
.
(

W-UR- :30”545~
NECDC UNCLASSIFIED October 2000

LA-UR-00 -????
Approved for public release
Distribution is unlimited

Title: AUTOMATIC DIFFERENTIATION
OF AN EULERIAN HYDROCODE
w)

Author(s): Rudolph J. Henninger (CCS-2)
Alan Carle (Rice University)
Paul J. Maudlin (T-3)

Submitted to: Nuclear Explosives Code Developers
Collaborations (N.IECDC) 2000
Oakland, CA
October 23-27,2000

Los Alamos
NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U. S.
Department of Energy under contract W-7405 -Eng-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government ptsrposes. Los Aiamos National Laboratory requests that the publisber identify this article as work performed under the auspices
of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish,
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 ( 10/96)

1

UNCLASSIFIED



DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



?

NECDC UNCLASSIFIED October 2000

Automatic Differentiation of an Eulerian Hydrocode (U)

R. J. Henninger, P. J. Maudlin
Los A1amos National Laboratory

Alan Carle
Rice University

Automatic differentiation (AD) is applied to a two-dimensional Eulerian hydrodynamics
computer code (hydrocode) to provide gradients that will be used for design optimization and
uncertainty analysis. We examine AD in both the forward and adjoint (reverse) mode using
Automatic LXflerentiation of FORtran (ADIFOR, version 3.0). Setup time, accuracy, and run
times are described for three problems. The test set consists of a one-dimensional shock-
propagation problem, a two-dimensional metaljet-formation problem and a two-dimensional
shell-collapse problem. Setup time for ADIFOR was approximately one month starting from a
simplljied, fixed-dimension version of the on”ginal code. ADIFOR produced accurate (as
compared to jinite dl~erence) gradients in both modes for all of the problems. These test
problems had 17 independent variables. We find that the forward mode is up to39Vo slower and
the adjoint mode is at least 11% faster than jinding the gradient by means of jinite d@erences.
Problems of real interest will certainly have more independent variables. The adjoint mode is thus
favored since the computational time increases only slightly for additional independent variables.
(u)

Keywords: hydrodynamics, forward and adjoint sensitivities

Introduction
The purpose of this project has been to provide sensitivities of results from an Eulerian

hydrodynamics computer code (hydrocode) (1) for use in design-optimization and uncertainty
analyses. We began (2) by applying an equation-based sensitivity technique used successful y in
the early eighties that was applied to reactor-safety thermal-hydraulics problems (3,4), which is
called Diffenmtial Sensitivity Theory (DST) (5,6). In these reactor-safety applications, DST was
found to provide accurate sensitivities (3,4). The methodology is as follows. The system of partial
differential equations (the forward or physical PDEs) is assembled, differentiated with respect to the
independent variables of interest, and adjointed (5). The resulting adjoint PDEs are then solved
using straightforward numerical operators. The forward-variable solutions when needed for the
adjoint solutions are provided by the original computer code that solves the physical (or forward)
problem. In the present hydrocode application, acceptable results were obtained for one-material,
one-dimensional problems. The DST results were then improved by means of “compatible” finite
difference operators (7,8). “We have seen, however, that DST techniques do not produce accurate
values for sensitivities to all of the independent variables of interest and for problems with
discontinuities such as a multi-material problem (9). To obtain accurate sensitivities for arbitrary
numerical resolution a more code-based approach was then tried. We attempted to apply automatic
differentiation (AD) in the forward mode using Automatic DIfferentiation of FORtran (ADIFOR,
version 2.0)( 10) and the Tangent-linear and Adjoint Model Compiler (TAMC)( 11) in the forward
and adjoint mode. We were successful for one-dimensional problems in both modes but failed to
obtain accurate sensitivities in the adjoint mode for two-dimensional problems (12,13).

