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Abstract

This article proposes a new three-dimensional contact finite element which
employs continuous and weakly coupled pressure interpolations on each of the
interacting boundaries. The resulting formulation circumvents the geometric
bias of one-pass methods, as well as the surface locking of traditional two-pass
node-on-surf ace methods. A Lagrange multiplier implementation of the
proposed element is validated for frictionless quasi-static contact by a series of
numerical simulations.
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A Three-dimensional Contact E’ini8e Element

1 Introduction

Most commercial finite element program employ node-on-surface algorithms for sim-

ulating contact between two deformable solids. Here, the impenetrability constraint

is enforced by applying discrete forces at the nodes on one of the contacting surfaces

(the “slave” surface) and equal-and-opposite reactions on the other (the “master” sur-

face). One-pass versions of th@ strategy use only forces associated with the nodes of

one designated slave surface, while two-pass versions apply the process twice (i.e., for

both master/slave combinations) and superpose all resulting forces. It is known that

such node-on-surface algorithms have certain intrinsic shortcomings. Clearly, one-

psss algorithms are geometrically biased by the choice of a specific slave surface. On

the other hand, two-pass algorithms generally over-constrain the contacting boundary

surfaces, as noted by Kikuchi and Oden [1, p. 165]. This pathology will be referred

to here as “surface locking”. Moreover, in traditional node-on-surface algorithms the

cent act traction fields (e. g., pressure) are not directly approximated. Rat her, they

are typically recovered from the nodal forces as an afterthought by means of tribu-

tary area methods. This lack of smooth traction interpolations further inhibits any

attempt towards a formal convergence analysis.

These shortcomings have motivated several alternative cent act element formula-

tions, see, e.g., [2, 3, 4, 5, 6], which employ piecewise continuous polynomial traction

interpolations on the cent act boundaries. These developments rely, to an extent, on

element formulations developed and mathematically analyzed for a deformable body

cent act ing a rigid surface (i.e. the Signorini problem) [7, 8, 9]. However, in sharp con-

trast to the Signorini problem, the use of smooth traction interpolations in two-body

cent act introduces additional complications steming from the need to define these

fields and numerically integrate their contributions on (usually irregular) segments of

the element boundaries or on an arbitrarily chosen intermediate surface.

This article describes a novel finite element method for three-dimensional fric-

tionless contact, which addresses the fundamental deficiencies of node-on-surface al-

gorithms, while remaining amenable to robust computational implementation in a

finite deformation setting. The proposed method departs from other continuous in-

terpolation methods in two major ways: first, traction fields are chosen separately

(although not independently) on each of the two contacting surfaces, so that traction

continuity is enforced in a weak sense and integration schemes naturally arising from

7
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the underlying domain elements can be readily employed. Second, the new contact

element permits the exact transmission of constant pressure, thus unconditionally

passing the contact patch test postulated in [10]. These element properties have been

originally conceived and exploited in earlier work on two-dimensional contact [11, 12].

The resulting formulation is simple and efficient to implement in three-dimensions,

as it requires only routine and inexpensive geometric computations. In addition, ex-

tensive numerical experimentation to date suggests that it yields stable results and

effectively bypasses all problems related to surface locking.

The organization of the article is as follows: first, fundamentals of contact me-

chanics including a weak form of the governing equations are presented briefly as

background. Then, the proposed contact eIement is introduced in connection with

the standard eight-node hexahedral domain element. The fidelity of the algorithm

is subsequently tested in a number of representative simulations, whose results are

compared to analytical estimates, as well as to numerical results from certain one-

and two-pass algorithms.

2 Elements of Contact Mechanics

Consider two deformable bodies B“, a = 1,2, and let any material point X“ c B“ be

associated wit h position vector X“ in a fixed reference configurate ion Q;. The region

Q; in the Euclidean point space is simply connected and open with respect to the

ambient metric, and its boundary is denoted by tMl~.

