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Abstract

This article proposes a new three-dimensional contact finite element which
employs continuous and weakly coupled pressure interpolations on each of the
interacting boundaries. The resulting formulation circumvents the geometric
bias of one-pass methods, as well as the surface locking of traditional two-pass
node-on-surface methods. A Lagrange multiplier implementation of the
proposed element is validated for frictionless quasi-static contact by a series of
numerical simulations.
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A Three-dimensional Contact Finite Element

1 Introduction

- Most commercial finite element program employ node-on-surface algorithms for sim-
ulating contact between two deformable solids. Here, the impenetrability constraint
is enforced by applying discrete forces at the nodes on one of the contacting surfaces
(the “slave” surface) and equal-and-opposite reactions on the other (the “master” sur-
face). One-pass versions of this strategy use only forces associated with the nodes of
one designated slave surface, while two-pass versions apply the process twice (i.e., for
both master/slave combinations) and superpose all resulting forces. It is known that
such node-on-surface algorithms have certain intrinsic shortcomings. Clearly, one-
pass algorithms are geometrically biased by the choice of a specific slave surface. On
the other hand, two-pass algorithms generally over-constrain the contacting boundary

_surfaces, as noted by Kikuchi and Oden [1, p. 165]. This pathology will be referred
to here as “surface locking”. Moreover, in traditional node-on-surface algorithms the
contact traction fields (e.g., pressure) are not directly approximated. Rather, they
are typically recovered from the nodal forces as an afterthought by means of tribu-
tary area methods. This lack of smooth traction interpolations further inhibits any
attempt towards a formal convergence analysis.

These shortcomings have motivated several alternative contact element formula-
tions, see, e.g., [2, 3, 4, 5, 6], which employ piecewise continuous polynomial traction
interpolations on the contact boundaries. These developments rely, to an extent, on
element formulations developed and mathematically analyzed for a deformable body
contacting a rigid surface (i.e. the Signorini problem) [7, 8, 9]. However, in sharp con-
trast to the Signorini problem, the use of smooth traction interpolations in two-body
contact introduces additional complications stemming from the need to define these
fields and numerically integrate their contributions on (usually irregular) segments of
the element boundaries or on an arbitrarily chosen intermediate surface.

This article describes a novel finite element method for three-dimensional frie-
tionless contact, which addresses the fundamental deficiencies of node-on-surface al-
gorithms, while remaining amenable to robust computational implementation in a
finite deformation setting. The proposed method departs from other continuous in-

. terpolation methods in two major ways: first, traction fields are chosen separately

(although not independently) on each of the two contacting surfaces, so that traction

continuity is enforced in a weak sense and integration schemes naturally arising from
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the underlying domain elements can be readily employed. Second, the new contact
element permits the exact transmission of constant pressure, thus unconditionally
passing the contact patch test postulated in [10]. These element properties have been
originally conceived and exploited in earlier work on two-dimensional contact {11, 12].
The resulting formulation is simple and efficient to implement in three-dimensions,
as it requires only routine and inexpensive geometric computations. In addition, ex-
tensive numerical experimentation to date suggests that it yields stable results and
effectively bypasses all problems related to surface locking.

The organization of the article is as follows: first, fundamentals of contact me-
chanics including a weak form of the governing equations are presented briefly as
background. Then, the proposed contact element is introduced in connection with
the standard eight-node hexahedral domain element. The fidelity of the algorithm
is subsequently tested in a number of representative simulations, whose results are
compared to analytical estimates, as well as to numerical results from certain one-

and two-pass algorithms.

2 Elements of Contact Mechanics

Consider two deformable bodies B*, o = 1,2, and let any material point X € B* be
associated with position vector X* in a fixed reference configuration {2§. The region
Q¢ in the Euclidean point space is simply connected and open with respect to the
ambient metric, and its boundary is denoted by 0.

A smooth motion x® is defined for each body, such that x* = x*(X%,t), where
X* € Qf is mapped at time t to its image X in the current configuration Q*(t).
The motion is taken to be invertible at fixed ¢, which implies that the deformation
gradient F* = %g,— is non-singular. In addition, x* maps the referential boundary
region 00Q¢ onto its image 0Q*(t), which is assumed to be Lipschitz with outward
unit normal n®. For convenience, each point of 90¢ is associated with convected
Gaussian coordinates £7,v=1,2.

