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ABSTRACT

The Ideal Strength and Mechanical

by

Hardness of Solids

Christopher Robert Krenn

Doctor of Philosophy in Materials Science and Mineral Engineering

University of California at Berkeley

Professor J. W. Morris Jr., Chair

Relationships between intrinsic mechanical hardness and atomic-scale prop-
erties are reviewed, Hardness scales closely and linearly with shear modulus
for a given class of material (covalent, ionic or metallic). A two-parameter fit
and a Peierls-stress model produce a more uuiversal scaling relationship, but no
model can explain differences in hardness between the transition metal carbides
and nitrides. Calculations of “ideal strength” (defined by the limit of elastic
stability of a perfect crystal) are proposed.

The ideal shear strengths of fcc aluminum and copper are calculated using
ab initio techniques and allowing for structural relaxation of all five strain com-
ponents other than the imposed strain. The strengths of Al and Cu are similar
(8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu
is very different. The relaxations are consistent with experimentally measured
third-order elastic constants.

The general thermodynamic conditions of elastic stability that set the upper
limits of mechanical strength are derived. The conditions of stability are shown
for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions
of a cubic crystal. The implications of thk stability analysis to first-principles
calculations of ideal strength are discussed, and a method to detect instabilities
orthogonal to the direction of the applied stress is identified.

The relaxed ideal shear and tensile strengths of bcc tungsten are also cal-
culated using ab initio techniquesand are favorably compared to recent nano-
indentation measurements. The {100} tensile strength (29.5 GPa) is governed
by the 13ain instab&ty. The shear strengths in the weak directions on {110},
{112}, and {123} planes are very nearly equal (X 18 GPa) and occur at ap-
proximately the same strain (17–18Yo). This isotropy is a function of the linear
elastic isotropy for shear in directions containing (111) in bcc and of the atomic
configurations of energetic saddle points reached during shear. This isotropy
may also explain the prevalence of the pencil glide of dislocations in bcc metals.

A final chapter presents some recent ideal strength calculations of TiC and
TiN and discusses future directions for research.
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Chapter 1

Atomic Bonding

and Mechanical Hardnesst

.

1.1 Introduction

For many years, scientists have tried to understand what makes a material in-
herently strong or hard from an atomic perspective. For the purposes of this
dissertation, I will be concerned with the inherent hardness of a material, which I
will define as.the hardness of a perfect crystal, and I will ignore the many benefi-
cial effects of impurity atoms, second phase particles, work hardening, and other
microstructural modifications. Recent theoretical studies of superhard materi-
als have focused on the optimization of bulk modulus and have suggested, for
example, that as the calculated bulk modulus of some carbon nitride structures
can approach [2] or exceed [3] that of diamond, the mechanical harnesses of
these structures could exceed that of diamond as well. However, the connec-
tion between what makes a material stiff (having large elastic moduli) and hard
(possessing great resistance to permanent deformation) is still not completely
understood.

A number of scaling relationships have been proposed for macroscopic hard-
ness as a function of atomistically defined crystal properties. Hardness, which is
typically measured by indentation techniques, has been found to be an increasing
function of volumetric lattice energy [4], bulk modulus [5], shear modulus [6, 7],
and the size of the electronic band gap [8]. Each of these relationships works well
for a certain set of materials, but none are universal. In pzuticular, the hardness
of metals is always observed to be much less than ionically or covalently bonded
solids at a given value of elastic stiffness or volumetric lattice energy. Figure 1.1
shows a plot of indentation hardness versus elastic shear modulus for a wide
variety of materials examined in this research. The slope of all of the trend lines
is unity, indicating a linear relationship, and it is clear that covalent solids are
harder than metals at a given shear stiffness.

tSomeof the material in this chapter has been published in Ref. [J.].

1
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different classes of materials (covalent, ionic and metallic) with the diamond cu-
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1.2. UNIVERSAL SCALING RELATIONSHIPS FOR HARDNESS 3

1.2 Universal Scaling ~Relationships for Hard-
ness

The functional dependence of hardness on elastic constants and lattice ener-
gies is justified because hardness is a measure of the resistance of a material
to permanent plastic deformation. The mechanism for this deformation in al-
most all crystalline materials, including diamond [9], involves the movement of
dislocations, and so hardness wiIl scale with the resistance to dislocation mo-
tion. Lattice energies offer a measure of the strength of atomic bonds. Since
the movement of a dislocation even by kink mechanisms requires the complete
breaking of a bond, dimensional analysis suggests that the stress (force/length2)
required to break thk bond be proportional to the volumetric lattice energy
(force x length/length3). The scaling of hardness with elastic properties can
be justified as follows. To move a dislocation sitting in a minimum of a peri-
odic energy field, enough stress must be applied to overcome an elastic energy
barrier. For a given type of bonding the barrier height will be proportional to
the curvature of the energy well which is directly proportional to the elastic
shear modulus. Since the shear modulus is in general proportional to the bulk
modulus, the hardness and Peierls stress will then be proportional to the bulk
modulus as well. However, since the proportionality is indirect, one would not
expect the scaling to be universal. In particular, the shape of the energy well
will be a function of the type of bonding. For more directional bonding, the bar-
rier and thus the hardness will be larger for a given sheaz modulus. Figure 1.1
and Tables 1.1–1.3 show that the harnesses of covalently and ionically bonded
materials are significantly larger than the harnesses of metals of equivalent
stiffness.

The data used for in Figure 1.1 is shown in Tables 1.1–1.3 and were compiled
from a variety of sources. Structures come from Wyckoff [11], and unless other-
wise noted, single crystal elastic constants are taken from the Landolt-Borstein
handbook, series III, volume 29a [10]. Microhardnesses of ionic materials were
estimated from Mobs hardness values listed in Plendl and Gielisse [4] using a
parabolic curve fit by Beckmann [20] as described by Goble and Scott [5]. Most
other harnesses were tabulated by Ivan’ko [12] and Holleck [13]. Average poly-
crystalline elastic properties are calculated following Simmons and Wang [21]
using an average of the Hashin and Shtrikman upper and lower bounds for cubic
materials [22, 23]. The data tabulated and plotted represent two or more com-
plete sets of single crystal elastic constants, except for the data for CN, BN and
ZrN. The (IN data comes from a series of measurements at varying nitrogen con-
tent [14]. The BN data was included because of its technological significance.
The ZrN data was included for comparison with ZrC. The harnesses of the
metals also represent two or more room-temperature microhardness measure-
ments. Since none of our modeling takes into account thermal effects, metals
with a melting point less than 25°C were excluded (K, Na and Pb).

Empirically, we see that hardness H. is directly proportional to the shear
modulus G, but that the constant of proportionality, Ai, varies with the type
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Table 1.1: Crystal structures, nearest-neighbor distances b in ~, elastic con-
stants Cij, elastic shear (G) and bulk (K) moduli, estimated Peierls stresses -rP

and microhardnesses of “covalently” bonded materials. All elastic constants in
GPa.

Materiala Structureb b’ c11 C44 Q2 G K TP H.d

InSb
InAs
GaSb
GaAs
Ge
C0,8N0,2e
Si
zrN[151

C0.9No.ld
TiN[16, 17]

ZrC
TiC
BNf
C(d)

ZnS
Zns
Zns
ZnS
dc

amorph.
dc

NaCl
amorph.

NaCl
NaCl
NaCl
ZnS
dc

2.81 66 30 36 23 46 1.8 2.2
2.61 84 40 46 30 59 2.4 3..5
2.65 88 43 40 34 56 2.9 4.3
2.45 120 59 54 47 75 3.9 7.0
2,45 130 67 48 55 75 4.9 7.2

— 45 65 - 8.4
2.35 170 79 63 66 97 5.8 12
2.31 – - - 150 270 6.0 15

— 74 110 - 16
2.12 630 170 170 190 320 7.5 20
2.34 440 150 60 170 190 7.6 28
2.16 510 180 110 190 240 8.2 30
1.57 820 480 190 410 400 39 50
1.54 1100 580 120 530 440 54 80

‘References refer to source of elastic constants if not from Landolt-Borstein LBIII/29a (10].
bdc: diamond cubic.
cnearest-neighbor distances are derived from the lattice constants tabulated by W yck-

Off [11].
dHardne55e~ in general are from Ivank’ko and Holleck /12, 13]. Hardness=of CN fi~msare

from Yang [14]. Hardness of diamond is from Field [9].
‘Young’s moduli are from Yang [14]. Shear and bulk moduli are calculated assuming

Poisson’s ratio v = 0.22. This value was determined by interpolation from a tabulation of the
Young’s moduli and Poisson’s ratio of other dc and ZnS structure materials.

fsingle crY5tal elast,ic constants are from Grimsditch et al. [18] and yield a bulk rnmlulus
of 400 * 20 GPa. However, measurements (369 ~ 14 GPa) and calculations (363–370 GPa)
of bulk modulus by Knittle et al. [19] suggest that the results of Grimsditch et al. may be
systematically high.
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Table 1.2: Crystal structures, nearest-neighbor distances b in ~, elastic con-
stants Cij, elastic shear (G) and bulk (K) moduli, estimated Peierls stresses Tp

and microhardnesses of “ionically” bonded materials. All elastic constants in
GPa.

Materiala Structure bb Cll C44 Clz G K Tp H.=

KI NaCl
RbCl NaCl
KBr NaCl
NaI NaCl
KC1 NaCl
NaBr NaCl
AgBr NaCl
CuBr ZnS
AgCl NaCl
NaCl NaCl
KF NaCl
LiBr NaCl
LiCl NaCl
NaF NaCl
ZnS ZnS
CdS ZnS
BaO NaCl
LiF NaCl
MnO NaCl
SrO NaCl
coo NaCl
NiO NaCl
NiO NaCl
FeO NaCl
CaO NaCl
MgO NaCl

3.53 27
3.29 36
3.30 35
3.24 30
3.15 41
2.99 40
2.89 56
2.46 45
2.77 60
2.82 49
2.67 65
2.75 39
2.56 49
2.31 97
2.34 100
2.52 77
2.76 120
2.01 110
2.22 230
2.58 170
2.13 260
2.08 250
2.08 250
2.15 220
2.41 220
2.11 290

3.7
4.7
5.1
7.4
6.3

10
7.3

15
6.2

13
13
19
25
28
45
24
34
64
78
56
82

110
110

52
81

160

4.3
6.3
5.5
9.0
6.9

11
33
35
36
13
15
19
22
24
65
54
45
46

120
46

150
110
110
120
60
93

5.9
7.6
7.8
8.5
9.3

12
8.8
9.5
8.1

15
17
15
19
31
32
18
36
49
68
58
71
90
90
51
81

130

12 0.21
16 0.27
15 0.29
16 0.32
18 0.35
20 0.45
41 0.24
38 0.65
44 0.21
25 0.58
32 0.62
26 0.58
31 0.78
48 1.3
77 2.4
62 1.2
71 1.3
68 2.1

150 2.4
87 2.4

180 2.4
160 3.5
160 3.5
160 1.6
110 3.4
160 5.8

0.43
0.43
0.43
0.43
0,43
0.54
0,67
0.67
0.75
0.75
1.0
1.3
1.3
1.6
1.8
1.9
1.9
1.9
2.3
2.8
3.8
4.4
4.4
5.5
6.0

11

aElastic constants are from Landolt-B&stein LB III/29a [10].
b Nearest neighbor &tance~ are derived from the lattice constants tabulated by Wyck-

Off [11].
cMicrohardnesses estimated from Mobs hardness values (see text for details).
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Table 1.3: Crystal structures, nearest-neighbor distances b in ~, elastic shear
(G) and bulk (K) moduli, estimated Peierls stresses rP and microhardnesses of
bee, fcc and hcp metals. All elastic constants in GPa.

Materiala Structureb b= v G K Tp H.d

Al
Cd
Pd
Th
Mg
Zn
Au
c.
Ta
Ag
Nb
Zr
Ti
Be
Ir
Ni
Mo
co
v
Cr
Re
w

fcc 2.86 0.35 26 77
hcp 2.98 0.31 25 58
fcc 2.75 0.38 47 190
fcc 3.60 0.30 9.0 20
hcp 3.20 0.29 17 35
hcp 2.79 0.24 47 73
fcc 2.88 0.42 28 170
fcc 2.56 0.34 48 140
bcc 2.86 0.34 69 190
fcc 2.89 0.37 29 100
bcc 2.86 0.40 38 170
hcp 3.21 0.33 37 97
hcp 2.90 0.32 44 110
hcp 2.23 0.03 150 110
fcc 2.71 0.25 220 360
fcc 2.49 0.30 84 180
bcc 2.73 0.30 120 260
hcp 2.50 0.32 78 19!3
bcc 2.62 0.36 48 160
bcc 2.50 0.21 110 160
hcp 2.74 0.29 180 370
bcc .. 2.74 0.28 160 310

0.0078
0.29
0.0099
0.0040
0.21
0.68
0.0038
0.015
0.43
0.0073
0.17
0.38
0.49
3.5
0.15
0.037
0.93
0.87
0.26
1.2
2.2
1.3

0.25
0.29
0.40
0.45
0.48
0.51
0.67
0.76
0.89
0.96
1.3
1.3
1.4
1.7
1.9
1.9
1.9
2.5
2.5
2.5
3.2
3.5

aElaMic constants are from Landolt-Borstein LBIII/29a [10].
bbee: body centered cubic, fee: face centered cubic, and hcp: hexagonal close packed.
‘Nearest neighbor distances are derived from the lattice constants tabulated by Wyck-

Off [11].
‘Harnesses are from Ivan’ko [12],
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of bonding in the solid:

H. = AiG. (1.1)

To capture the exponential dependence, we can define a new relationship for
Ai:

.
Ai = Aoexp(–Ci), (1.2)

so that

H. = AoGexp(–C’~), (1.3)

where Ci is a function of the bonding type. For the following fitted values of
Ci,

H. = ~ exp(–1), H. = ~ exp(-2), and Hv = ~ exp(–3), (1.4)

Fig. 1.2 shows that the majority of the data can be collapsed onto a single trend
line which spans from the softest metals and salts to diamond. In addition, a set
of hardness values from thin film specimens of nitrogenated amorphous carbon
lie close to the trend line as well.

