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ABSTRACT

The Ideal Strength and Mechanical Hardness of Solids
by

Christopher Robert Krenn
Doctor of Philosophy in Materials Science and Mineral Engineering

University of California at Berkeley
Professor J. W. Morris Jr., Chair

Relationships between intrinsic mechanical hardness and atomic-scale prop-
erties are reviewed. Hardness scales closely and linearly with shear modulus
for a given class of material (covalent, ionic or metallic). A two-parameter fit
and a Peierls-stress model produce a more universal scaling relationship, but no
modeél can explain differences in hardness between the transition metal carbides
and nitrides. Calculations of “ideal strength” (defined by the limit of elastic
stability of a perfect crystal) are proposed.

The ideal shear strengths of fcc aluminum and copper are calculated using
ab initio techniques and allowing for structural relaxation of all five strain com-
ponents other than the imposed strain. The strengths of Al and Cu are similar
(8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu
is very different. The relaxations are consistent with experimentally measured
third-order elastic constants.

The general thermodynamic conditions of elastic stability that set the upper
limits of mechanical strength are derived. The conditions of stability are shown
for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions
of a cubic crystal. The implications of this stability analysis to first-principles
calculations of ideal strength are discussed, and a method to detect instabilities
orthogonal to the direction of the applied stress is identified.

The relaxed ideal shear and tensile strengths of bce tungsten are also cal-
culated using ab initio techniques and are favorably compared to recent nano-
indentation measurements. The {100} tensile strength (29.5 GPa) is governed
by the Bain instability. The shear strengths in the weak directions on {110},
{112}, and {123} planes are very nearly equal (= 18 GPa) and occur at ap-
proximately the same strain (17-18%). This isotropy is a function of the linear
elastic isotropy for shear in directions containing (111) in bce and of the atomic
configurations of energetic saddle points reached during shear. This isotropy
may also explain the prevalence of the pencil glide of dislocations in bee metals.

A final chapter presents some recent ideal strength calculations of TiC and
TiN and discusses future directions for research.
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Chapter 1

Atomic Bonding
and Mechanical Hardness'

1.1 Introduction

For many years, scientists have tried to understand what makes a material in-
herently strong or hard from an atomic perspective. For the purposes of this
dissertation, I will be concerned with the inherent hardness of a material, which I
will define as the hardness of a perfect crystal, and I will ignore the many benefi-
cial effects of impurity atoms, second phase particles, work hardening, and other
microstructural modifications. Recent theoretical studies of superhard materi-
als have focused on the optimization of bulk modulus and have suggested, for
example, that as the calculated bulk modulus of some carbon nitride structures
can approach [2] or exceed [3] that of diamond, the mechanical hardnesses of
these structures could exceed that of diamond as well. However, the connec-
tion between what makes a material stiff (having large elastic moduli) and hard
(possessing great resistance to permanent deformation) is still not completely
understood.

A number of scaling relationships have been proposed for macroscopic hard-
ness as a function of atomistically defined crystal properties. Hardness, which is
typically measured by indentation techniques, has been found to be an increasing
function of volumetric lattice energy [4], bulk modulus [5], shear modulus [6, 7],
and the size of the electronic band gap [8]. Each of these relationships works well
for a certain set of materials, but none are universal. In particular, the hardness
of metals is always observed to be much less than ionically or covalently bonded
solids at a given value of elastic stiffness or volumetric lattice energy. Figure 1.1
shows a plot of indentation hardness versus elastic shear modulus for a wide
variety of materials examined in this research.. The slope of all of the trend lines
is unity, indicating a linear relationship, and it is clear that covalent solids are
harder than metals at a given shear stiffness.

fSome of the material in this chapter has been published in Ref. [1].
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2 CHAPTER 1. ATOMIC BONDING AND MECHANICAL HARDNESS
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Figure 1.1: Log-log plot of bulk hardness as a function of shear modulus for 3
different classes of materials (covalent, ionic and metallic) with the diamond cu-
bic (dc), body centered cubic (bcc), hexagonal close packed (hep), face centered
cubic (fcc), NaCl, and ZnS structures.




1.2. UNIVERSAL SCALING RELATIONSHIPS FOR HARDNESS 3

1.2 Universal Scaling -Relationships for Hard-
ness

The functional dependence of hardness on elastic constants and lattice ener-
gies is justified because hardness is a measure of the resistance of a material

" to permanent plastic deformation. The mechanism for this deformation in al-

most all crystalline materials, including diamond [9], involves the movement of
dislocations, and so hardness will scale with the resistance to dislocation mo-
tion. Lattice energies offer a measure of the strength of atomic bonds. Since
the movement of a dislocation even by kink mechanisms requires the complete
breaking of 2 bond, dimensional analysis suggests that the stress (force/length?)
required to break this bond be proportional to the volumetric lattice energy
(force x length/length®). The scaling of hardness with elastic properties can
be justified as follows. To move a dislocation sitting in a minimum of a peri-
odic energy field, enough stress must be applied to overcome an elastic energy
barrier. For a given type of bonding the barrier height will be proportional to
the curvature of the energy well which is directly proportional to the elastic
shear modulus. Since the shear modulus is in general proportional to the bulk
modulus, the hardness and Peierls stress will then be proportional to the bulk
modulus as well. However, since the proportionality is indirect, one would not
expect the scaling to be universal. In particular, the shape of the energy well
will be a function of the type of bonding. For more directional bonding, the bar-
rier and thus the hardness will be larger for a given shear modulus. Figure 1.1
and Tables 1.1-1.3 show that the hardnesses of covalently and ionically bonded
materials are significantly larger than the hardnesses of metals of equivalent
stiffness.

The data used for in Figure 1.1 is shown in Tables 1.1-1.3 and were compiled
from a variety of sources. Structures come from Wyckoff [11], and unless other-
wise noted, single crystal elastic constants are taken from the Landolt-Borstein
handbook, series III, volume 29a [10]. Microhardnesses of ionic materials were
estimated from Mohs hardness values listed in Plendl and Gielisse [4] using a
parabolic curve fit by Beckmann [20] as described by Goble and Scott [5]. Most
other hardnesses were tabulated by Ivan’ko [12] and Holleck [13]. Average poly-
crystalline elastic properties are calculated following Simmons and Wang [21]
using an average of the Hashin and Shtrikman upper and lower bounds for cubic
materials [22, 23]. The data tabulated and plotted represent two or more com-
plete sets of single crystal elastic constants, except for the data for CN, BN and
ZrN. The CN data comes from a series of measurements at varying nitrogen con-
tent [14]. The BN data was included because of its technological significance.
The ZrN data was included for comparison with ZrC. The hardnesses of the
metals also represent two or more room-temperature microhardness measure-
ments. Since none of our modeling takes into account thermal effects, metals
with a melting point less than 25°C were excluded (K, Na and Pb).

Empirically, we see that hardness H, is directly proportional to the shear
modulus G, but that the constant of proportionality, A;, varies with the type
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Table 1.1: Crystal structures, nearest-neighbor distances b in A, elastic con-
stants c;j, elastic shear (G) and bulk (K) moduli, estimated Peierls strésses 7,
and microhardnesses of “covalently” bonded materials. All elastic constants in

GPa.

Material?® Structure® b €11 C44 ci2 G K T H,4
InSb Zn$ 2.81 66 30 36 23 46 1.8 22
InAs Zn$ 2.61 84 40 46 30 59 24 35
GaSh ZnS 2.65 88 43 40 34 56 2.9 4.3
GaAs Zn$ 245 120 59 54 47 75 3.9 7.0
Ge dc 2.45 130 67 48 55 75 4.9 7.2
Co.8Ng.2® amorph. - - - - 45 65 - 8.4
Si de 235 170 79 63 66 97 58 12
ZrNI1s] NaCl 2.31 - - - 150 270 6.0 15
Co.oNp.1 ¢ amorph. - - - - 74 110 - i6
TiN(16, 17] NaCl 212 630 170 170 190 320 7.5 20
ZrC NaCl 2.34 440 150 60 170 190 7.6 28
TiC NaCl 2.16 510 180 110 190 240 8.2 30
BNf Zn$ 1.57 820 480 190 410 400 39 50
C(d) de 1.54 1100 580 120 530 440 54 80

2References refer to source of elastic constants if not from Landolt-Borstein LBIII/29a [10].

bdc: diamond cubic.

®nearest-neighbor distances are derived from the lattice constants tabulated by Wyck-
off [11].

dHardnesses in general are from Ivank’ko and Holleck {12, 13]. Hardnesses of CN films are
from Yang {14]. Hardness of diamond is from Field [9].

®Young’s moduli are from Yang [14]. Shear and bulk moduli are calculated assuming
Poisson’s ratio v = 0.22. This value was determined by interpolation from a tabulation of the
Young’s moduli and Poisson’s ratio of other dc and ZnS structure materials.

fSingle crystal elastic constants are from Grimsditch et al. [18] and yield a bulk modulus
of 400 % 20 GPa. However, measurements {369 &+ 14 GPa) and calculations (363-370 GPa)
of bulk modulus by Knittle et al. [19] suggest that the results of Grimsditch et al. may be
systematically high.
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Table 1.2: Crystal structures, nearest-neighbor distances b in A, elastic con-
stants ¢;;, elastic shear (G) and bulk (K) moduli, estimated Peierls stresses 7,
and microhardnesses of “ionically” bonded materials. All elastic constants in

GPa.
Material®>  Structure B c11 c44 c12 G K Tp Hy©
KI NaCl 3.53 27 3.7 4.3 5.9 12 0.21 0.43
RbCi NaCl 3.29 36 4.7 6.3 7.6 16 0.27 0.43
KBr NaCl 3.30 35 5.1 5.5 7.8 15 0.29 0.43
s - Nal NaCl 3.24 30 7.4 9.0 8.5 16 0.32 0.43
KCi NaCl 3.15 41 6.3 6.9 9.3 18 0.35 0.43
NaBr NaCl 2.99 40 - 10 11 12 20 0.45 0.54
AgBr NaCl 2.89 56 7.3 33 8.8 41  0.24 0.67
CuBr ZnS 2.46 45 15 35 9.5 38 0.65 0.67
AgCl NaCl 2.77 60 6.2 36 8.1 44 0.21 0.75
NaCt NaCl 2.82 49 13 13 15 25 0.58 0.75
KF NaCl 2.67 65 13 15 17 32 0.62 1.0
LiBr NaCl 2.75 39 19 19 15 26  0.58 1.3
LiCl NaCl 2.56 49 25 22 19 31 078 1.3
NaF NaCl 2.31 97 28 24 31 48 1.3 1.6
ZnS ZnS 2.34 100 45 65 32 77 2.4 1.8
Cds ZnS 2.52 77 24 54 18 62 1.2 1.9
BaO NaCl 2.76 120 34 45 36 71 1.3 1.9
LiF NaCl 2.01 110 64 46 49 68 2.1 1.9
MnO NaCl 222 230 78 120 68 150 24 2.3
SrO NaCl 2.58 170 56 46 58 87 24 2.8
CoQ NaCl 2.13 260 82 150 71 180 24 3.8
NiO NaCl 2.08 250 110 110 90 160 3.5 4.4
NiQ NaCl 2.08 250 110 110 90 160 3.5 4.4
FeO NaCl 2.15 220 52 120 51 160 1.6 5.5
CaQ NaCl 241 220 81 60 81 110 3.4 6.0
MgO NaCl 211 290 160 93 130 160 5.8 11

#Elastic constants are from Landolt-Bérstein LBIII/29a [10].

bNearest neighbor distances are derived from the lattice constants tabulated by Wyck-
off [11].

“Microhardnesses estimated from Mohs hardness values (see text for details).
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Table 1.3: Crystal structures, nearest-neighbor distances b in A, elastic shear
(G) and bulk (K) moduli, estimated Peierls stresses 7, and microhardnesses of
bec, fcc and hep metals. All elastic constants in GPa.

Material>  Structure® be v G K Tp H,4
Al fee 2.86 0.35 26 77 0.0078 0.25
Cd hep 298 031 25 58  0.29 0.29
T Pd fec 2.75 0.38 47 190 0.0099 0.40
Th fee 3.60 0.30 90 20 00040 0.45
Mg hep 320 029 17 35 0.21 0.48
Zn hep 2.79 0.24 47 73  0.68 0.51
Au fcc 2.88 0.42 28 170 0.0038 0.67
Cu fec 2:56 034 48 140 0.015 ° 0.76
Ta bce 2.86 0.34 69 190  0.43 0.89
Ag fce 2.80  0.37 29 100 0.0073 0.96
Nb bcee 2.86 0.40 38 170 0.17 1.3
Zr hep 3.21 033 37 97 0.38 1.3
Ti hep 290 0.32 44 110 0.49 1.4
Be hep 223 0.03 150 110 3.5 1.7
Ir fee 271 0.25 220 360 0.15 1.9
Ni fec 2.49 0.30 84 180  0.037 1.9
Mo bee 2.73 030 120 260 0.93 1.9
Co hep 2.50 0.32 78 180  0.87 2.5
A% bee 262 036 48 160 0.26 2.5
Cr bee 2.50 0.21 110 160 1.2 2.5
Re hep 2.74 0.29 180 370 2.2 3.2

w bce - 2,74 0.28 160 310 1.3 3.5

2Elastic constants are from Landolt-Bérstein LBII1/29a [10].

Phee: body centered cubic, fec: face centered cubic, and hep: hexagonal close packed.

°Nearest neighbor distances are derived from the lattice constants tabulated by Wyck-
off [11].

dHardnesses are from Ivan’ko [12].




1.2. UNIVERSAL SCALING RELATIONSHIPS FOR HARDNESS 7

of bonding in the solid:
H, =AG. (1.1)

To capture the exponential dependence, we can define a new relationship for
Ai:

A; = Agexp(-Cy), (1.2)
so that
H, = AG exp(—C;), (1.3)

where C; is a function of the bonding type. For the following fitted values of
C;

H, = gexp(—l), H, = —gexp(—Q), and H, = %exp(—3), (1.4)
Fig. 1.2 shows that the majority of the data can be collapsed onto a single trend
line which spans from the softest metals and salts to diamond. In addition, a set
of hardness values from thin film specimens of nitrogenated amorphous carbon
lie close to the trend line as well.