A smooth motion X“ is defined for each body, such that x“ = x“(X”, t), where

X“ G fl~ ia mapped at time t to its image x“ in the current configuration Q“(t).

The motion is taken to be invertible at fixed t, which implies that the deformation

gradient F“ = ~ is non-singular. In addition, x“ maps the referential boundary

region tXi?~ onto its image M2a (t), which is assumed to be Lipschitz with outward

unit normal na. For convenience, each point of 8Qa is associated with convected

Gaussian coordinates f;, y = 1,2.

Admitting quasi-static conditions, the equilibrium equations take the form

div T” + p“ba = O in Q“ , (1)

where TQ represents the Cauchy stress tensor, p“ the mass density in the current

configuration; and b“ the body force per unit mass. The motions of the two bodies

8
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A Three-dimensional Contact Fim”te Element

are also subject to the principle of impenetrability of matter [13], which stipulates

that

Consequently, the common boundary region C(t) = Ml(l) n MI(2) defines the contact

interface. The remainder of the boundary 8Q” is composed of regions r; and 17;,

such that

where u“ = x“ – X“ is the displacement vector and t:. the traction vector on the

surface with outward unit normal n“. This vector is related to the Cauchy stress

tensor T“ by tg~ = Tan”.

The impenetrability condition (2) can be recast as a unilateral constraint by in-

troducing a distance (or “gap”) function g“ on the boundary of each body. To this

end, define the point sets

Vf(xa; na) = {xD ● dflp [ (X6 –x”) x n“ = O , (X6 – x“) . n“ ~ O} ,

V(x”;n”) = {xp ~ dflp I (xp–x”) x n“ =0 , (xB–x*) n“ <O} ,

corresponding to the projections of x“ on dfl~ along the two rays defined by n“. Here,

@ = mod (a, 2) + 1 denotes the index of the opposing body*. Then, let X! and X!

be the closest such projections, namely

(4)

9

A single-valued distance function is specified as

{

(~~ _ Xa) . na
9“ =

+Ca

*By expanding the set of potential contact points from 8Q@ to U 8QL\ {x”}, this
‘=1

definition can be trivially extended to self- and N-body contact.
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where a unique projection X6 is defined as

(5)

see Figure 1. It follows from (4) and (5) that ga vanishes identically on C. Also, the

impenetrability constraint (2) takes the form

Clearly, letting

c“ ={ X”E8W \ g“= o},

it follows that C(l) = C(2) = C’.

A separate equilibrium statement applies on the contact interface (see, e.g., [14]),

in the form

(7)

where & denotes I& (xE,t).For frictionless cent act, the surface traction becomes
●

✎where pff ~ O is the pressuret. Consequently, equation (7) reduces to

QPJr=P”-P”=o. [8)

Furthermore, given

where [v]” = @ – v“ is the jump in velocity across C, it is clear that the rate of

work done by the tractions on the contact surface C“ is

ta .[v]” = pug” = 0.

Thus, the pressure p“ is work-conjugate to g“ and is identified as the Lagrange mul-

tiplier that enforces the (workless) impenetrability constraint ga = O.

*Commonly, the contact pressureis denoted by the single field p, namely equilibrium

on the singular surface C is assumedto hold at the outset. However, this direct reduc-

tion is not employed here for reasons that will become apparent as the finite element

approximation is introduced in Section 4. .