A more analytical approach to the differences between classes of materials
involves estimates of the Peierls stress. The term “Peierls stress” not only refers
to the general notion of the stress required to move a dislocation a single Burgers
vector, but to a family of mathematical models of thk stress first described by
Peierls and Nabarro [24, 25]. Essentially, these models offer a modification of
the continuum soIutions for the stresses and strains around a dislocation by
incorporating an elastic shear stress restoring term along the slip plane which
is periodic in the Burgers vector. If thk stress is assumed to “be sinusoidal, an
analytic solution is possible which predicts finite strains at the dislocation core

‘ and a Peierls stress of the approximate form:

‘p= (12-GV)‘Xp()–2 ~h

b(l – v) ‘
(1.5)

where G is the shear modulus, v is Poisson’s ratio, h is the spacing between
slip planes, and b is the Burgers vector. In a recent review of the history of
these models of the Peierls stress, Nabarro [26], pointed out some errors in
the original derivations and cited Huntington [27] as the accurate solution to
the problem as originally posed (the constants result from two Taylor series
numerical approximations in the derivation):

(0.15 + 0.03 (b/@2) )G

()

2 ~qh 1
l-p =

l–v
exp ——

b; ~=2(1– v)”
(1.6)

Figure 1.3 shows hardness plotted as a function of the Huntington Peierls stress.
Table 1.4 lists the values of h and b used in the calculations. Except for the
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Figure 1.2: Log-log plot of bulk hardness as a function of a two-parameter curve
fit for 3 different classes of materials.

fcc metals and the transition metal carbides and nitrides, this model also works
relatively well.

This section has shown that hardness scales very closely with elastic mod-
uli for a given class of material. Appendix A shows how one can use scaling
relationships between lattice constant and elastic moduli to design new hard
materials.

1.3 Hardness of Metallic Carbonitrides

Upon closer examination, both the empirical model of hardness and the Hunt-
ington Peierls stress model break down in one very technologically important
set of materials: the transition metal carbides and nitrides. All are interstitial
compounds with identical crystal structures and slip systems. Although the in-
corporation of Poisson’s ratio differences in the Peierls stress does make a small
difference, the mechanical harnesses of ZrN and TiN are significantly less than
ZrC and TiC despite comparable values of the shear modulus and Huntington
Peierls stress (see Fig. 1.4).
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Table 1.4: Values of h and b for various crystal structures.

Structure h/b
dc {11~/12 (11;)/6 0.353
ZnS {111} /12 (112)/6 0.353
NaCl {110}/2 (110) 0.500
hcpa
bcc {110;/2 (11;)/2 ::E:
fcc {111}/3 (112)/6 1.414

aTable 1.3 and Fig. 1.3 use this value of h/b which was taken from Ref. [28]. For the hcp
metals, a value of approximately 1.414 is more appropriate and will shift the hcp metals into
the fcc scatter band, but this will not change the conclusions of this chapter.

.

100

10

1
Microhardness

(GPa)

0.1

0.01

0.001

v

v

-+

x
.
0

+

0

A

v

covalent (ZnS/DC)
transition metal carbide and nitride (NaCl)
ionic (oxide-NaCl)
ionic (halide-NaCl and sulfide-ZnS)
metal (BCC)
metal (HCP)
metal (FCC) Error bars greater

— - all material thim 20% we shown.

0.001 0.01 0.1 1 10 100
Huntington Peierls Stress (GPa)

Figure 1.3: Log-log plot of bulk hardness as a function of the Huntington Peierls
stress for 3 different classes of materials.
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Figure 1.4: Plots of bulk hardness as a functiori of shear modulus and Hunting-
ton Peierls stress for TiC, TiN, ZrC & ZrN.

The simplest possible extension to the Huntington model of Peierls stress is
to incorporate a more accurate periodic restoring force along the slip plane. The
sinusoidal form of the restoring force was originally chosen because it made the
problem mathematically tractable and because there were few physical mea-
surements of non-linear elastic constants available at the time. Foreman [29]
first treated this problem analytically in 1951, and Bullough [30] offers a more
recent formulations.

Because this research was done in collaboration with the condensed matter
theory research groups of Professors Marvin Cohen and Steven Louie, we tried
to identify a method of calculating the restoring force on a dislocation using ab
znitzo atomistic computational techniques. The Peierls formulation requires only
the forc~displacement curve obtained when two rigid half planes of material
are given a relative displacement along the slip direction. This curve can be
calculated from first-principles by taking two blocks of atoms and calculating
the total energy and internal stresses for a series of rigid displacements. In order
to avoid surface effects, one will actually calculate the energy and stress for an
array of slabs. As the slab thickness is increased, the force energy curve will
converge quickly to the solution of two infinite half planes.

Unfortunately, there is no natural way to constrain the deformation to be
localized between two specific planes. It is computationally simple to fix all
of the atom positions, but this technique is physically unrealistic because the
elasticity solution for a straight edge dislocation has displacements both in the
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direction of slip and normal to the slip plane. However, if you allow freedom
for the slabs to relax in the direction of slip, your crystal will relax all the way
back to the unstrained configuration. Any type of intermediate constrain would
require a priori knowledge of the deformation field.

A more natural measure of a crystaI’s resistance to shear is to perform a
stress controlled experiment and to allow all strains orthogonal to the applied
stress to relax. To calculate the Peierls stress in this manner would require a
simulation cell with a dislocation inside of it. Since dislocations actually move
by kink migration, a full three-dimensional calculation of 1000 atoms or more
is needed. This is currently at the upper limit of what can be done using ab
initio techniques with the best computers in the world. A much easier, but
still non-trivial, computation is to measure a crystal’s resistance to fully relaxed
simple shear. The maximum stress that a crystal can resist is the ideal shear
strength of the crystal, and this strength sets an upper bound on the mechanical
strength a material can have.

Ideal strengths are of interest in their own right, and may be sufficient to
explain the differences in hardness between TiC and TiN. The stress–strain
curves from the ideal strength experiments also can be incorporated into a more
general Peierls stress formulation.

1.4 Conclusion

A two-parameter curve fit or a simple Peierls-stress model describes the room
temperature hardness of a wide variety of materials. However, these models
do not account for the differences in hardness between the transition metal
carbides and nitrides. Accurate electronic structure calculations of the nonlinear
elastic behavior of TiC and TiN are proposed in an attempt to explain the high
harnesses of the transition metal carbides.





Chapter 2

The IdealShear Strengths

of Al and Cut

2.1 Introduction

Let a hypothetical, defect-free crystal be loaded until the lattice itself becomes
unstable and the crystal spontaneously deforms or breaks. The stress at elas-
tic instability is the “ideal strength” [34]. The ideal strength is scientifically
interesting for at least four reasons [35].

First, the ideal strength sets an upper bound on the strength the material
can have. While it may not be possible to achieve the ideal strength in practice,
it is not possible to exceed it. There is both scientific and engineering value in
knowing the limits on what can be done.

Second, the ideal strength can be calculated ab initio for elemental solids
and ordered compounds. The upper limit of strength is, therefore, one of a small
number of problems in the mechanical behavior of materials that can actually
be solved from first principles.

Third, the ideal strength is approached in situations that are technologically
relevant. These include the low-temperature deformation of “inherently strong”
materials, such as diamond, Si, Ge, and, possibly, some of the transition-metal
carbonitrides, and also includes the nanoindentation of materials with low defect
densities.

Fourth, the ideal strength is an inherent material property. Understand-
ing its source and characteristics can help identify those aspects of mechanical
behavior that are fundamental consequences of crystal structure and bonding.

Since the ideal strength is determined by elastic instability, the possibil-
ity of calculating it has, in theory, been available since the development of
the pseudopotential theory made ab initzo elasticity calculations practical [36].
However, substantial computational resources are required, and, until recently,

t The material in this chapter is a combination of the research in Refs. 131-33].

13



14 CHAPTER2.e THE IDEAL SHEAR STRENGTHS OE’ALANDCU

the calculations that were done were limited to tensile deformation along axes
of high symmetry [37–39] or shear deformation in simple (unrelaxed) shear [40–
42]. These constraints are unphysical, will always increase the predicted shear
strength, and may produce significant overestimates. It is now practical to find
the elastic limits for shear as well as for tensile deformation under fully relaxed
conditions [31, 32].

This chapter presents ub inztio calculations of the ideal shear strengths of
Al and Cu. We also discuss the similarities and differences in the large-strain
elastic behavior of Al and Cu. In the fully relaxed case, the two have very
similar strengths (when these are expressed in dimensionless form), but very
different relaxation strains.

2.2 Method of Calculation

The total energies of Al and Cu are computed as a function of strain using the
LDA pseudopotential total-energy scheme with a plane-wave basis set [36, 43-. .
46]. The pseudopotential for Cu was generated including semi-relativistic correc-
tions [47], while the pseudopotential for Al was constructed without relativistic
corrections [48]. We used a cut-off energy of 40 Ry for Al and 70 Ry for Cu. A
grid of 2400 k points was used for Al. A grid of 1300 k points was used for Cu.
These choices ensure convergence to less than 1 mRy (0.013 eV) per atom.

The shear stress is found by straining the crystal in a series of incremental
simple shears, calculating the energy and volume as functions of the strain,
and taking the derivative of the energy with respect to the strain. The ideal
shear strength (in the low-temperature limit) is the maximum value of this
stress. In both Al and Cu the shear strength is minimum for shear on a {111}
plane in a (112) direction. It is, therefore, useful to refer the displacements
to a Cartesian coordinate system with a unit vector, e3, perpendicular to the
(111) plane and unit vectors el and ez parallel to the [112] and [110] directions,
respectively (Fig. 2. la). With this notation, an incremental simple shear in the
[112] direction on (111) takes the form

To increment the strain under fully relaxed conditions, we impose e13(= C31),
and adjust the other components of the strain tensor until their associated
stresses vanish (specifically, until the calculated Hellman-Feynman stresses are
< 0.05 GPa). Since CM = ~Z3 = O by symmetry, the relaxation strains are
stretches along the coordinate axes.

While there is no unique definition of finite strain [49], the three lattice
parameters, aa, are defined at each step of the deformation and can be described
by the three functions, am(n), where n is the number of incremental strain steps
in the simulation. aa (0) represents the unstrained lattice. If D (n, m) is the
Cartesian tensor that describes the deformation between steps m and n,

a:(n) = a~(m) + Dij(n, rn)a~(m). (2.2)
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Al Cu

Figure 2.1: Illustration of the atomic arrangement before and after unrelaxed
shezw in Al and Cu. The cages give the original atom positions in the fcc
lattice, the solid spheres show atom positions at the point of shear instabil-
ity. The Cartesian coordinate system is illustrated at left: {el, ez, e3} =
{[112],[110], [Iii]}

.

Given D(n, m), the true strain, ~, and the engineering strain, 6E, are defined by

~i-i(~)= ~ ‘jjk(mm–1) + Dji(m, m – 1)]
77Z=1

(2.3)

and

~~(n) = ~[%(nj0) + ~ji(w0)1. (2.4)

The derivatives of the energy with respect to the true strain define the stresses
that drive incremental deformation, and, therefore, the true strain is used to
calculate the stress.

The energy is a unique function of the strain, C13, when either: (1) the
crystal is unrelaxed, so ~13is the only non-zero strain, or (2) the crystal is fully
relaxed, so setting the value of C13fixes all the other strains. In either case, the
conjugate shear stress is

1 t3E 1 8E——
‘= C13=FG= v &y13‘

(2.5)

where yij = e~j + cji = 2~ij is the shear, and V is the atomic volume at the
applied strain. The relevant shear modu~@, G’, is determined by the second
derivative, 82E/&y2. For shear in the [112] direction on the (111) plane of fee,
the shear moduli are

G; = C~5 = ~ [cl I + C44– C12]and (2.6)

G; = +=
3 C44(CII– C12)

4C44 + CI1– C12‘
(2.7)

355
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Table 2.1: Calculated and experimental lattice parameters and elastic moduh
for Al and Cu.

Al Cu
talc. exp. caIc. exp.

lattice constant (A)a 4.12 4.05 3.57 3.61
G; (GPa~ 22 ~ 3 24.5 30 + 4 30.5

G: (GPa)~ 27 A 3 24.8 40 + 4 40.8

“Experimental values from Ref. [11].
bShear moduli are defined by Equations (2.6) and (2.7). Experimental Voigt
elastic constants are from Ref. [10].

where G; governs the unrelaxed case, where ~ij = O unless ij = 13 or 31 (=5
in the Voigt notation), G; governs the relaxed case, aij = O unless ij = 13 or

. . .. 31, the cij are the Voigt elastic constants for the cubic crystal, and c’ and s’
are, respectively, the Voigt elastic constants and compliance in the coordinate
system shown in Fig. 2.1. The moduli govern incremental displacements from
the current state and are, hence, functions of the strain.

2.3 Results

The results of the calculations are summarized in Tables 2.1–2.3 and in Figs. 2.2
.

and 2.3. Table 2.1 compares the calculated and experimental values for the
lattice constants and shear moduli at zero applied strain. The close agreement
indicates the relative accuracy of the calculations. u

However, the fact that the computed lattice constant of Al is larger than the
experimental value indicates a slight problem with the pseudopotential chosen.
For metals, the local density approximation to density functional theory should B
always results in some degree of “overbidding”: lattice constants are smaller and
bulk moduli are higher than experiment. [50] The computed lattice constants in
other LDA ub initio studies of Al at OK range from 3.97 ~ to 4.01 ~ [39, 51, 52].
All are smaller than the experimental value.

1

Fortunately, the small error in the pseudopotential is not likely to affect the
conclusions of this chapter significantly. The error does produce systematic “un-
derbidding” in Al. The calculated bulk modulus (71 GPa) is 10% smaller than I

the experimental value (77 GPa [10]). Errors in the computed ideal strength will
be significantly smaller than the error in elastic moduli because the strength is
determined from the first derivative with respect to strain, while the moduli are 9
determined from the second derivative of energy with respect to strain. Errors in
the slope of a smooth function are always smaller than errors in curvature. The
magnitude and direction of the atomic relaxation also should not be affected 1
greatly by the error in the pseudopotential.

Figure 2.2 shows the energy of Al and Cu as a function of the shear strain,
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Aluminum and b) copper energy versus engineering strain for
bo~h the unrelaxed (A’s and smooth fit) and relaxed (.’s and dashed fit) cases.

E(Y), computed both with and without relaxation, and figure 2.3 plots the
stress-strain curves, ~(-y), for the two materials studied in the fully relaxed case.
The stresses and strains at instability are tabulated in Tables 2.2 and 2.3. The
results show the importance of elastic relaxation, which decreases the shear
strength some 40’% from the unrelaxed value. Interestingly, the normalized
shear strengths of Al and Cu in the fully relaxed state are essentially identicaI
(0.085G~) and are much closer to the classic Frenkel estimate (0.1 G) than to
the more modern estimates that have been preferred in recent years [34].

Unfortunately, there are no directly comparable experimental data known
to us. The calculations relate, strictly, to perfect crystals in the limit of zero
temperature. There are no data known to us on dislocation-free Al, but Bren-
ner [53] did measure the strength of nominally dislocation-free Cu whiskers. He
found a tensile yield strength of 2.9 GPa for tension along (111), which trans-
lates into a critical resolved shear stress, TC,of 0.82 GPa (0.027 G;) for slip on
the {111} plane in the (112) direction. Brenner’s measurements were done at
room temperature, so the strength must be corrected to O K. While there is
no exact way to do this, a crude model described by Kelly and Macmillan [34]
suggests that ~C(0) = 2.5~C(273) is not a bad estimate. Using this approxima-
tion, we project r= % 1.1 GPa at 273 K, which is not unreasonable in light of
the Brenner result. A better test can be made by computing the strength of
high-melting-point materials, which should show a much smaller thermal effect.
Thk is done in Chapter 4.

