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Introduction
Understanding polymer aging and degradation is crucial for accurate

prediction of polymer lifetime, durability, and reliability. The elucidation of
the chemical and physical mechanisms at the molecular level leading to
polymer degradation is an important objective in achieving this goal. Nuclear
magnetic resonance (NMR) spectroscopycontinuesto be a powerful tool for
the elucidation of aging mechanisms at the molecular level, as well as
providing a method for monitoring of material aging. Thk laboratory has
recently reported a series of NO NMR investigations of degradation

mechanisms in thermally aged and oxidatively-irradiated polymersystems.‘“3
In thii paper we will discuss the use of ’70 NMR spectroscopy to probe the
hydrolytic degradation of several important materials includ]ng the polyester
urethane Estane@ 5703, and the silica-filled and unfilled polydlmethyl-
polydiphenylsiloxane (PDMWPDPS) copolymer.

Experimental
Materials. The polyester urethane was commercially obtained Estane

5703@(B. F. Goodrich Co., Charlotte, NC). The Estane is composed of hard
segments based on 4,4’-dlphenylmethanediisocyanate and soft segment based
on adlpic acid and a 1,4 butanediol chain extender. The Estrme 5703@
material was utilized as obtained without further processing.

The siloxane material was a random block copolymer consisting of
tlmethyl (DMS), diphenyi (DPS), and methyI vinyI (MVS) siloxane monomer
units. In the base rubber the percentage of each monomer unit was 90.7 wt. ‘%0

DMS, 9.0 wt. % DPS, and 0.3 wt. % MVS (Nusil Corp., Corpenteri~ CA)
This material will be referred to as the PDM!YPDPS copolymer through the
rest of the dkcussion. For the filled siloxane samples the copolymer was
compounded with silica by milling a mixture of 21.6 wt. ‘Afimed silica (Cab-
o-Sil M7D, Cabot Corp., TUSCOIZIL.), 4.0 wt.OAprecipitated silica (1-ESil
233, PPG Industries Inc., Pittsburgh, Pa.) and 6.8 wt.% ethoxy-endbiocked
siloxane processing aid (Y1587, Union Carbide Corp., Danbury, CT.). Atler
bin aging for 3 weeks at room temperature, both the filled and unfilled
siloxane polymer gums were cross-linked with a thermally activated peroxide
curing agent.

Hydrolysis Aging. The samples were aged by placing appropriate
weights of these materials above a saturated K#.OJHzO salt solution inside a
sealed ampordes. Isotonically labeled (47.3°/0 ’70) HZ170 water (Isotec,
Miamisbur~ OH) was used in the preparation of these solutions. The
saturated salt solution provided a constant relative humidity @H) atmosphere
for the aging of the polymer samples. The thermal hydrolysis of the estarre
was accomplished by placing the arnpoule in ovens at 50”C or 65 “C for 1-
475 days. The ‘y-irradiatedhydrolysis of the PDMWPDPS copolymer was
accomplished by irradiating the sample at 27 “C for up to 14.5 days in #Co-
facility, at a dose rate of 58 KRad/h.

NMR Measurements. The solution “O NMR spectra were obtained at
a resonant frequency of 54.3 MHz on a BrukerDRX400 spectrometer using a
5 mm broad band probe. Spectra were obtained using 16K to 128K scans, a 10
!-w7r/2pulse, and a 500 ms recycle delay, It was found that the 500 ms delay
was sufficient for complete spin-lattice relaxation in the samples. A standard
single pulse Bloch decay sequence using composite pulse’H decoupling. The
uo w spectia were referenced to natural abundance Hz’70 (~ = 0.0 PPm)

at room temperature. For all of the experiments described, approximately 20-
30 mg of thermally hydrolyzed estrme or y-irradiated hydrolyzed
PDMWPDPS copolymer were dissolved in 750 Ml of DMSO-d6 or
methylcyclohexane, respectively. For the PDMWPDPS copolymer the
samples were dried in a N2 environment prior to dissolving in solvent to

eliminate the water resonance which has a chemicrd sKM near the resonance
of the silonol species. It has been shown that by reducing the molecular
correlation time through the use of elevated temperatures, the observed 170
NMR line width in the aged polymer samples can be greatly reduced.’ The
170 ~ spetia rew~d in MIS paper were therefore all obtained at elev*d

temperatures, with the spectra for both estane and the PDMSIPDPS
copolymer being recorded at 75 “C.