10
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3 Weak Formulation

The governing equations (1) and (8), the boundary condition (3)2 and the con-

straint (6) can be put in a weak (weighted-residual) form, such that the solution

(ua, p“) G U“ x Pa satisfies

xJ( ~“ – p“)g”da > 0,
JY=1,2 -%

and

/
r~]du=o,

c

(10)

(11)

for all (wa, qa, r) c Wax Qm x R. Note that in equations (9)–(10) all integrals related

to cent act are written over the region I’; (> Ca), which is defined as the union of

those boundary regions on which no normal displacement or (inhomogeneous) traction

boundary conditions are specified externally. The spaces of admissible displacements

and associated weighting functions are chosen to be

hence appealing to a standard trace theorem (see, e.g., [15]), the traces Ua . no and

w“. n“ used in (4) and (9) can be viewed as continuous linear operators from HI(W)

to If112 (80”). The spaces of admissible pressures and weights are now defined as

Note that equations (9) and (10), when restricted to a single deformable body (i.e.,

a = 1 or 2), are identical in structure to those arising from the Signorini problem.

The two Signorini-like problems in (9) and (10) are coupled by the definition of g“

and by equation (11).

91
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4 A New Contact Element

The finite element formulation described in this section relies critically on the use of

the weak formulation in equations (9)–(11 ) in conjunction with separate continuous

pressure interpolations on each surface. In this case, it will be shown that the bound-

ary integrals on r: in (9) can be conveniently evaluated for each body using only the

discretization naturally derived from its domain.

4.1 Discrete fields and equations of motion

The discrete counterparts of U“ and W“ defined in Section 3 are generally taken to

be

where ~k denotes the space of polynomials

of element e. Similarly,

P; = {p; E ~-~(r;~) n c“(r;~) I

complete to degree k and G?: the domain

p;(~~;) ~ ~k(~%) ,

p~~o, Pi=o Onrjh\cf}l

Q; = {E E ~-+r:h) nw;,) 1 Q: 2 O},

& = {~h~ (Pj)’ n~(c~)} ,

where ~k (8LIS) denotes the space of polynomials on dfl~ complete to degree k, (P;)’

the dual of P:, and D(17;b) (resp. D(C~)) the space of Dirac distributions on I’~~

(resp. Ch)$. The choice of admissible displacements is routine for Co-continuous do-

main finite elements. On the other hand, the assumed Co-continuity of the pressures

departs in a fundamental way from classicaI node-on-surface treatments, see the Ap-

pendix. In addition, the choice of Rh implies weak, collocation-based satisfaction of

the equilibrium equation on ch.

Employing the notation g“ and p“ for global vectors of nodal quantities, standard—
finite element interpolations can be introduced for the displacement field and its

$Note that. for the given choices of discrete admissiblefunctions, the duality pairing

in (11) is well-defineddespite the fact that & @ R.

●

✎

.
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gradient as

U;(X> t) = iv(x) ye(t) ,
(12)

grad u~(x, t) = Bin(x) u“(t) ,

as well as for the (continuous) cent act pressure as

(13)

Analogous interpolations apply to the respective weighting functions w: and the gap

functions, leading to global vectors ~“ _and ga, respectively. To ensure consistency

with the continuous pressures in (13), the interpolated gap fields g; are made single-

valued everywhere on 17~by employing arithmetically averaged outward normals n“

at all inter-element boundaries.

The discrete counterparts of the weighting functions q“ and ~ must be chosen to

avoid over-constraining the boundary surfaces dfl~. These piecewise smooth surfaces

are in general non-conforming, see Figure 2 for an illustration. Exceptions may occur

in the certain special cases of “node-on-node’) contact, as well as when the contact

surface takes on a low-order global polynomial form that is exactly representable by

the surface discretizations of both bodies, However, in the general case where the

boundary nodes are not aligned and the contact surface takes an arbitrary shape,

surface locking occurs when the impenetrability constraint is enforced at every nodal

point on C~. This pathology is analogous to the over-constraining of the discrete

displacement field in incompressible elasticity, a problem that has been studied ex-

tensively by the finite element community. To date, formal convergence analysis of

two-body cent act has received relatively little attention, owing to the adherence to

force-based node-on-surface methods as well as to the complexity of dealing with the

interaction of two arbitrarily chosen meshes.