Admitting quasi-static conditions, the equilibrium equations take the form
divT® +p*b% = 0 in Q%, (1)

where T represents the Cauchy stress tensor, p® the mass density in the current

configuration, and b* the body force per unit mass. The motions of the two bodies
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are also subject to the principle of impenetrability of matter {13], which stipulates
that

QVNe® = g . ‘ 2)

Consequently, the common boundary region C(t) = Q) N 90 defines the contact
interface. The remainder of the boundary 002 is composed of regions I and I'y,

such that

@ Ee e

u* = 4% only,
(3)

t* = t* onIy,

where u® = x* — X? is the displacement vector and t{. the traction vector on the
- surface with outward unit normal n®. This vector is related to the Cauchy stress
tensor T by t2. = T*n*.

The impenetrability condition (2) can be recast as a unilateral constraint by in-
troducing a distance (or “gap”) function ¢g* on the boundary of each body. To this
end, define the point sets

vaixin®) = {x7 €00’ | (xF - x%) xn" =0, (x"—x*) n > 0},
VE(x%n%) = {xﬂ € | (X —x*)xn*=0, (x*—x*)  -n%< O} ,
corresponding to the projections of x* on 99° along the two rays defined by n®. Here,

B = mod (a,2) + 1 denotes the index of the opposing body*. Then, let k_‘i and X°

be the closest such projections, namely

-0 alf : 3 @
X, —X = X" —X
I%4 =x = min, | I
12 — x| = min [Ix* - x| .
xBeye

A single-valued distance function is specified as

o { (%% —x®)-n* i Ve #£0

, 4
+oo V=490 @

: N
*By expanding the set of potential contact points from 8097 to |J 80 \ {x*}, this
=1

definition can be trivially extended to self- and N-body contact.

9
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where a unique projection X? is defined as

o 2 ifa? n*<0
2 ifn n*>0

;o (5)

see Figure 1. It follows from (4) and (5) that g* vanishes identically on C. Also, the

impenetrability constraint (2) takes the form
g® > 0 ondQ”. (6)
Clearly, letting
C* ={x"€0Q* | ¢*=0},
it follows that CV) = C® = C.

A separate equilibrium statement applies on the contact interface (see, e.g., [14]),

"in the form
[t]3 = tha—tie = O, (7)
where fﬁa denotes t7. (%P, t). For frictionless contact, the surface traction becomes
the = —p*n%,
where p* > 0 is the pressure’. Consequently, equation (7) reduces to

[l = #-p* = 0. (8)

Furthermore, gl ven
¢ g [’ 3
= = [[V]] -n”

&
where [v]® = ¥# — v* is the jump in velocity across C, it is clear that the rate of
work done by the tractions on the contact surface C¢ is

£ V] = p%* = 0.

Thus, the pressure p® is work-conjugate to ¢* and is identified as the Lagrange mul-

tiplier that enforces the (workless) impenetrability constraint g% = 0.

tCommonly, the contact pressure is denoted by the single fleld p, namely equilibrium
on the singular surface C is assumed to hold at the outset. However, this direct reduc-
tion is not employed here for reasons that will become apparent as the finite element

approximation is introduced in Section 4.
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3 Weak Formulation

The governing equations (1) and (8), the boundary condition (3), and the con-
straint (6) can be put in a weak (weighted-residual) form, such that the solution
(u*,p*) € U* x P* satisfies

Z {/ (gradw® - T* — w* . p®b*) dv — w*-t*da
a=12 Y0 rg

-/, w? - (—p*n®) da} =0, (9

> /F {g*~p)gda 2 0, (10)

a=1,2

and

/r[[pﬂdaz(), (11)
c

for all (w* g%, r) € W*x Q*x R. Note that in equations (9)—(10) all integrals related
to contact are written over the region I'*(> C?), which is defined as the union of
those boundary regions on which no normal displacement or (inhomogeneous) traction
boundary conditions are specified externally. The spaces of admissible displacements -

and associated weighting functions are chosen to be

U* = {we Q%) | u*=1" onT%},
we = {w e H'(Q%) | w*=0 onT2}

H

hence appealing to a standard trace theorem (see, e.g., [15]), the traces u® - n® and
w*.n® used in (4) and (9) can be viewed as continuous linear operators from H*(Q%)

to H/2(9*). The spaces of admissible pressures and weights are now defined as
P* = {p®cH5T2) | p°20,p°=0 onl2\C%},
Q* = {¢eH () | ¢20}, |
R = {reH3()}.
Note that equations (9) and (10), when restricted to a single deformable body (i.e.,
o = 1 or 2), are identical in structure to those arising from the Signorini problem.