Results and Discussion
170 N~ of Hydrolyzed Polymers. Due to the low naturrd

abundance of the ’70 isotope (0.0370/0),the use of isotopic enrichment is
required. The need to introduce the ’70 label during the aging process can be
used to an advantage since the observed spectra will only contain signal from
the newly formed degradation products. By careful introduction of the
enriched isotope, ’70 NMR analysis provides a method to clearly isolate the
degradation products, as well as selectively investigate a portion of a overrdl
complex degradation pathway. For example, by introducing labeled water
during the hydrolytic aging of polymers, the resulting hydrolysis products are
directly observed.

Polymer
H2170(/)

> 170 L~eled Hydrolysis Products
Aory

The ability to observe only oxygen labeled degradation species without
background signal is shown in the hydrolysis studies presented below.
Selective identification of the hydrolysis species formed during the~lolytic
hydrolysis of materials (without interference from other interfering
degradation species) is also possible using this method, and is demonstrated
in the analysis of y-irra&ated hydrolysis of the PDMSJPDPS copolymer.

Thermal Hydrolysis of Estane 5703@. Figure 1 shows the sohrtion
170 NMR spec~a for estane aged under 98°/0RH at 65 ‘C m a Shtiion of
aging time. Several different *70 containing species are clearly observed in
these spectra.
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Figure 1. Solution ’70 NMR spectra for hydrolyzed Estane 5703@as a
function of time. The upper spectra are scaled to allow the newly formed
degradation species to be visible.
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At short aging times two dktinct resonances forHJO’7 are seen at 8 = +1 and
+ IS ppm,imi result from water species with distinctly different
environments absorbed into the swollen polymer. The use of ’70 NMR to
directly investigate different water environments has been reported for
mixtures of hydrophobic solvent-water mixtures4’5 or water-petroleum
Systerns.c

Carboxylic acid degradation species at 6 = + 270 ppm become
evident in the ’70 NMR spectra at 58 days, and continue to increase with
additional hydrolysis aging. These carboxylic acids are formed from the
hydrolysis of the ester linkage in Estane. Additional degradation products are
observed at 108 days with the appearance of an amide or acetrmilide
resonance at 3 = + 360 ppm. Whether these amide oracetanilide degradation
species results directly from the cleavage of the urethane linkage or is the
result of a series of secondaxy degradation reactions is yet to be determined.
Extensive aging (473 days) does not reveal the formation of any additionrd
degradation species (top of Figure 1). No resonances corresponding to ester
containg degradation species is observed. Analysis of Estrme 5703’%ydrolytic
degradation at 50 “C ( which is below the phase transition of the material)
reveals a similar kibeled degradation product distribution, but the appearance
of the oxygen-containing degradation species occurs at a much longer time
scrde.

y-Irradiated Hydrolysis of PDMWPDPS Copolymer. The solution ’70
NMR spectra of the PDMWPDPS copolymer which was radiolytically
hydrolyzed at 27 ‘C is shown in Figure 2, for both the filled and unfilled
siloxane material.
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Two resolved resonances arc observed at& = +72 ppm and +31 ppm,
corresponding to oxygens in siloxamelinkages andsilanols, respectively. The
formation of siloxane linkages during the radlolytic hydrolysis is consistent
with a back-biting mechanism involving nnreacted terminal silrmols. The
results shown in Figure 2 reveaI that for both the filled and unfilledsiloxrrne
rubber the degradationproductsobserved are the same,with no effect of t-be
silica tiller. A small difference in the relative concentration of the silanol and
siloxane linkage products in the Unfilled and filled material was observed at
low radiation dose. At higher total dose amounts the effect of the filler on the
differences in relative concentration vanishes.