The elastic strain at shear instability is tabulated in Table 2.3. The imposed
shear is 713, a displacement of the (111) planes in the [112] direction. The
relaxation strains are the stretches, ell and e22 in the (111) plane, and e33
perpendicular to it. The primary shear strain (-Y: ) at instability is nearly the
same for Al and Cu (Table 2.3), and is significantly below the value (17.8?ZO)
that a rigid-ball model would produce.

However, the relaxation strains in the two cases (Fig. 2.1) are dramatically
different. Cu is relaxed by a shear in the (111) plane in which a contraction in the

*
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Figure 2.3: Stress versus engineering strain for Cu (A’s and smooth fit) and
Al (.’s and dashed fit). The data points are the calculated Hellman-Feynman
stresses and the smooth curves are the derivatives of the smooth fits to the
energies.

..—

Table 2.2: Ideal shear strengths with and without structural relaxations.

failure stress

T;,X (GPa) T~ax/G~ %ia. (GPa)
Al 1.85 + 0.1 0.084 3.4 + 0.1

Cu 2.65 + 0.2 0.088 4.0 + 0.1

..

Table 2.3: Engineering strains at shear instability

failure strain (%)

Cu 13 –3 3 0.2 0.4
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direction of shear displacement (ell) is balanced by a perpendicular expansion
(622). The separation between (111) planes is almost unchanged (633 small), so
the volume is almost constant. Al, on the other hand, is relaxed primarily by a
shear in the (112) plane, with C33~ —622> ell. The (111 ) interplanar spacing
increases by = 3Y0, and the volume increases by 1.470.

2.4 Discussion

Both the similarities and differences in the behavior of Al and Cu merit discus-
sion. The most striking similarities are the crystallography of the shear that
produces minimum strength (the weak direction in both Al and Cu is in the
(112) direction in a {111} plane) and the virtual identity of the normalized
shear strengths. The most striking dissimilarity is the qualitative difference in
the relaxation strain.

2.4.1 The soft direction in shear

A shear in a (112) direction in a {111} plane in a material with the fcc crystal
structure is a shear that is associated with twinning in {111} and with the
partial slip at the boundary of a stacking fault in {111}. Hence one would
expect this shear to be the soft shear in materials like Cu that twin and form
stacking faults. However, Al has a high stacking fault energy, and one might
expect some other shear to be preferred. The reason that (112){111 } is the soft
shear in Al can be explained by the fact that the applied shear is uniform and
the local atomic coordination near the instability resembles that of the relaxed
crystal more than that of a twinned or faulted one.

If a perfect crystal of Al were strained beyond its shear instability, the in-
stability would necessarily resolve itself in a shower of dislocations, twins or
stacking faults, whichever were easier to achieve. It is at this point that the
choice between total dislocations, partial dislocations or twins would be made.
Since even a small shear carries elastic energy equivalent to that of a high density
of dislocations, the elastic energy of a crystal strained to instability is suilicient
to carry it into whatever defect state is preferred.

2.4.2 The normalized shear strength

The close similarity between the normalized shear strengths of Al and Cu is
probably fortuitous. The unrelaxed shear strengths are not that close (% 0.13G~
for Al versus % O.lG~ for Cu) and the relaxation patterns are very differ-
ent. Nonetheless, since our preliminary calculations for W also produce a shear
strength near 0.085G~, this appears to be a common value for the ideal shear
strength of a metal,
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2.4.3 The relaxation strain

Detailed electronic structure calculations will be conducted in the near future
to examine the effects of the d electron core on the bonding of Cu and to
determine whether the presence of a d core can explain the dramatic differences
in the relaxation behaviors of Al and Cu. However, these differences can be
explained, qualitatively, from their elastic behavior. To phrase this discussion,
we first present the Voigt compliance tensors (Eq. (2.8) and (2.9)) for Al and
Cu in the form they take after transformation into the coordinate system shown
in Fig. 2.1:

s~,(e = o) =

S&u(c = o) =

0.0139 –0.0051 –0.0045 o –0.0019 o
–0.0051 0.0139 –0.0045 o 0.0019 0
–0.0045 –0.0045 0.0132 0 0 0

0 0 0 0.0408 0 0.0038
–0.0019 0.0019 0 0 0.0408 0

0 0 0 0.0038 0 0.0380

0.0077 –0.0038 –0.0014 O –0.0069 O
–0.0038 0’.0077 –0.0014 o 0.0069 0
–0.0014 –0.0014 0.0052 0 0 0

0 0 0 0.0328 0 0.0138

[
–0.0069 0.0069 0 0 0.0328 0

0 0 0 0.0138 0 0.0230

GPa– 1

(2.8)

GPa–l

(2.9)

Since the [111] direction is a three-fold symmetry axis in fee, the compliance. .
tensor has a superficially trigonal symmetry; the non-diagonal elements S;5 and
S;5 do not ordinarily vanish. However, S;5 = – S;5 and, since S;5 = O, the
imposition of a shear stress in the [112] direction on (111), which is 7-13(or t5
in the Voigt notation) produces a shear of type [112](111) that is relaxed by a
shear in the (111) plane, Cll = –CZZ, of precisely the type that is dominant in Cu
(Table 2.3]. However, the value of sj~ is determined by the elastic anisotropy
factor, A (= (cll – C12– 2 c44)/c44), according to the relation

A
S;5 =

3fi(cll – clz)cAa “
(2.10)

It follows that sj~ increases with A, and vanishes when A = O. The strong
elastic anisotropy of Cu has the consequence that its elastic, in-plane relaxation
is much greater than that in the more isotropic Al.

A shear of type [112](111) breaks the symmetry of the fcc crystal. The
symmetry of the strained crystal allows S;5 # —S;5 and S55 # O, so there can
be a relaxation strain, C33,perpendicular to the (111) plane and a net volume
change. The symmetry change is exploited very quickly in the almost isotropic
Al crystal, which rapidly develops significant values of CS3,.s11+ ezz, and AV.
In the anisotropic Cu crystal, in contrast, the finite-strain effect is small, and
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the relaxation strain is only slightly perturbed from its symmetry in the relaxed
state.

The qualitative difference between the relaxation strains of Al and Cu is
also observed experimentally. Approximate compliance tensors of Al and Cu at
the shear instability are presented below (Eq. (2.11) and (2.12)), as estimated
from the thhd-ord~r elastic constants tabulated in [10]. Even though the exper-
imental data were taken at strains of only a fraction of a percent, the measured
third order elastic constants do predict that the S;5 and S;5 compliance of Al
will change sign. The compliance also predict the relative magnitudes and sign
of the relaxations in Al, and the signs of the relaxations in Cu. Finally, one
can extract estimates of the sign and magnitude of the volume change with
applied shear by summing S!5, S45and SL5. For Al, the volumetric compliance
is 1.4% and for Cu, 0.8Y0. These figures are again qualitatively consistent with
the theoretical results given in Table 2.3.

[
0.0135 –0.0055 –0.0027 O 0.0026 0

–0.0055 0.0154 –0.0072 O –0.0063 O 1
–0.0027 –0.0072

s~l(~ = 0.15) = o
0.0176 0 0.0177 0

0 0 0.0353 0 0.0092 GPa–l

s&u(&= 0.13) =

10.0026 –0.0063 0.0177 0 0.0730 0
0 0 0 0.0092 0 0.0394 J

0.0087 –0.0046 –0.0027 O –0.0128 O
–0.0046 0.0083 –0.0004 o 0.0109 0
–0.0027 –0.0004 0.0067 0 0.0097 0

0 0 0 0.0239 0 0.0109

[

–0.0128 0.0109 0.0097 0 0.0680 0
0 0 0 0.0109 0 0.0217

2.5 Conclusion

(2.11)

GPa–l

(2.12)

We have calculated the ideal shear strengths of aluminum and copper using
pseudopotential density functional theory. Structural relaxations orthogonal to
the applied shear significantly reduce the values of ideal shear strength, resulting
in strengths of 8–9 percent of the shear modulus for both Al and Cu. However,
the geometry of ~he relaxations in AI and Cu is very different. To some de-
gree, this can be explained using experimentally measured third order elastic
constants.
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The InternalStability

of an ElasticSolidt

3.1 Introduction

Chapter 2 presented, to this author’s knowledge, the first fully relaxed ab inztzo
calculations of ideal shear strength in any material and showed the importance
of structural relaxations orthogonal to the appIied shear. Our calculations also
revealed that the values of ideal strength were sensitive to the finite strain mea-
sure used to determine the stresses by differentiation. Before continuing our
computational research, we decided to rigorously examine how the thermody-
namic conditions of elastic stability apply to calculations of ideal strength.

It is sometimes useful to think of ordinary plastic deformation as a structural
instability, in which elastic stress drives a locally stable parent “phase” into an
instability that can only be resolved by creating or reconfiguring defects such as
dislocations, or by transforming to a new crystal structure. This perspective is
most natural when the parent phase contains no mobile defects and the defor-
mation is triggered by a stress so large that the lattice itself becomes unstable.
This elastic limit sets an upper bound on the mechanical strength a material can
have. Given recent advances in theoretical methods and computing machines
it is possible to calculate the elastic limits of real materials with considerable
accuracy, including both the theoretical stress and the detailed nature of the
atomic rearrangements as the elastic limit is approached [31, 32, 37, 39–41].

Despite periodic investigations over many years, however, the basic thermo-
dynamic criteria that govern elastic stability are not entirely clear [34, 55-59].
This creates an uncertainty in how first-principles calculations or simulations
ought to be done, and what their results have to say about the true limits of
strength. Even in the simplest case, homogeneous, qua.sistatic elastic deforma-
tion to failure, some clarification is needed in at least three separate areas: the

t The research presented in this chapter has been accepted for publication in Phil. Lfag. A
(Ref. [54].)

23
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thermodynamic conditions for stability, the conditions of stability under load
control, and the most efficient approach to first-principles calculations.

The first problem concerns the conditions of stability. The analysis of elastic
stability is complicated by the fact that the states of interest are subject to finite
stresses and strains that change their symmetry and affect their mechanics.
Recent investigations of this subject [56–59] have begun from the perspective of
continuum mechanics and used the stability criterion

(3.1)

which assumes fixed temperature and requires that the increment to the Helm-
holtz free energy in any real or virtual displacement equal or exceed the mechan-
ical work done by the applied stresses. The ambiguity in this approach [56] lies
in the nature of the mechanical work, which is done by some loading mechanism
that functions as a thermodynamic reservoir. To apply the stability criterion the
work must be evaluated to second order. While the various convenient measures
of the applied stress, for example, the Cauchy stress in real space and the stress
that is conjugate to the Lagrangian strain, have equivalent first-order effects,
they differ in the second order. As Hill [56] and Hill and Milstein [57] point out,
this has the consequence that the limit of strength changes with the nature of
the stress that is maintained by the reservoir. Recent investigations [39, 58, 59]
avoid this ambiguity by assuming that the Cauchy stresses are controlled, and
Wang et al. [59] use this condition to define a path-dependent ‘(Gibbs integral”
that has the local features of the Gibbs free energy. But it is not completely
clear why this choice is more fundamental than any of several others, particu-
larly since it is not easy to design mechanisms that control the Cauchy stress
to second order.

The second problem concerns the conditions of stability for deformation un-
der mixed stress and strain control. In particular, the limit of strength that is
ordinarily of greatest interest is the strength under uniaxial stretch or simple
shear, with all other stresses fully relaxed. In this case the governing thermo-
dynamic potential includes only one strain variable and has only one modulus,
and one needs to know how the limit of stability determined by that modulus
relates to those that apply under more general conditions.

The third problem is the practical problem of finding the relevant limits of
strength by direct, ab initio calculations. Since these calculations are computa-
tionally expensive, it is important to obtain the desired information in the most
efficient possible way. In particular, it is critical to know how the instabilities
that are captured in the calculations relate to those identified by the thermo-
dynamic criteria, and whether the details of the calculations cause important
instabilities to be miscalculated or missed entirely.

To investigate these questions we return to Gibbs’ original formulation of the
conditions of stability [60] and apply the method to a homogeneous, elastic solid
under finite strain. Gibbs’ conditions govern internal stability and enforce the
requirement that the system be stable with respect to arbitrary reconfiguration
that do not alter its boundaries. They are, therefore, independent of the nature
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I

of the external loads or the mechanisms that hold the boundaries in place.
As we shall see, the conditions of internal elastic stability are identical to those
derived from Eq. (3.1) when the loading mechanism fixes the Cauchy stress [59].
Hence, the conditions of stability based on the Cauchy stress always apply.
Other loading mechanisms may introduce other conditions, which may be more
stringent, but cannot obviate these conditions of internal stability.

We then consider the conditions of stability under uniaxiai deformation or
simple shear. In thk case the conditions of stability relate to the single surviving
modulus. No new conditions of stability are added, but the conditions of internal
stability must still be obeyed, and instabilities that result fi-om deformations
orthogonal to the chosen deformation may be missed.

Finally, we consider how to calculate the limits of stability and, in particular,
whether it is possible to obtain reasonable answers without computing the full
matrix of elastic moduli after each increment of elastic deformation.

3.2 The Conditions of Internal Equilibrium~

We use the notation employed by Eringen [61], with minor variations that should
be clear from context. A strained solid is described by the relations

z~ = i,k(xk) XK = XK(Z’J, (3.2)

where the Zk are coordinates in the current state (the “spatial” or “Eulerian”
frame), the XK are coordinates in a convenient reference state (the “material”
or “Lagrangian” frame), and both sets of coordinates are Cartesian. The differ-
entials of Eq. (3.2) are the “deformation gradients”, ~k,~ and XK,~:

dxk = Zk,KdxK dxK = xK,kdXk. (3.3)

Defining the displacement vector, u, such that x = X + u,

xk,K = dkK+ &LuL,K xK,k = 6kK+ &@+, (3.4)

where UK and ~k are, respectively, the components of u in the material and
spatial frames, UL,K and U1,k are the displacement gradients in the two frames,
and the 6kK(= ek . eK) are the ‘tShifters” that relate unit vectors along the ma-
terial and spatial coordinates axes (they are Kronecker 8’s when the coordinate
axes coincide).

The strain is ordinarily measured by the Lagrangian (Green’s) strain, a
tensor in the material frame whose elements are

EKL = ~ [Zk,KXk,L– 6KL] = ~[uK,L + tJ1’L,K+ UP,KUP,L] = ELK, (3.5)

tThis derivation is the work of J. W. Morris Jr., but it is included here to provide context
for the following discussion and the following chapter.
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or by the Eulerian strain, the complementary strain measure in the current
frame:

+ .