A more analytical approach to the differences between classes of materials
involves estimates of the Peierls stress. The term “Peierls stress” not only refers
to the general notion of the stress required to move a dislocation a single Burgers
vector, but to a family of mathematical models of this stress first described by
Peierls and Nabarro [24, 25]. Essentially, these models offer a modification of
the continuum solutions for the stresses and strains around a dislocation by
incorporating an elastic shear stress restoring term along the slip plane which
is periodic in the Burgers vector. If this stress is assumed to be sinusoidal, an
analytic solution is possible which predicts finite strains at the dislocation core
and a Peierls stress of the approximate form:

where G is the shear modulus, v is Poisson’s ratio, h is the spacing between
slip planes, and b is the Burgers vector. In a recent review of the history of
these models of the Peierls stress, Nabarro [26], pointed out some errors in
the -original derivations and cited Huntington [27] as the accurate solution to
the problem as originally posed (the constants result from two Taylor series
numerical approximations in the derivation):

(0.15 + 01.0_3 1(/b/nh,) )G exp (_ 2_7:,_11 ) _ 1 (L6)

Tp =

A e}

Figure 1.3 shows hardness plotted as a function of the Huntington Peierls stress.
Table 1.4 lists the values of A and b used in the calculations. Except for the
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Figure 1.2: Log-log plot of bulk hardness as a function of a two-parameter curve
fit for 3 different classes of materials.

fcc metals and the transition metal carbides and nitrides, this model also works
relatively well. .

This section has shown that hardness scales very closely with elastic mod-
uli for a given class of material. Appendix A shows how one can use scaling
relationships between lattice constant and elastic moduli to design new hard
materials.

1.3 Hardness of Metallic Carbonitrides

Upon closer examination, both the empirical model of hardness and the Hunt-
ington Peierls stress model break down in one very technologically important
set of materials: the transition metal carbides and nitrides. All are interstitial
compounds with identical crystal structures and slip systems. Although the in-
corporation of Poisson’s ratio differences in the Peierls stress does make a small
difference, the mechanical hardnesses of ZrN and TiN are significantly less than
ZrC and TiC despite comparable values of the shear modulus and Huntington
Peierls stress (see Fig. 1.4).
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Table 1.4: Values of h and b for various crystal structures.

Structure h b h/b

dc {i11}/12  (112)/6 0.353
ZnS {111}/12 (112)/6 0.353
NaCl {110}/2 (110}  0.500
hcp? - - 0.720
bee . {110}/2 (111)/2 0.816
fec {111}/3  (112)/6 1.414

aTable 1.3 and Fig. 1.3 use this value of h/b which was ‘taken from Ref. (28]. For the hcp
metals, a value of approximately 1.414 is more appropriate and will shift the hcp metals into
the fcc scatter band, but this will not change the conclusions of this chapter.
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Figure 1.3: Log-log plot of bulk hardness as a function of the Huntington Peierls
stress for 3 different classes of materials.
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Figure 1.4: Plots of bulk hardness as a function of shear modulus and Hunting-
ton Peierls stress for TiC, TiN, ZrC & ZrN.

The simplest possible extension to the Huntington model of Peierls stress is
to incorporate a more accurate periodic restoring force along the slip plane. The
sinusoidal form of the restoring force was originally chosen because it made the
problem mathematically tractable and because there were few physical mea-
surements of non-linear elastic constants available at the time. Foreman [29]
first treated this problem analytically in 1951, and Bullough [30] offers a more
recent formulations.

Because this research was done in collaboration with the condensed matter
theory research groups of Professors Marvin Cohen and Steven Louie, we tried
to identify a method of calculating the restoring force on a dislocation using ab
initio atomistic computational techniques. The Peierls formulation requires only
the force-displacement curve obtained when two rigid half planes of material
are given a relative displacement along the slip direction. This curve can be
calculated from first-principles by taking two blocks of atoms and calculating
the total energy and internal stresses for a series of rigid displacements. In order
to avoid surface effects, one will actually calculate the energy and stress for an
array of slabs. As the slab thickness is increased, the force energy curve will
converge quickly to the solution of two infinite half planes.

Unfortunately, there is no natural way to constrain the deformation to be
localized between two specific planes. It is computationally simple to fix all
of the atom positions, but this technique is physically unrealistic because the
elasticity solution for a straight edge dislocation has displacements both in the
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direction of slip and normal to the slip plane. However, if you allow freedom
for the slabs to relax in the direction of slip, your crystal will relax all the way
back to the unstrained configuration. Any type of intermediate constrain would
require a priori knowledge of the deformation field. '

A more natural measure of a crystal’s resistance to shear is to perform a
stress controlled experiment and to allow all strains orthogonal to the applied
stress to relax. To calculate the Peierls stress in this manner would require a
simulation cell with a dislocation inside of it. Since dislocations actually move
by kink migration, a full three-dimensional calculation of 1000 atoms or more
is needed. This is currently at the upper limit of what can be done using ab
initio techniques with the best computers in the world. A much easier, but
still non-trivial, computation is to measure a crystal’s resistance to fully relaxed
simple shear. The maximum stress that a crystal can resist is the ideal shear
strength of the crystal, and this strength sets an upper bound on the mechanical
strength a material can have.

Ideal strengths are of interest in their own right, and may be sufficient to
explain the differences in hardness between TiC and TiN. The stress—strain
curves from the ideal strength experiments also can be incorporated into a more
general Peierls stress formulation.

1.4 Conclusion

A two-parameter curve fit or a simple Peierls-stress model describes the room
temperature hardness of a wide variety of materials. However, these models
do not account for the differences in hardness between the transition metal
carbides and nitrides. Accurate electronic structure calculations of the nonlinear
elastic behavior of TiC and TiN are proposed in an attempt to explain the high
hardnesses of the transition metal carbides.







Chapter 2

The Ideal Shear Strengths
of Al and Cu

2.1 Introduction

Let a hypothetical, defect-free crystal be loaded until the lattice itself becomes
unstable and the crystal spontaneously deforms or breaks. The stress at elas-
tic instability is the “ideal strength” [34]. The ideal strength is scientifically
interesting for at least four reasons [35].

First, the ideal strength sets an upper bound on the strength the material
can have. While it may not be possible to achieve the ideal strength in practice,
it is not possible to exceed it. There is both scientific and engineering value in
knowing the limits on what can be done.

Second, the ideal strength can be calculated ab initio for elemental solids
and ordered compounds. The upper limit of strength is, therefore, one of a small
number of problems in the mechanical behavior of materials that can actually
be solved from first principles.

Third, the ideal strength is approached in situations that are technologically
relevant. These include the low-temperature deformation of “inherently strong”
materials, such as diamond, Si, Ge, and, possibly, some of the transition-metal
carbonitrides, and also includes the nanoindentation of materials with low defect
densities. .

Fourth, the ideal strength is an inkerent material property. Understand-
ing its source and characteristics can help identify those aspects of mechanical
behavior that are fundamental consequences of crystal structure and bonding.
~ Since the ideal strength is determined by elastic instability, the possibil-
ity of calculating it has, in theory, been available since the development of
the pseudopotential theory made ab initio elasticity calculations practical [36].
However, substantial computational resources are required, and, until recently,

tThe material in this chapter is a combination of the research in Refs. [31-33].
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the calculations that were done were limited to tensile deformation along axes
of high symmetry [37-39] or shear deformation in simple (unrelaxed) shear [40-
42]. These constraints are unphysical, will always increase the predicted shear
strength, and may produce significant overestimates. It is now practical to find
the elastic limits for shear as well as for tensile deformation under fully relaxed
conditions (31, 32].

This chapter presents ab initio calculations of the ideal shear strengths of
Al and Cu. We also discuss the similarities and differences in the large-strain
elastic behavior of Al and Cu. In the fully relaxed case, the two have very
similar strengths (when these are expressed in dimensionless form), but very
different relaxation strains.

2.2 Method of Calculation

The total energies of Al and Cu are computed as a function of strain using the
LDA pseudopotential total-energy scheme with a plane-wave basis set [36, 43—
46]. The pseudopotential for Cu was generated including semi-relativistic correc-
tions [47], while the pseudopotential for Al was constructed without relativistic
corrections [48]. We used a cut-off energy of 40 Ry for Al and 70 Ry for Cu. A
grid of 2400 & points was used for Al. A grid of 1300 k£ points was used for Cu.
These choices ensure convergence to less than 1 mRy (0.013 eV) per atom.

The shear stress is found by straining the crystal in a series of incremental
simple shears, calculating the energy and volume as functions of the strain,
and taking the derivative of the energy with respect to the strain. The ideal
shear strength (in the low-temperature limit) is the maximum value of this
stress. In both Al and Cu the shear strength is minimum for shear on a {111}
plane in a (112) direction. It is, therefore, useful to refer the displacements
to a Cartesian coordinate system with a unit vector, eg, perpendicular to the
(111) plane and unit vectors e; and e, parallel to the [112] and [110] directions,
respectively (Fig. 2.1a). With this notation, an incremental simple shear in the
[112] direction on (111) takes the form

0 = 613(6163 -+ 6361). (21)

To increment the strain under fully relaxed conditions, we impose €13(= €31),
and adjust the other components of the strain tensor until their associated
stresses vanish (specifically, until the calculated Hellman-Feynman stresses are
< 0.05 GPa). Since €12 = €23 = 0 by symmetry, the relaxation strains are
stretches along the coordinate axes.

While there is no unique definition of finite strain [49], the three lattice
parameters, a<, are defined at each step of the deformation and can be described
by the three functions, a®(n}, where n is the number of incremental strain steps
in the simulation. a®(0) represents the unstrained lattice. If D(n,m) is the
Cartesian tensor that describes the deformation between steps m and n,

a’(n) = ai(m) + Dyj(n,m)aj (m). - (2.2)
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Figure 2.1: Tlustration of the atomic arrangement before and after unrelaxed
shear in Al and Cu. The cages give the original atom positions in the fcc
lattice, the solid spheres show atom positions at the point of shear instabil-
ity. The Cartesian coordinate system is illustrated at left: {e;,ez,es} =
{[112}, 0], [111]} -

Given D(n,m), the true strain, €, and the engineering strain, eZ, are defined by

n

1

eij(n) = 5 D _[Dij(m,m — 1) + Djs(m,m ~ 1)] (2.3)
and
ef(n) = %[Dz-j (n,0) + Djs(n,0)]. (2.4)

The derivatives of the energy with respect to the true strain define the stresses
that drive incremental deformation, and, therefore, the true strain is used to
calculate the stress.

The energy is a unique function of the strain, €;3, when either: (1) the
crystal is unrelaxed, so €13 is the only non-zero strain, or (2) the crystal is fully
relaxed, so setting the value of €13 fixes all the other strains. In either case, the
conjugate shear stress is

10E _ 1 0E
Va3 Voms'

T =013 = (2.5)
where v;; = €;; + €;; = 2¢;; is the shear, and V is the atomic volume at the
applied strain. The relevant shear modulys, G’, is determined by the second
derivative, 82E/8~2. For shear in the [112] direction on the (111) plane of fcc,
the shear moduli are

1
G, = Cg= g[Cn +c4q — c12] and (2.6)

1 3caalcin — 2
¢, = =itz (2.7)
55 44 T C11 — €12
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Table 2.1: Calculated and experimental lattice parameters and elastic moduli
for Al and Cu.

Al Cu
calc.  exp. calc.  exp.
lattice constant (A)® 412 405 357  3.61
Gl (GPa® 22+3 245 30+4 305
G! (GPa)® 27+3 248 40 + 4 40.8

“Experimental values from Ref. [11].
bShear moduli are defined by Equations (2.6) and (2 7). Experimental Voigt
elastic constants are from Ref. [10].

where G, governs the unrelaxed case, where ¢;; = 0 unless ij = 13 or 31 (=5
in the Voigt notation), G governs the relaxed case, o;; = 0 unless ij = 13 or
31, the ¢;; are the Voigt elastic constants for the cubic crystal, and ¢’ and s’
are, respectively, the Voigt elastic constants and compliances in the coordinate
system shown in Fig. 2.1. The moduli govern incremental displacements from
the current state and are, hence, functions of the strain.

2.3 Results

The results of the calculations are summarized in Tables 2.1-2.3 and in Figs. 2.2
and 2.3. Table 2.1 compares the calculated and experimental values for the
lattice constants and shear moduli at zero applied strain. The close agreement
indicates the relative accuracy of the calculations.

However, the fact that the computed lattice constant of Al is larger than the
experimental value indicates a slight problem with the pseudopotential chosen.
For metals, the local density approximation to density functional theory should
always results in some degree of “overbinding”: lattice constants are smaller and
bulk moduli are higher than experiment. [50] The computed lattice constants in
other LDA ab initio studies of Al at 0 K range from 3.97 A to 4.01 A [39, 51, 52].
All are smaller than the experimental value.

Fortunately, the small error in the pseudopotential is not likely to affect the
conclusions of this chapter significantly. The error does produce systematic “un
derbinding” in Al. The calculated bulk modulus {71 GPa) is 10% smaller than
the experimental value (77 GPa [10]). Errors in the computed ideal strength will
be significantly smaller than the error in elastic moduli because the strength is
determined from the first derivative with respect to strain, while the moduli are
determined from the second derivative of energy with respect to strain. Errors in
the slope of a smooth function are always smaller than errors in curvature. The
magnitude and direction of the atomic relaxation also should not be affected
greatly by the error in the pseudopotential.

Figure 2.2 shows the energy of Al and Cu as a function of the shear strain,
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Figure 2.2: a) Aluminum and b) copper energy versus engineering strain for
both the unrelaxed (A’s and smooth fit) and relaxed (®’s and dashed fit) cases.

E(v), computed both with and without relaxation, and figure 2.3 plots the
stress-strain curves, 7(7y), for the two materials studied in the fully relaxed case.
The stresses and strains at instability are tabulated in Tables 2.2 and 2.3. The
results show the importance of elastic relaxation, which decreases the shear
strength some 40% from the unrelaxed value. Interestingly, the normalized
shear strengths of Al and Cu in the fully relaxed state are essentially identical
(0.085@,.) and are much closer to the classic Frenkel estimate (0.1 G) than to
the more modern estimates that have been preferred in recent years [34].

Unfortunately, there are no directly comparable experimental data known
to us. The calculations relate, strictly, to perfect crystals in the limit of zero
temperature. There are no data known to us on dislocation-free Al, but Bren-
ner [53] did measure the strength of nominally dislocation-free Cu whiskers. He
found a tensile yield strength of 2.9 GPa for tension along (111), which trans-
lates into a critical resolved shear stress, 7., of 0.82 GPa (0.027 G..) for slip on
the {111} plane in the (112) direction. Brenner’s measurements were done at
room temperature, so the strength must be corrected to 0 K. While there is
no exact way to do this, a crude model described by Kelly and Macmillan [34]
suggests that 7.(0) =~ 2.57.(273) is not a bad estimate. Using this approxima-
tion, we project 7. & 1.1 GPa at 273 K, which is not unreasonable in light of
the Brenner result. A better test can be made by computing the strength of
high-melting-point materials, which should show a much smailer thermal effect.
This is done in Chapter 4.

The elastic strain at shear instability is tabulated in Table 2.3. The imposed
shear is 73, a displacement of the (111) planes in the [112] direction. The
relaxation strains are the stretches, €13 and ez in the (111) plane, and €33
perpendicular to it. The primary shear strain (y5 ) at instability is nearly the
same for Al and Cu (Table 2.3), and is significantly below the value (17.8%)
that a rigid-ball model would produce.-

However, the relaxation strains in the two cases (Fig. 2.1) are dramatically
different. Cu is relaxed by a shear in the (111} plane in which a contraction in the
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shear stress (GPa)
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Figure 2.3: Stress versus engineering strain for Cu (A’s and smooth fit) and
Al (#’s and dashed fit). The data points are the calculated Hellman-Feynman
stresses and the smooth curves are the derivatives of the smooth fits to the
energies.