Conclusions
The use of ’70 NMR to investigate hydrolytic aging in polymer systems

has been presented. The experiments show that a variety of different
degradation products can be observed depending on the nature of the material
investigated. Using ’70 NMR the relative concentration of the oxygen-
containing degradation species can be measure directly @m the observed

spectrum. These 170NMR investigations demonstrate that for Estane 5703@
that additional degradation products beside the predicted ester cleavage arc
observed at long exposure times. The results from the PDMWF’DPS
copolymer radloyltic hydrolysis demonstrate that the incorporation of filler
has only a small effect on the hydrolysis mechanism. In addition these 170
NMR results reveal that new Si-O-Si linkages are formed during the aging
process.

These investigations demonstrate the potential of using ’70 NMR
spectroscopy to probe hydrolytic degradation in polymer systems. By utiltilng
isotropically labeled degradation experiments the ’70 NMR spectra allow for
the identification and quantification of non-volatile hydrolysis products
unencumbered by background signals from the unaged material. The use of
170 NMR to probe degrad~on of polymer syStemS under a v~ety of

different environmental conditions is presently being pursued.
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2. NUMERICALISSUES

The response variable for the 1-D analysis was cho-
sen as the steady-state decomposition front velocity, cal-
culated as the derivative of the decomposition front location
versus the elapsed time for element death. Figure 2.A
shows the front location calculated using 25-yin elements
exposed to a 1,000° C radiative temperature. The decom-
position front is located at the centroid of the element that
is exposed to the radiation boundary. Elements are re-
moved from the computational domain when the con-
densed mass fraction drops below 1 percent.

Figure 2.B shows decomposition front velocities cal-
culated using various element sizes. The average time
steps, decomposition front velocities, and CPU times for
the solutions shown in Fig. 2 are given in Table 1. The
Iar er time steps (large At..,) are based on the Gartling et

9
al. auto time stepping scheme with an integration conver-
gence tolerance of 10-4. The solutions obtained with
smaller time steps (small A&J are based on the same
convergence tolerance but are constrained to satisfy the
following derivative smoothness criterion:

At< 0.003AxIV (1)

where At, Ax, and V represent the time step, element size,
and the decomposition front velocity, respectively. In Fig.
2.6, the small time step solutions are smooth (solid lines,
0.5-mm and 1-mm) compared to the noisy solutions ob-
tained with larger time steps. The small time step curves for
25- and 50-pm element solutions overlie each other, so the
less costly 50-pm element using fixed time step results are
effectively converged. The noisy velocities in Fig. 2.B re-
sulted from taking excessively large time steps for the in-
stantaneous derivative calculation. Rather than imposing
the time step constraint in Eq. (1), the integration conver-
gence tolerance could have been decreased with the same
expense of increased CPU cost.

The numerical noise is related to the discrete removal
of elements from the computational domain. Figure 3 shows
the temperature gradient in element No. 20 for a 650° C
radiation temperature using 0.6-mm elements. The first 20
elements are also shown in Fig. 3 centered about the time
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of “element death.” The noise ~s associated with the death 10r--

}Ie 1. Time step

Large At,., (auto)

At,.= = 0.066 sec

V.ve= 1.12cm/min

CPU = 13 min

At,.. = 0.076 sec

Vav,= 1.11 cm/min

CPU = 6 min

At.w = 0.14 sec

Vave= 0.94 cm/min

CPU=70 sac

At,.. = 0.202sec

V=.. = 0.77 cm/min

CPU = 120 sac

nd CPU time

Small At.,. (Eq. 1)

Ata,~= 0.00041 Sec

V,ve= 1.10 cm/min

CPU = 5 hrs

At,., = 0.00082 sec

V,ve= 1.09cm/min

CPU = 1 hr

At,~ = 0.0095 sec

V,ve= 0.91 cm/min

CPU= llOsec

At.,. = 0.023 sec

V.,, = 0.76 cm/min

CPU = 130 sec

1

of neighboring elements and is likely the source of the sen- “~
sitivity to the computational time step.