The two strain measures are connected by the relation

EKL = xk,KXl,Lekl. (3.7)

When the displacement gradients are small (uk,l = duk,l) both strain measures
reduce to the linear strain,

However, when the displacement gradients are finite, both the strain measures
and their increments differ. In particular, if the material points are given the
small displacements, au, from their present positions [62],

(3.9)

We seek the conditions that are necessary for internal equilibrium. Let the
solid have a fixed temperature and composition, and a homogeneous mechanical
state that is controlled by its external surface (“strain control”). Its mechanical
equilibrium is, then, governed by the Helmholtz free energy, which must have
at least a local minimum value with respect to reconfiguration that keep the
boundary fixed. To phrase thk condition mathematically, let the material parti-
cle, X, that is currently located at the position, x, within the volume, V, of the
body be given the small displacement, au(z), whose values forma differentiable
field over V. Equilibrium requires that

Cw’[h(m)] ~ o, (3.10)

where the variation is taken at constant temperature and composition and the
only displacements that are permitted are those that leave the boundary un-
changed.

The boundary constraint can be incorporated into the condition (3.10) by
the method of Lagrange multipliers, giving the equivalent condition [63],

dF[du(x)] – /~ ti~~uin~ds >0, (3.11)

where the tij are constant Lagrange multipliers, 6U is the variational displace-
ment of the boundary element, dS, whose normal is n, and du(x) can now be
any differentiable vector field over V. Via the divergence theorem,

dF[du(z)] -
/

t~3ik~n1dS = 6F[6u(z)] – / tij&ui,jdV
s v

P (3.12)
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where de~j = ~(hi, ~+ c$uj,~) is the incremental strain, and 6uij = ~(hi, ~– iiuj,i)
is the incremental rotation.

The variation in the Hehnholtz free energy is most easily evaluated in the
reference state, X, which has the fixed volume, VO:

8FV0&qau(~)l= /vo[tmKL
1

6EKLdv0

(3.13)

=~;[*].k,K.@k,dv

where 6E is the increment to the Lagrangian strain, and we’ have used Eq. (3.9)
and the identity pdV = podVO to transform the integral into the current frame.
Inserting (3.12) into (3.9), the condition of mechanical equilibrium can be writ-
ten

L{[:[%] 1 }dv20 ‘314)xk,Kxl,L – tkl ~kl – tklhkt

The condition (3.14) holds for arbitrary C$ui,jonly if

tij= t.j~ (3.15)

and

(3.16)

Equation (3. 16) is, in fact, the thermodynamic definition of the Cauchy stress
[61], and establishes that our multipliers are precisely the elements of the Cauchy
stress tensor (as they must be [63]).

To find the conditions of mechanical stability we need to ,develop the vari-
ation of the free energy to the second order. The Hehnholtz free energy of an
elastic solid is usually and conveniently written as a function of the Lagrangian
strain. For fixed composition the free energy density in the reference state is,
to second order

Fvo (E, T) ~ Fvo (T) + TKLEKL +

where VO is the volume in the reference state,

1
–CKLMNEKL13MN,
2

(3.17)

[1aF’vO
TK~ . —

8EKL
E=O

is the conjugate stress in the reference state, and

(3.18)

(3.19)
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are the elastic moduli.
To first order in E, %&K % dkK + bkpEpK. The variation of F$ in an

incremental strain is then, to second order,

6Fvo ~ [TKLxk,Kxl,L+ CKLMNEMjv($kK&L]Ckkl
= [TKL + (TMLdKN + TKM~LN + CKLMN)EMN] dkKC$lL~Ckl

{[

1—— TKL+ ~(TMLdKN + TKMbLN

1}
+ TNL6KM + TKNdLM) + CKLMN EMN 6kK61LdW,

(3.20)

where we have used the symmetry of the Lagrangian strain tensor, EKL, and
have also used the Voigt symmetry of the tensor of elastic moduli, cKLMN. If
we now multiply by the density ratio then, to second order,

[1
$ JFvo = [1- EPP]W’VO
P (3.21)

= {TKL + BKLMNEMN}&K&L&kl,

where the elements of the tensor

BKLMN = ~(TMLi$KN + TKM”~LN
(3.22)

+ TNL6KM + TKN6LM – 2TKL6MN) -tCKLMN

are the moduli that govern the variation of the Cauchy stress with strain from a
stressed reference state [64] (the form in Hill [56] is for the special case, p = po):

tkl= {TKL + BKLMNEMN}&K&L. (3.23)

Note that BKLMN # BMNKL; the BKLMN do not have full Voigt symmetry.
We are here concerned with the necessary conditions for stability on incre-

mental strain from a stressed reference state. In this case,

EMN = i$EMN = X~,MXn,AT6em., (3.24)

so, to second order,

(3.25)

where V is the volume in the current configuration,

Tkl = TKL(!kK&L, (3.26)

and

~klmn= ~[BKLMN+B&fNKL]&j&&&f&N

1—— J]ck~mn+ –[’fk~dln+ 7_kn61m+ Tlmbkn+ rln~km — Tkl~rnn— ‘mn kl,
2

(3.27)
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where cklmn = cKL~NbkKblL8~M6nN. The tensor, A, is the symmetric part of
the tensor, B, and has full Voigt symmetry:

~ijkl= ~jikl= ~ijlk= ~klij. (3.28)

Substituting Eq. (3.25) into the inequality (3.14) yields necessary conditions for
a stable internal equilibrium. The first-order term gives

tkm = Tkm, (3.29)

which requires that the applied (Cauchy) stresses be equal to the thermody-
namic stresses that are obtained by differentiating the free energy density with”
the current configuration as reference state. The second-order term provides the
necessary conditions of internal stability. These are embedded in the quadratic
form

which must be non-negative for arbitrary values of the incremental strains. Since
the ~ijkl have Voigt symmetry the stresses, strains and moduli can be written in
the usual Voigt notation. Setting tll= tl,tz2= t2,z!33= t3, tQs = td, t la = ts,
tlQ = t6, and making the same replacements for d~~~and ~ijkl, the condition of
stability is

where

(3.32)

where the subscript means that all other Ek are to be held constant. Internal
stability requires that the 6 x 6 matrix of moduli, Aij, be positive semi-definite.
The moduli, ~ij, depend on both the stresses (~i = ti) and the elastic moduli,
cij. Since J is a symmetric matrix, it can be brought into diagonal form with
eigenvalues, Am,and eigenvectors, Jqa, so that

Since the eigenvectors, Jqa, are orthogonal (or can be made so), stability requires
that all of the eigenvalues be positive. Internal stability is necessarily lost when
the least eigenvalue (~~in ) first falls to a negative value; the limit of elastic
stability is, therefore, reached when

,A~i.= O. (3.34)

Note, finally, that when the elastic strains are small, the stresses are small
compared to the elastic moduli. Then the equations of linear elasticity apply
and

Aij 2 Cij . (3.35)
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In the linear elastic limit the conditions of internal stability reduce to the fa-
miliar condition that the 6 x 6 matrix of elastic moduli, cij, have no negative
eigenvalues.

3.3 Discussion

We began this chapter with a list of three problems: the conditions of stability,
stability when some of the loads are controlled, and the -proper computation
of the limiting strength. We are now in a position to discuss each of them.
We shall also discuss three specific cases of particular interest: the cubic solid
under hydrostatic pressure, the tetragonal solid under tension along (100), and
the monoclinic solid under shear in (112) {111}.

3.3.1 The conditions of stability
.

The necessary conditions for internal stability are contained in Eq. (3.31) and
are given succinctly in Eq. (3.34). These conditions govern internal stability and
are, therefore, independent of the nature or behavior of the loading mechanisms.
However, Eq. (3.31) is derived from Eq. (3.11), which is the form Eq. (3.1)
takes when the loading mechanism fixes the Cauchy stress. It follows that
the conditions of internal stability are identical to the conditions of mechanical
stability that pertain when the Cauchy stress is controlled [59]. If the loading
mechanism that is actually used or supposed in a particular case fixes a set
of stresses other than the Cauchy stress, it may impose additional conditions
of stability, which may be more stringent than those presented here (see, for
example, Hill’s discussion of rotational instabilities under dead loading [56]).
Still, the conditions of internal stability always apply and are, in this sense, the
fundamental conditions. It is appropriate to use them to define the ultimate
strength, since the strength cannot exceed the values they allow.

The conditions of stability (3.31) differ from those used in recent work [39, 65]
in that only the symmetric p~rt, A, of the Wallace tensor, l?, appears. This
happens because the asymmetric part of B does no work in an infinitesimal
deformation from the reference state (Wang et al. [59] recognize this but use
the asymmetric tensor to set the conditions of stability, for reasons that are
unclear to the present authors). The difference is small in the cases we have
examined.

The identity of the internal conditions of stability with those based on the
Cauchy stress shows that the same conditions pertain when the boundary con-
ditions fix the displacement, the Cauchy stress or any combination of displace-
ments and stresses on different parts of the boundary. Many of the most impor-
tant practical cases fall in the mixed regime. The simplest are uniaxial tension,
in which the material is stretched along a particular axis, and simple shear, in
which the material is sheared on a particular plane under conditions that are
otherwise relaxed.
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When the loading mechanism fixes a stress other than the Cauchy stress the
internal conditions derived here remain necessary, but may no longer be suffi-
cient to guarantee elastic stability. The second-order response of the loading
mechanism may lead to instability before the internal limits are reached. A
simple example is a sample under a fixed, uniaxial compressive load; its con-
figuration is unstable with respect to rotations off the axis. Hill [56] poses the
problem and treats the conditions of stability under dead loading in some detail.
A comprehensive investigation of this issue is needed, but is beyond the scope
of the present chapter.

3.3.2 Loading in tension and shear

The simplest cases to picture or analyze are those in which we increment a single
strain, Ca, while fixing the other five ee (“unrelaxed uniaxial strain”) or relaxing
the stresses, tp, conjugate to the five C6 (“relaxed uniaxial strain” or “uniaxial
stress” ). In each of these cases there is only one effective elastic modulus. In
the unrelaxed case this modulus is

while in the relaxed case it is

(3.36)

(3.37)

where Greek letters label indices that are not summed if repeated. The relaxed
modulus, ~aa, is the reciprocal of the compliance, .saa, the om component of the
tensor, s, that is inverse to A and governs the change of the infinitesimal strains
with the Cauchy stresses. It is, therefore, equal to IAI/AQ@, the determinant of
A divided by the cofactor of Aa@. By LeChatelier’s Principle [66], for changes
emanating from any given state,

&. 2 ‘&, (3.38)

so the relaxed deformation sets the more stringent limit and leads to a lower
ultimate strength. (The equality holds for an isotropic material, as is confirmed
by direct calculation for W, which is nearly so. See Chapter 4.) It follows
from the final form of Eq. (3.37) that a zero of ~ao always corresponds to a
zero of the determinant 1A1, and, hence, to a zero of one of its eigenvalues.
Relaxed strain does not add any new condition of stability. However, it is well
known that the use of Eq. (3.37) can overestimate the limit of strength since
other instabilities may intrude prior to its first zero [55]. These instabilities are
necessarily associated with simultaneous eigenvalues of A and Aaa that divide
out cm the right-hand side of (3.37). Any such eigenvalue must be associated
with an eigenvector that is orthogonal to .sa. As we shall see below, in the cases
of interest there are eigenvectors that are orthogonal to the direction of load, .s~,
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by symmetry, while others are accidental, and due to the specific values of the

& in a particular state. A well-known physical example of the intrusion of an
instability is the deformation or failure in shear of a sample pulled in uniaxial
tension. Similar instabilities have been seen in simulated cases of deformation
under uniaxial loading [39, 58, 67, 68].

3.3.3 Instability in compression, tension or shear

The deformation modes that are most commonly studied are hydrostatic com-
pression, uniaxial tension, and simple shear of initially cubic solids. It is useful
to take a moment to summarize the results for these cases.

Hydrostatic compression

Cubic crystals under hydrostatic compression (or tension) were studied in some
detail by Wang et al. [58, 59]. The crystal retains cubic symmetry, so the ~ij.—
have only three independent values:

All = A22 = A33 = Cll – P

A12 = A13 = A23 = C12 + P (3.39)

A44 = A55 = A66 = C44– P

with all other Aij = O. The determinant

pl = A443(A,, - A,,)2(A,, + 2A,,) (3.40)

is easily factored, yielding three independent conditions of stability:

C44– P>O

C1l– C12–2P>0 (3.41)

C11+2C12+P 20.

The third condition relates to the bulk modulus. The first two concern the
shear moduli and reveal a tendency toward instability in shear when a material
is compressed. Note that in the fluid limit, C4A-+ O, c1l – Clz ~ O, and
the material is unstable in shear when it is compressed but is stabilized by a
hydrostatic tension. The “tensile strength” of a fluid in tension is due to Van
der Waals’ spinodal instability when the bulk modulus is no longer sufficient to
support the tensile pressure.

Tetragonal extension

Let an initially cubic crystal be stretched to instability along [100], a situation
of obvious interest that has been studied by a number of investigators [37, 39,
41, 55, 68]. The crystal becomes tetragonal as soon as a tensile strain is applied
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with the consequence that the modulus tensor (A or c) takes the form shown in
Eq. (3.42), with five independent components:

(3.42)

1000 0 A55 o
0000 0 A55 J

The applied stress, m, affects only the components of A that involve the [100]
axis:

All = Cll + o-

A12 = C32– 0/2

A55 = C55 + c/2

A~j = C~j (all others).

The determinant of A is given by

(3.43) ‘

(3.44)

Its zeros determine four conditions of stability; two of which explicitly involve
the applied stress:

Eq. (3.45) differs slightly from the forms presented by Wang et al. [59] and by
Li and Wang [39]. The difference is due to the symmetry of A, which makes a
correction of order (o/c12) to the right-hand side, slightly delaying instability.
This term is, ordinarily, small. The modulus that governs a fully relaxed stretch
along [100] is

m
(3.49)

where cl 1 z All, for an unrelaxed stretch in the same direction. The crystal is
unstable with respect to a relaxed stretch on [100] when the condition (3.45) is
violated. Since the stretch is tensile, the elastic instability can be accommodated
by cleavage on (100). Because a relaxed stretch in any (100) direction in a bcc
crystal produces the fcc structure after a strain of about 0.26 (the Bain strain),
the strain of instability will also be approximately 0.13 or less. This (100)
stretch instability strain is significantly smaller than the instability strain for
shear in a (11) direction (W O.18) (see Chapter 4) and is much smaller than
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the instability strains for stretches along (111) or (110) [68]. This fact that bcc
crystals necessarily become unstable after a relatively small stretch along (100)
is presumably responsible for their tendency to cleave on {100}.