Here we present the successful results for two-dimensional problems in both the forward and
adjoint modes using ADIFOR, version 3.0 (14). In what follows, we describe AD methods in the
context of their use for a hydrocode. We then examine setup time, results, accuracy, and computer
run times for three test problems obtained by ADIFOR. Finally, we outline our plans for future
work.
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AD Methods for a Hydrocode
Forward vs. Adjoint Modes of Differentiation. Both code- and equation-based methods

can be implemented in either the forward or adjoint mode. By forward and adjoint, we mean the
direction through the code and in time in which the derivative values are obtained. The forward
mode of differentiation involves determining the necessary derivatives by following the code logic
in the forward direction (and forward in time); while for the adjoint mode, the derivatives are
determined by following the code logic in the reverse direction (and backward in time). Which of
these is more useful and efficient depends on the relative numbers of independent variables of
interest and responses of interest. The forward mode is more efficient for determining the
sensitivity of many responses to one or a few independent variables, while the adjoint mode is better
suited for sensitivities of one or a few responses with respect to many independent variables.

For an optimization process the response of interest is a so-caI1ed cost function that, for
example, computes the sum of the squares of the difference between the calculated and a desired
data set. There may be many independent variables of interest (these could be the material model
parameters and the initial and boundary conditions). For this problem one would choose the
adjoint mode, which is most efficient for one response and many independent variables. The most
recent version of ADIFOR (14) that is used here is applied in both the forward and adjoint mode.

Mechanics of Adjoint Differentiation. Consider that a program is represented in terms of a
flow diagram such as that shown in Figure 1. This is a simplification, but the principle will stand
for more complex situations. The quantity a is the input, R is the output (presumably a scalar cost
function in the case of an optimization process), the modules A, B, and C are the processes or
transforms to which the input is subjected, and the output of process A is y, and that of B is z,
and R is the output of C. This sequence of processes is considered the forward or physical
calculation.

Figure 1. Data flow diagram of the forward calculation.

The quantities a, y, and z are general data structures; they can consist of mixed types of data
structures. Some of the data may even be parametem that affect the transformations or processes
themselves. There is no loss in generality if they are thought of as being carried along in the
sequence of data structures up to the module in which they are used. [In fact, it is necessary that the
input to a process must be all that is required in order to determine the output of that process. The
intermediate data structures could represent all of the data, and the only changes in variables from
input to output of the process are in variables affected by that particular process.] With all of that in
min~ these structures can have high dimensionality. We also do not place any restrictions on the
processes, other than that they be differentiable (functions not obviously differentiable can often be
handled). By requiring that the input to a process be all that is necessary to produce the output, we
have thus required that each transformation or process is self-contained.

Considering the possibly high dimensionality of the data structures, storing the sensitivity matrices

of the transformations, such as @i
— for all i and j, is likely to be extremely costly, because one is
aaj

multiplying the dimensionalities of a and y, which may already be large. The chain rule, however,
allows the calculation of the response R with respect to the in component of a

3
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Even if a process is nonlinear, the expression above amounts to a K x J matrix multiplication, each
element of which specifies the differential response of an output variable with respect to a
differential change of an input variable. The order of summations can be done two ways, either over
j first or over k first. If the summation is done over j first, one is proceeding in the same
direction as the forward calculation and is therefore in the forward mode discussed above. The
data-flow diagram in Figure 2 illustrates the forward mode process (where subscript derivative
notation is used i. e., ym is the derivative of y with respect to cz). By studying the data flow
diagram, one can see how the forward mode is not optimum for a situation with many independent
variables and one output of interest. If the dimension (1) of cx is large, then the results of the first

summation ~ can be very large (dirnensionality = 1 x ~), and so on through the process until the
act

dR
last step, which reduces to — The response R is a scalar, so that our final result has just the

da “
dimensionality of a, while the intermediate results had the dimensionality of either 1 x J or 1 x K.
As these data structures can be very large, this can resuh in extremeIy large intermediate resuhs that
need to be stored.

0!4

L-J’y-
Ct

Figure 2. Data flow diagram of the forward derivative calculation,

Summing over k first,on the other hand, yields the adjoint mode, and the sequence of events goes
backwards from R. Figtue 3 illustrates this sequence in a data-flow diagram. The notation for the
derivatives is given in the same way that it was for the forward mode. The adjoint mode of
differentiation can be seen to be useful; since R (a scalar) is what is always being diffetentiat~ the
dimensionality of the possibly large data structures are never multiplied together as they w in the

JR &
forward mode. Instead of storing the matrix of the adjoint of each process (—, —, and

&&
:)?

only the intermediate data structures are formed and stored. Thus the requirement for storing these
data structures is only about doubie that required to store the structures for the forward calculation
(the forward calculation structures are also required for the sensitivity calculation if the processes
are non-linear).

a

A

Y z

B c
Ry Rz

Figure 3. Data flow diagram of the adjoint derivative calculation.