1

elements1-20canteredat timeof death
G ‘——— ! I I I I 1.1,1.1 I I I———— Ill
o- ,,:. ; ;

The remainder of this paper will focus on determination ~
,;.,,:t,. .

of the standard deviation of the decomposition front velocity ~
.,:.4, .., !:.,:. I ~

and ranking the importance of the 25 model input parame-
ters using the MV, LIN, QUAD, and DLHS models. Fully
grid and time-step converged solutions using 50-j.tm ele-
ments and -1 -msec time steps were used in the MV and
DLHS analyses. Larger time steps were used in the LIN
and QUAD methods. All methods give similar results since
the response function is nearly linear, however, the LIN
method was computationally less expensive.

iou
Time, min 10

Fig. 3. Temperature gradient



3. MODEL INPUTPARAMETERS

The means, /%j and standard deviations, cz, of the foam decomposition model’s 25 input parameters

are given in Table 2. The input parameters include: the initial density and temperature of the foam (p. and
To), the temperature-dependent thermal conductivity and specific heat of the foam (k and CP), the coordina-
tion number of the polymer lattice (s+1 ), the initial lattice bridge population (I-J, the reaction enthalpy of the
foam (h,), the emissivity of the foam (e), 16 activation energies (/S;), and the average standard deviation of all

the activation energies (,EJ. The input parameters are assumed to be independent random variables that
are normally distributed. Some of the mean input parameters - e.g. activation energies - were determined
by optimizing predicted mass loss to experimental Thermal Gravimetric Analysis (TGA) data. Other mean
input parameters, such as thermal conductivity and specific heat, were measured at Purdue’s Thermophysi-
cal Properties Research Laboratory. The standard deviations for the input parameters were taken to be
approximately 10 percent of the mean value for all parameters except for the initial temperature and the ac-
tivation energies, which are assumed to be within 3° C and 300 Kcal/mol, respectively.

Table 2. Means and standard deviations of in put parameters
P gicc To F Cp” s+ 1 Lo hmcaticm’ E Es” Ez’ Es” Ed” Esb

iiij :.353 300 1 1 2.8 0.78 15 0.8 48.8 50.5 49.7 50.2 49.4

G 0.0252 3 0.1 0.1 0.2 0.05 1.5 0.05 0.3 0.3 0.3 0.3 0.3

E.n E; E.” E*D Et.” .%” 52” E13D E14* EIsb E~6° E.b

iiij 49.1 50.6 49.5 51.2 49.4 50.3 49.7 50.6 50.7 50.2 49.7 3.97
G 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.05

aThe temperature-dependent thermal conductivity and heat capacity were multiplied by a dimensionless factor.
bActivation energies in Kcal/mo[

3. MEAN VALUESENSITIVITWJNCERTAINTYANALYSIS

In the mean value (MV) method, the mean decomposition front velocity, W, and the standard deviation
of the decomposition front velocity, ~, can be determined from a simple Taylor series expansion of the front

velocity, V(r), about the mean of the individual random variables or input parameters, ~, by ne91ectin9

higher order terms as follows:

(2)

(3)

Equation (2) is a single-sample approximation of the mean decomposition front velocity calculated with the

finite element model with all input parameters equal to the mean values, ~. In Eq. (3), av is the standard
deviation of the decomposition front velocity (response variable) and a is the standard deviation of the ~h-
input parameter (random variable). The derivatives in Eq. (3) were obtained using a central differencing
technique with a finite difference step size of 0.001 times the mean input parameter. For each temperature,
51 function evaluations (two for each random variable plus one evaluation using the mean input values)
were required to obtain the derivatives for the 25 random variables.