Table 2.2: Ideal shear strengths with and without structural relaxations.

failure stress
TITI‘IB.X (GPa) T:;laX/G'II' Trtrblax (GPa)
Al 1.85+ 0.1 0.084 344+01
Cu 2.65+x0.2 0.088 4.0 £ 0.1

Table 2.3: Engineering strains at shear instability

failure strain (%)
vE € & & AV)V
Al 145 1 -3 3 14
Cu 13 -3 3 0.2 0.4
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direction of shear displacement (e;;) is balanced by a perpendicular expansion
(€22). The separation between (111) planes is almost unchanged (€33 small), so
the volume is almost constant. Al, on the other hand, is relaxed primarily by a
shear in the (112) plane, with €33 & —€ap > €13. The (111) interplanar spacing
increases by ~ 3%, and the volume increases by 1.4%.

2.4 Discussion

Both the similarities and differences in the behavior of Al and Cu merit discus-
sion. The most striking similarities are the crystallography of the shear that
produces minimum strength (the weak direction in both Al and Cu is in the
(112) direction in a {111} plane) and the virtual identity of the normalized
shear strengths. The most striking dissimilarity is the qualitative difference in
the relaxation strain.

2.4.1 The soft direction in shear

A shear in a (112} direction in a {111} plane in a material with the fcc crystal
structure is a shear that is associated with twinning in {111} and with the
partial slip at the boundary of a stacking fault in {111}. Hence one would
expect this shear to be the soft shear in materials like Cu that twin and form
stacking faults. However, Al has a high stacking fault energy, and one might
expect some other shear to be preferred. The reason that {112){111} is the soft
shear in Al can be explained by the fact that the applied shear is uniform and
the local atomic coordination near the instability resembles that of the relaxed
crystal more than that of a twinned or faulted one.

If a perfect crystal of Al were strained beyond its shear instability, the in-
stability would necessarily resolve itself in a shower of dislocations, twins or
stacking faults, whichever were easier to achieve. It is at this point that the
choice between total dislocations, partial dislocations or twins would be made.
Since even a small shear carries elastic energy equivalent to that of a high density
of dislocations, the elastic energy of a crystal strained to instability is sufficient
to carry it into whatever defect state is preferred.

2.4.2 The normalized shear strength

The close similarity between the normalized shear strengths of Al and Cu is
probably fortuitous. The unrelaxed shear strengths are not that close (=~ 0.13G%,
for Al versus = 0.1G), for Cu) and the relaxation patterns are very differ-
ent. Nonetheless, since our preliminary calculations for W also produce a shear
strength near 0.085G., this appears to be a common value for the ideal shear
strength of a metal.
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2.4.3 The relaxation strain

Detailed electronic structure calculations will be conducted in the near future
to examine the effects of the d electron core on the bonding of Cu and to
determine whether the presence of a d core can explain the dramatic differences
in the relaxation behaviors of Al and Cu. However, these differences can be
explained, qualitatively, from their elastic behavior. To phrase this discussion,
we first present the Voigt compliance tensors (Eg. (2.8) and (2.9)) for Al and
Cu in the form they take after transformation into the coordinate system shown
in Fig. 2.1:

0.0139 —0.0051 -0.0045 O  —0.0019 0
—0.0051  0.0139 —0.0045 O 00019 O
;. on_ | —00045 —0.0045 00132 0 0 0 )
saile=0) = 0 0 0 0.0408 0 0.0038 | CF2
—0.0019  0.0019 0 0 0.0408 0
0 0 0 0.0038 0 0.0380
2.8)
0.0077 -0.0038 —00014 0  —0.0060 0
-0.0038  0.0077 -0.0014 O 0.0068 0
;o | —00014 -00014 00052 o 0 0 -
Scule=0) = 0 0 o 00328 0  oo0i3s | GFa
—0.0069  0.0069 0 0 0.0328 0
0 0 0 0.0138 0 0.0230
(2.9)

Since the [111] direction is a three-fold symmetry axis in fcc, the compliance
tensor has a superficially trigonal symmetry; the non-diagonal elements s} and
shs do not ordinarily vanish. However, sj5 = —shs and, since sh; = 0, the
imposition of a shear stress in the [112] direction on (111), which is 713 (or t5
in the Voigt notation) produces a shear of type [112](111) that is relaxed by a
shear in the (111) plane, €17 = —e€a2, of precisely the type that is dominant in Cu
(Table 2.3). However, the value of s}5 is determined by the elastic anisotropy
factor, A (= (c11 — e12 — 2 c44)/c44), according to the relation

A

3v2(c11 — c12)caa (2.10)

P
S15 =

It follows that s/ increases with A, and vanishes when A = 0. The strong
elastic anisotropy of Cu has the consequence that its elastic, in-plane relaxation
is much greater than that in the more isotropic AL

A shear of type [112](111) breaks the symmetry of the fcc crystal. The
symmetry of the strained crystal allows si5 # —s55 and shy # 0, so there can
be a relaxation strain, es3, perpendicular to the (111) plane and a net volume
change. The symmetry change is exploited very quickly in the almost isotropic
Al crystal, which rapidly develops significant values of €33, €11 + €29, and AV.
In the anisotropic Cu crystal, in contrast, the finite-strain effect is small, and
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the relaxation strain is only slightly perturbed from its symmetry in the relaxed
state.

The qualitative difference between the relaxation strains of Al and Cu is
also observed experimentally. Approximate compliance tensors of Al and Cu at
the shear instability are presented below (Eq. (2.11) and (2.12)), as estimated
from the third-order elastic constants tabulated in (10]. Even though the exper-
imental data were taken at strains of only a fraction of a percent, the measured
third order elastic constants do predict that the sis and s4; compliances of Al
will change sign. The compliances also predict the relative magnitudes and sign
of the relaxations in Al, and the signs of the relaxations in Cu. Finally, one
can extract estimates of the sign and magnitude of the volume change with
applied shear by summing s, s; and s;. For Al, the volumetric compliance
is 1.4% and for Cu, 0.8%. These figures are again qualitatively consistent with
the theoretical results given in Table 2.3.

0.0135 -0.0055 -0.0027 0 00026 0
~0.0055  0.0154 —00072 O  —0.0063 0
b _ | —00027 —00072 00176 0O 0.0177 0 1
sai(e = 0.15) = 0 0 o 0033 0  oo0092 | SF2
0.0026 —0.0063 00177 0 0.0730 O
0 0 0 00092 0  0.0394
(2.11)
0.0087 —0.0046 —0.0027 0  -0.0128 0
—0.0046  0.0083 —0.0004 O 00109 0
. | —00027 —0.0004 00067 O 0.0097 0 1
scule = 0.13) = 0 0 o 0029 o o009 |CFe
~0.0128 00109 00097 0 0.0680 0
0 0 0 00109 0 00217
(2.12)

2.5 Conclusion

We have calculated the ideal shear strengths of aluminum and copper using
pseudopotential density functional theory. Structural relaxations orthogonal to
the applied shear significantly reduce the values of ideal shear strength, resulting
in strengths of 8-9 percent of the shear modulus for both Al and Cu. However,
the geometry of the relaxations in Al and Cu is very different. To some de-

. gree, this can be explained using experimentally measured third order elastic

constants.







Chapter 3

The Internal Stability
of an Elastic Solid!

3.1 Introduction

Chapter 2 presented, to this author’s knowledge, the first fully relaxed ab initio
calculations of ideal shear strength in any material and showed the importance
of structural relaxations orthogonal to the applied shear. Qur calculations also
revealed that the values of ideal strength were sensitive to the finite strain mea-
sure used to determine the stresses by differentiation. Before continuing our
computational research, we decided to rigorously examine how the thermody-
namic conditions of elastic stability apply to calculations of ideal strength.

It is sometimes useful to think of ordinary plastic deformation as a structural
instability, in which elastic stress drives a locally stable parent “phase” into an
instability that can only be resolved by creating or reconfiguring defects such as
dislocations, or by transforming to a new crystal structure. This perspective is
most natural when the parent phase contains no mobile defects and the defor-
mation is triggered by a stress so large that the lattice itself becomes unstable.
This elastic limit sets an upper bound on the mechanical strength a material can
have. Given recent advances in theoretical methods and computing machines
it is possible to calculate the elastic limits of real materials with considerable
accuracy, including both the theoretical stress and the detailed nature of the
atomic rearrangements as the elastic limit is approached {31, 32, 37, 39-41].

Despite periodic investigations over many years, however, the basic thermo-
dynamic criteria that govern elastic stability are not entirely clear [34, 55-59].
This creates an uncertainty in how first-principles calculations or simulations
ought to be done, and what their results have to say about the true limits of
strength. Even in the simplest case, homogeneous, quasistatic elastic deforma-
tion to failure, some clarification is needed in at least three separate areas: the

1The research presented in this chapter has been accepted for publication in Phil. Mag. A
(Ref. [54].)
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thermodynamic conditions for stability, the conditions of stability under load
control, and the most efficient approach to first-principles calculations.

The first problem concerns the conditions of stability. The analysis of elastic
stability is complicated by the fact that the states of interest are subject to finite
stresses and strains that change their symmetry and affect their mechanics.
Recent investigations of this subject [56-59] have begun from the perspective of
continuum mechanics and used the stability criterion

§F > W, (3.1)

which assumes fixed temperature and requires that the increment to the Helm-
holtz free energy in any real or virtual displacement equal or exceed the mechan-
ical work done by the applied stresses. The ambiguity in this approach [56] lies
in the nature of the mechanical work, which is done by some loading mechanism
that functions as a thermodynamic reservoir. To apply the stability criterion the
work must be evaluated to second order. While the various convenient measures
of the applied stress, for example, the Cauchy stress in real space and the stress
that is conjugate to the Lagrangian strain, have equivalent first-order effects,
they differ in the second order. As Hill [56] and Hill and Milstein {57] point out,
this has the consequence that the limit of strength changes with the nature of
the stress that is maintained by the reservoir. Recent investigations [39, 58, 59]
avoid this ambiguity by assuming that the Cauchy stresses are controlled, and
Wang et al. [59] use this condition to define a path-dependent “Gibbs integral”
that has the local features of the Gibbs free energy. But it is not completely
clear why this choice is more fundamental than any of several others, particu-
larly since it is not easy to design mechanisms that control the Cauchy stress
to second order.

The second problem concerns the conditions of stability for deformation un-
der mixed stress and strain control. In particular, the limit of strength that is
ordinarily of greatest interest is the strength under uniaxial stretch or simple
shear, with all other stresses fully relaxed. In this case the governing thermo-
dynamic potential includes only one strain variable and has only one modulus,
and one needs to know how the limit of stability determined by that modulus
relates to those that apply under more general conditions.

The third problem is the practical problem of finding the relevant limits of
strength by direct, ab initio calculations. Since these calculations are computa-
tionally expensive, it is important to obtain the desired information in the most
efficient possible way. In particular, it is critical to know how the instabilities
that are captured in the calculations relate to those identified by the thermo-
dynamic criteria, and whether the details of the calculations cause important
instabilities to be miscalculated or missed entirely.

To investigate these questions we return to Gibbs’ original formulation of the
conditions of stability [60] and apply the method to a homogeneous, elastic solid
under finite strain. Gibbs’ conditions govern internal stability and enforce the
requirement that the system be stable with respect to arbitrary reconfigurations
that do not alter its boundaries. They are, therefore, independent of the nature
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-of the external loads or the mechanisms that hold the boundaries in place.

As we shall see, the conditions of internal elastic stability are identical to those
derived from Eq. (3.1) when the loading mechanism fixes the Cauchy stress [59)].
Hence, the conditions of stability based on the Cauchy stress always apply.
Other loading mechanisms may introduce other conditions, which may be more
stringent, but cannot obviate these conditions of internal stability.

We then consider the conditions of stability under uniaxial deformation or
simple shear. In this case the conditions of stability relate to the single surviving
modulus. No new conditions of stability are added, but the conditions of internal
stability must still be obeyed, and instabilities that result from deformations
orthogonal to the chosen deformation may be missed.

Finally, we consider how to calculate the limits of stability and, in particular,
whether it is possible to obtain reasonable answers without computing the full
matrix of elastic moduli after each increment of elastic deformation.

3.2 The Conditions of Internal Equilibrium!

We use the notation employed by Eringen [61], with minor variations that should
be clear from context. A strained solid is described by the relations

T = ik(Xk) XK = XK(LL‘k), / (32)

where the zj, are coordinates in the current state (the “spatial” or “Eulerian”
frame), the X are coordinates in a convenient reference state (the “material”
or “Lagrangian” frame), and both sets of coordinates are Cartesian. The differ- .
entials of Eq. (3.2) are the “deformation gradients”, zj g and Xg i:

day, =z kdX g dXk = Xk pdzy. (3.3)
Defining the displacement vector, u, such that ¢ = X + wu,

T,k = Orx + kUL k XK x =0ex + gty g, (3.4)
where Uy and uy are, respectively, the components of « in the material and
spatial frames, Uy x and u;j, are the displacement gradients in the two frames,
and the Syx (= er - ex) are the “shifters” that relate unit vectors along the ma-
terial and spatial coordinates axes (they are Kronecker 8’s when the coordinate
axes coincide).

- The strain is ordinarily measured by the Lagrangian (Green’s) strain, a
tensor in the material frame whose elements are

1 1
Egp = §[$k,K«73k,L —0kir] = E[UK,L + Uk +UpxUpL] = Brx,  (3.5)

tThis derivation is the work of J. W, Morris Jr., but it is included here to provide context
for the following discussion and the following chapter.
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or by the Eulerian strain, the complementary strain measure in the current
frame:

. 1 1
ekl = -2—[5kz — XkrXki] = §[Uk,l + Uk + Up pUp,t] = €k (3.6)
The two strain measures are connected by the relation

Exr = Tk, kT, LEKI- (3.7)

When the displacement gradients are small (ug,; = dug,;) both strain measures
reduce to the linear strain,

1
€l = §[uk,l + Ul,k]~ (3.8)

However, when the displacement gradients are finite, both the strain measures
and their increments differ. In particular, if the material points are given the
small displacements, du, from their present positions [62],

1
SEkr = Tk, kTi,L [5(5%,1 + 5ul,k)] = T, Kk Z1,L0€k. (3.9)

We seek the conditions that are necessary for internal equilibrium. Let the
solid have a fixed temperature and composition, and a homogeneous mechanical
state that is controlled by its external surface (“strain control”). Its mechanical
equilibrium is, then, governed by the Helmholtz free energy, which must have
at least a local minimum value with respect to reconfigurations that keep the
boundary fixed. To phrase this condition mathematically, let the material parti-
cle, X, that is currently located at the position, x, within the volume, V, of the
body be given the small displacement, du(z), whose values form a differentiable
field over V. Equilibrium requires that

6F[du(z)] >0, (3.10)

where the variation is taken at constant temperature and composition and the
only displacements that are permitted are those that leave the boundary un-
changed.