In practice, global surface-locking may be prevented by enforcing the impene-

trability constraint selectively on C;. This is accomplished by effecting a regukw

partition of nodes on C; into two disjoint sets S; and S;. The discrete counterparts

of the weighting functions q“ and r in (10) and (11) are approximate ed according to

(14)

(15)

13
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where Q“ and R axe row vectors of Dirac-delta functions and x; denotes the position

of node 1 on surface C;.

Taking into account the interpolations in (12)–(15), the weighted-residual equa-

tions (9)-(1 1) give rise to the discrete equations

—!N“ ‘(–p;n” da) }=0, (16)
c:

fg

and

— —— 0,

fp = 1RT[pb] da = O .
c~

The component forms of equations (17) and (18) are

(17)

(18)

respectively. Clearly, S; (resp. S;) consists of all boundary nodes on which the

impenetrability constraint (resp. the pressure cent inuity condition) is enforced.

4.2 Application to eight-node hexahedral elements

In the remainder of this article, attention is focused on four-node bilinear quadrilateral

contact elements arising naturally from a domain approximation using standard eight-

node hexahedral domain elements. There are at least two boundary node partitioning

techniques for two-dimensional surfaces that can be readily employed in connection

with the enforcement of (10) and (11). The first involves the construction of a con-

tinuous curve that traces the topology of C: and passes through each node only once.

This is a Peano-HiIbert space-filling curve [16], and provides a simple means of sssign-

ing nodes to the sets ~; and S;. For instance, nodes with odd ordinal may belong

to ~;, while nodes with even ordinal may belong to ~;, as seen in Figure 3. Alter-

natively, the surface mesh can be “tiled” in a recursive manner using the reference

.

.
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A Three-dimensional Contact Finite Element

element shown in Figure 4 to produce the nodal partition. Each method requires

a “seed” node or element to start the patterning, thus does not produce a unique

pattern on a given mesh. However, for suf3ciently regukw meshes and corresponding

seeds, the two methods yield identical patterns. Clearly, the quality of a solution

depends crucially on attaining a uniform spatial distribution of nodes with gap and

pressure collocations. This guarantees a balanced enforcement of the impenetrability

constraint and the continuity of normal traction. In addition to circumventing surface

locking, such a balance is essentiaI in order to ensure that the computed tractions

do not bias the solution towards either of these two requirements. Both partitioning

techniques provide such even distributions, where exactly two nodal pressure vari-

ables enforce gap constraints on every four-node surface element. Other patt ems are

possible where the nodal pressure variables associated with gap constraints and the

nodal pressure variables satisfying pressure continuity across the contact surface are

not equally divided.

With reference to Figure 4, the interpolation of p; on the given element boundary

is chosen to be

{

z ~:’”> (f;)P: if f: 2 ‘$;

P; =
i= I,2,3

~ Lf134>(f;)p: if& <~; ‘
i=l,3,4

where L~123’ and Lj134> are the linear interpolation functions for triangles (l-2-3)

and (1-3-4), respectively. The support of the interpolation function associated with

any node in ~;, e.g., node 4 in Figure 5, is local to elements associated with the

node and is bounded by nodes in ~;. Within the support region of such a “traction

cent inuit y“ node; the collocation equation

derived from (18), can be explicitly solved for the undetermined pressure. Indeed,

wit h reference to Figure 5, let “1” be the projection on r~k of the node 1 in S$ which

lies closest to node 4 of S; and inside its support region$. Then,

$Inthis work, all projections and gap calculationsusethe exact geometry of the bound-

ary surfacesof the hexahedral elements.

15
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where p? is the pressure at node 1. If no such closest projection exists, a Iinear

interpolation of pa is made within the support region of the “pressure continuity”

node.