The relative importance of each input variable to the uncertainty in the decomposition front velocity can be
determined from the sensitivity coefficients, y, defined as

-yi = w(?)$x-
d(i ‘

where

(4)

I



and

(6)

The input variables that contribute the most to the uncertainty in the decomposition front velocity also have
the largest absolute sensitivity values. The sign of the sensitivity coefficients indicate that an increase in the
input parameter causes an increase in the response function. A negative sensitivity coefficient indicates that
an increase in the input parameter causes a decrease in the response function. The square of the sensitiv-

ity coefficient multiplied by 100 gives an importance factor, 100x -/~, that can be used to easily identify

which input variables are important.

Figure 4 shows the mean decomposition front velocity with a 1.96-cJ band and the standard deviation of
the front velocity, the importance of the most significant input parameters, and various sensitivity coefficients
as a function of the radiative boundary temperature. The most important input parameters are the emissivity
of the foam followed by the foam heat capacity and density. The lattice coordination number and the activa-
tion energies associated with Reactions 5, 6, and 9 are also important factors in Fig. 4.B. An increase in
emissivity will cause the decomposition front velocity to increase, whereas an increase in density or heat
capacity will cause the decomposition front velocity to decrease.

1.2
[A’ I I I 1

40
I I I

0.8
B c I I I

1 1.96-cJband #Jt- 1 1- -1

In

v
s
m
%
~

0
z>
c
10

:

0
600 Temperature, “C 1,000 600 Temperature, “C 1,000

Figure 4. A) Velocity, B) importance factors, and C) sensitivity coefficients

3. SENSiTIVIN/UNCERTAINTYANALYSISUSINGSURROGATERESPONSESURFACES

Surrogate response surfaces can also be used for sensitivity/uncertainty analysis by using Latin Hyper-
cube Sampling (LHS) techniques. Similar to the MV technique discussed in Section 2, surrogate response
surfaces should only be used when the response is nearly linear. Highly nonlinear response functions re-
quire advanced techniques as discussed by Robinson.4 One advantage of using surrogate response sur-
faces is that the derivative of the response variable is not needed for the sensitivity/uncertainty analysis.
Another important feature of the surrogate-LHS technique is that the method typically requires fewer func-
tional evaluations using the finite element model than the traditional MV methods and gives similar accuracy.

The objective of the surrogate LHS uncertainty analysis, as discussed by Romero and Bankston,5’6 is to
adequately represent the system response over the relevant parameter space with a simple analytical func-
tion that can be used efficiently in an LHS simulation. For example, the simplest representation of the de-
composition front velocity as a function of the 25 input parameters is the following linear response function:



.

25

VLIN=aO +~ai(<j–iiij),
j=l

(7)

where VUNis the linear approximation of the decomposition front velocity fit to results from the 1-D finite
element model. This “level 1n response surface can be used to evaluate the derivative in Eq. (3) to give

O~,L,N= f’(f7iaj)2.
j=l

(8)

The a coefficients can easily be determined with 26 functional evaluations using the full finite element model.

One velocity evaluation is determined using the mean of all the input parameters. The remaining 25 veloci
evaluations are determined using the mean of all the input parameters except for the ih parameter. The $
parameter is taken at the mean value plus some fraction of the standard deviation of the input parameter,

TOi. Unfortunately, an established technique for selecting T does nOt eXkt. in this work, a T value of 2 was

used as recommended by Romero.7 Guan and Melcher* recently showed that different values of T for non-

linear response surfaces could give significantly different sensitivity results. However, since the response
surface in the current paper is sufficiently linear, a value of 2 is adequate.