The boundary constraint can be incorporated into the condition (3.10) by
the method of Lagrange multipliers, giving the equivalent condition [63],

SF[Su(a)] - / t;6um;dS > 0, (3.11)
S

where the ¢;; are constant Lagrange multipliers, du is the variational displace-
ment of the boundary element, dS, whose normal is n, and du(x) can now be
any differentiable vector field over V. Via the divergence theorem,

5F[5u(:z:)] - / tijéumde = 5F[5’U,(12)] — /tijéui,jdV

o v (3.12)

= 6F[6u(m)] - / tij(éeij + 5wij)dV >0,
S
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where 8¢;; = 3(8u; j+0u;;) is the incremental strain, and dw;; = 3(u;,j —6u;;)
is the incremental rotation.

The variation in the Helmholtz free energy is most easily evaluated in the
reference state, X, which has the fixed volume, V°:

SF[6u(z)] = / OFyo | s Brerav?®
vo |OFKL

p aFvo
-/ £ av,
,/VPO l:aEKL] Tk, kT, L€AY,

(3.13)

where 8 E is the increment to the Lagrangian strain, and we have used Eq. (3.9)
and the identity pdV = podV?° to transform the integral into the current frame.
Inserting (3.12) into (3.9), the condition of mechanical equilibrium can be writ-

ten
OF
/ { L—% [aE:’LJ Tk, KTLL — tkl] €l — tkz5wkz} av > 0. (3.14)
The condition (3.14) holds for arbitrary du; ; only if
1 =t (315)
and
p 8Fvo 1
=L |25 |1 : 3.16
Kl 2 [aEKL] [2($k,K$z,L + mz,K:Uk,L)} ( )

Equation (3.16) is, in fact, the thermodynamic definition of the Cauchy stress
[61], and establishes that our multipliers are precisely the elements of the Cauchy
stress tensor (as they must be [63]).

To find the conditions of mechanical stability we need to develop the vari-
ation of the free energy to the second order. The Helmholtz free energy of an
elastic solid is usually and conveniently written as a function of the Lagrangian
strain. For fixed composition the free energy density in the reference state is,
to second order

1
FVO(EaT)gFVO(T)‘l'TKLEKL-’r§CKLMNEKLEMN, (3.17)

where V0 is the volume in the reference state,

OFyo } (3.18)

is the conjugate stress in the reference state, and

82 Fyo

CKLMN = [m (3.19)

E=0
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are the elastic moduli.
To first order in E, 4 x = dkx + OkpEpg. The variation of FJ) in an
incremental strain is then, to second order,

8Fvo 2 [tk rak k1L + ckLMNEMnOekOin] b€

= [txr + ("ML N + Tk MOLN + ek LM N ) ErmN] Ok din0€r

1
={TKL+ [§(TML5KN + e MOLN

+7NLOxm +TeNOLM) + CKLMN] EMN}5kK5zL56kz,
(3.20)

where we have used the symmetry of the Lagrangian strain tensor, Fxr, and
have also used the Voigt symmetry of the tensor of elastic moduli, cxrarn. If
we now multiply by the density ratio then, to second order,

[ﬁg] §Fye = [1 — Eppl6Fyo
p

(3.21)
= {rxr + BrimNEMn}orrdinden,
where the elements of the tensor
1
B == ) )
KLMN 2(TML KN + TKMOLN (3.22)

+TnL8rm + TENOLM — 2TKLOMN) + CKLMN

are the moduli that govern the variation of the Cauchy stress with strain from a
stressed reference state [64] (the form in Hill [56] is for the special case, p = pg):

tee = {rxL + BkLmMnEMN}Ouk 1L (3.23)

Note that Bxrun # Bunikr; the Bixryn do not have full Voigt symmetry.
We are here concerned with the necessary conditions for stability on incre-
mental strain from a stressed reference state. In this case,

EMN = 6EMN = Im,MSUn,N(sémn, (324)
so, to second order,
1
[pﬁo] 0Fyo = 70F = Tiabews + Msimnderidemn, (3.25)
where V is the volume in the current configuration,
Tht = TKLOkKOIL, (3.26)
and
1
Akimn = §[BKLMN + BunkLl0kk01L0mMmOnn

1
= Cklmn + §[Tkm5ln + Tkn5lm + Tlm(skn + Tlnakm ~ Tkt0mn — Tmn6kl]y
(3.27)
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where Cipimn = CKLMNOEKOILOmaronn. The tensor, A, is the symmetric part of
the tensor, B, and has full Voigt symmetry:

Aijkt = Njikt = Asjie = Awiig- (3.28)

Substituting Eq. (3.25) into the inequality (3.14) yields necessary conditions for
a stable internal equilibrium. The first-order term gives

them = Thm, (329)

which requires that the applied (Cauchy) stresses be equal to the thermody-
namic stresses that are obtained by differentiating the free energy density with’
the current configuration as reference state. The second-order term provides the
necessary conditions of internal stability. These are embedded in the quadratic
form

Aijrib€ijoer > 0, (3.30)

which must be non-negative for arbitrary values of the incremental strains. Since
the A;;x1 have Voigt symmetry the stresses, strains and moduli can be written in
the usual Voigt notation. Setting t11 = ¢1, tas = to, t33 = €3, tog = t4, t13 = is,
t12 = tg, and making the same replacements for de;; and A;;k, the condition of

stability is

Aij(SE,'(SEj Z 0, (331)
where '
1 ot; Btj _
AZ:’ - 5 [661 + a_e‘i:fek B )\]z, (3.32)

where the subscript means that all other ¢; are to be held constant. Internal
stability requires that the 6 x 6 matrix of moduli, A;;, be positive semi-definite.
The moduli, A;;, depend on both the stresses (r; = ¢;) and the elastic moduli,
cij. Since A is a symmetric matrix, it can be brought into diagonal form with
eigenvalues, A\, and eigenvectors, é7,, so that

Aijdeide; = > Aabradna > 0. (3.33)

Since the eigenvectors, 7, are orthogonal (or can be made so), stability requires
that all of the eigenvalues be positive. Internal stability is necessarily lost when
the least eigenvalue (Amiy) first falls to a negative value; the limit of elastic
stability is, therefore, reached when

)\min =0. (334)

Note, finally, that when the elastic strains are small, the stresses are small
compared to the elastic moduli. Then the equations of linear elasticity apply
and

2 J
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In the linear elastic limit the conditions of internal stability reduce to the fa-
miliar condition that the 6 x 6 matrix of elastic moduli, ¢;;, have no negative
eigenvalues. )

3.3 Discussion

We began this chapter with a list of three problems: the conditions of stability,
stability when some of the loads are conirolled, and the proper computation
of the limiting strength. We are now in a position to discuss each of them.
We shall also discuss three specific cases of particular interest: the cubic solid
under hydrostatic pressure, the tetragonal solid under tension along {100}, and
the monoclinic solid under shear in (112){111}.

3.3.1 The conditions of stability

The necessary conditions for internal stability are contained in Eq. (3.31) and
are given succinctly in Eq. (3.34). These conditions govern internal stability and
are, therefore, independent of the nature or behavior of the loading mechanisms.
However, Eq. (3.31) is derived from Eq. (3.11), which is the form Eq. (3.1)
takes when the loading mechanism fixes the Cauchy stress. It follows that
the conditions of internal stability are identical to the conditions of mechanical
stability that pertain when the Cauchy stress is controlled [59]. If the loading
mechanism that is actually used or supposed in a particular case fixes a set
of stresses other than the Cauchy stress, it may impose additional conditions
of stability, which may be more stringent than those presented here (see, for
example, Hill’s discussion of rotational instabilities under dead loading [56]).
Still, the conditions of internal stability always apply and are, in this sense, the
fundamental conditions. It is appropriate to use them to define the ultimate
strength, since the strength cannot exceed the values they allow.

The conditions of stability (3.31) differ from those used in recent work [39, 65]
in that only the symmetric part, A, of the Wallace tensor, B, appears. This
happens because the asymmetric part of B does no work in an infinitesimal
deformation from the reference state (Wang et al. [59] recognize this but use
the asymmetric tensor to set the conditions of stability, for reasons that are
unclear to the present authors). The difference is small in the cases we have
examined.

The identity of the internal conditions of stability with those based on the
Cauchy stress shows that the same conditions pertain when the boundary con-
ditions fix the displacement, the Cauchy stress or any combination of displace-
ments and stresses on different parts of the boundary. Many of the most impor-
tant practical cases fall in the mixed regime. The simplest are uniaxial tension,
in which the material is stretched along a particular axis, and simple shear, in
which the material is sheared on a particular plane under conditions that are
otherwise relaxed.
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When the loading mechanism fixes a stress other than the Cauchy stress the
internal conditions derived here remain necessary, but may no longer be suffi-
cient to guarantee elastic stability. The second-order response of the loading
mechanism may lead to instability before the internal limits are reached. A
simple example is a sample under a fixed, uniaxial compressive load; its con-
figuration is unstable with respect to rotations off the axis. Hill [56] poses the
problem and treats the conditions of stability under dead loading in some detail.
A comprehensive investigation of this issue is needed, but is beyond the scope
of the present chapter.

3.3.2 Loading in tension and shear

The simplest cases to picture or analyze are those in which we increment a single
strain, e, while fixing the other five ¢4 (“unrelaxed uniaxial strain”) or relaxing
the stresses, tg, conjugate to the five eg (“relaxed uniaxial strain” or “uniaxial
stress”). In each of these cases there is only one effective elastic modulus. In
the unrelaxed case this modulus is

Ota
Aaa = | — >0, 3.36
[66(1 } €3 ( )
while in the relaxed case it is
1 Ot IA|
aa &= T = |3 = >0, 3.37
oo = o= = | 52] = (3.37)

where Greek letters label indices that are not summed if repeated. The relaxed
modulus, B4, is the reciprocal of the compliance, s,, the aa component of the
tensor, s, that is inverse to A and governs the change of the infinitesimal strains
with the Cauchy stresses. It is, therefore, equal to |A|/A*®, the determinant of
A divided by the cofactor of A,,. By LeChatelier’s Principle [66], for changes
emanating from any given state,

Aazcvc z chwu (338)

so the relaxed deformation sets the more stringent limit and leads to a lower
ultimate strength. (The equality holds for an isotropic material, as is confirmed
by direct calculation for W, which is nearly so. See Chapter 4.) It follows
from the final form of Eq. (3.37) that a zero of 8., always corresponds to a
zero of the determinant [A|, and, hence, to a zero of one of its eigenvalues.
Relaxed strain does not add any new condition of stability. However, it is well
known that the use of Eq. (3.37) can overestimate the limit of strength since
other instabilities may intrude prior to its first zero [55]. These instabilities are
necessarily associated with simultaneous eigenvalues of A and A®* that divide
out on the right-hand side of (3.37). Any such eigenvalue must be associated
with an eigenvector that is orthogonal to €. As we shall see below, in the cases
of interest there are eigenvectors that are orthogonal to the direction of load, e,
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by symmetry, while others are accidental, and due to the specific values of the
Ai; in a particular state. A well-known physical example of the intrusion of an
instability is the deformation or failure in shear of a sample pulled in uniaxial
tension. Similar instabilities have been seen in simulated cases of deformation
under uniaxial loading [39, 58, 67, 68].

3.3.3 Instability in compression, tension or shear

The deformation modes that are most commonly studied are hydrostatic com-
pression, uniaxial tension, and simple shear of initially cubic solids. It is useful
to take a moment to summarize the results for these cases.

Hydrostatic compression

Cubic crystals under hydrostatic compression (or tension) were studied in some
detail by Wang et al. [58, 59]. The crystal retains cubic symmetry, so the A;;
have only three independent values:

AMi=Ap=Agz=cu1—~ P
A=Az =Xz =ci12+ P (339)
Mg = Ass = Agg = €44 — P

with all other A;; = 0. The determinant
IAI = )\443()\11 - /\12)2(/\11 + 2/\12) (3.40)
is easily factored, yielding three independent conditions of stability:

C44-—PZO
C11 — C12 ~— 2P Z 0 (341)
ci1+2c2+P2>0.

The third condition relates to the bulk modulus. The first two concern the
shear moduli and reveal a tendency toward instability in shear when a material
is compressed. Note that in the fluid limit, c4a — 0, c11 — 32 — 0, and
the material is unstable in shear when it is compressed but is stabilized by a
hydrostatic tension. The “tensile strength” of a fluid in tension is due to Van
der Waals’ spinodal instability when the bulk modulus is no longer sufficient to
support the tensile pressure. ‘ '

Tetragonal extension

Let an initially cubic crystal be stretched to instability along [100], a situation
of obvious interest that has been studied by a number of investigators [37, 39,
41, 55, 68]. The crystal becomes tetragonal as soon as a tensile strain is applied
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with the consequence that the modulus tensor (A or ¢) takes the form shown in
Eq. (3.42), with five independent components:

A1 A2 A2 O 0O
Az Az Az 0 0O
b A2 Aoz A O 0 0
A=10 0 0 A 00 (3.42)
0 0 0 0 Ass 0
0 0 0 0 0 As |

The applied stress, o, affects only the components of A that involve the [100]
axis:
Aun=cu+to
A1z =c12—0/2

3.43
Ass = ¢35 + 0 /2 ( )
Aij = Cij (all others).
The determinant of A is given by
Al = (Aaz — A2z)Aaadss® [Aar (M2 + Aaz) — 22127 (3.44)

Its zeros determine four conditions of stability; two of which explicitly involve
the applied stress:

(c11 + 0)(con + e33) > 2(caz — 0/2)*  (3.45)

Ar(Aaz + Aa3) > 2007 =
A2z > Ao = Ca2 = €23 (3.46)
)\44 >0 = cqs > 0 (3.47)
Ass > 0 = Cs5 > —0‘/2. (348)

Eq. (3.45) differs slightly from the forms presented by Wang et al. [59] and by
Li and Wang [39]. The difference is due to the symmetry of A, which makes a
correction of order (o/c12) to the right-hand side, slightly delaying instability.
This term is, ordinarily, small. The modulus that governs a fully relaxed stretch
along [100] is

. “1 Ai(Aez + Ags) — 227
_ 1 _ M1tz 23 12
P11 = (s11)7" = pY——— ) (3.49)

where 11 > -Aj1, for an unrelaxed stretch in the same direction. The crystal is
unstable with respect to a relaxed stretch on [100] when the condition (3.45) is
violated. Since the stretch is tensile, the elastic instability can be accommodated
by cleavage on (100). Because a relaxed stretch in any (100) direction in a bec
crystal produces the fcc structure after a strain of about 0.26 (the Bain strain),
the strain of instability will also be approximately 0.13 or less. This (100)
stretch instability strain is significantly smaller than the instability strain for
shear in a (11) direction (~ 0.18) (see Chapter 4) and is much smaller than
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the instability strains for stretches along (111} or (110) [68]. This fact that bcc
crystals necessarily become unstable after a relatively small stretch along (100)
is presumably responsible for their tendency to cleave on {100}.