In order for the pressure approximation of a contact finite element to satisfy poly-

nomial completeness requirements, it is necessary that the element pass the patch

test proposed in [10]. This necessitates that the formulation be able to transmit,

independently of the discretization, a uniform pressure –p&n: through a flat contact

surface Ch. An examination of the cent act integral in (16), namely

reveals that satisfaction of the patch test requires exact integration of a quantity of

order 0 (~~&2,&@ over the intersection Ca fl M2:, where the element boundaries are

used as integration cells. In case an element boundary is in full contact, this condition

can be satisfied by several integration schemesf.

The case of element boundaries in partial contact, i.e. C“ n Ml: c M2:, is

more complex, given the potentially irregular geometry of the cent act boundary. A

“quasi-element” that relies on a triangularization of the cent act region and linear

approximation between known pressure samplings, e.g. nodes 2,3 and node 1{ from

the opposing surface in Figure 6, has been developed to handle partial contact. This

treatment allows finite jumps in pressure at the boundary of the contact region Ch,

which is necessary where the boundary of a contacting body is non-smooth at the edge

of cent act, as is the case in punch problemsll. Moreover, this quasi-element treatment

allows exact and unqualified satisfaction of the patch test. It should be noted that,

given the computational expense of triangularization, there may be a practical limit

to how accurately one needs to resolve a highly irregular contact boundary within a

single quasi-element. Indeed, the error induced in the cent act residual by ignoring

the contributions of elements that are partially in contact is of order h2, where h is

the mesh size parameter.

~A 2 x 2 Gaussian scheme as well as a nodal quadrature scheme derived from the

shape functions of a two-dimensionaleight-node serendipityy elementhave been employed

successfully.
IIA similar treatment cm be employed in the interior of C’ in the case of material

discontinuitieswithin the contacting bodies.

16
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5 Numerical Simulations

To demonstrate the performance of the proposed coatact element, a sequence of

simulations have been conducted using FEAP [17]. First, the cent act patch test is

used to verify the algorithm’s consistency with the continuum problem, Subsequently,

problems involving non-homogeneous deformation and non-flat contact interfaces are

used for independent validation of the formulation.

In each simulation, linear eight-node isoparametric hexahedral elements are used

to discretize the contacting bodies. These elements are endowed with a compressible,

isotropic neo-Hookean hyperelastic constitution suitable for finite deformation. The

strain energy for this material takes the form

W = ~A(det*C – 1)2 + ~p(tr C “– 3) – pln(det$C) ,

where C = F~F is the right Cauchy-Green deformation tensor. Also, ~, p are material

constants which correspond to the Lam6 constants at infinitesimal deformations and

are related to Young’s modulus E and Poisson’s ratio v by J = (,+v~.,v) and P =
E

qzq”

The discrete governing equations are solved using a full Newton-Raphson iteration

scheme. At each iteration, the surface momentum balance equation (18) is satisfied by

collocation. The remaining non-linear algebraic equations (16) and (17) are linearized

about the current stat e [M,~]~,, i.e.,

(21)

where the parameter 6 > 0 is employed to improve the conditioning of the over-

all system. In the special case of “node-on-node” cent act, equation (21) leads to a

symmetric system; however, in general, the system (21) is uns ymmetric due to the

misalignment of the discretizations on the interacting bodies. Since the nodal par-

titioning (19) is merely a pre-processing step, the cost of storing and solving these

unsymmetric linear systems presents the only significant additional expense of the

proposed approach relative to other Lagrange multiplier formulations for frictionless

contact.

As noted in [12], the submatrix DUfUin (21) maybe singular, see, e.g., the contact

patch test of Section 5.2. This prevents the direct solution of (21) without pivoting.

17
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This problem can be remedied by writing the equations equivalent Iy as

[ 010[::1(,,=-[fu+w~f’)Tf’](,,~(22)

Dufu+ u(llufg)~llufg Dpfu

ODufg

where w >0 is an additional conditioning parameter. The simultaneous solution of

the linear system (22) for [QQ, A~]~, is used to update the current state according

[1 [~ Al_l.. +

(ii-l)
Ap

~ (i) –

Convergence of the iterative scheme is assessed by the Eu

residual vector [f~ + w(Dwf9)~f9,8f9]&.