The a coefficients can be determined as follows:

a. = V. = v(i) ~=ii

and

ai = ( ~.+’” –VO)/(~~i) fori= 1, 25,

(9)

(lo)

where VOis the decomposition front velocity calculated with the 1-D finite element model using the mean

value of each input paramete~ ~.+’” is the decomposition front velocity calculated with the input parameter

i equal to the mean plus T standard deviations with all other input parameters evaluated at the mean.

By leveraging the 25 “level 1” response surface samples with an additional 25 functional evaluations (for
a total of 51 evaluations), a “level 2“ simple quadratic (with no cross terms) response surface can be formed
to approximate the multivariate decomposition front velocity as follows:

(11)

VQUAOk the simple quadratic approximation of the decomposition front velocity fit to multivariate results from

the 1-D finite element model. The b% and c’s can be calculated as follows:

bo=h’o,

bi = 0.5(~+’u – ~-’” )/(~Ui) ,

(12)

(13)

(14)

~-r” is the decomposition front velocity calculated with the 1-D finite element model with the input pa-

rameter i equal to the mean minus T standard deviations with all other input parameters evaluated at the

mean. More complex response surface expressions for V can also be determined, however, the linear ap-

1
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proximation given in Eq. (7) and the simple quadratic approximation given in Eq. (11) were sufficient for this
study.

With the simple analytical expression for the decomposition front velocity, a Monte Carlo evaluation can
be performed without the expense of running the CPU-intensive model for each functional evaluation. Thus,
the term “surrogate” means that the full finite element model is not used in the Monte-Carlo simulation; in-
stead, an approximate response surface model is used for the evaluations of decomposition front velocity.
Rather than using simple random sampling as in traditional Monte Carlo techniques, a more efficient, con-
strained sarr?p/ing technique was used in the present work: Latin Hypercube Sampling (LHS). The LHS

technique developed by McKay et al.g selects n different values for each of the 25 variables, <i. In this re-

port, the number of samples, n, was selected to be 300, which was determined to be sufficient, since a sam-
ple size of 300; 3,000; 30,000;and 300,000 gave essentially the same results. The range of each input pa-
rameter is divided into n non-overlapping intervals based on equal probability. One random value from each
interval is selected according to the probability density function in the interval. The n values thus obtained

for (I are paired in a random manner with the n values obtained for Qz..These n pairs are then combined in

a random manner with the n values of <s to form n triplets, and so on, until n sets of the 25 input variables

are formed. The decomposition front velocity is then calculated n times with the n different sets of input pa-
rameters. The mean and standard deviation of decomposition front velocity are then calculated from the n
set of responses. More information on the LHS technique can be found in Ref. [1O].

In this paper, the acronym LIN will represent the LHS analysis using the linear approximation of the
decomposition front velocity, and QUAD will represent the LHS analysis using the quadratic approximation
for the decomposition front velocity. To compare the LIN and QUAD results to the MV results discussed in
the previous section, a direct LHS (DLHS) analysis was also performed. The DLHS analysis was performed
by using the same Latin Hypercube sample used in the LIN and QUAD analysis; however, a full finite ele-
ment analysis was used for each velocity evaluation rather than using the approximate equations to deter-
mine the decomposition front velocity. The DLHS technique should give the best approximation of the mean
and standard deviation of the decomposition front velocity since no approximations are made regarding the
linearity of the response surface.

Table 3 gives the mean and standard deviation of the decomposition front velocity calculated using the
51-run mean value (MV) technique, the 26-run Level 1 response surface technique (LIN), the 51-run Level 2
quadratic response surface technique (QUAD), and the direct LHS technique (DLHS) using 25, 50, and 300
samples. The mean and standard deviation in Table 3 were determined using either large or small time
steps given previously in Table 2. To evaluate each of the different sensitivity/uncertainty models, the bias

corrected mean, p., in Table 3 should be compared with the mean velocity, ~v, calculated with the DLHS

method using 300 samples, which is boxed using double lines. Table 3 shows that all of the techniques give
good estimates of the mean even with the larger unstable time steps. The MV technique gives a good esti-
mate of the standard deviation when small time steps are used; however, the MV estimates of the standard
deviation are not good when larger time steps are used. The problem with the MV method using larger time
steps is related to the noisy derivative calculation discussed in the Numerical Issues section. The LIN and
QUAD methods give good estimates even when the time step is large. These results were expected since
the LIN and QUAD methods are not as sensitive to numerical noise as the MV method.