The conditions (3.46)—(3.48) relate to shear strains whose eigenvectors are
orthogonal to €; by symmetry. The shear instabilities do not produce zeros of 511
and may intrude prior to elastic failure by stretch. Shear instabilities of the type
(3.46) have been found to intrude in model studies of fcc crystals prior to the
zero of 511 [68] and appear to be the characteristic strength-determining feature
for fcc materials stretched on (100). This is expected on physical grounds; fcc
crystals stretched in tension on (100} usually fail in shear, via slip on {111}.

Simple shear

Let an initially cubic crystal be sheared in one of the common slip systems:
(112){111} in fec, or {111){110}, {111){112} or (111){123} in bec. In each of
these cases we can refer the cubic crystal to an orthorhombic cell whose edges
parallel the slip direction (for example, [112] in fcc), the normal to the slip
plane ([111] in fcc) and a direction perpendicular to both ([110] in fcc). Shear
on the slip plane in the slip direction distorts this cell into one with monoclinic
symmetry. If ¢g is taken to be the shear in the slip plane, the tensor moduli
then take the form (3.50), with 13 independent terms:

)‘11 A12 )\13 0 0 )‘16
Az Aoz Az 0 0 Age
ol A3 Az Az 00 0 Ags
A=10 0 0 M As O (3.50)
0 0 0 A5 Ass O
A6 A2 Azs 0 0 g
Only four of these include the shear stress:
A6 = C16 + 0'/2
)\26 = C2¢ -+ 0‘/2
/\36 = C36 — 0’/2 (351)
A5 = €45 + 0’/2
Aij = €35 (all others). .
The determinant of A can be written
IA] = (Maadss — Aas®) [Agl, (3.52)

where A4 is the 4 x 4 matrix obtained from (3.50} by removing the elements
associated with €4 and e5. A4 contains the maximum possible number of inde-
pendent elements (10) and cannot be factored in any particularly useful way.
The modulus for relaxed shear along ¢g is

Bes = (s66) ™" = |Aal|Asl, (3.53)
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where Ag(= c3) is the 3 x 3 matrix of terms associated with ¢;, €2 and €.
Bes is independent of the factor [Agqdss — A452], which governs stability with
respect to shear in two perpendicular planes. However, since neither |A4] nor
|As| can be factored, any other instability prior to the zero of fgs would be
fortuitous. Instabilities along €4 and €5 can be relevant. For example, in Al and
in (presumably) most other fcc materials, any finite shear in the [101], direction
on the (111) plane is unstable with respect to rotation toward [112] or [112] The
relaxations that accomplish this rotation are shears along e; and e5.

3.3.4 Ab initio calculations of the elastic limits

Recent advances in theoretical methods and computing machines make it pos-
sible to calculate the energies of distorted crystal lattices to very high accuracy.
The computations are tedious, however, particularly when the distorted solid
has low symmetry. For this reason most first-principles calculations of the elastic
limits have studied the behavior of materials with primitive lattices in uniaxial
stretch along axes of high symmetry [37, 39], or simple shear in one of the pre-
ferred slip systems [31, 32, 40, 41]. Simpler models have been used to clarify the
symmetry rules that locate extrema in simple crystal structures under various
types of loading (Ref. [68] and references cited therein), or to conduct molecular
dynamic studies of the approach to elastic instability [58, 59, 65].

The most straightforward way to calculate elastic limits from first principles
is to simply stretch, compress or shear the crystal in the desired direction,
compute the elastic energy and the relevant Cauchy stress as a function of
strain, and look for the maximum of the stress. In the relaxed case, which is
clearly the most informative, the crystal must be reconfigured at every step to
relax- the lateral stresses. This can be done in a straightforward manner by
computing the stresses via the Hellman-Feynman method and reconfiguring the
atoms until the lateral stresses relax to zero (see Chapter 2). In the general
case, the Cauchy stress is found by computing the energy increment in a small
incremental strain. When the total strain is small, however, as it is to a fair
approximation in structural metals under simple loading even at the elastic limit
(see Chapter 2), linear elasticity applies and the Cauchy stress is given by the
slope of a plot of the free energy as a function of strain. In that case elastic
instabilities are identified by inflection points in the free energy curve.

This uniaxial procedure has the disadvantage that it yields only an upper
bound on the theoretical strength. As discussed above, instabilities along eigen-
vectors perpendicular to the direction of stretch are not seen, and may intrude
at lower values of the stress. The only mathematically rigorous way to ensure
that all of these are found is to compute the full set of elastic constants after
each strain increment and test for zeros of |A|. Practically, however, it is only
necessary to apply a set of small triclinic distortions and to allow relaxation
from the distorted states. Omly if all of these triclinic distortions are fortu-
itously parallel to the minimal eigenvector of A will any instability be missed.
Unfortunately, since a triclinic crystal has no symmetry other than the inversion
operation, these computations are still difficult to do.
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By combining the uniaxial procedure with a few low symmetry distortions
and a bit of physical insight, one can obtain answers that are very likely to
be right. If one has computed both the strength in tension along the obvious
symmetry axes and the strength in shear in the common slip systems then one
can test the probability that slip intrudes prior to tensile failure by computing
the resolved shear stress under a tensile load that approaches the theoretical
strength. If the shear stress is well below the relevant shear strength, shear
instabilities are unlikely. A similar method can test the likelihood that tensile
failure intrudes during deformation in shear. If these or other orthogonal in-
stabilities are possible, they will almost certainly pertain over a range of strain
prior to instability in uniaxial load. It should ordinarily be sufficient to test the
crystal with small triclinic distortions at a few isolated points prior to insta-
bility. This is particularly the case in relaxed shear (see Chapter 2) since the
reconfigurations that are necessary to relax the stresses sample all deformations
but €4 and e5.

3.4 Conclusion

The internal conditions of stability are found by applying Gibbs’ criterion that
the material be stable to all reconfigurations that do not alter its boundary. The
conditions of stability are contained in the requirement that A;jpide;j0ep > 0
for all infinitesimal strains, where Ajjri = 1/2(B;jx;+ Byuij), and B is the tensor
that governs the change in the Cauchy stress (¢) during incremental strain from
a stressed state (T): t;; = Tij + Bijribers. Since A has full Voigt symmetry,
it can be written as the 6 x 6 matrix, A;;, with eigenvalues, A,. Stability is
lost when the least of these vanishes. The conditions of internal stability are
shown to be equivalent to those derived previously for a solid in contact with a
reservoir that fixes and maintains the Cauchy stress. Mechanisms that control
stresses other than the Cauchy stress may add additional conditions of stabil-
ity, which may be more stringent, but cannot obviate these. The conditions of
stability are exhibited for cubic (hydrostatic), tetragonal (tensile) and mono-
clinic (shear) distortions of a cubic crystal and some of their implications are
discussed. Elastic stability and the limits of strength are now being explored
through first-principles calculations that increment uniaxial stretch or shear to
find the maximum stress. This method produces an upper bound, but it may
not be the least upper bound since orthogonal instabilities may intrude before
it is reached. This possibility can often be recognized or dismissed on the basis
of a few supplementary calculations.
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Chapter 4

The Ideal Strength of
TungstenT

4.1 Introduction

4.1.1 Tungsten as an further example

Chapter 2 looked at the ideal shear strengths of the fcc metals Al and Cu. In
this chapter, we examine the ideal shear and tensile strengths of bce tungsten.
Tungsten was chosen for three reasons. First, it is a good example of the bec
transition metals, which provide technologically important structural materials.
The most important of all, of course, is Fe, but the ferromagnetic interaction in
bce Fe makes it a very difficult subject for fundamental study [69]. Tungsten is
a more tractable example.

Second, bec transition metals like tungsten have complex and interesting me-
chanical properties [70]. They commonly shear on at least three different crystal-
lographic slip systems, (111){110}, (111){112} and (111){123}, and sometimes
exhibit such a mixture of these (and, possibly, others) that their deformation is
described as “pencil glide” on arbitrary planes that contain (111) [71]. Despite
this multiplicity of slip systems, bcc crystals are characteristically brittle at low
temperature, a behavior that, in the case of Fe, is responsible for a good many
of the better-known engineering disasters of the industrial age. It is of interest
to know whether these characteristic behaviors of bec crystals are reflected in
their ideal strength.

Third, tungsten was chosen because there has been an ab initio study of its
tensile behavior [38], which provides a cross-check on the accuracy of the results.

tThe research presented in this chapter has been submitted for publication (Ref. [33].)
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4.1.2 Choice of strain paths

The ideal strengths of all crystalline solids vary with the geometry of the applied
strain. For example, the strength of a model fcc crystal stressed in shear on a
{111} plane in a (112) direction will always be lower than the strength for shear
in a (110) direction on the same plane. Fortunately, principles of symmetry and
exploratory calculations have shown that highly symmetric loading geometries
set the upper and lower bounds of strength. Most important are the lower
bounds, and it follows that we must calculate separate strengths for shear and
tension in only a small number of high-symmetry loading configurations.

We shall specifically consider five simple configurations: uniaxial tension
along (100), shear on the three common slip systems, and shear on the un-
common system (110){110}. We justify these choices on the following grounds,
which we shall discuss in further detail in the body of the chapter.

The tensile calculation is done along (100) because symmetry arguments [72],
prior computations [38] and empirical testing [73] all identify the (100) axes
as the weak directions in tension and the {100} planes as the cleavage planes.
Similarly, experimental data [70] and symmetry considerations (that were found
in the course of this work) all identify slip in (111) directions on {110}, {112}
and {123} planes as comparable candidate systems for the minimum strength
in shear. The (110){110} system is treated as an example of an unfavorable
shear.

We have not specifically treated multiaxial stresses. However, both prior
pseudopotential calculations by Soderlind and Moriarty [42] and our own ex-
ploratory calculations with “embedded atom” (EAM) methods [74] suggest that,
excepting very high hydrostatic pressure, secondary stresses do not have an im-
portant effect on the ideal strength.

4.1.3 Definition of the ideal strength

Even when the stress is uniaxial there is some ambiguity in the definition of the
ideal strength (see Chapter 3). In a laboratory test, elastic stability is a joint
property of the material and the loading mechanism [56, 57]. The maximum
value of the measured strength depends on the response of the loading mecha-
nism to second-order displacements [56]. We use the analysis of ideal strength
developed in Chapter 3 and define the ideal strength by the limit of internal
stability, the stress at which the crystal first becomes unstable with respect to
quasi-static distortions that do not displace its boundary. The ideal strength
that is measured in this way is equal to that which would be measured in a
test with a load frame that fixed the Cauchy stress (force per umit area in the
current configuration) to the second order [58].

As derived in Section 3.2, if the current state of the crystal is described
by the Lagrangian strain, E, and the Cauchy stress, o, its internal stability is
governed by the fourth-order tensor A:

1
Aijkt = Cijrl(E) + ‘2‘(0'ilc5jl + 0k + ojkbu + 0k — 00k — oxi0i5), (4.1)
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where ¢ is the tensor of elastic moduli at strain, E. Stability requires that A
{or, more simply, its 6 x 6 Voigt form) have no non-zero eigenvalues. Since
both ¢ and o change with strain and A has six independent eigenvalues, testing
stability can be a formidable task. '

Fortunately, if the deformation is uniaxial and fully relaxed, the strength
defined by the limit of internal stability (the ideal strength) is ordinarily just
the maximum value of the conjugate Cauchy stress. This is true unless the
solid is unstable to perturbations that are orthogonal to the direction of the
applied load. Orthogonal instabilities are unlikely unless the load is along a
direction of high symmetry, and can be revealed by periodically perturbing the
crystal with distortions that create triclinic symmetry (see Chapter 3). When
the deformation is uniaxial and fully relaxed, the elastic limit is not difficult to
find in practice.

Unfortunately, even these techniques miss dynamic instabilities, such as
those caused by “soft phonons” or anharmonic vibrations. The ideal strengths
computed here refer to the limit of internal stability under quasi-static defor-
mation in the low-temperature limit.

In the following we first compute the ideal strerigth of W in uniaxial tension
along (100) and compare the results to prior work. Second, we compute the ideal
strength in shear for the three experimentally observed slip systems, {111){110},
(111){112} and {111){123}, and for the alternate system (110){110}. The re-
markable result of this calculation is the almost identical value of the ideal
strength for (111} slip on the three different slip planes. Third, we discuss the
symmetries of the deformations considered. Symmetry considerations let us
formulate simple models that approximate the ideal strengths to within a few
percent and explain the degeneracy of the strengths in shear along (111). Fi-
nally, we compare the results to experimental values reported from both tensile
tests of tungsten whiskers and nanoindentation measurements on tungsten films
and discuss the differences.

4.2 Computational Methods

The computational procedure used here was essentially the same as that of
Chapter 2. The tungsten unit cell is defined by three lattice vectors, a® (a =
1,2,3) and placed in a Cartesian coordinate system with axes e; (1 = 1,2, 3).
The lattice vectors a! and a? are taken to lie in the plane of e; and e;. The

- unit cell is deformed by incremental changes in the lattice vector, a®. To model

uniaxial tension along {100], a® is incremented by Aa® in the direction of e,
which is parallel to [100]. To model shear in the system [abc](hkl) the coordinate
vectors e; and ey are taken to lie in the plane (hkl) with e; parallel to the
direction [abc]. The deformation is accomplished by incrementing a® by Aa? in
the direction of e;. :

The deformed lattice vectors, a®, define the current shape of the unit cell
and, hence, the current positions of all the atoms. When the deformation is fi-
nite, there is no unique way to translate this information into a tensor strain [49].
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But there is a unique measure of the stress that governs mechanical stability:
the Cauchy (or “true”) stress, which is the applied force per unit area in the
current configuration of the crystal (Chapter 3). As in Chapter 2 we define
strains and estimate the Cauchy stresses as follows:

Let a®(0) be the o? lattice vector in the unstressed bcc crystal, and let
a®(n) be its vector value after the n** incremental step in the deformation.
The net deformation between steps m and n is defined by the tensor D(n,m):

ag(n) = af(m) + D;;(n,m) a;‘-‘(m). (4.2)
The incremental strain in the n** step, Ae(n), is, then
1
Aeij(n) = 5 [l)z_7 (TL, n— 1) + Dji(n,n -~ 1)] , (43)

and we can define a “true” strain as

n

eis(n) = Y [Aeiz(m)). (4.4)

m=1

Since the values of €;;(n) are sensitive to the number of steps in the simulation,
it is useful to define a measure of strain independent of this, the engineering
strain:

eij = 5 [Dij(n,0) + Djs(n, 0)] - (4.5)

Note that the engineering strain e;; is just the linear part of the Lagrangian

strain, Fy;:

Eij = [Dij (n, 0) + Dji (n, 0) + Dk,-(n, O)ij(n, 0)] . (46)

N

The Cauchy stress o in the nt® step can be estimated in three ways. First,
the stresses can be found from the change of the total energy U with the con-
jugate incremental strains:

1 [AU(n)
7ii(n) = V(n) [Aeﬁ(n)] ’ (47)

where V(n) is the current volume of the crystal. However, this definition is
very sensitive to small errors in U and a®. Since, in most cases, U and a® vary
smoothly and continuously with strain, differentiating a smoothed fit through
a plot of U versus “true” strain reduces errors in stress at each point:

170U

In the limit of small Ae (large number of steps for a finite strain), this will
converge to the thermodynamic definition of the Cauchy stress. Equation (4.8)
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offers the most precise estimate of stress from the available data, but we do note
that, in the cases studied here, the strains are small enough that the stresses
are also well approximated by the derivative of the energy with respect to the
engineering strain. The third way to determine the stresses is from the Hellman-
Feynman theorem [75, 76]. The directly calculated stresses have less precision
than the energy, because the energy is calculated variationally. However, they
have the advantage that they are independently calculated for each strain, and
thus provide a check that our strain increments are sufficiently small.