The conditions (3.46)–(3.48) relate to shear strains whose eigenvectors are
orthogonal to 61by symmetry. The shear instabilities do not produce zeros of fll 1
and may intrude prior to elastic failure by stretch. Shear instabilities of the type
(3.46) have been found to intrude in model studies of fcc crystals prior to the
zero of ~11 [68] and appear to be the characteristic strength-determining feat ure
for fcc materials stretched on (100). This is expected on physical grounds; fcc
crystals stretched in tension orI (100) usually fail in shear, via slip on {111}.

Simple shear

Let an initially cubic crystal be sheared in one of the common slip systems:
(112) {111} in fee, or (111) {110}, (111) {112} or (111) {123} in bee. In each of
these cases we can refer the cubic crystal to an orthorhombic cell whose edges
parallel the slip direction (for example, [112] in fee), the normal to the slip
plane ([111] in fee) and a direction perpendicular to both ([110] in fee). Shear
on the slip plane in the slip direction distorts this cell into one with monoclinic
symmetry. If ~Gis taken to be the shear in the slip plane, the tensor moduli
then take the form (3.50), with 13 independent terms:

Only four of these include the shear stress:

(3.50)

(3.51)

A45 = C*5 + u/2

A~j = Cij (all others). *

The determinant of A can be written

lx\= (A44A,5– A4,2)Ixll, (3.52)

where A4 is the 4 x 4 matrix obtained from (3.50) by removing the elements

associated with e4 and C5. A4 contains the maximum possible number of inde-

pendent elements (10) and cannot be factored in any particularly useful way.

The modulus for relaxed shear along ~13is

p66 = (s66)-1= IA411A31, (3.53)
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where A3 (= C3) is the 3 x 3 matrix of terms associated with Cl, e2 and C3.

~m is independent of the factor [Au2s5 – A452], which governs stability with
respect to shear in two perpendicular planes. However, since neither IA4I nor
IA31can be factored, any other instability prior to the zero of P68 would be
fortuitous. Instabilities along Cqand C5can be relevant. For example, in Al and
in (presumably) most other fcc materials, any finite shear in the [101], direction
on the (111) plane is unstable with respect to rotation toward [112] or [IT2] The
relaxations that accomplish this rotation are shears along e4 and 65.

3.3.4 Ab inii%o calculations of the elastic limits

Recent advances in theoretical methods and computing machines make it pos-
sible to calculate the energies of distorted crystal lattices to very high accuracy.
The computations are tedious, however, particularly when the distorted solid
has low symmetry. For this reason most first-principles calculations of the elastic
limits have studied the behavior of materials with primitive lattices in uniaxial
stretch along axes of high symmetry [37, 39], or simple shear in one of the pre-
ferred slip systems [31, 32, 40, 41]. Simpler models have been used to clarify the
symmetry rules that locate extrema in simple crystal structures under various
types of loading (Ref. [68] and references cited therein), or to conduct molecular
dynamic studies of the approach to elastic instability [58, 59, 65].

The most straightforward way to calculate elastic limits from first principles
is to simply stretch, compress or shear the crystal in the desired direction,
compute the elastic energy and the relevant Cauchy stress as a function of
strain, and look for the maximum of the stress. In the relaxed case, which is
clearly the most informative, the crystal must be reco@igured at every step to
relax the lateral stresses. This can be done in a straightforward manner by
computing the stresses via the Hellman-Feynman method and reconfiguring the
atoms until the lateral stresses relax to zero (see Chapter 2). In the general
case, the Cauchy stress is found by computing the energy increment in a small
incremental strain. When the total strain is small, however, as it is to a fair
approximation in structural metals under simple loading even at the elastic limit
(see Chapter 2), linear elasticity applies and the Cauchy stress is given by the
slope of a plot of the free energy as a function of strain. In that case elastic
instabilities are identified by inflection points in the free energy curve.

This uniaxial procedure has the disadvantage ~hat it yields only an upper
bound on the theoretical strength. As discussed above, instabilities along eigen-
vectors perpendicular to the direction of stretch are not seen, and may intrude
at lower values of the stress. The only mathematically rigorous way to ensure
that all of these are found is to compute the full set of elastic constants after
each strain increment and test for zeros of [A1. Practically, however, it is only
necessary to apply a set of small tricIinic distortions and to allow relaxation
from the distorted states. Only if all of these triclinic distortions are fortu-
itously parallel to the minimal eigenvector of A will any instability be missed.
Unfortunately, since a triclinic crystal has no symmetry other than the inversion
operation, these computations are still difficult to do.
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By combining the uniaxial procedure with a few low symmetry distortions
and a bit of physical insight, one can obtain answers that are very likely to
be right. If one has computed both the strength in tension along the obvious
symmetry axes and the strength in shear in the common slip systems then one
can test the probability that slip intrudes prior to tensile failure by computing
the resolved shear stress under a tensile load that approaches the theoretical
strength. If the shear stress is well below the relevant shear strength, shear
instabilities are unlikely. A similar method can test the likelihood that tensile
failure intrudes during deformation in shear. If these or other orthogonal in-
stabilities are possible, they will almost certainly pertain over a range of strain

prior to instability in uniaxial load. It should ordinarily be sufficient to test the
crystal with small triclinic distortions at a few isolated points prior to insta-
bility. Thk is particularly the case in relaxed shear (see Chapter 2) since the
reconilgurations that are necessary to relax the stresses sample all deformations
but e4 and es.

. .

3.4 Conclusion

The internal conditions of stability are found by applying Gibbs’ criterion
the material be stable to all reconfiguration that do not alter its boundary.

that
The

conditions of stability are contained in the requirement that ~i~klb~i~ 6&kl > 0
for all infinitesimal strains, where ~~jkl = l/2(Bi~kl + Bklij ), and E is the tensor
that governs the change in the Cauchy stress (t) during incremental strain from
a stressed state (~): tij = r~j + Bijk~dE/c~. Since A has full Voigt symmetry,
it can be written as the 6 x 6 matrix, Aij, with eigwahws, A~. stabW is

lost when the least of these vanishes. The conditions of internal stability are
shown to be equivalent to those derived previously for a solid in contact with a
reservoir that fixes and maintains the Cauchy stress. Mechanisms that control
stresses other than the Cauchy stress may add additional conditions of stabil-
ity, which may be more stringent, but cannot obviate these. The conditions of
stability are exhibited for cubic (hydrostatic), tetragonal (tensile) and mono-
clinic (shear) distortions of a cubic crystal and some of their implications are
discussed. Elastic stability and the limits of strength are now being explored
through first-principles calculations that increment uniaxial stretch or shear to
find the maximum stress. This method produces an upper bound, but it may
not be the least upper bound since orthogonal instabilities may intrude before
it is reached. This possibility can often be recognized or dismissed on the basis
of a few supplementary calculations.



Chapter 4

The IdealStrength of

Tungstent
..—

4.1 Introduction

4.1.1 Tungsten as an further example

Chapter 2 looked at the ideaJ shear strengths of the fcc metals Al and Cu. In
this chapter, we examine the ideal shear and tensile strengths of bcc tungsten.
Tungsten was chosen for three reasons. First, it is a good example of the bcc
transition metals, which provide technologically important structural materials.
The most important of aN, of course, is Fe, but the ferromagnetic interaction in
bcc Fe makes it a very difficult subject for fundamental study [69]. Tungsten is
a more tractable example.

Second, bcc transition metals like tungsten have complex and interesting me-
chanical properties [70]. They commonly shear on at least three different crystal-
lographic slip systems, (111) {110}, (111) {112} and (111) {123}, and sometimes
exhibit such a mixture of these (and, possibly, others) that their deformation is
described as “pencil glide” on arbitrary planes that contain (111) [71]: Despite
this multiplicity of slip systems, bcc crystals are characteristically brittle at low
temperature, a behavior that, in the case of Fe, is responsible for a good many
of the better-known engineering disasters of the industrial age. It is of interest
to know whether these characteristic behaviors of bcc crystals are reflected in
their ideal strength.

Third, tungsten was chosen because there has been an ab znztzo study of its
tensile behavior [38], which provides a cross-check on the accuracy of the results.

tThe research presented in this chapter has been submitted for publication (Ref. [33].)
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4.1.2 Choice of strain paths

The ideal strengths of all crystalline solids vary with the geometry of the applied
strain. For example, the strength of a model fcc crystal stressed in shear on a
{111} plane in a (112) direction will always be lower than the strength for shear
in a (110) direction on the same plane. Fortunately, principles of symmetry and
exploratory calculations have shown that highly symmetric loading geometries
set the upper and lower bounds of strength. Most important are the lower
bounds, and it follows that we must calculate separate strengths for shear and
tension in only a small number of high-symmetry loading configurations.

We shall specifically consider five simple configurations: uniaxial tension
along (100), shear on the three common slip systems, and shear on the un-
common system (110) {110}. We justi~ these choices on the following grounds,
which we shall discuss in further detail in the body of the chapter.

The tensile calculation is done along (100) because symmetry arguments [72],
prior computations [38] and empirical testing [73] all identify the (100) axes

. .. as the weak directions in tension and the {100} pIanes as the cleavage planes.
Similarly, experimental data [70] and symmetry considerations (that were found
in the course of this work) all identify slip in (111) directions on {110}, {112}
and {123} planes as comparable candidate systems for the minimum strength
in shear. The (110) {1 10} system is treated as an example of an unfavorable
shear.

We have not specifically treated multiaxial stresses. However, both prior
pseudopotential calculations by Soderlind and Moriarty [42] and our own ex-.
ploratory calculations with “embedded atom” (EAM) methods [74] suggest that,
excepting very high hydrostatic pressure, secondary stresses do not have an im-
portant effect on the ideal strength.

4.1.3 Definition of the ideal strength

Even when the stress is uniaxial there is some ambiguity in the definition of the
ideal strength (see Chapter 3). In a laboratory test, elastic stability is a joint
property of the material and the loading mechanism [56, 57]. The maximum
value of the measured strength depends on the response of the loadlng mecha-
nism to second-order displacements [56]. We use the analysis of ideal strength
developed in Chapter 3 and define the ideal strength by the limit of internal
stability, the stress at which the crystal first becomes unstable with respect to
quasi-static distortions that do not displace its boundary. The ideal strength
that is measured in this way is equal to that which would be measured in a
test with a load frame that fixed the Cauchy stress (force per unit area in the
current cordlguration) to the second order [58].

As derived in Section 3.2, if the current state of the crystal is described
by the Lagrangian strain, .E, and the Cauchy stress, a, its internal stability is
governed by the fourth-order tensor A:
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where c is the tensor of elastic moduli at strain, E. Stability requires that A
(or, more simply, its 6 x 6 Voigt form) have no non-zero eigenvalues. Since
both c and o change with strain and A has six independent eigenvalues, testing
stability can be a formidable task.

Fortunately, if the deformation is uniaxial and fully relaxed, the strength
defined by the limit of internal stability (the ideal strength) is ordinarily just
the maximum value of the conjugate Cauchy stress. This is true unless the
solid is unstable to perturbations that are orthogonal to the direction of the
applied load. Orthogonal instabilities are unlikely unless the load is along a
direction of high symmetry, and can be revealed by periodically perturbing the
crystal with distortions that create triclinic symmetry (see Chapter 3). When
the deformation is uniaxial and fully relaxed, the elastic limit is not difficult to
find in practice.

Unfortunately, even these techniques miss dynamic instabilities, such as
those caused by “soft phonons” or enharmonic vibrations. The ideal strengths
computed here refer to the limit of internal stability under quasi-static defor-

. .— mation in the low-temperature Iimit.
In the following we first compute the ideal strength of W in uniaxial tension

along (100) and compare the results to prior work. Second, we compute the ideal
strength in shear for the three experimentally observed slip systems, (111) {110},
(111) {112} and (111) {123}, and for the alternate system (110) {110}. The re-
markable result of this calculation is the almost identical value of the ideal
strength for (111) slip on the three different slip planes. Third, we discuss the
symmetries of the deformations considered. Symmetry considerations let us
formulate simple models that approximate the ideal strengths to within a few
percent and explain the degeneracy of the strengths in shear along (111). Fi-
nally, we compare the results to experimental values reported from both tensile
tests of tungsten whiskers and nanoindentation measurements on tungsten films
and discuss the differences.

4.2 Computational Methods

The computational procedure used here was essentially the same as that of
Chapter 2. The tungsten unit cell is defined by three lattice vectors, aa (a =
1,2, 3) and placed in a Cartesian coordinate system with axes ei (i = 1,2, 3).
The lattice vectors al and a2 are taken to lie in the plane of el and e2. The
unit cell is deformed by incremental changes in the lattice vector, a3. To model
uniaxial tension along [100], a3 is incremented by Aa3 in the direction of e3,
which is parallel to [100]. To model shear in the system [abc](Md) the coordinate
vectors el and ez are taken to lie in the plane (Md) with el parallel to the
direction [abc]. The deformation is accomplished by incrementing a3 by Aa3 in
the direction of el.

The deformed Iattice vectors, aa, define the current shape of the unit cell
and, hence, the current positions of all the atoms. When the deformation is fi-
nite, there is no unique way to translate this information into a tensor strain [49].
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But there isaunique measure of the stress that governs mechanical stability:
the Cauchy (or “true”) stress, which is the applied force per unit area in the
current configuration of the crystal (Chapter 3). As in Chapter 2 we define
strains and estimate the Cauchy stresses as follows:

Let aa (0) be the a ‘k lattice vector in the unstressed bcc crystal, and let

aa (n) be its vector value after the TZth incremental step in the deformation.

The net deformation between steps m and n is defined by the tensor D(n, m):

a;(n) = a~(m) + Dij(n, m) a;(m). (4.2)

The incremental strain in the n ‘h step, Ae(n), is, then

Aqj(n) = ~ [Dzj(n, n – 1) + Dji(n, n – 1)], (4.3)

and we can define a “true” strain as

Cij (n) = ~ [A~ij (m)]. (4.4)
m=l

Since the values of ~ij (n) are sensitive to the number of steps in the Sirnulati%

it is useful to define a measure of strain independent of this, the engineering
strain:

eij = ~ [~ij(%0) + ‘ji(% 0)1. (4.5)

Note that the engineering strain eij is just the linear part of the Lagrangian
strain, Eij:

.

Eij = ~ [~ij(TL0)+ ~ji(~, 0)+ ~/ci(~, o)~~j(n, 0)]. (4.6)

The Cauchy stress u in the n th step can be estimated in three ways. First,

the stresses can be found from the change of the total energy U with the con-
jugate incremental strains:

1

[1

AU(n)
a~j(n) = ~ Aeij (n) ‘ (4.7)

where V(n) is the current volume of the crystal. However, thk definition is
very sensitive to small errors in U and aa. Since, in most cases, U and a“ vary
smoothly and continuously with strain, differentiating a smoothed fit through
a plot of U versus “true” strain reduces errors in stress at each point:

[-1

1 8U

aij = V 196ij ‘
(4.8)

In the limit of small Ae (large number of steps for a finite strain), this will
converge to the thermodynamic definition of the Cauchy stress. Equation (4.8)
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offers the most precise estimate ofstress from the available data, but we denote
that, in the cases studied here, the strains axe small enough that the stresses
are also well approximated by the derivative of the energy with respect to the
engineering strain. The third way to determine the stresses is from the Hellman-
Feynman theorem [75, 76]. The directly calculated stresses have less precision
than the energy, because the energy is calculated variationally. However, they
have the advantage that they are independently calculated for each strain, and
thus provide a check that our strain increments are sufficiently small.

