” response surface samples with an additional 25 functional evaluations (for
a total of 51 evaluations), a “level 2” simple quadratic (with no cross terms) response surface can be formed
to approximate the multivariate decomposition front velocity as follows:

25 25 _ :
Vauap = bo + 3 61 (¢ — ) + S 6 (¢ — i )P (11)
i=1

i=1

Vauap is the simple quadratic approximation of the decomposition front velocity fit to multivariate results from
the 1-D finite element model. The &'s and ¢’s can be calculated as follows:

bo = Vs, ' (12)
b = O.S(Vi+m -V )/(TO’,‘) , (13)
¢ =05(V;" + Vi =2V, )/(707) . ‘ (14)

V™ is the decomposition front velocity calculated with the 1-D finite element model with the input pa-
rameter i equal to the mean minus t standard deviations with all other input parameters evaluated at the
mean. More complex response surface expressions for V can also be determined, however, the linear ap-




proximation given in Eq. (7} and the simple quadratic approximation given in Eq. (11) were sufficient for this
study.

With the simple analytical expression for the decomposition front velocity, a Monte Carlo evaluation can
be performed without the expense of running the CPU-intensive model for each functional evaluation. Thus,
the term “surrogate” means that the full finite element model is not used in the Monte-Carlo simulation; in-
stead, an approximate response surface model is used for the evaluations of decomposition front velocity.
Rather than using simple random sampling as in traditional Monte Carlo techniques, a more efficient, con-
strained sampling technique was used in the present work: Latin Hypercube Sampling (LHS). The LHS

technique developed by McKay et al.? selects n different values for each of the 25 variables, ¢;. In this re-

port, the number of samples, n, was selected to be 300, which was determined to be sufficient, since a sam-
ple size of 300; 3,000; 30,000; and 300,000 gave essentially the same results. The range of each input pa-
rameter is divided into n non-overlapping intervals based on equal probability. One random value from each
interval is selected according to the probability density function in the interval. The n values thus obtained

for {; are paired in a random manner with the n values obtained for {>. These n pairs are then combined in

a random manner with the n values ot (3 to form n triplets, and so on, until n sets of the 25 input variables

are formed. The decomposition front velocity is then calculated n times with the n different sets of input pa-
rameters. The mean and standard deviation of decomposition front velocity are then calculated from the n
set of responses. More information on the LHS technique can be found in Ref. [10].

In this paper, the acronym LIN will represent the LHS analysis using the linear approximation of the
decomposition front velocity, and QUAD will represent the LHS analysis using the quadratic approximation
for the decomposition front velocity. To compare the LIN and QUAD results to the MV results discussed in
the previous section, a direct LHS (DLHS) analysis was also performed. The DLHS analysis was performed
by using the same Latin Hypercube sample used in the LIN and QUAD analysis; however, a full finite ele-
ment analysis was used for each velocity evaluation rather than using the approximate equations to deter-
mine the decomposition front velocity. The DLHS technique should give the best approximation of the mean
and standard deviation of the decomposition front velocity since no approximations are made regarding the
linearity of the response surface.

Table 3 gives the mean and standard deviation of the decomposition front velocity calculated using the
51-run mean value (MV) technique, the 26-run Level 1 response surface technique (LIN), the 51-run Level 2
quadratic response surface technique (QUAD), and the direct LHS technique (DLHS) using 25, 50, and 300
samples. The mean and standard deviation in Table 3 were determined using either large or small time
steps given previously in Table 2. To evaluate each of the different sensitivity/uncertainty models, the bias

corrected mean, wy, in Table 3 should be compared with the mean velocity, py, calculated with the DLHS

method using 300 samples, which is boxed using double lines. Table 3 shows that all of the techniques give
good estimates of the mean even with the larger unstable time steps. The MV technique gives a good esti-
mate of the standard deviation when small time steps are used; however, the MV estimates of the standard
deviation are not good when larger time steps are used. The problem with the MV method using larger time
steps is related to the noisy derivative calculation discussed in the Numerical Issues section. The LIN and
QUAD methods give good estimates even when the time step is large. These resulis were expected since
the LIN and QUAD methods are not as sensitive to numerical noise as the MV method.