In the present work, the quasi-static {T=0) energy of the deformed crystal
and the Hellman-Feynman stresses were calculated using the local density ap-
proximation (LDA) within a pseudopotential total-energy scheme incorporating
semi-relativistic corrections [36, 43-47]. Using a cut-off energy of 60 Ry with a
16 x 16 x 16 k£ point grid generated using the Monkhorst-Pack scheme proved
sufficient to achieve precision of better than 1 mRy (0.013 eV) in the calculated
energies.

The energy and stress were calculated as a function of strain for both uniaxial
strain (unrelaxed condition) and uniaxial stress (relaxed condition). In the
former case, a selected strain was incremented while the other five independent
strains were fixed at zero. In the latter case, which provides a more meaningful
measure of the ideal strength, the crystal was relaxed until only the stress, ¢;;,
conjugate to the selected strain had a non-zero value. This was done by fixing
the selected strain and adjusting the other five independent strains until their
conjugate Hellman-Feynman stresses were less than 0.15 GPa. ’

4.3 Ideal Strength

4.3.1 The lattice constant and elastic moduli

A first test of the accuracy of the computational scheme is its ability to predict
the lattice constant and the elastic moduli of the crystal. The results are shown
in Table 4.1, which includes the lattice parameter and bulk modulus, and the
elastic modulus and compliance for shear in the system (111){110}. The lattice
parameter is accurate to within 1%, the moduli are correct to within 6%. Since
W is almost isotropic at 0 K (the anisotropy ratio (c13 — ¢12 — 2 ca4) /a4, Where
ci; are the Voigt elastic constants, is less than 0.01 {77]), the shear modulus,
Clabc) {hkl}, and the elastic compliance, S(abc){rki}, for shear on any slip system,
(abc){hkl} are given by

1
G (abe) {nRl} & W RS C44. (4.9)

Because tungsten is elastically isotropic, the combination of the bulk and shear
moduli are sufficient to fully specify its elastic properties.
However, as in the discussion in Section 2.3 on the lattice constant of Al, it

is somewhat troubling that our computed lattice constant using LDA is larger
than the experimental value. It is also unusual that both the lattice constant
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Table 4.1: Calculated (LDA) and experimental lattice parameters and elastic
moduli of bce tungsten.

experimental present work PP¢ FP-LMTO*<

lattice constant (A)® 3.16 3.17 3.13 3.15
C111){110} (GPa)® 164 161 + 1 - -

1/8(111){110} (GPa)® 164 159 + 1 - -

bulk modulus (GPa)? 314 33141 317 319

“Experimental values at 298 K are from Ref. [11].

®Experimental 4.2 K data are from Ref. [77].

“Values are from an ab initio study of tungsten in Ref. [78] and are computed
using both pseudopotential plane wave (PP) and full-potential, linear muffin-
tin-orbital (FP-LMTO) techniques.

and the bulk modulus are larger than experiment. Table 4.1 includes results
from another recent ab initio study of tungsten using both pseudopotential plane
wave (PP) and full-potential, linear muffin-tin-orbital (FP-LMTO) techniques.
Because the lattice constants predicted by these calculations are smaller than
experiment, these results are more believable than our own. As argued in Sec-
tion 2.3, however, any small errors in the pseudopotential will not have a large
effect on either our computed values of ideal strength or on our analysis of the
structural relaxations of tungsten under load.

4.3.2 The ideal strength in tension

Figure 4.1 shows the variation of energy (Fig. 4.1a) and stress (Fig. 4.1b) with
engineering strain for a crystal that is pulled in a (100) direction with full
relaxation along the perpendicular axes. The maximum tensile stress, oy, is
29.5 GPa, in close agreement with the value, 28.9 GPa, reported by Sob et
al. [38]. Sob et al. also calculated tensile strengths in the (111) and (110)
directions. These are substantially higher.

The reason that bec crystals are weak in (100) directions (and, therefore,
cleave on {100} planes) has been known for some time [79]. As illustrated in
Fig. 4.2, if a bee crystal is pulled along (100) and allowed to relax in the two per-
pendicular directions its structure eventually becomes fcc. Assuming constant
volume, the engineering strain, es, needed to accomplish the transformation
{(the “Bain strain”) is e, = 0.26. Since the stress vanishes by symmetry in both
the bec and fec structures, either the fee structure must be a saddle point, or it
must pass through a maximum at some intermediate strain. No similar extrema
are fixed by symmetry for the other possible directions of tensile loading. Hence,
barring accidental extrema, a bee crystal has its minimum tensile strength when
it is loaded on {100).

The ideal tensile strength can be estimated in the following way (which is
generally applicable to any bec crystal whose energy increases monotonically
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Figure 4.1: Energy (a) and stress (b) as a function of applied tensile strain
applied along (100) to bcc tungsten. The A’s are for the unrelaxed cases and
the ®’s for the relaxed cases. The @’s mark the position of fcc tungsten.

when it is stretched from bcce to fcc along (100)). In the tradition of Frenkel [80]
and Orowan [81] we approximate the stress-strain curve by a sinusoidal function
with a period of e;. In this case,

0 = O sin F—e} , (4.10)
€b

where 0, is the maximum stress. Since o = E(190)e, when e is small (Hooke’s
Law) and E(1qg) is Young’s modulus for a (100) stretch,

€
Cm = {—f} E(IOO) = 0.08 E(IOO)' (411)

The ab initio calculation for W gives 29.5 GPa, which is 0.072 E(;0q), in reason-
ably good agreement.

Figure 4.2: IHustration of the Bain transformation path between bcc and fec.




44 CHAPTER 4. THE IDEAL STRENGTH OF TUNGSTEN

Figure 4.3: Geometries of shear for slip on {110}, {112}, and {123} planes along
a (111) direction. The atoms connected by the arrows are sheared over the plane
below. The arrowheads indicate the “easy” direction of shear.

4.3.3 The ideal strength in shear

The common bee slip systems, (111){110}, (111){112} and (111){123}, are il-
lustrated in Fig. 4.3. The (111){110} system is symmetric with respect to the
direction of shear along the (111) axis. The (111){112} and (111){123} sys-
tems are not; slip in the direction of the arrow shown in the figure (the “easy”
direction) has a lower shear strength and energetic maximum than slip in the
opposite direction (the “hard” direction).

Fig. 4.4 includes plots of energy against engineering strain for the three slip
systems over a full period of shear along (111). The strain periods for the relaxed
and unrelaxed shears differ because the former includes relaxations orthogonal
to the applied shear. Fig. 4.5 is the engineering stress-strain relation for slip
on the (111){112} system. This figure also shows the agreement between the
calculated Hellman-Feynman stresses and the Cauchy stress estimated from the
slope of the energy-strain curve. Fig. 4.6 presents the most striking result of
these calculations: the close similarity of the stress-strain relations for (111) slip
in the easy directions on the three planes.

Table 4.2 lists the shear strengths for the three slip systems in relaxed and
unrelaxed strain in both the “easy” and “hard” directions. Table 4.3 lists the
strains at each instability (the shear strain v;; = 2e;;). Tables 4.2 and 4.3 also

include data for the (110){110} system. As it is to be expected, the relaxed
strengths are lower than the unrelaxed in all cases, and the strengths in “easy”
slip are much below those in the “hard” directions. The relaxed strength in the
(symmetric) (110){110} system (= 0.12 G) is higher than that.for “easy” slip in
any of the (111) systems studied (&2 0.11 G for all three systems).

The shear of W in the (111){112} system was previously studied by Paxton
et al. [40] for unrelaxed and partially relaxed shears. They obtained a strength

)
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Figure 4.4: Energy as a function of applied shear strain for one period of {111)
slip on {110}, {112}, and {123} planes. The A’s are for the unrelaxed cases and
the ®’s for the relaxed cases.
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Figure 4.5: Absolute values of the stress as a function of strain for (111){112}
slip. The A’s and the ®’s are the calculated unrelaxed and relaxed Hellman-
Feynman stresses. The solid lines represent the stresses calculated from
smoothed fits to the energies.
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Figure 4.6: Fitted stresses as a function of strain for (111) slip in the “easy”
direction on {110} (0’s), {112} (O’s), and {123} planes (A’s).
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Table 4.2: Ideal shear strengths (Tmax) with (r) and without (u) structural
relaxations for five slip systems. G is the experimental shear modulus.

failure stresses (GPa and %)

slip system T ax TE o T/ G e
(111){110} 182+04  208+04 11.2 12.7
(110){110} 19.3 04 . 21.3 £ 04 11.8 13.0
(111){112}easy 18.1 = 0.4 19.2 +£ 0.4 11.1 11.7
(111){112}para 263 £08 343+ 0.8 16.1 21.0
(111){123} casy 176 £08 1901+ 0.8 10.8 11.7
(111)£123} ara >20 30.6 + 0.8 >12 18.7

of 0.13 G for unrelaxed shear in the “easy” direction and 0.27G in the “hard”
direction. These values are somewhat higher than ours (Table 4.2}, but may
result from additional approximations used in their total-energy calculations.

Compared to the results for Al and Cu, in which relaxation decreased ideal
strengths by 35% to 45%, relaxation has a relatively small effect on the strength
of W. This is primarily due to the elastic isotropy of W, which has the conse-
quence that the second-order shear moduli are the same for relaxed and unre-
laxed strain. The two cases differ only to the extent that third- and higher-order
moduli influence the results. Relaxation does have a significant effect (> 20%)
on the strength of the (111){112} system in the “hard” (negative) direction. Ta-
ble 4.3 shows that this results from large values of the relaxation strain. These
large relaxation strains have two sources. First, the primary shear strain at
instability is large (= —0.33), so non-linear effects make significant contribu-
tions. Second, as illustrated in Fig. 4.7, in a relaxed shear the lattice becomes
unstable and deforms discontinuously at a shear of -0.45. While this structural
instability lies beyond the elastic instability at the maximum shear stress, its
proximity will soften the lattice, decreasing its strength.

Table 4.3: Applied (713) and relaxation engineering strains at shear instability.

relaxation strains (%)

instability T3 €11 €2 €3 M2 Y3 AV/V
(A11){110} 174 12 01 25 05 08 14
(110){110} 158 0.3 -08 21 0 09

0

(111){112}¢aey 168 -1.0 06 15 0 0 1.1
(111{112}0ra 327 -28 23 49 0 0 44
(111){128}eaey 18.2 -1.2 05 2.0 -0.8 00 13
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Figure 4.7: Normal relaxation strains as a function of applied shear strain for
(111){112} slip. (O’s: €13, (I's: €22, and A’s: €33) A structural shear instability
is clearly visible at a strain of approximately —0.45.

4.3.4 Sources of the ideal strength in shear

The best single measure of the ideal shear strength is the minimum value of the
relaxed strength for the “easy” direction of slip. This strength sets the maximum
vield stress of an otherwise ideal polycrystal. Even a single crystal loaded for
slip in the “hard” direction on {112} would exceed the critical stress for slip on
{110} before reaching the “hard” strength on {112}. From this perspective, the
present calculations give the ideal shear strength of W as 17.6 GPa (.108 G) for
shear in the system (111){123}. Because the shear strengths on (111)}{110} and
(111){112} are so close to this value, a more exact calculation of an ideal yield
surface would find the shear strength to be practically isotropic.

Not only are the ideal strengths in the three common slip systems almost
identical (=~ 18 GPa = 0.11G), but the failure strains are almost the same as
well, 17-18%. This contradicts the usual assumption that the ideal strength is
proportional to (b/h), where h is the interplanar spacing and b, the Burger’s
vector, is the length of the shortest lattice vector in the direction of slip. The
shear strength on the {110} planes, which are the closest-packed and most
widely spaced, is essentially the same (in fact, it is a bit higher) than that
on {123} planes that are much closer together. The insensitivity to (b/h) is
due to the fact that, for all three planes studied, the elastic instability (the first
inflection point on the energy curve) falls at only a small fraction of the minimal
crystallographic translation in the (111) direction.

The shortened period for slip in the {112} plane has been noted before [40,
82], and can be understood from an inspection of the atom configuration in
the {112} plane (Fig. 4.8). A shear strain of 0.66 in the easy direction is the
“twinning strain” that creates a mirrored bcec lattice. It follows that there must
be at least one maximum in the energy at a strain below 0.66, and an elastic
instability (inflection point) before that. If there is a single maximum, symmetry
dictates that it falls at v = 0.33, with an inflection near 0.167, which is almost
exactly the strain (y = 0.168) that the ab initio calculation finds for elastic
instability in shear on {112}.
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Figure 4.8: Illustrations of the changes in symmetry during relaxed shear on
{110}, {112}, and {123} planes. A and B atoms are on two adjacent planes. A
B, position indicates a lattice with cubic symmetry, a B, position monoclinic
symmetry, and a B, position orthorhombic symmetry. Intermediate configura-
tions during shear on the {110} and {123} planes have triclinic symmetry. The
intermediate configurations during shear on {112} have monoclinic symmetry.