In the present work, the quasi-static (T=O) energy of the deformed crystal
and the Hellman-Feynman stresses were calculated using the local density ap-
proximation (LDA) within a pseudopotential total-energy scheme incorporating
semi-relativistic corrections [36, 43–47]. Using a cut-off energy of 60 Ry with a
16 x 16 x 16 k point grid generated using the Monkhorst-Pack scheme proved
sufficient to achieve precision of better than 1 mRy (0.013 eV) in the calculated
energies.

The energy and stress were calculated as a function of strain for both uniaxial
strain (unrelaxed condition) and uniaxial stress (relaxed condition). In the
former case, a selected strain was incremented while the other five independent
strains were fixed at zero. In the latter case, which provides a more meaningful
measure of the ideal strength, the crystal was relaxed until only the stress, tij,
conjugate to the selected strain had a non-zero value. This was done by fixing
the selected strain and adjusting the other five independent strains until their
conjugate Hellman-Feynman stresses were less than 0.15 GPa.

4.3 Ideal Strength

4.3.1 The lattice constant and elastic moduli

A first test of the accuracy of the computational scheme is its ability to predict
the lattice constant and the elastic moduli of the crystal. The results are shown
in Table 4.1, which includes the lattice parameter and bulk modulus, and the
elastic modulus and compliance for shear in the system (111){ 110}. The lattice
parameter is accurate to within 170, the moduli are correct to within 6?10.Since
W is almost isotropic at O K (the anisotropy ratio (c1l – c12 – 2 c44)/c44, where
cij are the Voigt elastic constants, is less than 0.01 [77]), the shear modulus,
c(a~C}{~k~}, and the ekwtic compliance, s{a~c}{h~l], for shear on any slip system,
(abc){hkl} are given by

(4.9)

Because tungsten is elastically isotropic, the combination of the bulk and shear
moduli are sufficient to fully specify its elastic properties.

However, as in the discussion in Section 2.3 on the lattice constant of Al, it
is somewhat troubling that our computed lattice constant using LDA is larger
than the experimental value. It is also unusual that both the lattice constant
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Table 4.1: Calculated (LDA) and experimental lattice parameters and elastic
moduli of bcc tungsten.

experimental present work PP’ FP-LMTOC
lattice constant (A)a 3.16 3.17 3.13 3.15

c(I1l){lIo} (Gpa)b 164 161ztl – —

l/s(llI){llo} (GPa)b 164 159* I – —

bulk modulus (GPa)b 314 331 * 1 317 319

‘Experimental values at 298 K are from Ref. [11).
~Experimental 4.2 K data are from Ref. [77].
‘Values are from an ab initio study of tungsten in Ref. [78] and are computed

using both pseudopot ential plane wave (PP) and full-potential, linear muffin-

tin-orbital (FP-LMTO) techniques.

and the bulk modulus are larger than experiment. Table 4.1 includes results
from another recent ab initio study of tungsten using both pseudopotential plane
wave (PP) and full-potential, linear muffin-tin-orbital (FP-LMTO) techniques.
Because the lattice constants predicted by these calculations are smaller than
experiment, these results are more believable than our own. As argued in Sec-
tion 2.3, however, any small errors in the pseudopotential will not have a large
effect on either our computed values of ideal strength or on our analysis of the
structural relaxations of tungsten under load.

4.3.2 The ideal strength in tension

Figure 4.1 shows the variation of energy (Fig. 4.la) and stress (Fig. 4.lb) with
engineering strain for a crystal that is pulled in a (100) direction with full
relaxation along the perpendicular axes. The maximum tensile stress, cr~, is
29.5 GPa,u in close agreement with the value, 28.9 GPa, reported by sob et
al. [38]. Sob et al. also calculated tensile strengths in the (111) and (110)
directions. These are substantially higher.

The reason that bcc crystals are weak in (100) directions (and, therefore,
cleave on {100} planes) has been known for some time [79]. As illustrated in
Fig. 4.2, if a bcc crystal is pulled along (100) and allowed to relax in the two per-
pendicular directions its structure eventually becomes fee. Assuming constant
volume, the engineering strain, e3, needed to accomplish the transformation
(the “Bain strain”) is e~ = 0.26. Since the stress vanishes by symmetry in both
the bcc and fcc structures, either the fcc structure must be a saddle point, or it
must pass through a maximum at some intermediate strain. No similar extrema
are fixed by symmetry for the other possible directions of tensile loading. Hence,
barring accidental extrema, a bcc crystal has its minimum tensile strength when
it is loaded on (100).

The ideal tensile strength can be estimated in the following way (which is
generally applicable to any bcc crystal whose energy increases monotonically
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Figure 4,1: Energy (a) and stress (b) as a function of applied tensile strain
applied along (100) to bcc tungsten. The A‘s are for the unrelaxed cases and
the ●‘s for the relaxed cases. The @’s mark the position of fcc tungsten.

.

when it is stretched from bcc to fcc along (100)). In the tradition of I?renkel [80]
and Orowan [81] we approximate the stress-strain curve by a sinusoidal function
with a period of eb. In this case,

[1

7re
u=n~sin — ,

eb
(4.10)

where am is the maximum stress. Since a = E(lOO)e, when e is small (Hooke’s
Law) and -E{loo) is Young’s modulus for a (100) stretch,

[1: ‘(1OO) =0.08 ~(loo}.ffm. — (4.11)

The ab inztio calculation
ably good agreement.

for W gives 29.5 GPa, which is 0.072 E(loo), in reason-

Figure 4.2: Illustration of the Bain transformation path between

b

bcc and fee.
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{110} {112} {123}

Figure 4.3: Geometries of shear for slip on {110}, {112}, and {123} planes along
a (111) direction. The atoms connected by the arrows are sheared over the plane
below. The arrowheads indicate the “easy” direction of shear.

4.3.3 The ideal strength in shear

The common bcc slip systems, (111) {110}, (111) {112} and (111) {123}, are il-
lustrated in Fig. 4.3. The (111) {110} system is symmetric with respect to the
direction of shear along the (111) axis. The (111) {112} and (111) {123} sys-
tems are not; slip in the direction of the arrow shown in the figure (the “easy”
direction) has a lower shear strength and energetic maximum than slip in the
opposite direction (the “hard” direction).

Fig. 4.4 includes plots of energy against engineering strain for the three slip
systems over a full period of shear along (111). The strain periods for the relaxed
and unrelaxed shears differ because the former includes relaxations orthogonal
to the applied shear. Fig. 4.5 is the engineering stress-strain relation for slip
on the (111){ 112} system. This figure also shows the agreement between the
calculated Hellman-Feynman stresses and the Cauchy stress estimated from the
slope of the energy-strain curve. Fig. 4.6 presents the most striking result of
these calculations: the close similarity of the stress-strain relations for (111) slip
in the easy directions on the three planes.

Table 4.2 lists the shear strengths for the three slip systems in relaxed and
unrelaxed strain in both the “easy” and “hard” directions. Table 4.3 lists the
strains at each instability (the shear strain ~ij = 2eij ). Tables 4.2 and 4.3 also

include data for the (110){ 110} system. As it is to be expected, the relaxed
strengths are lower than the unrelaxed in all cases, and the strengths in “easy”
slip are much below those in the “hard” directions. The relaxed strength in the
(symmetric) (110) {110} system (~ 0.12 G) is higher than that. for “easy” slip in
any of the (111) systems studied (= 0.11 G for all three systems).

The shear of W in the (111) {1 12} system was previously studied by Paxton
et al. [40] for unrelaxed and partially relaxed shears. They obtained a strength

&
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Figure 4.4: Energy as a function of applied shear strain for one period of (111)
slip on {110}, {112}, and {123} planes. The A’s are for the unrelaxed cases and
the .‘s for the relaxed cases.
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Figure 4.5: Absolute values of the stress as a function of strain for (111) {112}
slip. The A’s and the .’s are the calculated unrelaxed and relaxed Hellman-
Feynman stresses. The solid lines represent the stresses calculated from
smoothed fits to the energies.
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Figure 4.6: Fitted stresses as a function of strain for (111) slip in the “easy”
direction on {110} (0’s), {112} (0’s), and {123} planes (A’s).
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Table 4.2: Ideal shear strengths (I-m=) with (r) and without (u) structural
relaxations for five slip systems. G is the experimental shear modulus.

failure stresses (GPa and %)
slip system ?-T u

max ‘+;f &x/G
(111) {110} 18.2 + 0.4 20.im~0.4 12.7
(110)-(110} 19.3 * 0.4 21.3 + 0.4 11.8 13.0

(Ill){llz}easy 18.1 + 0.4 19.2 + 0.4 11.1 11.7
(lll){112}hard 26.3 + 0.8 34.3 + 0.8 16.1 21.0

(lll){123}eaSY 17.6 + 0.8 19.1 + 0.8 10.8 11.7

(lll){12s}hard >20 30.6+ 0.8 >12 18.7

of 0.13 G for unrelaxed shear in the “easy” direction and 0.27 G in the “hard”
‘.. _

direction. These values are somewhat higher than ours (Table 4.2), but may
result from additional approximations used in their total-energy calculations.

Compared to the results for Al and Cu, in which relaxation decreased ideal
strengths by 35~0 to 45Y0,relaxation has a relatively small effect on the strength
of W. This is primarily due to the elastic isotropy of W, which has the conse-
quence that the second-order shear moduli are the same for relaxed and unre-
laxed strain. The two cases differ only to the extent that third- and higher-order
moduli influence the results. Relaxation does have a significant effect (> 2070)
on the strength of the (111){ 112} system in the “hard” (negative) direction. Ta-
ble 4.3 shows that this results from large values of the relaxation strain. These
large relaxation strains have two sources. First, the primary shear strain at
instability is large (N –0.33), so non-linear effects make significant contribu-
tions. Second, as illustrated in Fig. 4.7, in a relaxed shear the lattice becomes
unstable and deforms discontinuously at a shear of -0.45. While this structural
instability lies beyond the elastic instability at the maximum shear stress, its
proximity will soften the lattice, decreasing its strength.

Table 4.3: Applied (713) and relaxation engineering strains at shear instability.

relaxation strains (%)
instabilityy ?’13 Cl1 @ 633 “/12 723 AV/V
(111) {110} 17.4 -1.2 0.1 2.5 0.5 -0.8 1.4
(110) {110} 15.8 -0.3 -0.8 2.1 0 0 0.9

(lll){llz}easy 16.8 -1.0 0.6 1.5 0 0 1.1
(lll){112}~ar~ 32.7 -2.8 2.3 4.9 0 0 4.4
(111) {123}.wY 18.2 -1.2 0.5 2.0 -0.8 0.0 1.3
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Figure 4.7: Normal relaxation strains as a function of applied shear strain for
(111) {112} slip. (0’s: CII, ❑ l’s: CZ2,and Q’s: 633) A structural shear instability
is clearly visible at a strain of approximately –0.45.

4.3.4 Sources of the ideal strength in shear

The best single measure of the ideal shear strength is the minimum value of the
relaxed strength for the “easy” direction of slip. This strength sets the maximum
yield stress of an otherwise ideal polycrystal. Even a single crystal loaded for
slip in the “hard” direction on {112} would exceed the critical stress for slip on
{110} before reaching the “hard” strength on {112}. From this perspective, the
present calculations give the ideal shear strength of W as 17.6 GPa (.108 G) for
shear in the system (111) {123}. Because the shear strengths on (111) {110} and
(111) {112} are so close to this value, a more exact calculation of an ideal yield
surface would find the shear strength to be practically isotropic.

Not only are the ideal strengths in the three common slip systems almost
identical (X 18 GPa = 0.11 G), but the failure strains are almost the same as
well, 17–18Y0. This contradicts the usual assumption that the ideal strength is
proportional to (b/h), where h is the interplanar spacing and h, the Burger’s
vector, is the length of the shortest lattice vector in the direction of slip. The
shear strength on the {110} planes, which are the closest-packed and most
widely spaced, is essentially the same (in fact, it is a bit higher) than that
on {123} planes that are much closer together. The insensitivity to (b/h) is
due to the fact that, for all three planes studied, the elastic instability (the first
inflection point on the energy curve) falls at only a small fraction of the minimal
crystallographic translation in the (111) direction.

The shortened period for slip in the {112} plane has been noted before [40,
82], and can be understood from an inspection of the atom configuration in
the {112} plane (Fig. 4.8). A shear strain of 0.66 in the easy direction is the
“twinning strain” that creates a mirrored bcc lattice. It follows that there must
be at least one maximum in the energy at a strain below 0.66, and an elastic
instability (inflection point ) before that. If there is a single maximum, symmetry
dictates that it fails at ~ = 0.33, with an inflection near 0.167, which is almost
exactly the strain (-y = O.168) that the ab initio calculation finds for elastic
instability in shear on {112}.
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Figure 4.8: Illustrations of the changes in symmetry during relaxed shear on
{110}, {112}, and {123} planes. A and B atoms are on two adjacent planes. A
BC position indicates a lattice with cubic symmetry, a B~ position monoclinic
symmetry, and a B. position orthorhombic symmetry. Intermediate configura-
tions during shear on the {110} and {123} planes have triclinic symmetry. The
intermediate configurations during shear on {112} have monoclinic symmetry.

While the symmetry constraints that govern the shear instability on {112}
may be obvious, the triple period on {123} was not apparent until the energy
had been calculated. The shear instability on {110} was also invisible until
the fully relaxed case had been explored. A closer examination shows that the
extrema that locate the first instability on each of these paths are associated
with local configurations of relatively high symmetry. Figure 4.8 illustrates
this. A (111){ 110} shear changes the symmetry from cubic to triclinic; the
first extremum occurs when the deformed path passes through a configuration
with monoclinic symmetry. In the (111){ 112} system, the shear deformation
path moves from cubic to monoclinic to orthorhombic symmetry at the first
extremum. In the (111) {123} system, the sequence is cubic to triclinic to or-
thorhombic.
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Figure 4.9: Illustration of the stacking sequence for the saddle point of (111)-
{110} slip (ABCDA).