The two Signorini-like problems in (9) and (10) are coupled by the definition of g*
and by equation (11).

11
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4 A New Contact Element

The finite element formulation described in this section relies critically on the use of
the weak formulation in equations (9)—(11) in conjunction with separate continuous
pressure interpolations on each surface. In this case, it will be shown that the bound-
ary integrals on I'? in (9) can be conveniently evaluated for each body using only the

discretization naturally derived from its domain.

4.1 Discrete fields and equations of motion

The discrete counterparts of U® and W defined in Section 3 are generally taken to
be

Up = {uf e O NCUQR) | ui(Q2) e Pu(Q) , up =85 onlf,},
Wi = {wh e H{QHNCYQR) | wi(Qd) e Pe(Q2), wi =0 onT7,},

where P;, denotes the space of polynomials complete to degree k and QY the domain

of element e. Similarly,

1 o o (o3 o «
P;zl = {szH 2( c,h)mco( c,h) l ph(aﬂe)epk(age)7
pR=0, pi=0 onTg\Cy},

—'l (a4 o o
Qi = {agn e H3(T3)ND(Tg) | ¢ =0},

Ry, = {r e (B ND(Ch)},

where P (002) denotes the space of polynomials on Q% complete to degree k, (P2)*
the dual of P2, and D(T'g,) (resp. D(Ch)) the space of Dirac distributions on I'g,
(resp. Cp)*. The choice of admissible displacements is routine for C°-continuous do-
main finite elements. On the other hand, the assumed C°-continuity of the pressures
departs in a fundamental way from classical node-on-surface treatments, see the Ap-
pendix. In addition, the choice of R implies weak, collocation-based satisfaction of
the equilibrium equation on Cj.

Employing the notation u® and p* for global vectors of nodal quantities, standard

finite element interpolations can be introduced for the displacement field and its

tNote that for the given choices of discrete admissible functions, the duality pairing
in (11} is well-defined despite the fact that R ¢ R.
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gradient as
up(x,t) = N*x)u(t),
(12)
gradup(x,t) = B*x)u*(t),

as well as for the (continuous) contact pressure as

ph(&,t) = L&) p(t) . (13)
Analogous interpolations apply to the respective weighting functions w{ and the gap
functions, leading to global vectors w* and g*, respectively. To ensure consistency
with the continuous pressures in (13), the interpolated gap fields g are made single-
valued everywhere on I'? by employing arithmetically averaged outward normals n*
at all inter-element boundaries.

The discrete counterparts of the weighting functions ¢® and » must be chosen to
avoid over-constraining the boundary surfaces 9Q2%. These piecewise smooth surfaces
are in general non-conforming, see Figure 2 for an illustration. Exceptions may occur
in the certain special cases of “node-on-node” contact, as well as when the contact
surface takes on a low-order global polynomial form that is exactly representable by
the surface discretizations of both bodies. However, in the general case where the
boundary nodes are not aligned and the contact surface takes an arbitrary shape,
surface locking occurs when the impenetrability constraint is enforced at every nodal
point on Ci,. This pathology is analogous to the over-constraining of the discrete
displacement field in incompressible elasticity, a problem that has been studied ex-
tensively by the finite element community. To date, formal convergence analysis of
two-body contact has received relatively little attention, owing to the adherence to
force-based node-on-surface methods as well as to the complexity of dealing with the
interaction of two arbitrarily chosen meshes.

In practice, global surface-locking may be prevented by enforcing the impene-
trability constraint selectively on Cg. This is accomplished by effecting a regular
partition of nodes on C}; into two disjoint sets Sy and Sp. The discrete counterparts
of the weighting functions ¢* and r in (10) and (11) are approximated according to

Gx.t) = D S(xP)F(t) = Q*®)q(t) (14)

Iesy

S S e = RO 15)

a=1,2 IS¢

Th (X, t)