While the symmetry constraints that govern the shear instability on {112}
may be obvious, the triple period on {123} was not apparent until the energy
had been calculated. The shear instability on {110} was also invisible until
the fully relaxed case had been explored. A closer examination shows that the
extrema that locate the first instability on each of these paths are associated
with local configurations of relatively high symmetry. Figure 4.8 illustrates
this. A (111){110} shear changes the symmetry from cubic to triclinic; the
first extremum occurs when the deformed path passes through a configuration
with monoclinic symmetry. In the (111){112} system, the shear deformation
path moves from cubic to monoclinic to orthorhombic symmetry at the first
extremum. In the (111){123} system, the sequence is cubic to triclinic to or-
thorhombic.
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Figure 4.9: Illustration of the stacking sequence for the saddle point of (111)-
{110} slip (ABCDA).
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Although the energies and strains at the first extrema on the three slip
systems are almost identical, the extremal structures are not. The extremal
structure on {110} has a monoclinic Bravais lattice with three atoms per unit
cell and ABCDA stacking as shown in Fig. 4.9. The extremal structure along
{112} is a body-centered orthorhombic lattice formed by the AB;>*Y A stacking
shown in Fig. 4.8. This, as we shall show below, is also the extremal structure
on {123}.

The similar strengths and instability strains on the three common bcc slip
systems has a straightforward geometrical explanation. If we locate a bcc atom
at the center of the bee cell then, as illustrated in Figs. 4.10 and 4.11a, two of its
nearest neighbors lie along the cube diagonal while the other twelve nearest and
next-nearest neighbors sit at the corners of two pairs of equilateral triangles that
are perpendicular to the cube diagonal. A shear in the (111} direction tilts each
of these triangles along the (111) axis around an axis in the shear plane. The

Figure 4.10: Illustration of the stacking sequence of the eight nearest and six
next-nearest neighbors along the (111) direction in bce.



50 CHAPTER 4. THE IDEAL STRENGTH OF TUNGSTEN

Figure 4.11: Illustration of the symmetries of pencil glide in bece. The tables list
the distance of each labeled neighboring atom from the central atom. a) shows
an unstrained tungsten bcc lattice, b) shows the saddle point after (111){110}
shear, and c) shows the symmetry of the {112} and {123} saddle point.

cubic symmetry is broken, and the set of eight nearest neighbors and six next-
nearest neighbors is replaced by seven pairs of near-neighbor atoms at varying
distances. As the triangles til in the (111) direction and relax around the {111)
axis, their corners approach one another. The energy extrema are reached when
the corners of the coordination triangles first come into partial registry with one
another, as illustrated in Fig. 4.11b (the {110} extremum) and Fig. 4.11c¢ (the
{112} and {123} extremum).

The spatial registry of the coordination triangles at the extremum changes
the number of equidistant neighbors and creates a more symmetric configu-
ration. As illustrated in Fig. 4.11b, the {110} extremum has 6 neighbors at
distances of 5.1-5.3A and 6 neighbors at 5.7A. The extremal configuration for
{112} and {123} slip is the same (Fig. 4.11c). It has four neighbors at a dis-
tance of 5.1A and eight at 5.6A. As shown in Figs. 4.8 and 4.9, these symmetric
arrangements have monoclinic and orthorhombic Bravais lattices, respectively.
The extrema on {110} and {123} were difficult to identify because they require
significant structural relaxations (Table 4.3). These relaxations are illustrated
in Fig. 4.12.

The similarity in ideal strengths on the three slip systems is due to two
factors: the similarity in the instability strains and the isotropy of the shear
modulus. As shown in Table 4.3, the primary strains at instability vary by
only a few percent, from 0.168 for {112} to 0.182 on {123}. In each case, the
instability strain is about one-half of the primary strain to the first extremum,
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Figure 4.12: Tllustrations of the relaxations from the applied simple shear strain
to the saddle points for slip on {110}, {112}, and {123} planes. The cages
represent the positions of the atoms after simple shear. The spheres represent
the atoms after relaxation. The relaxed positions of {112} and {123} differ by
only a rotation of approximately 10 degrees about (111).

which varies from = 0.32 for {110} to = 0.35 for {112}. If we approximate the
stress-strain relation by a sine wave, as in Eq. (4.10), with a period of 0.34, and
require that Hooke’s Law be satisfied at small strains, the relaxed shear stress,
T, is approximately

T RS Ty SID [01;2] , (4.12)
giving the ideal strength as
T & [Q;é] G=0.11G. (4.13)

This estimate agrees very well with the results of the ab initio calculations
(Table 4.2). '

Equation (4.13) suggests that the virtual identity ‘of the ideal shear strengths
on the three bce slip systems in W is due in large part to its isotropic shear
modulus. It further suggests that the ideal shear strengths in less isotropic
bece crystals will vary systematically with their shear moduli. In fact, this is not
true. The modulus for shear will, in general, depend on both the shear direction
and the shear plane, but, because of the threefold symmetry for rotation about
(111) in bece, any shear in a (111) direction has a relaxed modulus of

1 Becaacnn —c2)

= . 4.14
saiyy  4caa+ e —ci2 (4.14)

2111) =

This means that Eq. (4.13) can be used to predict the shear strength of any bcc
metal and that the strength on any system (111){¢jk}, where i + 7 = k, will be
nearly identical.
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4.4 Comparison with Experiment

The experimental observations that may be clarified by these results include
qualitative observations on the deformation and fracture of tungsten and similar
bce metals, and quantitative data on the ultimate strength of W, obtained from
tensile tests on whisker crystals and nanoindentation tests on W films.

4.4.1 Brittle fracture

Like other bec transition metals, polycrystalline tungsten fractures in a brittle
mode at low temperature by cleavage on {100} planes. As discussed above, the
{100} cleavage plane is dictated by symmetry. Since a relaxed stretch along
{110} produces the fcc structure at moderate strain, the crystal is weak in ten-
sion in that direction. The weakness on (100) is confirmed by the ab initio
calculations of Sob et al. [38], and their result for the ideal strength is confirmed
in the present work.

There is at least some evidence that the simple estimate of the cleavage
strength given in Eq. (4.11) is applicable to other bce metals. We have completed
a preliminary calculation of the cleavage strength of bec Fe, and have found a
value of 10.5 GPa, which is almost precisely 0.08 E(14¢)-

Despite its tendency to cleave on {100}, whether an ideal single crystal of W
fails by fracture or by shear depends on how it is loaded. If any of the common
slip systems is loaded in simple shear to the elastic limit (~ 18 GPa), the
maximum tensile strength on any plane is also about 18 GPa. Since this stress
is well below the minimum tensile strength, 29 GPa in (100), an ideal crystal
loaded in simple shear should fail in a shear instability that would (probably)
resolve itself by plastic deformation through twinning or dislocation nucleation
and glide. If, however, an ideal crystal were loaded in (100) tension to the
cleavage stress, 28 GPa, the maximum resolved shear stress would only be 14.5
GPa, which is below the ideal shear strength. It follows that an ideal W crystal
that is loaded in {100) tension at low temperature will cleave before plastic
deformation intrudes. '

4.4.2 “Pencil glide”

The most striking characteristic of the shear strength is its virtual degeneracy
for (111) slip in the {110}, {112} and {123} planes. At least at moderate to
high temperature, the deformation of a typical bcc crystal is characterized by
slip on planes that include the {111) direction, among which these three are
the most prominent [70, 71, 83]. The identity of the slip plane is sometimes
so difficult to determine that the deformation is described as “pencil glide” in
the (111) direction. The choice of slip plane is made by mobile dislocations
and has no automatic association with the ideal strength. It may, therefore,
be merely interesting that the ideal shear strength has a very similar crystallo-
graphic degeneracy. On the other hand, the lattice strain becomes large in the
dislocation core, and that finite strain must be propagated as it moves, so the
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Table 4.4: Experimental estimates of ideal shear strength: maximum nor-
mal stress (Omax), maximum shear stress (Tmax) and normalized shear stress

(Tmax/G)-

failure stress
Omax {GPa)  Tmax (GPa)  Tmax/G (%)
whiskers® 24.7 + 3.6 12.5 + 1.8 78 £ 1.1
nanoindentation®  69.6 + 3.7 21.6 =+ 1.1 13.5 £ 0.7

%Fracture of (110) whiskers [84].
®Nanoindentation of a (100) surface [85]. A single observation of Tyax =
28.6 GPa was also noted.

considerations that lead to degeneracy in the strength also favor degeneracy in
dislocation slip.

4.4.3 Experimental values of the ideal strength

Table 4.4 shows two of the most recently determined values of the ideal shear
strength of W, one measured on nominally dislocation-free “whiskers” [84] and
one measured via nanoindentation on lightly oxidized W films [85].

‘Whisker data

Mikhailovskii et al. {84] studied the tensile fracture of microcrystalline tungsten
“whiskers” with diameters in the range 600-2600A and long axes parallel to
(110). The maximum strength was 28.3 GPa.

While we did not calculate strength for a tensile pull along (110), Sob et
al. [38] found a value of approximately 54 GPa for tensile fracture. Given that
the load is never precisely along a (110) axis, the crystal might instead be
expected to fail at a load close to that which provides a resolved shear stress
equal to the shear strength on the most favorably oriented plane. This criterion
suggests failure when the tensile stress along (110) is about 36 GPa, or twice
the ideal shear strength.

It follows that the maximum whisker strength is about 0.80 of the theo-
retical value. This is satisfying for two reasons. First, the computed ideal
strengths should always be slightly greater than any experimental observations.
Second, prior work [33] suggests a mechanism for this difference: the failure of
whiskers ordinarily originates from free surfaces. This suggests that the strength
of whiskers is determined by heterogeneous nucleation of defects at free surfaces
rather than by the bulk value of the ideal strength.
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Nanoindentation measurements

Nanoindentation tests probe the mechanical response to indentation by an in-
denter that is no more than a few nanometers in diameter [86-88]. If the material
tested has a low dislocation density then the nanoindenter may probe essentially
defect-free material. If, in addition, the surface of the crystal is treated to pre-
vent premature failure from the interface, then failure may be made to originate
in the region of maximum stress beneath the interface. It follows that nanoin-
dentation studies are a promising method for measuring the bulk value of the
ideal strength.

The most extensive study of the nanoindentation of tungsten was by Bahr
et al. [85]. They inferred the shear stress at yielding by using the depth of
indentation by the indenter in the familiar Hertz solution for the stress field of
an elastic indenter. They report a maximum shear stress at yield of 28 GPa,
and report a number of measurements at about 26 GPa. These values are
significantly above our calculated value of the ideal shear strength (18 GPa).

Aside from experimental or theoretical errors, there are at least two possible
sources for this discrepancy. The first is the triaxiality of the load at yield: the
material is subject to a hydrostatic stress that is of the same order of magnitude
as the shear stress. While this issue deserves a specific investigation, the work of
Séderlind and Moriarty [42] on the behavior of Ta at high-pressure suggests that
pressure has no dramatic effect on the shear strength until pressures significantly
larger than those encountered here.

A more immediate concern is the applicability of the Hertz solution for the
elastic strain field, which assumes a linear elastic stress-strain response and
elastic isotropy. Neither assumption is true when the strain approaches elastic
instability. Figure 4.6 shows clearly the non-linear elastic behavior near insta-
bility., The assumption of elastic isotropy no longer holds because, while the
effective shear modulus in the soft direction vanishes at the point of instability,
the moduli for shear modes perpendicular to the soft direction remain large.

A rough estimate of the correction needed to account for the softening of
the modulus near instability can be made as follows.! The displacement at
the indenter-substrate interface, which is used to compute the Hertzian strain
field, is set by the net modulus of the whole substrate volume strained by the
indenter. Since almost all of this volume responds in a linear elastic mode, the
strain field computed from the indentation should not be all that wrong, even if
the small volume of material that is under a high shear stress responds in a non-
linear way. Assuming that the estimated shear strain at failure is approximately
correct, and further assuming a sinusoidal stress-strain relation, we have

— 7 sin | 1
T = T sin [27171} , (4.15)

where v, is the strain at failure and 7, is the strength. Since 7 = G-y for small

tThe derivation of this 7r/2 correction is the work of D. Roundy.
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strains,

= 2Gym = 213, (4.16)
where 79, is the strength computed from the same failure strain on the assump-~
tion of linear elasticity.

Equation (4.16) suggests that the strengths back-calculated from the Hertz-
ian strain field should be multiplied by a factor of about 2/x for comparison to
the ideal strength. This factor corrects the W measurements of Bahr et al. [85]
from 26-28 GPa to 16.5-18 GPa, in very good agreement with the theoretical
numbers. The agreement is very likely to be better than the accuracy of this
simple model, but it does support the notion that nanoindentation experiments

do measure the ideal strength in shear.

4.5 Conclusion

We have used pseudopotential density functional theory within the local density
approximation to calculate the ideal tensile strength of tungsten pulled in a
(100) direction and the ideal shear strengths for the (111){110}, (111){112}
and (111){123} slip systems, allowing full structural relaxation of the strains
orthogonal to the applied shear. We also computed the shear strength in the
(110){110} system for comparison.

The ideal tensile (100) tensile strength was found to be 29.5 GPa. This
number (= 0.072 E(;00)) is in close agreement with prior calculations. This
number is also in good agreement with the value (0.08 E(1q0)) expected for
a material that has a sinusoidal stress-strain relation and a tensile strength
that is determined by the “Bain” instability on (100). The shear strength was
close to 18 GPa (0.11 G) for all three slip systems. Analysis of the structural
relaxations that occur during these shears revealed that the ideal shear strengths
are determined by relatively high-symmetry extrema that are reached in each
of these systems after a shear of 0.32-0.35. These extrema are related to the
packing sequence along (111} directions in the bce lattice. The shear strengths
are also in good agreement with a model that uses a sinusoidal approximation for
the stress-strain relation. Finally, as expected, the strength in the (110){110}
system is higher than that in any of the three (111)-based systems commonly
observed in bcc. -

The calculated shear strengths are, at least, in the range of the values ob-
tained from tensile tests on tungsten “whiskers” and nanoindentation tests of
tungsten films. The maximum tensile strengths of whiskers are about 0.8 of the
expected values. We suspect this reflects early failure of these thin whiskers from
surface-induced defects. The maximum shear strengths reported from nanoin-
dentation experiments are almost 1.5 times the theoretical value. We believe this
discrepancy is primarily due to the linear elastic assumption used to extract the
strength from the experimental data. If we use a sinusoidal stress-strain relation
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to correct the stress at given strain, the reported measurements are corrected
by a factor of 2/x, which reduces them to the theoretical numbers.




Chapter 5

Summary and Future Work

5.1 Summary

This dissertation has critically examined a number of scaling relationships be-
tween atomic-scale properties and intrinsic mechanical hardness. For the ma-
jority of materials examined, hardness scales linearly with elastic shear modulus
for a given bonding type (covalent, ionic or metallic). However, we have identi-
fied a technologically important class of materials where this scaling relationship
does not hold: the group IVa and Va transition metal carbides and nitrides. As
a class, the group IVa and Va transition metal carbides have higher mechanical
hardnesses for a given shear modulus than the corresponding nitrides despite
having the identical crystal structure and very similar bonding.