R
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Figure 3 presents the adjoint differentiation technique, and it is the method that is followed for AD
implementation. The automatic differentiation tool ADIFOR (version 3) is discussed next.

ADIFOR. AD tools have several stages involved in getting from the original code to an
executable code with derivative coding included as indicated in F@wes 2 and 3. The first step is to
submit the original code to a pmcompiler. This pmcompiler analyzes the code and modifies it to
include code that calculates the derivatives of interest. The output of this step is enhanced code,
with some calls to external subroutines. For a non-Iinear hydrocode, information from the forward
calculation is needed in the adjoint calculation. Independent storage or recalculation can satisfy the
need for this information. The second step in the process is to determine and setup the required
storage. For a large probiern, storage of the entire forward solution is impossible. A technique
called checkpointing is required. This technique consists of dumping the solution at checkpoints as
the forward solution is generated. The forward solution is stored from the final checkpoint to the
final time of the forward calculation. One then calculates the adjoint solution backward from the
final state. One then recalculates the forward solution from the second to the last checkpoint. This
process is repeated until the starting time of the forward calculation is reached. The last step is to
compile the enhanced code, auxiliary storage code and the adjoint code, including run-time libraries
that satisfy the external subroutine calls. The current version of ADIFOR works only on Fortran77
code. There is a version for C, known as ADIC.

Problem Descriptions and Results
Setup time, accuracy, and run times are described for three problems. The problem test set

consists of a one-dimensional shock-propagation problem, a two-dimensional metal-jet-formation
problem, and a two-dimensional shell-collapse problem. Setup time for ADIFOR was
approximately one month starting from a simplified fixed-dimension version of the original code.
Creation of the simplified code and getting it running on an SGI platform represents several months
of work.

One-Dimensional Shock Problem. The first test problem is the one-dimensional impact of a
copper plate with a rigid boundary where the plate has an initial velocity of 0.05 cm/I..M(500 m/s) as
ind~cat;d in Fig. 4. -

rigid
wall

1

1

I
d

‘2cm
b

1

co~per plate
I

%00 m/s
I
I

Z=o z=L

Figure 4. One-dimensional shock problem. The response R is given by Eq. 2; G is at the dashed
line.

The cooper is represented by a Mie-Grueneisen equation of state (EOS) and an elastic-
perfectly-plastic strength model. Upon impact the plate experiences a right-going shock that

compresses the material to the Hugoniot pressure of 20.89 kbar (density of 9.961 g/cm3). The plate
is 2 cm in thickness and is divided into forty 0.5-mm cells for the numerical computations,
Running with a two-dimensional code required 3 cells in the transverse direction. The impact

5
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problem was simulated out to a final time of 2.0 VS. The response for problem was arbitrarily
chosen to be the time-averaged density at the spatial location ~ = 0.6 cm, i.e.,

JJ
R= fl@zO);~Ztit ‘~(Zo). (2)

(Z

Sensitivity results for this impact problem am given in Table 1 for the time-average density

located at 0.6 cm (R. = 9.236 g/cm3). This table lists the 17 problem pararnetem (independent

variables) in columns one through three, the sensitivities i)R/&t as determined by both forward and
adjoint ADIFOR-produced code in column four, and the finite difference sensitivities AR/Act in
column five (obtained via finite perturbations of each parameter appearing in the physical equation
set) for validation purposes. Constructing the 17 finite difference sensitivities in column five
required 18 forward calculations. Runtimes for the various methods are compared and contrasted
below.