I
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where Q% and R are row vectors of Dirac-delta functions and x7 denotes the position
of node I on surface Cj.
Taking into account the interpolations in (12)—(15), the weighted-residual equa-

tions (9)-(11) give rise to the discrete equations

_ aTrma __ peT o - aTTa
£, = Z{Qa(B T — N°T pb) du /F NeTE dg

(3
a=1,2 h a,h

~ | NeT(~pgn*)da} = 0, (16)
Cy

f, = Z/ Q*Tg*da = 0, (17)
a=1,2 1%y
~and

f, = RI[py]da = 0. (18)
Chr

The component forms of equations (17) and (18) are

g*(xf) = 0 forevery I €S;, v €1,2, (19)
[pr](x7) = 0 forevery I €Sy, a€1,2, (20)

respectively. Clearly, S; (resp. Sg‘) consists of all boundary nodes on which the

impenetrability constraint (resp. the pressure continuity condition) is enforced.

4.2 Application to eight-node hexahedral elements

In the remainder of this article, attention is focused on four-node bilinear quadrilateral
contact elements arising naturally from a domain approximation using standard eight-
node hexahedral domain elements. There are at least two boundary node partitioning
techniques for two-dimensional surfaces that can be readily employed in connection
with the enforcement of (10) and (11). The first involves the construction of a con-
tinuous curve that traces the topology of Cf and passes through each node only once.
This is a Peano-Hilbert space-filling curve [16], and provides a simple means of assign-
ing nodes to the sets S and S;'. For instance, nodes with odd ordinal may belong
to Sy, while nodes with even ordinal may belong to 5, as seen in Figure 3. Alter-

natively, the surface mesh can be “tiled” in a recursive manner using the reference

14
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element shown in Figure 4 to produce the nodal partition. Each method requires
a “seed” node or element to start the patterning, thus does not produce a unique
pattern on a given mesh. However, for sufficiently regular meshes and corresponding
seeds, the two methods yield identical patterns. Clearly, the quality of a solution
depends crucially on attaining a uniform spatial distribution of nodes with gap and
pressure collocations. This guarantees a balanced enforcement of the impenetrability
constraint and the continuity of normal traction. In addition to circumventing surface
locking, such a balance is essential in order to ensure that the computed tractions
do not bias the solution towards either of these two requirements. Both partitioning
techniques provide such even distributions, where exactly two nodal pressure vari-
ables enforce gap constraints on every four-node surface element. Other patterns ére
possible where the nodal pressure variables associated with gap constraints and the
" nodal pressure variables satisfying pressure continuity across the contact surface are
not equally divided.

With reference to Figure 4, the interpolation of p¢ on the given element boundary

is chosen to be

> LTy HE 288

a i=1,2,3

bp =
O LR i<

where L7123 and LI'*> are the linear interpolation functions for triangles (1-2-3)
and (1-3-4), respectively. The support of the interpolation function associated with
any node in Sy, e.g., node 4 in Figure 5, is local to elements associated with the
node and is bounded by nodes in S;*. Within the support region of such a “traction

continuity” node, the collocation equation
P& = mh

derived from (18), can be explicitly solved for the undetermined pressure. Indeed,
with reference to Figure 5, let “I” be the projection on I'g), of the node I in Sf which

lies closest to node 4 of Sy and inside its support region®. Then,

1

i = e 0] — LE0f — L§Pp5)
4

§In this work, all projections and gap calculations use the exact geometry of the bound-

ary surfaces of the hexahedral elements.
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where p’? is the pressure at node I. If no such closest projection exists, a linear
interpolation of p® is made within the support region of the “pressure continuity”
node.

In order for the pressure approximation of a contact finite element to satisfy poly-
nomial completeness requirements, it is necessary that the element pass the patch

test proposed in [10]. This necessitates that the formulation be able to transmit,

+

independently of the discretization, a uniform pressure —pgng through a flat contact

surface Cy. An examination of the contact integral in (16), namely

— | NT(—pin®)da = p§ | NT(E5)5(E5) déides ng

1% CF
" reveals that satisfaction of the patch test requires exact integration of a quantity of
order O(£3&,, £1£2) over the intersection C* N JQ2, where the element boundaries are
used as integration cells. In case an element boundary is in full contact, this condition
can be satisfied by several integration schemes¥.