Although the energies and strains at the first extrema on the three slip
systems are almost identical, the extremal structures are not. The extremal
structure on {110} has a monoclinic Bravais lattice with three atoms per unit
cell and ABCDA stacking as shown in Fig. 4.9. The extremal structure along
{112} is a body-centered orthorhombic lattice formed by the AB~=yA stacking
shown in Fig. 4.8. This, as we shall show below, is also the extremal structure
on {123}. -

The similar strengths and instability strains on the three common bcc slip
systems has a straightforward geometrical explanation. If we locate a bcc atom
at the center of the bcc cell then, as illustrated in Figs: 4.10 and 4.lla, two of its
nearest neighbors lie along the cube diagonal while the other twelve nearest and
next-nearest neighbors sit at the corners of two pairs of equilateral triangles that
are perpendicular to the cube diagonal. A shear in the (111) direction tilts each
of these triangles along the (111) axis around an axis in the shear plane. The

Figure 4.10: Illustration of the stacking sequence of the eight nearest and six
next-nearest neighbors along the (11 1) direction in bee.
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~ = 5.2A a = 5.1A a= 5.1A
b = 6.OJi a’ = 5,3A b = 5.6A

?3= 5.7A c= 7.2A
C = 7.QA

a) b) c)

. .
Figure 4.11: Illustration of thesymmetries ofpencil glide in bcc. The taMes list
the distance of each labeled neighboring atom from the central atom. a) shows
an unstrained tungsten bee lattice, b) shows the saddle point after (111) {1 10}
shear, and c) shows the symmetry of the {112} and {123} saddle point.

cubic symmetry is broken, and the set of eight nearest neighbors and six next-
nearest neighbors is replaced by seven pairs of near-neighbor atoms at varying
distances. As the triangles tilt in the (111) direction and relax around the (111)
axis, their corners approach one another. The energy extrema are reached when
the corners of the coordination triangles first come into partial registry with one
another, as illustrated in Fig. 4.llb (the {110} extremum) and Fig. 4.llc (the
{112} and {123} extremum).

The spatial registry of the coordination triangles at the extremum changes
the number of equidistant neighbors and creates a more symmetric configu-
ration. As illustrated in Fig. 4.1 lb, the {110} extremum has 6 neighbors at
distances of 5.1–5.3A and 6 neighbors at 5.7A. The extremal configuration for
{112} and {123} slip is the same (Fig. 4.llc). It has four neighbors at a dis-
tance of 5.1A and eight at 5.6A. As shown in Figs. 4.8 and 4.9, these symmetric
arrangements have monoclinic and orthorhombic Bravais lattices, respectively.
The extrema on {110} and {123} were difficult to identify because they require
significant structural relaxations (Table 4.3). These relaxations are illustrated
in Fig. 4.12.

The similarity in ided strengths on the three slip systems is due to two
factors: the similarity in the instability strains and the isotropy of the shear
modulus. As shown in Table 4.3, the primary strains at instability vary by
only a few percent, from 0.168 for {112} to 0.182 on {123}. In each case, the
instability strain is about one-half of the primary strain to the first extremum,
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{110} {112} {123}

Figure 4.12: Illustrations of the relaxations from the applied simple shear strain
to ‘the saddle points for slip on {110}, {112}, and {123] planes. The cages
represent the positions of the atoms after simple shear. The spheres represent
the atoms after relaxation. The relaxed positions of {112} and {123] differ by
only a rotation of approximately 10 degrees about (111).

which varies from x 0.32 for {110} to x 0.35 for {112}. If we approximate the
stress-strain relation by a sine wave, as in Eq. (4.10), with a period of 0.34, and
require that Hooke’s Law be satisfied at small strains, the relaxed shear stress,
T, is approximately

“ [–1
T-y

T = ‘m ‘ln 0.34 ‘

giving the ideal strength as

Tm Z
[1
~ G = O.ll G.

(4.12)

(4.13)

This estimate agrees very well with the results of the ab znztzo calculations
(Table 4,2).

Equation (4.13) suggests that the virtual identity ’of the ideal shear strengths
on the three bcc slip systems in W is due in large part to its isotropic shear
modulus. It further suggests that the ideal shear strengths in less isotropic
bcc crystals will vary systematically with their shear moduli. In fact, this is not
true. The modulus for shear will, in general, depend on both the shear direction
and the shear plane, but, because of the threefold symmetry for rotation about
(111) in bee, any shear in a (111) direction has a relaxed modulus of

1
%) = ~(111)

= 3c44(cll – C12)

4C44 + Cll – C12 ‘
(4.14)

This means that Eq. (4.13) can be used to predict the shear strength of any bcc
metal -d that the strength on any system (111) {i-jk}, where i + j = k, will be
nearly identical.
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4.4 Comparison with Experiment

The experimental observations that may be clarified by these results include
qualitative observations on the deformation and fracture of tungsten and similar
bcc metals, and quantitative data on the ultimate strength of W, obtained from
tensile tests on whisker crystals and nanoindentation tests on W films.

4.4.1 Brittle fracture

Like other bcc transition metals, polycrystalline tungsten fractures in a brittle
mode at low temperature by cleavage on {100} planes. As discussed above, the
{100} cleavage plane is dictated by symmetry. Since a relaxed stretch along
(110) produces the fcc structure at moderate strain, the crystal is weak in ten-
sion in that direction. The weakness on (100) is confirmed by the ab initio
calculations of sob et al. [38], and their result for the ideal strength is confirmed
in the present work.

._ There is at least some evidence that the simple estimate of the cleavage
strength given in Eq. (4.11) is applicable to other bcc metals. We have completed
a preliminary calculation of the cleavage strength of bcc Fe, and have found a
value of 10.5 GPa, which is almost precisely 0.08 -E(IOO).

Despite its tendency to cleave on {100}, whether an ideal single crystal of W
fails by fracture or by shear depends on how it is loaded. If any of the common
slip systems is loaded in simple shear to the elastic limit (= 18 GPa), the
maximum tensile strength on any plane is also about 18 GPa. Since this stress
is well below the minimum tensile strength, 29 GPa in (100), an ideal crystal
loaded in simple shear should fail in a shear instability that would (probably)
resolve itself by plastic deformation through twinning or dislocation nucleation
and glide. If, however, an ideal crystal were loaded in (100) tension to the
cleavage stress, 29 GPa, the maximum resolved shear stress would only be 14.5
GPa, which is below the ideal shear strength. It follows that an ideal W crystal
that is loaded in (100) tension at low temperature will cleave before plastic
deformation intrudes.

4.4.2 “Pencil glide”

The most striking characteristic of the shear strength is its virtual degeneracy
for (111) slip in the {110}, {112} and {123} planes. At least at moderate to
high temperature, the deformation of a typical bcc crystal is characterized by
slip on planes that include the (111) direction, among which these three are
the most prominent [70, 71, 83]. The identity of the slip plane is sometimes
so difficult to determine that the deformation is described as ‘tpencil glide” in
the (111) direction. The choice of slip plane is made by mobile dislocations
and has no automatic association with the ideal strength. It may, therefore,
be merely interesting that the ideal shear strength has a very similar crystallo-
graphic degeneracy. On the other hand, the lattice strain becomes large in the
dislocation core, and that finite strain must be propagated as it moves, so the
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Table 4.4: Experimental estimates of ideal shear strength: maximum nor-
mal stress (a~ax), maximum shear stress (~~ax) and normalized shear stress
(rmaX/G).

failure stress
am.x (GPa) ~~ax (GPa) ~~~/G (%)

whkkers” 24.7 + 3.6 12.5 + 1.8 7.8 + 1.1
nanoindentationb 69.6 + 3.7 21.6 + 1.1 13.5 + 0.7

aFracture of (110) whiskers [84].
bNanoindentation of a (100) surface [85]. A single observation of ~max =

28.6 GPa was also noted.

considerations that lead to degeneracy in the strength also favor degeneracy in
dislocation stip.

4.4.3 Experimental values of the ideal strength

Table 4.4 shows two of the most recently determined values of the ideal shear
strength of W, one measured on nominally dislocation-free “whiskers” [84] and
one measured via nanoindentation on lightly oxidized W films [85].

Whisker data

Mikhailovskii et al. [84] sttidied the tensile fracture of microcrystalline tungsten
“whiskers” with diameters in the range 600–2600~ and long axes parallel to
(110). The maximum strength was 28.3 GPa.

While we did not calculate strength for a tensile pull along (110), gob et
al. [38] found a value of approximately 54 GPa for tensile fracture. Given that
the load is never precisely along a (110) axis, the crystal might instead be
expected to fail at a load close to that which provides a resolved shear stress
equal to the shear strength on the most favorably oriented plane. Thk criterion
suggests failure when the tensile stress along (110) is about 36 GPa, or twice
the ideal shear strength.

It follows that the maximum whisker strength is about 0.80 of the theo-
retical value. This is satisfying for two reasons. First, the computed ideal
strengths should always be slightly greater than any experimental observations.
Second, prior work [53] suggests a mechanism for this difference: the failure of
whiskers ordinarily originates from free surfaces. This suggests that the strength
of whiskers is determined by heterogeneous nucleation of defects at free surfaces
rather than by the bulk value of the ideal strength.
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Nanoindentation measurements

Nanoindentation tests probe the mechanical response to indentation by an in-
denter that is no more than a few nanometers in diameter [86–88]. If the material
tested has a low dislocation density then the nanoindenter may probe essentially
defect-free material. If, in addition, the surface of the crystal is treated to pre-
vent premature failure from the interface, then failure may be made to originate
in the region of maximum stress beneath the interface. It follows that nanoin- ,
dentation studies are a promising method for measuring the bulk value of the
ideal strength.

The most extensive study of the nanoindentation of tungsten was by Bahr
et al. [85]. They inferred the shear stress at yielding by using the depth of
indentation by the indenter in the familiar Hertz solution for the stress field of
an elastic indenter. They report a maximum shear stress at yield of 28 GPa,
and report a number of measurements at about 26 GPa. These values are
significantly above our calculated value of the ideal shea strength (18 GPa).

..— Aside from experimental or theoretical errors, there are at least two possible
sources for this discrepancy. The first is the triaxiality of the load at yield: the
material is subject to a hydrostatic stress that is of the same order of magnitude
as the shear stress. While this issue deserves a specific investigation, the work of
Soderlind and Moriarty [42] on the behavior of Ta at hlghpressure suggests that
pressure has no dramatic effect on the shear strength until pressures significantly
larger than those encountered here.

A more immediate concern is the applicability of the Hertz solution for the
elastic strain field, which assumes a linear elastic stress-strain response and
elastic isotropy. Neither assumption is true when the strain approaches elastic
instability. Figure 4.6 shows clearly the non-linear elastic behavior near insta-
bility. The assumption of elastic isotropy no longer holds because, while the
effective shear modulus in the soft direction vanishes at the point of instability,
the moduli for shear modes perpendicular to the soft direction remain large.

A rough estimate of the correction needed to account for the softening of
the modulus near instability can be made as follows.t The displacement at
the indenter-substrate interface, which is used to compute the Hertzian strain
field, is set by the net modulus of the whole substrate volume strained by the
indenter. Since almost all of this volume responds in a linear elastic mode, the
strain field computed from the indentation should not be all that wrong, even if
the small volume of material that is under a high shear stress responds in a non-
linear way. Assuming that the estimated shear strain at failure is approximately
correct, and further assuming a sinusoidal stress-strain relation, we have

[1

7r-y
T=rmsin —

27m ‘
(4.15)

where -ymis the strain at failure and Tm is the strength. Since T = G? for small

tThe derivation of this 7r/2 correction is the work of D. Roundy.
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strains,

2 2~
Tm = —G~m = —rm,
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(4.16)

where -& is the strength computed from the same failure strain on the assump-
tion of linear elasticity.

Equation (4.16) suggests that the strengths back-calculated from the Hertz-
ian strain field should be multiplied by a factor of about 2/7r for comparison to
the ideal strength. This factor corrects the W measurements of J3ahr et al. [85]
from 26–28 GPa to 16.5–18 GPa, in very good agreement with the theoretical
numbers. The agreement is very likely to be better than the accuracy of this
simple model, but it does support the notion that nanoindentation experiments
do measure the ideal strength

4.5 Conclusion

We have used pseudopotential

in shear.

density functional theory within the local density
approximation to calculate the ideal tensile strength of tungsten pulled in a
(100) direction and the ideal shear strengths for the (111) {110}, (111) {112}
and (111 ){ 123} slip systems, allowing full structural relaxation of the strains
orthogonal to the applied shear. We also computed the shear strength in the
(110) {110} system for comparison.

The ideal tensile (100) tensile strength was found to be 29.5 GPa. This
number (= 0.072 E(IOO)) is in close agreement with prior calculations. This
number is ak.o in good agreement with the value (0.08 .E(lOO)) expected for
a material that has a sinusoidal stress-strain relation and a tensile strength
that is determined by the “Bain” instability on (100). The shear strength was
close to 18 GPa (O.11 G) for all three slip systems. Analysis of the structural
relaxations that occur during these shears revealed that the ideal shear strengths
are determined by relatively high-symmetry extrema that are reached in each
of these systems after a shear of 0.32–0.35. These extrema are related to the
packing sequence along (111) directions in the bcc lattice. The shear strengths
are also in good agreement with a model that uses a sinusoidal approximation for
the stress-strain relation. Finally, as expected, the strength in the (110) {110}
system is higher than that in any of the three (11I)-based systems commonly
observed in bee.

The calculated shear strengths are, at least, in the range of the vahes ob-
tained from tensile tests on tungsten “whiskers” and nanoindentation tests of
tungsten films. The maximum tensile strengths of whkkers are about 0.8 of the
expected values. We suspect this reflects early failure of these thin whiskers from
surface-induced defects. The maximum shear strengths reported from nanoin-
dentation experiments are almost 1.5 times the theoretical value. We believe this
discrepancy is primarily due to the linear elastic assumption used to extract the
strength from the experimental data. If we use a sinusoidal stress-strain relation
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to correct the stress at given strain, the reported measurements are corrected
by a factor of 2/7r, which reduces them to the theoretical numbers.

9
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Chapter 5

Summary and Future Work

5.1 Summary

This dissertation has critically examined a number of scaling relationships be-
tween atomic-scale properties and intrinsic mechanical hardness. For the ma-
jority of materials examined, hardness scales linearly with elastic shear modulus
for a given bonding type (covalent, ionic or metallic). However, we have identi-
fied a technologically important class of materials where thk scaling relationship
does not hold: the group IVa and Va transition metal carbides and nitrides. As
a class, the group IVa and Va transition metal carbides have higher mechanical
harnesses for a given shear modulus than the corresponding nitrides despite
having the identical crystal structure and very similar bonding.