Table 1. Comparison of one-dimensional shock problem parameters and sensitivities.

a

p(t = o)

Uz(t = 0)

e(t = O)

S=(t = o)

s

co

Po

r

CL

CQ

Uz(z= o)

P(Z = L)

e(z = L)

U,(Z= L)

Szz(t = o)

&

G

Description

Initial Density (g/cm3)

Initial Velocity (m/s)

Initial Internal Energy (Mbar-cm3/g)

Initial Axial Deviatoric Stress (Mbar)

Shock Velocity Constant

Sound Speed (cn-d~s)

Nominal EOS Densi@ (g/cm3)

Second Grueneisen Ratio

Linear Artificial Viscosity Constant

Quadratic Artificial Viscosity Constant

Outflow Velocity (cnd~s)

Inflow Densiiy (g/cm3)

Inflow Internal Energy (Mbar-cm3/g)

Inflow Velocity (cm/~s)

Inflow Axial Deviatoric Stress (Mbar)

Yield strength (Mbar)

Shear Modulus (Mbar)

Value

8.93

-0.050
0.0
0.0
1.489

0.394

8.93

2.002

0.8

16.0

0.00

8.93

0.0

-0.05

0.0

0.050
0.50

azftkx *

1.0830336

-6.22453’79

2.5850554

0.68905919

0.034749960

0.68660301

-0.052257965

0.0077603254

-0.000746556

0.0001929072

7.5631986

0.0014047381

0.16173630

-0.074715761

-0.009010984

0.51783506

-0.014570571

AR/Act

1.0830335

-6.2245225

2.5850481

0.68905837

0.03474934

0.68660035

-0.052258786

0.00775988

-0.0074685

0.00019286

7.5633874

0.00140464

0.16173605

-0.0746979

-0.00901169

0.51782111

-0.01457216

7 R = Time-averaged density at 0.6 cm over 2 WS,~ = 9.236 g/cm~

Jet-Formation Problem. The second test problem is a two-dimensional Cartesian jet-
formation problem in which a copper bar impacts a rigid boundary as is shown in Figure 2. The
bar has an initial axial velocity (u, [t = 0)) of 0.7 kmls and was run with three transverse velocity

( u,(t = 0)) cases: 0.0,-0.1, and -0.7 lcds respectively. For the non-zero transverse velocities a jet
is formed that flows along the axis. The response of interest is the jet tip speed that is obtained by

6
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following a marker particle that is placed on axis at the right side of the copper bar (shown as a
black dot in Figure 5).

A
... ..r . . . . . . . . . . . . . . . . .1

/l
A

. . . . . . . . . .
i /“...........Yd..........+-L

. . . . . . . .

. . . . . . . .

‘z

. . . . . . . .

.r--.. --. .-. Al . . . . . . . . . . . . . . . . .“..I

.. . . . ... . . . . . . . . . . . . . . . .. . . . . . . . .

. .r

..:.

Figure 5. Copper bar impacting a rigid boundary subsequently forming a jet when the transveme
velocity ( UX(t = 0) ) is non-zero; the response is the marker particle (shown as the black dot)
velocity at the end of the calculation.

For this example the problem parameters are the same as those listed in Table 1. The problem
wasrun with c~=0.2, c~=2.0, p(z=L)= O,uZ(z= L)= O, YO=O, mdG=Omdtoa find time

of 1 ps. The initial velocity is the axial velccity ( u,(t = O) = 0.,-0.01, or – 0.07 crd~s). The axial
velocity was chosen because the sensitivity of the final velocity to the initial axial velocity is 1.000
for the zero transverse velocity case. This seemingly trivial result provided an excellent test of the
advection-scheme adjoint code. When 1.000 was obtained for the initial velocity sensitivity, the
other sensitivities agreed well with the forward results obtained by ADIFOR (which is viewed as the
“correct” soIution) and by finite differences. The sensitivities produced by the adjoint code for
-0.01 cn-dps also agreed well with those of the forward code and finite differences. It was not
possible to produce reasonable sensitivities for times greater than 0.8 ps by any method for the
-0.07 cnips transverse velocity case. Examination of the computed results for this case showed
that the sensitivity was proportional to the marker particle acceleration, which became unstable after
0.8 ps. A different response choice (other than following a marker particle) will be necessary to
obtain a numerically smoother characterization of the jet tip speed and stable sensitivities. We
intend to explore this issue in future work. The run times for the forward and adjoint codes are
examined below.