(i)

idean norm of the reduced

5.1 A Patch Test for Two-body Contact

& in reference [18], the patch test consists of two rectangular parallelepipeds in con-

tact with uniform normal traction applied throughout their exposed upper surfaces.

The Lam6 constants ~ = 5.77 x 102 GPa and p = 3.85 x 102 GPa for both bodies

are chosen to correspond to Young’s modulus -E = 1.0 x 103 GPa and Poisson’s ratio

v = 0.3. The objective of this test is to verify that the proposed formulation satisfies

the completeness requirement in the sense of [10], namely that it allows the exact

transmission of constant pressure.

The algorithm was tested using a variety of relative discretizations and orientations.,
of the two bodies. In each case, the formulation effected a uniform normal traction

on the flat cent act interface to within machine precision. The resulting homogeneous

deformation for a typical mesh is seen in Figure 7. Note that, in the given example, the

surface elements on the lower body are in partial contact while the surface elements

of the upper body are chosen to have non-constant Jacobians.

5.2 Rectangular Punch on Elastic Foundation

Let two rectangular parallelepipeds be placed in contact, as shown

top body (punch) is brought into cent act with the bottom body

in Figure 8. The

(foundation) via

prescribed normaI displacements on its upper surface. The punch has dimensions

5m x 5m x lm and is meshed uniformly using 6 x 6 x 2 elements with two mutually

*
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.

orthogonal vertical symmetry planes. Likewise, the foundation has dimensions 7m x

7m x 2m and a uniform mesh of 14 x 14x 2 elements. The stiffness ratio between the.
two bodies is K = & = 10.0, where ~f...d = 1.0 x 103 GPa. AIso, Poisson’s ratio

is fixed at v = 0.3.

The resulting pressure field is depicted in Figure 9 and clearly approximates the

boundary singularity due to the indentation of the punch. Figure 9 further demon-

strates that the weak satisfaction of the pressure continuity across the contact inter-

face is remarkably accurate. The formulation also allows for a stable recovery of the

limit of a rigid punch indenting a deformable foundation. Indeed, Figure 10 shows the

pressure field on the foundation for the cases K = 10.0, 100.0, w (x = co corresponds

to the punch being rigid). R is apparent that the solution for K = 100.0 is already

“ quite close to the rigid punch Iimit.

5.3 Hertzian Contact of Two Deformable Bodies

Two identical bodies are pressed together through prescribed displacements. The
,.

bodies are meshed identically with 12 x 12 x 2 elements and their contacting surfaces

are approximately spherical with radius of curvature 120m, as seen in Figure 11.

. Also, the elastic constants of both bodies are chosen to be ~ = 5.77 x 104 GPa and

p = 3.85 X 104 GP a. Note that the initial configurations of the bodies are rotated

by 45° relative to each other in order to prevent fortuitous node alignment. Also, in

order to accurately capture bending-like deformation modes, it was deemed necessary

to add piece-wise quadratic incompatible modes to the interpolation functions of the

domain elements, as in [19].

Figure 12 shows pressure fields at forced normal approach of 0.3m which are

smooth and nearly identical on both surfaces**. These fields compare well both in

terms of the region of contact and the pressure distribution with the classical Hertzian

solution, as seen in Figure 13tt.

A second analysis is performed to compare the proposed formulation with a one-

**The pressurefields are graphed relative to horizontalx-y axes parallel to the sides of

the upper body.
. t+The negative pressuresat the edge of contact on the upper surface are caused by

extrapolation at a nodal pressuredeterminedby collocation, which is not subject top >0.