TABLE 3. MOMENTS OF DECOMPOSITION FRONT VELOCITY FOR 1,000° C RADIATION BOUNDARY CONDITION

Element Method and number of functional evaluations
size and Moment, Mv LIN QUAD | DLHS | DLHS | DLHS
time step cm/min 51 26 51 25 50 300
1-mm, My 0772 | 0772 | 0804 | 0794 | 0773 | 0.781
large time step | pias corrected, iv | 1.093 | 1.003 | 1.125 1115 | 1.004 | 1102
ov | 0550 | 0091 | 0107 | 0115 | 0.103 | 0.106
500-pm, v 0.939 | 0.939 0.907 0.977 0.960 0.945
large ime step | "pigs corrected, iv | 1.093 | 1.093 |  1.061 1131 | 1.114 | 1.099
oy | 0488 | 0.115 | 0.121 0.134 | 0.130 | 0.126
500-um, v 0911 | 0911 | 0918 | 0950 | 0934 | 0.919
small ime step "hias corrected, v | 1.083 | 1.093 | 1400 | 1.432 | 1116 | 1.101
v 0116 | 0110 | 0117 | 0129 | 0125 | 0.120
50-pm, Uy 1.093 | 1.093 1.104 1.124 1.095 1.101
small ime step ov 0141 | 0134 | 0142 | 0157 | 0140 | 0.148




The mean decomposition front velocities in Table 3 were corrected for discretization errars by using the
grid and time-step independent MV velocity, 1.093-cm/min. The discretization bias corrected velocities are
also given in Table 3. A similar discretization bias correction was not necessary for the standard deviations
of the decomposition front velocities indicating that the shape of the velocity distribution is independent of

discretization errors. However, predictions of the standard deviation using the MV technique are sensitive to
numerical noise.

The sensitivity of the standard deviation to numerical noise 1.00

can be seen more readily in Fig. 5 where the mean and standard A

deviation of the decomposition front velocity is plotted as a func- B R
tion of the radiation boundary temperature. In Fig. 5, results are - ,_/_,~// .
from the MV, LIN, QUAD, and DLHS analysis obtained using 2 . o e MV
500-um elements and large time steps are plotted. All technigues B *‘/‘(;:/ = LIN

give adequate estimates of the mean decomposition front veloc- T o QUAD |
ity, although the QUAD velocity oscillates around the DLHS ve- » DLHS
locity. The oscillating velocity may be a result of neglecting cross  0.75 :

terms in the surrogate surface approximation. The standard de- B / \ .
viations calculated with the various methods are shown in Figs. :

5.B and 5.C. In Fig. 5.B, the MV prediction of the standard de- 0.4~ e 5 /
viation oscillates wildly due to the noisy derivative problem dis- ‘ N v/
cussed previously. As shown in more detail in Fig. 5.C, the LIN S 4

and QUAD methods give good approximations to the DLHS -
method with the QUAD method being almost exact. E - . =

The MV method should not be used for uncertainty analysis
unless the response surface is nearly linear, the solutions are
extremely stable, and the functional evaluations are inexpensive.
The least expensive uncertainty analysis in terms of CPU re- -
quirements is the LIN method. This method gives acceptable
means and standard deviations. For more than about 25 uncer-
tain variables, DLHS becomes competitive in terms of sampling
efficiency. For exampie, both the 50 run and 25 run DLHS analy-
sis shown in Table 3 gave means and standard deviations within 0-3850 — -
a few percent of the converged 300-run results, which is com- Radiation Temperature, °C 1000
petitive with the 51-run QUAD results. Fig. 5. py and oy, in cm/min

In LHS uncentainty/sensitivity analysis techniques, the most important factors are the parameters that
cause the greatest deviations from the MV response variable. The importance of each factor, —y,?, can be
obtained by:

v = (Yo -VF )V, (15)

where V, is the decomposition front velocity calculated with the mean value of each input parameter and
V=™ is the decomposition front velocity calculated with the input parameter i equal to the mean +r stan-
dard deviations with all other input parameters evaluated at the mean.