Shell-Collapse Problem. The third test problem is a free-running shell collapse. In this
problem, a spherical shell of elasto-plastic material is given an initial velocity toward its center.
During the collapse, the shell thickens, and the kinetic energy is irreversibly converted to internal
energy. Under the appropriate initial conditions, the shell will stop at a finite inner radius when all
of its kinetic energy has been dissipated. Ignoring elastic effects, the equations of motion for the
shell are the one-dimensional, spherical geometry, Lagrangian equations subject to the constraint of
the Von Mises yield criterion. The equations are simplified further by invoking incompressibility
in the plastic flow. The initial velocity distribution in the shell is given by:

(/)
2

rou(r) = U. ~ (3)

where UOis the initial velocity at the inner radius ~.
Vemey (16) has provided the analytical solution for the plastic work done during the collapse of

the shell from b to ~’. By equating the plastic work to the initial kinetic energy, an initial velocity
distribution may be determined that is consistent with a specified final inner radius. A density of

1.845 g/cm3 and a yield stress of 3.3 kbar were assumed. The initial shell radius is 8 cm and its
thickness is 2 cm. For a final inner radius rO1of 3 cm, the initial inner-radius velocity is
0.067504 CIT1/~S.

7
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Using this velocity, the fully collapsed (>99 % kinetic energy converted) inner radius was
calculated to be approximate] y 3 cm, which is in good agreement with the analytical result. For
timing comparison purposes we used all 17 parameters that m listed in Table 1. Of these, the
eleven that affected the result are listed in Table 2. For the analytical solution the only parameter
that matters is the yield strength. The yield strength is also the parameter with the largest
sensitivity. To the number of digits listed in Table 2 the forward- and adjoint-calculated sensitivities
were identical.

Figure 6. SheII- collapse problem initial geometry. The inner radius 6 is 8 cm; the shell thickness
is 2 cm.

Table 2. Shell-collapse problem active parameters and their sensitivities.

a Description Value alua(x *

p(t = o) InitialI)ensi~ (g/cm3) 1.845 -3.0224558

e(t = O) Initiaf Internal Energy (Mbar-cm3/g) 0.0 1.03613223

S=(t = o) Initial Axial Deviatoric Stress (Mbar) 0.0 11.1253570

s Shock Velocity Constant 1.489 -0.002254506

co Sound Speed (cm/ps) 0.394 -0.027052578

Po Nominal EOS Density (g/crn3) 1.845 -2.2454823

r Second Grueneisen Ratio 2.002 -0.026381213

CL Linear Artificial Viscosity Constant 0.0 0.0006064444

CQ Quadratic Artificial Viscosity Constant 2.0 0.0000215145

& Yield strength (Mbar) 0.0033 2033.7093367

G Shear Modulus (Mbar) 1.51 0.0033900528
.,.
- R = Radius at end of collapse ( 100 ps) ~’ = 3 cm

Accuracy and Timing Comparisons. ADIFOR-processed code provided accurate (as
compared to finite difference) parameter gradients in both the forward and adjoint modes for all of
the problems. The number of independent variables versus the number of responses plays a key
role in this decision. The run times for the various methods used to obtain the test uroblem
sensitivities are listed in Table 3. These test problems had 17 independent variables ~nd one
response. We find that the ADIFOR forward mode is up to 39% slower and the ADIFOR adjoint

UNCLARIFIED
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mode is at least 11Yofaster than finding the gradient by means of finite differences. Problems of
real interest will certainly have more independent variables thus favoring the adjoint mode.

Table 3. Comparison of computational times on an S(21 Origin 2000 for test problems
with 17 independent variables and one response.

Problem ID Shock Jet Shell

Problem Information

Cells in 2D 3X40 60X 100 42X42

Time steps 400 100 1000

Run Times CPU seconds

Finite Difference 36 126 347

ADIFOR-Forward 15 146 484

ADIFOR-Adjoint 12 63 309

Summary and Future Work
Since last reporting in this forum we have applied the automatic differentiation tool ADIFOR

(version 3.0) to MESA2D (a Fortran77 code) and have obtained accurate sensitivities for the test
problems in both the forward and adjoint modes. With this capability in hand we can now apply
these sensitivities to uncertainty analyses and optimization problems. The next step will be to apply
the Frotran90 version of ADIJ?OR that is under development.
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