Such edge effects are inevitable for arbitrary node alignmentand are reduced with mesh
.

refinement.
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pass counterpart employing the equivalent nodal force method of momentum transfer

described in the Appendix. Here, the stiffness of the lower body is decreased by an

order of magnit ude and the radius of curvature of both bodies is decreased from 120m

to 30m so that the contact surface is ensured to be substantially non-fiat. Also, to

investigate the performance under non-uniform relative mesh density, the resolution

in the lower body is increased to 16 x 16 x 2 elements and that of the upper body

is decreased from to 10 x 10 x 2 elements, see Figure 14. The deformed mesh using

the proposed method is shown in Figure 15. It is seen from Figure 16 that the

pressure profile generated by the proposed method compares well to one resulting

from a one-pros Lagrange multiplier formulation that uses the more finely discretized

lower surface as the surface of integration. However, it is also clear from Figure 17

that a one-pass formulation in which the upper (coarser) surface is designated as

the surface of integration yields a significantly inferior solution. In particular, since

gap constraints are only enforced at the nodes of the upper surface, there exist large

penetrations of the lower surface’s nodes along the contact surface which adversely

affect the solution, see Figure 18. This geometric bias of one-pass algorithms is

complet eIy circumvent ed by the proposed approach.

5.4 Inflation of Concentric Rings in Contact

A syst em of two concentric rings which are in contact at no initial tractions is inflated

by subjecting the inner ring to outward radial dkplacement. The rings have inner

radii R! = 4.Om and R: = 5.02m, with common thicknesses t = 1.Om and depth

d = 10.Om. A small initial separation between the rings is introduced to avoid

penetration in the initial configuration. The material parameters A = 5.77x 102 GPa

and p = 3.85 x 102 GPa are identical for both bodies. Using horizontal and vertical

symmetry planes, the inner cylinder is meshed with 12 elements circumferentially, 2

elements in the depth and 1 element in the thickness. Likewise, the outer cylinder is

meshed with 16 elements circumferentially, 3 elements in the depth and 1 element in

the thickness.

Using the proposed method, both the deformation of the two cylinders and the

pressure fields are uniform to within the smoothness and order of the the boundary

discretization, see Figures 19 and 20 $i. On the other hand, if the two-pass penalty

$$~ote that arclengt,his used to parametrize the circumferentialdirection in the pressurdop.

.

.

.
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method described in the Appendix is employed with penalty e = 1.0 x 102, a uniform

pressure field can also be obtained, see Figure 21, albeit with an order of magnitude

difference in the pressures compared to the Lagrange multiplier solution and accompa-

nied by large violations of the impenetrability constraint. An increase of the penalty

parameter to c = 5.0 x 102 results in erratic and highly oscillatory pressure pro-

files suggestive of over-constrained surfaces, see Figure 22. A further increase in the

penalty parameter of this two-pass simulation does not produce convergent solutions.

This example illustrates the stability issue associated with two-pass approximations

that are potentially hidden when a penalty regularization is used to enforce the im-

penetrability constraint. Again, the proposed reduced constraint method appears to

be completely free of such a deficiency.

6 Conclusions

A systematic means has been devised for satisfying the impenetrability constraint and

constructing a basis for the cent act pressure fields in three-dimensional finite elements.

The new approach alleviates the geometric bias and surface locking problems of many

traditional methods. Furthermore, the simple scheme that employs boundary faces

of the underlying domain elements for integration is shown to be sufficient to satisfy

the contact patch test and provides a robust and efficient framework for accurate

three-dimensional computations.
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Appendix: Node-on-surface Contact Treatments

Equilibrium on C implies continuity of the normal traction, see equation (8). In

order to circumvent the need to explicitly introduce pressure interpolations, node-on-

surface treatments attempt to apply this condition directly to the equivalent nodal

forces of the two meshes along Ck. In this Appendix, traditional and non-traditional

node-on-surface algorithms are examined in connection with the formulation of the

governing equations developed in Section 3.