Table 4 shows the top three impor-
tant factors as determined using the My~ TABLE 4. IMPORTANCE FACTORS FOR 1,000° C BOUNDARY CONDITION

method, LIN method, and the QUAD Method, Element Importance Ranking
method with 500-um elements and the size, and time step 1 2 3
auto time step option. All of the analy- - _ h

ses in Table 4 were performed using the MV, 500-um, large C’ { o+1 &
input parameter mean and standard LIN, 500-um, large ) Po €
deviations given in Table 2. For com- QUAD, 500-um, large C, Po {3
parison, the top three important factors DLHS, 50-um, small C, Po €
using the MV method with 50-um ele-  Grid and time-step converaed results

ments and the constrained time step
option is also given. The LIN method — requiring 26 functional evaluations — gives the same results as the
more expensive QUAD method that required 51 functional evaluations. The MV method using the large




auto time step option — requiring 51 functional evaluations to determine the derivative of the response func-
tion — did not give the correct importance factors.

4. SUMMARY AND CONCLUSIONS

Aristotle'' noted that “... it is the mark of an educated mind to rest satisfied with the degree of precision
which the nature of the subject admits and not to seek exactness where only an approximation is possible.”
Precise, accurate input parameters will not make a model match experimental data when the model lacks
important physical phenomena. For example, the foam decomposition model addressed in this paper does
not consider mass transport limitations, species diffusion, bubble mechanics, fluid flow, gravitational effects,
or mechanical response such as thermal expansion. Not including these physical phenomena may be ac-
ceptable for certain experimental conditions, such as when samples are small or when the heating rates are
high. Under these conditions, diffusion lengths are small and mass transport limitations are negligible. For
conditions that favor thicker decompesition fronts, such as confinement and/or low heating rates, the foam
decomposition model should be improved with additional physics. At the same time, however, the impor-
tance of the driving contributions to uncertainty in any endeavor should be ascertained. For the base model
analyzed here, the standard deviation of the response due to uncertainties in the 25 input parameters is on
the order of 10% of the nominal computed results. Since nominal error in the model due to using 500-um
vs. 50-um elements is also on the order of 10% (2-16%), the error from using 500-um elements is significant
and some form of discretization bias correction should be used.

Sensitivity/uncertainty analyses on complex engineering models can be frustrating and time consuming.
For example, the MV sensitivity/uncertainty analysis was repeated numerous times when the elements
and/or time steps were found to be too large to compute accurate finite difference derivatives, resulting in
thousands of additional functional evaluations to establish converged results. A lot of frustration could have
been avoided if a thorough study of the problem numerics were initiated before beginning the sensitiv-
ity/uncertainty analysis. Another source of frustration is lack of information regarding the uncertainty associ-
ated with the various input parameters. Variability in input parameters should be obtained and verified ex-
perimentally.

Three sensitivity analyses (MV, LIN, and QUAD) were compared to a direct LHS (DLHS) simulation.
The analytical MV technique required the derivative of the decomposition front velocity for each input pa-
rameter resulting in 51 functional evaluations. The MV uncertainty results were also shown to be extremely
sensitive to numerical noise. The LIN method required only 26 functional evaluations, was found to be rela-
tively insensitive to numerical noise, and gave acceptable predictions of the mean and standard deviation.
The QUAD method required 51 functional evaluations, was found to be nearly insensitive to numerical noise,
and overall gave the closest values of mean and standard deviation to the converged DLHS results. How-
ever, the mean velocities predicted with the QUAD method were subject to oscillation, which may have been
a result of neglecting cross-terms in the surrogate surface approximation. Various sample sizes were used
for the DLHS. If the number of random variables is substantially more than 25 variables, a DLHS analysis is
highly recommended.
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