In an attempt to understand why and how the scaling of hardness with
shear modulus can break down, we have developed a detailed theoretical anal-
ysis of “ideal strength,” which is defined by the limit of elastic stability of
a quasi-statically loaded perfect crystal. In general, the conditions of stabil-
ity are contained in the requirement that A;jride;;0ex > 0 for all infinitesimal
strains, where Ajjr = %(Bijkl + Byiij), and B is the tensor that governs the
change in the Cauchy stress (t) during incremental strain from a stressed state
(1) : tsj = T3 + Bijmiers. Stability is lost when the minimum eigenvalue of A,y
(the 6 x 6 Voigt form) vanishes.

Ideally, one would hope to use ab initio computations to determine B as
a function of applied strain, but this is computationally very expensive. In
Chapter 3, we justify a much more computationally efficient approach that
calculates only energy and stress as a function of strain. The ideal strength for
any uniaxial loading direction (including shear) can be determined by allowing
full atomic relaxation perpendicular to the applied strain. This maps out a
minimum energy path for the deformation, and the ideal strength is determined
by locating the maximum of stress along the path. If the axis of applied strain
is along a high symmetry direction, this procedure may miss instabilities along
directions perpendicular to the direction of stretch, but these instabilities can

57
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Stress (GPa)
Stress (GPa)

! i { ! I 1 I i

engineering shear strain engineering shear strain

TiC TiN

Figure 5.1: Schematic illustration of the stress-strain behavior for (110){110}
shear in TiC and TiN

be detected by combining the uniaxial procedure with a few low symmetry
distortions and a bit of physical insight.

Chapters 2 and 4 present ab initio ideal strength calculations using these
techniques for Al, Cu and W. These are the first ab initio calculations that
incorporated full atomic relaxation perpendicular to the applied strain, and they
show that relaxation can have very important effects. For Al and Cu, relaxation
reduces the values of ideal shear strength by 35% to 45%, resulting in strengths
of 8-9 percent of the shear modulus for both Al and Cu. For W, relaxation
produced the remarkable result that the ideal strengths on {110}, {112}, and
{123} planes were nearly identical (=~ 18 GPa = 0.11 G). Encouragingly, with
a small correction that accounts for the non-linear stress—strain behavior near
instability, this strength is very close to the shear strengths determined from
nano-indentation experiments. The equivalence of the strengths on all three
common bcc slip planes is explained in terms of bee’s linear elastic isotropy
for shears in a (111) direction and of the atomic configurations of the energetic
saddle points reached during shear. Chapter 4 also analyzes the ab initio results
in terms of a simple Frenkel-Orowan crystallographic model.

5.2 Preliminary Results in TiC and TiN

This dissertation began with the problem of identifying why TiC had a micro-
hardness 50% higher than TiN despite having essentially the same value of the
elastic shear modulus. Preliminary ab initio calculations of the ideal strength
of TiC and TiN suggest an explanation [89]. Figure 5.1 schematically shows
the stress-strain behavior for (110){110} shear in both TiC and TiN. While the
stress—curve for TiC is roughly sinusoidal, there is a discontinuity in the curve
for TiN. This discontinuity corresponds to an internal structural instability in
TiN. Figure 5.2a shows the AB stacking sequence along the (001) direction in
TiC and TiN at small strains. Each C or N atom is surrounded by six neigh-
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110
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Figure 5.2: Illustration of instability in TiN during (110){110} shear: a) Stack-
ing sequence (ABAB) along (001} for both TiC and TiN after a small amount
of (110){110} shear. b) Stacking sequence (also ABAB) in TiN after elastic
instability.

boring Ti atoms: four in the {001} plane and two above and below the central
atom. At large strains in TiN however, the nitrogen spontaneously shifts from
the central six-fold coordinated octahedral void to a five-fold coordinated void
illustrated in Fig. 5.2b. Because this shift does not occur in TiC, TiC has a
significantly higher ideal strength than TiN. This may be an explanation why
TiC also has a significantly higher measured microhardness as well.

€
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5.3 Future Work

5.3.1 Computations

This dissertation presented ab initio calculations of the ideal shear strength of
Al and Cu, the idéal shear and tensile strengths of W, and qualitative results of
the ideal shear strengths of TiC and TiN. Computations of the ideal strengths
of Mo, Fe, Si and diamond are currently underway [90]. Calculations in a pair
of hcp metals and a number of representative ionic materials would also be of
great interest.

The ab initio calculations relate, strictly, to perfect crystals in the limit of
zero temperature. These calculations also were quasistatic and uniaxial. In or-
der to estimate the effect of phonons at finite temperature and the effect of mul-
tiaxial loading, which may be important for comparison with nano-indentation
experiments, we have begun a series of embedded-atom method (EAM) calcu-
lations. EAM is much less computationally intensive than ab initio techniques,
but it can offer an estimate of the magnitude of the phonon and multiaxial
loading effects. These ongoing EAM studies [74] can also identify situations in
which further analysis with ab initio techniques is warranted.

5.3.2 The relaxation strain

The atomic relaxations at large strain in Al and Cu are consistent with exper-
imental observations of third-order elastic constants. It will be of interest to
analyze the third-order elastic constants measured for Fe, Mo, Na and Nb {10]
to determine whether these detect the “pencil glide” saddle point found in our
calculations. It also may be possible to confirm the relaxations predicted by
our calculations with high resolution transmission electron microscopy (TEM)
around dislocation cores or near highly strained coherent phase boundaries.
Because the lattice instability in TiN occurs at a large applied strain, it is un-
likely to affect measured higher order elastic constants, but TEM observations
or phonon spectra of highly strained thin films might detect the instability.

5.3.3 Brittle fracture

We argued in Section 4.4.1 that the brittleness of bce metals can be understood
by the relatively small bain strain (= 0.26) required to produce fcc by tensile
deformation of bce along {100). Unfortunately, the same argument seems to
suggest that the (110) tensile strength of fcc would be even smaller than the
(100) strength of bee. A constant volume bain strain of only 0.12 along {110)
will transform fcc into bee. From this, Eq. 4.11 predicts an ideal tensile strength
of only 0.04 E'(;;0y and suggests that fcc would be more brittle than bcc.
However, this prediction presumes that the stress—strain curve is sinusoidal
and that the minimum energy deformation path for (110) uniaxial tension in
fcc is the bain transformation path. Neither presumption is necessarily true.
Because of the symmetry of the transformation, a much larger orthogonal re-
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laxation (= 0.21 = 1—-1/1.26) is necessary to transform from fcc to bcc. Instead
of using a uniaxial sinusoidal fit to energy, it may be more appropriate to analyze
the total stored elastic energy along the deformation path. Symmetry suggests
that the elastic work required to reach the saddle point between fcc and bee will
be comparable whether one starts at fcc or bec. Energy balance also requires
that the work done by the applied stress be equal to the internal elastic strain
energy. Since for the transformation from fcc to bee this stress is applied over
half the distance needed for the bee to fee transformation, the maximum stress
required for the fcc to bec transformation will be approximately twice as large
as the bec to fce case. This suggests that a sinusoidal fit will not work for (110)
loading in fcc but that the normalized ideal strengths for this loading will be
twice the normalized ideal strengths for (100) tension in bcc.

Although calculations of ideal strength for (110) tension using empirical
EAM potentials found fcc metals to be weak along (110) [72], the ab initio
calculations of Sob et al. [91] call into question the presumption that (110)
loading will follow the bain transformation path. They have calculated the
strength of Cu for relaxed loading along (110) and found a peak stress of 31
GPa at a strain of 0.79. This result (=~ 0.24 F,.g) suggests that the minimum
energy deformation path did not pass anywhere near the metastable bcc Cu
phase.

It would be of interest to analyze the ab initio stress—strain behavior of Cu
constrained along the bain deformation path. It would also be useful to analyze
the atomic relaxations along the minimum energy (110) path.

5.3.4 “Pencil glide”

Understanding the atomic relaxations during shear in bec also could offer a
much better understanding of the prevalence of the pencil glide of dislocations
on planes containing a (111} direction in bece metals. Section 4.3.4 showed that
the minimum ideal strength in shear on any slip plane containing (111) will be
nearly constant. However, some experimental observations, particularly careful
measurement and modeling of crystallographic texture evolution during plastic
deformation of bec metals [92] suggest that the critical resolved stresses for
slip differ for different “pencil glide” systems. It would be of great interest to
explore whether this can be explained by combining our new knowledge of the
crystallography of pencil glide with anisotropic elasticity theory of dislocations
or whether detailed calculations of dislocation core structures are necessary to
understand these experimental observations.

5.3.5 Dislocation or lattice control of strength

In Chapter 1, our working assumption was that dislocation motion governed
the hardness of all materials. This assumption was made on the basis of a
number of observations. 1) Since room temperature indentation hardness tests
of even diamond leave permanent plastic deformation, it is clear that atomic
shear has to occur. 2) In most materials (excepting Si {93, 94]) no evidence of
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twinning or phase transformation is observed. 3) At high enough temperature,
dislocations have observed to multiply and propagate during bulk deformation
of all crystalline materials that have been examined. 4) Optical micrographs
of the regions around hardness indentations reveal slip bands consistent with
the crystallography of experimentally observed high temperature dislocations.
5) Many electron (TEM) micrographs of the regions around indentations reveal
dislocations that seem to have initiated at the indentation and propagated a
small distance away.

If the Peierls stress is small relative to the stresses required for other mecha-
nisms of deformation, the circumstantial observations in the previous paragraph
are sufficient to convince all but the most skeptical that dislocation motion is the
mechanism of deformation. By comparing the normalized Peierls stress 7, /G to
the normalized ideal shear strength Tmax/G, we see that this is clearly the case
" for metals. Table 1.3 shows that our best estimate of 7,/G is 0.01 or less for
most metals and our calculations in Al, Cu and W give Tyax/G as 0.08-0.11.
However, for hard materials (Table 1.1), 7,/G can be 0.1 or larger. Prelimi-
nary calculations of the ideal shear strengths of diamond and silicon show that
Tmax/G is 0.2-0.3 [90].

When Tmax is of the same order of magnitude as 7,, homogeneous disloca-
tion nucleation becomes almost as easy as dislocation propagation. However,
a simple energetic argument suggests that the minimum stress needed to move
an isolated dislocation or dislocation kink will always be less than the stress
needed to nucleate a dislocation of the same slip system in a perfect crystal,
and that Tmax sets an upper bound for 7,: The presence of a dislocation should
not affect the period of the instability, but it should increase the ground state
energy more than the saddle point energy. If this is true (Fig. 5.3), then the in-
stability stress (the maximum slope of the energy—-strain curve) will be lowered
by the presence of the dislocation. For this argument to hold in general requires
that the minimum strength in shear to occur on the same slip system as the slip
system for easy dislocation glide. This is the case for fcc and bce metals and
appears to be the case for the NaCl and diamond cubic structures as well.f

Even though 7, is theoretically always smaller than Tmax, if 7, is a large
fraction of .y, there can be many situations in which it may be easier to ho-
mogeneously nucleate new dislocations than it is to move and multiply existing
dislocations. The only way to definitely determine the mechanism of deforma-
tion in hard materials is to perform in situ nano-indentation experiments in a
TEM to directly observe the relative importance of homogeneous dislocation
nucleation and dislocation propagation. These experiments (using TiC) are on-
going at the National Center for Microscopy (NCEM) at Lawrence Berkeley
National Lab [95].

tNote: There is one additional complication to this argument. Even if the instability stress
is lowered, it has not yet been proven that the existing dislocation will move when this stress
is reached. The dislocation may instead catalyze another deformation mode in the crystal.
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Figure 5.3: Schematic illustration of the effect of a dislocation on the energy—
strain curve.







Appendix A

Scaling of Elastic Moduli

A.1 Scaling with Lattice Constant

Chapter 1 showed that hardness scales very closely with elastic moduli for a
given class of material but that covalent materials have the highest hardnesses
for a selected value of the elastic shear or bulk moduli. Given these observations,
the simplest way to find a material harder than diamond is to look for a covalent
material with a higher shear or bulk modulus than diamond. One way to begin
this search is to use a scaling relationship between bulk modulus and lattice
constant.

Cohen [96] developed such a relationship by starting with a previous deriva-
tion of the bulk modulus of a free-electron gas. For a free electron gas, the bulk
modulus K is given as

3
K= ZnEF = (6'13> GPa, (A.1)

3 s
where Er is the Fermi energy, n is the electron concentration, and r; is the
electron gas parameter. For covalent materials, however, Cohen determined the
relevant energy scale to be the homopolar gap Ej and the relevant volume to
be the volume of the covalent bond. Combining experimental observations and
ab initio computations of covalent bond geometries and a previously observed
scaling relation for E} yields an expression for the bulk modulus of covalent
materials as follows:

K =17615733, (A.2)

where b is the nearest-neighbor distance. This expression predicts the bulk
moduli of diamond, Si and Ge to within 2% of the experimental values. It also
predicts bulk moduli within 3% (except for InP) for ITI-V semiconductors but is
less successful for II-VI semiconductors, which have a significantly higher degree
of ionicity in their bonding. The empirical result [96],

K = (1971 — 2202\)p~ 35, (A.3)
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more accurately describes the bulk moduli of the group IV (A = 0), group III-V
(A = 1), and group II-VI (A = 2) semiconductors. Cohen [96] cites the scaling
behavior of the I-VII alkali halides as having a scaling exponent of —3:

K =550575. (A.4)

Using Eq. (A.2) and tabulated values of ionic and covalent radii, Cohen
predicted that a tetravalent compound of C and N would have a bulk modulus
of between 461 and 483 GPa. This modulus would be significantly higher than
diamond. However, because of the lone pair of electrons on N, it is geometrically
impossible to construct a completely tetravalent lattice from C and N. The most
densely packed and stable IV-V structure known, SizNy4, has only 6 covalent
bonds for every 7 bonds that would be possible in a fully tetravalent structure.
First-principles calculations [2] show that the bulk modulus of C3Ny4 (427 £ 15
GPa) seems to be slightly smaller than diamond (442 & 0.7 GPa).

For reference purposes, I have included plots of bulk modulus as a function of
nearest-neighbor distance (Figs. A.1-A.3). The data is tabulated in Tables 1.1-
1.3. Power law curve fits to this data yield the following expressions:

covalent materials K = 2226 x b3 R =0.9992 (A.5)

ionic oxides K =1734 xb~*1* R =10.996 (A.6)

ionic alkali halides K = 594 x b~3:06 R=0.95 (A.7)

These three empirical fits are very close to the expressions theoretically derived

by Cohen. For the metals in Fig. A.3, bulk modulus scales roughly as =%, but
there is a great deal more scatter.
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Figure A.1: Log-log plot of bulk modulus as a function of nearest-neighbor
distance for covalent materials with the diamond cubic (dc), NaCl, and ZnS

structures.
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Figure A.2: Log-log plot of bulk modulus as a function of nearest-neighbor
distance for ionic materials with the NaCl and ZnS structures.
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Figure A.3: Log-log plot of bulk modulus as a function of nearest-neighbor
distance for metallic materials with the body-centered cubic (bcc), face-centered
cubic (fcc), and hexagonal close-packed (hcp) structures.
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