To derive node-on-surface formulations consistently with equations (9)-(11), let

U;, W: P: and Q: be again defined as in Section 4. The key characteristic of a

node-on-surface algorithm in the present context is the definition of the weighting

function r~ 6 Rh. Specifically, let

(23)

where ~~ denotes the restriction on r: ~ oft he standard domain interpolation function

associated with boundary node 1

Taking into account the preceding choices of admissible fields, the equivalent nodal

force F? at 1 due to contact is found from (9) to be

Employing nodal quadrature, F? can be approximated by

e

where p; and n? denote the pressure and the outward unit normal at 1, respectively.

Also, in the previous equation j: = ~], is the piecewise continuous surfacedet [ ~~~

Jacobian and we the integration weight for element e at node 1. In addition, use

of nodal quadrature on C“ in equation (10) directly implies that the constraint of

impenetrability is enforced at all nodal points x~. FinaIly, equation (11) becomes

(24)

Ignoring the difference in direction between na and –nfl, equation (24) can be inter-

preted in terms of equivalent nodal forces as

F~=– J~~p”n” da = J$~flnp da . (25)
C. @

.

.

.

.

.
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The right-hand side of equation (25) provides a precise rule for distributing F; on

d~f. In particular, consistent equivalent nodal forces due to contact can be calculated

on dfl~ by first projecting ~~ on the interpolation functions ‘@f associated with the

nodes lying on dfl~, then evaluating the resulting integrals. Except for very speciaI

cases, such equivalent nodal forces are D@ “equivalent” to those resulting from first

applying –F; to the projection of node 1 on dfl~ and then distributing – F? on dfld

by the ruIe

F! = @$(-F~) ,

as is routinely done in traditional node-on-surface implementations.

procedure leads to violation of the discrete counterpart of (11)*.

(26)

Therefore, this

The preceding analysis pertains to one-pass node-on-surface formulations. Cor-

responding two-pass formulations can be obtained by integrating (10) using nodal

quadrature over the boundary nodes of both surfaces and letting the weighting func-

tion r~ be defined as

This, in effect, amounts to repeating the traction distribution twice, each time with

one of the two surfaces providing the equivalent nodal forces and the other distributing

them to its boundary nodes according to (25) or, incorrectly, (26).

A traction-based (as opposed to resultant force-based) one-pass algorithm, which

is consistent with the discrete counterpart of equation (11), can be obtained as follows:

first, with reference to (23), admit a pressure interpolation on 17~in the form

Then, the pressure p“ is determined at all nodal points of r: by defining q: with the

aid of (14) as a sum of Dirac-delta functions taken preciseIy at these nodaI points

and, subsequently, enforcing the discrete counterpart of (10). On the other hand,

*The application of equal-and-oppositeresultantforcesis often justifiedby appealingto

some form of Newton’s third Iaw,wherethe elementnodes play the role of mass particles.

Of course, no such law holds true in continuum mechanics. Rather, linear momentum

balance can be invoked to * the traction continuity condition (7).
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nodal values of p~ are determined on 17~by collocation with p“, corresponding to the

choice
.

A corresponding two-pass algorithm maybe defined

pressures p“ and P5 satisfy the nodal gaps g; and gf

in an analogous fashion: the

of both surfaces. However,

in this case, a consistent construction using the interpolations (27) employed in the

continuous one-pass algorithm is problematical. Indeed, if the pressures p“ and fl

are determined so g? = O and g? = O at each node on Co and C~, then it is not, in

general, possible to additionally satisfy the weak surface balance (11). In this case,

the two simultaneous Signorini-like problems are very weakly coupled, with the only

coupling between pa and & being derived from the similarity of the gap functions ga

and g~. To effect this gap-based coupling of the pressure fields in a direct fashion, a

penalty formulation can be employed, such that

P“ = ~9” >

where ~ >0 is the penalty coefficient.

Numerical results using the above one- and two-pass algorithms are included in

Section 5 to provide a basis for assessing the accuracy of the proposed formulation.

.
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