TABLE3. MOMENTSOFDECOMPOSMONFRONTVELOCITYFOR1,000° C RADIAnoti BOUNDARYCONDITION

Element Method and number of functional evaluations
size and Moment, MV LIN QUAD DLHS DLHS DLHS

time step cmlmin 51 26 51 25 50 300

l-mm, pv 0.772 0.772 0.804 0.794 0.773 0.781
large time step bias corrected, pv 1.093 1.093 1.125 1.115 1.094 I 1.102

(3V 0.550 [ 0.091 0.107 0.115 0.103 0.106
500-pm, pv 0.939 0.939 0.907 0.977 0.960 0.945

large time step bias corrected, #v 1.093 1.093 1.061 1.131 1.114 1.099
ok’ 0.488 0.115 0.121 0.134 0.130 0.126

5oo-J.lrn, pv 0.911 0.911 0.918 0.950 0.934 0.919
small time step bias corrected, pv 1.093 1.093 1.100 1.132 1.116 1.101

Cfv 0.116 0.110 0.117 0.129 0.125 0.120

50-pm, Pv 1.093 1.093 1.104 1.124 1.095 1.101
small time step Gv 0.141 0.134 0.142 0.157 0.140 0.148



. .

The mean decomposition front velocities in Table 3 were corrected for discretization errcvs by using the
grid and time-step independent MV velocity, 1.093-cm/min. The discretization bias corrected velocities are
also given in Table 3. A similar dkcretization bias correction was not necessary for the standard deviations
of the decomposition front velocities indicating that the shape of the velocity distribution is independent of
discretization errors. However, predictions of the standard deviation using the MV technique are serrsitive to
numerical noise.

The sensitivity of the standard deviation to numerical noise
can be seen more readily in Fig. 5 where the mean and standard
deviation of the decomposition front velocity is plotted as a func-
tion of the radiation boundary temperature. In Fig. 5, results are
from the MV, LIN, QUAD, and DLHS analysis obtained using

500-Wm elements and large time steps are plotted. All techniques

give adequate estimates of the mean decomposition front veloc-
ity, although the QUAD velocity oscillates around the DLHS ve-
locity. The oscillating velocity may be a result of neglecting cross
terms in the surrogate surface approximation. The standard de-
viations calculated with the various methods are shown in Figs.
5.B and 5.C. In Fig. 5.B, the MV prediction of the standard de-
viation oscillates wildly due to the noisy derivative problem dis-
cussed previously. As shown in more detail in Fig. 5,C, the LIN
and QUAD methods give good approximations to the DLHS
method with the QUAD method being almost exact.

The MV method should not be used for uncertainty analysis
unless the response surface is nearly linear, the solutions are
extremely stable, and the functional evaluations are inexpensive.
The least expensive uncertainty analysis in terms of CPU re-
quirements is the LIN method. This method gives acceptable
means and standard deviations. For more than about 25 uncert-
ain variables, DLHS becomes competitive in terms of sampling
efficiency. For example, both the 50 run and 25 run DLHS analy-
sis shown in Table 3 gave means and standard deviations within
a few percent of the converged 300-run results, which is com-
petitive with the 51-run QUAD results.
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In LHS uncertainty/sensitivity analysis techniques, the most important factors are the parameters that

cause the greatest deviations from the MV response variable. The importance of each factor, #, can be

obtained by

-f; = (V. – u* ’”)/vo (15)

where VOis the decomposition front velocity calculated with the mean value of each input parameter and

~=’u is the decomposition front velocity calculated with the input parameter i equal to the mean +7 stan-

dard deviations with all other input parameters evaluated at the mean.