The case of element boundaries in partial contact, ie. C* N QY C 902, is
more complex, given the potentially irregular geometry of the contact boundary. A
“quasi-element” that relies on a triangularization of the contact region and linear
approximation between known pressure samplings, e.g. nodes 2,3 and node K from
the opposing surface in Figure 6, has been developed to handle partial contact. This
treatment allows finite jumps in pressure at the boundary of the contact region Cj,
which is necessary where the boundary of a contacting body is non-smooth at the edge
of contact, as is the case in punch problemsll. Moreover, this quasi-element treatment
allows exact and unqualified satisfaction of the patch test. It should be noted that,
given the computational expense of triangularization, there may be a practical limit
to how accurately one needs to resolve a highly irregular contact boundary within a
single quasi-element. Indeed, the error induced in the contact residual by ignoring
the contributions of elements that are partially in contact is of order h2?, where h is

the mesh size parameter.

YA 2 x 2 Gaussian scheme as well as a nodal quadrature scheme derived from the
shape functions of a two-dimensional eight-node serendipity element have been employed

successfully.
WA similar treatment can be employed in the interior of C in the case of material

discontinuities within the contacting bodies.
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5 Numerical Simulations

To demonstrate the performance of the proposed contact element, a sequence of
simulations have been conducted usiﬁg FEAP [17]. First, the contact patch test is
used to verify the algorithm’s consistency with the continuum problem. Subsequently,
problems involving non-homogeneous deformation and non-flat contact interfaces are
used for independent validation of the formulation.

In each simulation, linear eight-node isoparametric hexahedral elements are used
to discretize the contacting bodies. These elements are endowed with a compressible,
isotropic neo-Hookean hyperelastic constitution suitable for finite deformation. The

strain energy for this material takes the form

1 1 .
W = 5A(det%c ~ 1)+ 5p(rC-3) - pln(detiC)
where C = FTF is the right Cauchy-Green deformation tensor. Also, ), s are material
constants which correépond to the Lamé constants at infinitesimal deformations and

are related to Young’s modulus E and Poisson’s ratio v by A = 53-7%’7275 and p =

_E
2(1+0)"

The discrete governing equations are solved using a full Newton-Raphson iteration
scheme. At each iteration, the surface momentum balance equation (18) is satisfied by
collocation. The remaining non-linear algebraic equations (16) and (17) are linearized

about the current state [u, _]%;), ie.,

D.f, D,f, Au f,
oD,f, 0O A T e | )
we @t 2y s d@

where the parameter 6 > 0 is employed to improve the conditioning of the over-
all system. In the special case of “node-on-node” contact, equation (21) leads to a
symmetric system; however, in general, the system (21) is unsymmetric due to the
misalignment of the discretizations on the interacting bodies. Since the nodal par-
titioning (19) is merely a pre-processing step, the cost of storing and solving these
unsymmetric linear systems presents the only significant additional expense of the
proposed approach relative to other Lagrange multiplier formulations for frictionless
contact.

As noted in [12], the submatrix D,f, in (21) may be singular, see, e.g., the contact

patch test of Section 5.2. This prevents the direct solution of (21) without pivoting.
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This problem can be remedied by writing the equations equivalently as

{Dufu—i—w(Dufg)TDufg Dpfu} [Ag} ~ { £, -I—\_w(Dufg)ngJ )
6D.f, o J,lan], 6f, o

where w > 0 is an additional conditioning parameter. The simultaneous solution of

the linear system (22) for {Au, Ag]g) is used to update the current state according

= + A )
(i+1) £ 1w )

Convergence of the iterative scheme is assessed by the Euclidean norm of the reduced
residual vector [£, + w(D,£,)TE,, HfQ}g).

to

=

I3

5.1 A Patch Test for Two-body Contact

As in reference [18], the patch test consists of two rectangular parallelepipeds in con-
tact with uniform normal traction applied throughout their exposed upper surfaces.
The Lamé constants A = 5.77 x 10?2 GPa and g = 3.85 x 10? GPa for both bodies
are chosen to correspond to Young’s modulus F = 1.0 x 10 GPa and Poisson’s ratio
v = (.3. The objective of this test is to verify that the proposed formulation satisfies
the completeness requirement in the sense of [10], namely that it allows the exact
transmission of constant pressure.

The algorithm was tested using a variety of relative discretizations and orientations
of the two bodies. In each case, the formulation effected a uniform normal trac:cion
on the flat contact interface to within machine precision. The resulting homogeneous
deformation for a typical mesh is seen in Figure 7. Note that, in the given example, the
surface elements on the lower body are in partial contact while the surface elements

of the upper body are chosen to have non-constant Jacobians.