In an attempt to understand why and how the scaling of hardness with
shear modulus can break down, we have developed a detailed theoretical anal-
ysis of “ideal strength,” which is defined by the limit of elastic stability of
a quasi-statically loaded perfect crystal. In general, the conditions of stabil-
ity are contained in the requirement that &~hl6~~36Ekl~ O for all infinitesimal
strains, where ~ijkl = ~(Bijkl + Bkli-j), and B is the tensor that governs the
change in the Cauchy stress (t) during incremental strain from a stressed state
(T) : tij = Tij + Bijht6ckt. Stability is lost when the minimum eigenvalue of ~~~
(the 6 x 6 Voigt form) vanishes.

Ideally, one would hope to use ab initio computations to determine B as
a function of applied strain, but this is computationally very expensive. In
Chapter 3, we justify a much more computationally efficient approach that
calculates only energy and stress as a function of strain. The ideal strength for
any uniaxia~ loading direction (including shear) can be determined by allowing
full atomic relaxation perpendicular to the applied strain. This maps out a
minimum energy path for the deformation, and the ideal strength is determined
by locating the maximum of stress along the path. If the axis of applied strain
is along a high symmetry direction, this procedure may miss instabilities along
directions perpendicular to the direction of stretch, but these instabilities can
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engineering shear smin

TiC

k
engin.ecing shear smi”

TiN

Figure 5.1: Schematic illustration of the stress-strain behavior for (110) {110}
shear in TiC and TiN

.— be detected by combining the uniaxial procedure with a few low symmetry
distortions and a bit of physical insight.

Chapters 2 and 4 present ah initio ideal strength calculations using these
techniques for Al, Cu and W. These are the first ab initio calculations that
incorporated full atomic relaxation perpendicular to the applied strain, and they
show that relaxation can have very important effects. For Al and Cu, relaxation
reduces the values of ideal shear strength by 35% to 45~0, resulting in strengths
of 8–9 percent of the shear modulus for both Al and Cu. For W, relaxation
produced the remarkable result that the ideal strengths on {110}, {112}, and
{123} planes were nearly identical (% 18 GPa = 0.11 G). Encouragingly, with
a small correction that accounts for the non-linear stress–strain behavior near
instability, this strength is very close to the shear strengths determined from
nano-indentation experiments. The equivalence of the strengths on all three
common bcc slip planes is explained in terms of bee’s linear elastic isotropy
for shears in a (111) direction and of the atomic configurations of the energetic
saddle points reached during shear. Chapter 4 also analyzes the ab znitio results
in terms of a simple Frenkel-Ch-owan crystallographic model.

5.2 Preliminary Results in TiC and TiN

This dissertation began with the problem of identifying why TiC had a micro-

hardness 50% higher than TiN despite having essentially the same value of the

elastic shear modulus. Preliminary ab initio calculations of the ideal strength
of TiC and TiN suggest an explanation [89]. Figure 5.1 schematically shows
the stress–strain behavior for (110) {110} shear in both TiC and TiN. While the
stress–curve for TiC is roughly sinusoidal, there is a discontinuity in the curve
for TiN. This discontinuity corresponds to an internal structural instability in
TiN. Figure 5.2a shows the AB stacking sequence along the (001) direction in
TiC and TiN at small strains. Each C or N atom is surrounded by six neigh-
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a)

b)
.

Figure 5.2: Illustration of instability in TiN during (110) {110} shear: a) Stack-
ing sequence (ABAB) along (001) for both TiC and TiN after a small amount
of (l!iO) {110} shear. b) Stacking sequence (also ABA13) in TiN after elastic
instabilityy.

boring Ti atoms: four in the {001} plane and two above and below the central
atom. At large strains in TiN however, the nitrogen spontaneously shifts from
the central six-fold coordinated octahedral void to a five-fold coordinated void
illustrated in Fig. 5.2b. Because this shift does not occur in TiC, TiC has a
significantly higher ideal strength than TiN. This may be an explanation why
TiC also has a significantly higher measured microhardness as well.
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5.3 Future Work

5.3.1 Computations

This dissertation presented ab inztio calculations of the ideal shear strength of
Al and Cu, the iddal shear and tensile strengths of W, and qualitative results of
the ideal shear strengths of TiC and TiN. Computations of the ideal strengths
of Mo, Fe, Si and diamond are currently underway [90]. Calculations in a pair
of hcp metals and a number of representative ionic materials would also be of
great interest.

The ab inztio calculations relate, strictly, to perfect crystals in the limit of
zero temperature. These calculations also were quasistatic and uniaxial. In or-
der to estimate the effect of phonons at finite temperature and the effect of mul-
tiaxial loading, which may be important for comparison with nano-indentation
experiments, we have begun a series of embedded-atom method (EAM) calcu-
lations. EAM is much less computationally intensive than ab initio techniques,

._ but it can offer an estimate of the magnitude of the phonon and multiaxial
loading effects. These ongoing EAM studies [74] can also identify situations in
which further analysis with ab znitzo techniques is warranted.

5.3.2 The relaxation strain

The atomic relaxations at large strain in Al and Cu are consistent with exper-
imental observations of third-order elastic constants. It will be of interest to
analyze the third-order elastic constants measured for Fe, Mo, Na and Nb [10]
to determine whether these detect the “pencil glide” saddle point found in our
calculations. It also may be possible to confirm the relaxations predicted by
our calculations with high resolution transmission electron microscopy (TEM)
around dislocation cores or near highly strained coherent phase boundaries.
Because the lattice instability in TiN occurs at a large applied strain, it is un-
likely to affect measured higher order elastic constants, but TEM observations
or phonon spectra of highly strained thin films might detect the instability.

5.3.3 Brittle fracture

We argued in Section 4.4.1 that the brittleness of bcc metals can be understood
by the relatively small bain strain (= 0.26) required to produce fcc by tensile
deformation of bcc along (100). Unfortunately, the same argument seems to
suggest that the (110) tensile strength of fcc would be even smaller than the
(100) strength of bee. A constant volume bain strain of only 0.12 along (110)
will transform fcc into bee. From this, Eq. 4.11 predicts an ideal tensile strength
of only 0.04 E(llO) and suggests that fcc would be more brittle than bee.

However, this prediction presumes that the stress-strain curve is sinusoidal
and that the minimum energy deformation path for (110) uniaxial tension in
fcc is the bain transformation path. Neither presumption is necessarily true.
Because of the symmetry of the transformation, a much larger orthogonal re-
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laxation (= 0.21 = 1– 1/1.26) is necessary to transform from fcc to bee. Instead
of using a uniaxial sinusoidal fit to energy, it maybe more appropriate to analyze
the total stored elastic energy along the deformation path, Symmetry suggests
that the elastic work required to reach the saddle point between fcc and bcc will
be comparable whether one starts at fcc or bee. Energy balance also requires
that the work done by the applied stress be equal to the internal elastic strain
energy. Since for the transformation from fcc to bcc thk stress is applied over
half the dktance needed for the bcc to fcc transformation, the maximum stress
required for the fcc to bcc transformation will be approximately twice as large
as the bcc to fcc case. This suggests that a sinusoidal fit will not work for (110)
loading in fcc but that the normalized ideal strengths for this loading will be
twice the normalized ideal strengths for (100) tension in bee.

AIthough calculations of ideal strength for (110) tension using empirical
EAM potentials found fcc metals to be weak along (110) [72], the ab initio
calculations of gob et al. [91] call into question the presumption that (110)
loading will follow the bain transformation path. They have calculated the
strength of Cu for relaxed loading along (110) and found a peak stress of 31
GPa at a strain of 0.79. This result (~ 0.24 Eav~) suggests that the minimum
energy deformation path did not pass anywhere near the metastable bcc Cu
phase.

It would be of interest to analyze the ab initzo stress–strain behavior of Cu
constrained along the bain deformation path. It would also be useful to analyze
the atomic relaxations along the minimum energy (110) path.

5.3.4 “Pencil glide”

Understanding the atomic relaxations during shear in bcc also could offer a
much better understanding of the prevalence of the pencil glide of dislocations
on planes containing a (111) dkection in bcc metals. Section 4.3.4 showed that
the minimum ideal strength in shear on any slip plane containing {111) will be
nearly constant. However, some experimental observations, particularly careful
measurement and modeling of crystallographic texture evolution during plastic
deformation of bcc metals [92] suggest that the critical resolved stresses for
slip differ for different “pencil glide” systems. It would be of great interest to
explore whether this can be explained by combining our new knowledge of the
crystallography of pencil glide with anisotropic elasticity theory of dislocations
or whether detailed calculations of dislocation core structures are necessary to
understand these experimental observations.

5.3.5 Dislocation or lattice control of strength

In Chapter 1, our working assumption was that dislocation motion governed
the hardness of all materials. Thk assumption was made on the basis of a
number of observations. 1) Since room temperature indentation hardness tests
of even diamond leave permanent plastic deformation, it is clear that atomic
shear has to occur. 2) In most materials (excepting Si [93, 94]) no evidence of
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twinning or phase transformation is observed. 3) At high enough temperature,
dislocations have observed to multiply and propagate during bulk deformation
of all crystalline materials that have been examined. 4) Optical micrographs
of the regions around hardness indentations reveal slip bands consistent with
the crystallography of experimentally observed high temperature dislocations.
5) Many electron (TEM) micrographs of the regions around indentations reveal
dislocations that seem to have initiated at the indentation and propagated a
small distante away.

If the Peierls stress is small relative to the stresses required for other mecha-
nisms of deformation, the circumstantial observations in the previous paragraph
are sufficient to convince all but the most skeptical that dislocation motion is the
mechanism of deformation. By comparing the normalized Peierls stress ~P/G to
the normalized ideal shear strength I-~aX/G, we see that this is clearly the case
for metals. Table 1.3 shows that our best estimate of rP/G is 0.01 or less for
most metals and our calculations in Al, Cu and W give T~,X/G as 0.08–0.11.
However, for hard materials (Table 1.1), rP/G can be 0.1 or larger. Prelimi-
nary calculations of the ideal shear strengths of diamond and silicon show that
T~~X/G is 0.2-0.3 [90].

When r~.x is of the same order of magnitude as TP,homogeneous disloca-
tion nucleation becomes almost as easy as dislocation propagation. However,
a simple energetic argument suggests that the minimum stress needed to move
an isolated dislocation or dislocation kink will always be less than the stress
needed to nucleate a dislocation of the same slip system in a perfect crystal,

and that Tmax sets an upper bound for Tp: The presence of a dislocation should
not affect the period of the instability, but it should increase the ground state
energy more than the saddle point energy. If this is true (Fig. 5.3), then the in-
stability stress (the maximum slope of the energy–strain curve) will be lowered
by the presence of the dislocation. For thk argument to hold in general requires
that the minimum strength in sheax to occur on the same slip system as the slip
system for easy dislocation glide. Thk is the case for fcc and bcc metals and
appears to be the case for the NaCl and diamond cubic structures as well.t

Even though -rPis theoretically always smaller than r~.,, if rP is a large
fraction of ~~.x, there can be many situations in which it may be easier to ho-
mogeneously nucleate new dislocations than it is to move and multiply existing
dislocations. The only way to definitely determine the mechanism of deforma-
tion in hard materials is to perform in situ nano-indentation experiments in a
TEM to directly observe the relative importance of homogeneous dislocation
nucleation and dislocation propagation. These experiments (using TiC) are on-
going at the National Center for Microscopy (NCEM) at Lawrence Berkeley
National Lab [95].

tNote: There is one additional complication to this argument. Even if the instability stress
is lowered, it has not yet been proven that the existing dislocation will move when this stress
is reached. The dislocation may instead catalyze another deformation mode in the crystal.
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Figure 5.3: Schematic illustration of the effect of a dislocation on the energy–

strain curve.
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Appendix A

Scalingof ElasticMc)duli

A.1 Scaling with Lattice Constant

Chapter 1 showed that hardness scales very closely with elastic moduli for a
given class of material but that covalent materials have the highest harnesses
for a seIected value of the elastic shear or bulk moduli. Given these observations,
the simplest way to find a material harder than diamond is to look for a covalent
material with a higher shear or bulk modulus than diamond. One way to begin
this search is to use a scaling relationship between’ bulk modulus and lattice
constant.

Cohen [96] developed such a relationship by starting with a previous deriva-
tion of the bulk modulus of a free-electron gas. For a free electron gas, the bulk
moduhs K is given as

()6.13 3 Gpa
K=~nEF= — 7

r$
(Al)

where EF is the Fermi energy, n is the electron concentration, and TS is the
electron gas parameter. For covalent materials, however, Cohen determined the
relevant energy scale to be the homopolar gap Ek and the relevant volume to
be the volume of the covalent bond. Combining experimental observations and
ab initio computations of covalent bond geometries and a previously observed
scaling relation for Efi yields an expression for the bulk modulus of covalent
mat erials as follows:

K = 1761 b-3”5, (A.2)

where b is the nearest-neighbor distance. This expression predicts the bulk
moduli of diamond, Si and Ge to within 270 of the experimental values. It also
predicts bulk moduli within 3~o (except for InP) for III-V semiconductors but is
less successful for II-VI semiconductors, which have a significantly higher degree
of ionicity in their bonding. The empirical result [96],

K = (1971 – 220A) b-35, (A.3)
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I
more accurately describes the bulk moduli of the group IV (~ = O), group III-V
(A = 1), and group II-VI (~= 2) semiconductors. Cohen [96] cites the scaling
behavior of the I-VII alkali halides as having a scaling exponent of –3:

9

K = 550b-3. (A.4)

Using Eq. (A.2) and tabulated values of ionic and covalent. radii, Cohen 4
predicted that a tetravalent compound of C and N would have a bulk modulus
of between 461 and 483 GPa. This modulus would be significantly higher than
diamond. However, because of the lone pair of electrons on N, it is geometrically
impossible to construct a completely tetravalent lattice from C and N. The most 1

densely packed and stable IV-V structure known, SisNa, has only 6 covalent
bonds for every 7 bonds that would be possible in a fully tetravalent structure.
First-principles calculations [2] show that the bulk modulus of C3N4 (427 + 15 B
GPa) seems to be slightly smaller than diamond (442+ 0.7 GPa).

For reference purposes, I have included plots of bulk modulus as a function of
-. nearest-neighbor distance (Figs. A. I–A.3). The data is tabulated in Tables 1.l–

1.3. Power law curve fits to this data yield the following expressions:

covalent materials

ionic oxides

ionic alkali halides K = 594 X b–306 R = 0.95 (A.7)

K = 2226 X b–3”76 R = 0.9992 (A.5]

K = 1734 X b–3”13 R = 0.996 (A.6] u

These three empirical fits are very close to the expressions theoretically derived
by Cohen. For the metals in Fig. A.3, bulk modulus sczdes roughly as b-c, but
there is a great deal more scatter.
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Figure A.2: Log-1og plot of bulk modulus as a function of nearest-neighbor

distance for ionic materials with the NaCl and ZnS structures.
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Figure A.3: Log-1og plot of bulk modulus as a function of nearest-neighbor
distance for metallic materials with the body-centered cubic (bee), face-centered
cubic (fee), and hexagonal close-packed (hcp) structures.
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