Table 4 shows the top three impor-
tant factors as determined using the MV TAEILE4. IMPORTANCEFACTORSFOR1,000° C BOUNDARYCONDlnON

method, LIN method, and the QUAD Method, Element Importance Ranking
method with 500-ym elements and the size, and time step 1 2 3
auto time step option. All of the analy- MV, 500-~m, large h, 0+1
ses in Table 4 were performed using the

&

input parameter mean and standard LIN, 500-pm, large q Po E

deviations given in Table 2. For com- QUAD, 500-~m, large CD
parison, the top three important factors DLHS,” 50-pm, small Cp
using the MV method with 50-pm ele- Grid and time-step conversed results

ments and the constrained time step
option is also given. The LIN method – requiring 26 functional evaluations - gives the same results as the
more expensive QUAD method that required 51 functional evaluations. The MV method using the large



auto time step option – requiring 51 functional evaluations to determine the derivative of the response func-
tion – did not give the correct importance factors.

4. SUMMARYANDCONCLUSIONS

Aristotlel’ noted that “... it is the mark of an educated mind to rest satisfied with the degree of precision
which the nature of the subject admits and not to seek exactness where only an approximation is possible.”
Precise, accurate input parameters will not make a model match experimental data when the model lacks
important physics/ phenomena. For example, the foam decomposition model addressed in this paper does
not consider mass transport limitations, species diffusion, bubble mechanics, fluid flow, gravitational effects,
or mechanical response such as thermal expansion. Not including these physical phenomena may be ac-
ceptable for certain experimental conditions, such as when samples are small or when the heating rates are
high. Under these conditions, diffusion lengths are small and mass transport limitations are negligible. For
conditions that favor thicker decomposition fronts, such as confinement and/or low heating rates, the foam
decomposition model should be improved with additional physics. At the same time, however, the impor-
tance of the driving contributions to uncertainty in any endeavor should be ascertained. For the base model
analyzed here, the standard deviation of the response due to uncertainties in the 25 input parameters is on
the order of 10’7. of the nominal computed results. Since nominal error in the model due to using 500-ym
vs. 50-ym elements is also on the order of 10% (2-167.), the error from using 500-~m elements is significant
and some form of discretization bias correction should be used.

Sensitivity/uncertainty analyses on complex engineering models can be frustrating and time consuming.
For example, the MV sensitivity/uncertainty analysis was repeated numerous times when the elements
and/or time steps were found to be too large to compute accurate finite difference derivatives, resulting in
thousands of additional functional evaluations to establish converged results. A lot of frustration could have
been avoided if a thorough study of the problem numerics were initiated before beginning the sensitiv-
ity/uncertainty analysis. Another source of frustration is lack of information regarding the uncertainty associ-
ated with the various input parameters. Variability in input parameters should be obtained and verified ex-
perimentally.

Three sensitivity analyses (MV, LIN, and QUAD) were compared to a direct LHS (DLHS) simulation.
The analytical MV technique required the derivative of the decomposition front velocity for each input pa-
rameter resulting in 51 functional evaluations. The MV uncertainty results were also shown to be extremely
sensitive to numerical noise. The LIN method required only 26 functional evaluations, was found to be rela-
tively insensitive to numerical noise, and gave acceptable predictions of the mean and standard deviation.
The QUAD method required 51 functional evaluations, was found to be nearly insensitive to numerical noise,
and overall gave the closest values of mean and standard deviation to the converged DLHS results. How-
ever, the mean velocities predicted with the QUAD method were subject to oscillation, which may have been
a result of neglecting cross-terms in the surrogate surface approximation. Various sample sizes were used
for the DLHS. If the number of random variables is substantially more than 25 variables, a DLHS analysis is
highly recommended.
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