5.2 Rectangular Punch on Elastic Foundation

Let two rectangular parallelepipeds be placed in contact, as shown in Figure 8. The
top body (punch) is brought into contact with the bottom body (foundation) via
prescribed normal displacements on its upper surface. The punch has dimensions

5m x 5m x 1m and is meshed uniformly using 6 x 6 x 2 elements with two mutually
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orthogonal vertical symmetry planes. Likewise, the foundation has dimensions 7m x
Tm X 2m and a uniform mesh of 14 x 14 x 2 elements. The stiffness ratio between the
two bodies is k = %‘f’;‘ﬁ = 10.0, where Eiung = 1.0 x 10% GP4. Also, Poisson’s ratio
is fixed at v = 0.3.

The resulting pressure field is depicted in Figure 9 and clearly approximates the
boundary singularity due to the indentation of the punch. Figure 9 further demon-
strates that the weak satisfaction of the pressure continuity across the contact inter-
face is remarkably accurate. The formulation also allows for a stable recovery of the
limit of a rigid punch indenting a deformable foundation. Indeed, Figure 10 shows the
pressure field on the foundation for the cases k¥ = 10.0,100.0, 00 (k = oo corresponds
to the punch being rigid). It is apparent that the solution for £ = 100.0 is already
" quite close to the rigid punch limit.

5.3 Hertzian Contact of Two Deformable Bodies

Two identical bodies are pressed together through prescribed displacements. The
bodies are meshed identically with 12 x 12 X 2 elements and their contacting surfaces
are approximately spherical with radius of curvature 120m, as seen in Figure 11.
Also, the elastic constants of both bodies are chosen to be A = 5.77 x 10* GPa and
p = 3.85 x 10* GPa. Note that the initial configurations of the bodies are rotated
by 45° relative to each other in order to prevent fortuitous node alignment. Also, in
order to accurately capture bending-like deformation modes, it was deemed necessary
to add piece-wise quadratic incompatible modes to the interpolation functions of the
domain elements, as in [19].

Figure 12 shows pressure fields at forced normal approach of 0.3m which are
smooth and nearly identical on both surfaces™. These fields compare well both in
terms of the region of contact and the pressure distribution with the classical Hertzian
solution, as seen in Figure 1377

A second analysis is performed to compare the proposed formulation with a one-

**The pressure fields are graphed relative to horizontal x-y axes parallel to the sides of

the upper bedy.
tiThe negative pressures at the edge of contact on the upper surface are caused by

extrapolation at a nodal pressure determined by cbllocation, which is not subject to p > 0.
Such edge effects are inevitable for arbitrary node alignment and are reduced with mesh

refinement.
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pass counterpart employing the equivalent nodal force method of momentum transfer
described in the Appendix. Here, the stiffness of the lower body is decreased by an
order of magnitude and the radius of curvature of both bodies is decreased from 120m
to 30m so that the contact surface is ensured to be substantially non-flat. Also, to
investigate the performance under non-uniform relative mesh density, the resolution
in the lower body is increased to 16 x 16 x 2 elements and that of the upper body
is decreased from to 10 x 10 x 2 elements, see Figure 14. The deformed mesh using
the proposed method is shown in Figure 15. It is seen from Figure 16 that the
pressure profile generated by the proposed method compares well to one resulting
from a one-pass Lagrange multiplier formulation that uses the more finely discretized
lower surface as the surface of integration. However, it is also clear from Figure 17
that a one-pass formulation in which the upper (coarser) surface is designated as
the surface of integration yields a significantly inferior solution. In particular, since
gap constraints are only enforced at the nodes of the upper surface, there exist large
penetrations of the lower surface’s nodes along the contact surface which adversely
affect the solution, see Figure 18. This geometric bias of one-pass algorithms is

completely circumvented by the proposed approach.

5.4 Inflation of Concentric Rings in Contact

A system of two concentric rings which are in contact at no initial tractions is inflated
by subjecting the inner ring to outward radial displacement. The rings have inner
radii B! = 4.0m and R? = 5.02m, with common thicknesses ¢ = 1.0m and depth
d = 10.0m. A small initial separation between the rings is introduced to avoid
penetration in the initial configuration. The material parameters A = 5.77 x 102 GPa
and g = 3.85 x 10? GPa are identical for both bodies. Using horizontal and vertical
symmetry planes, the inner cylinder is meshed with 12 elements circumferentially, 2
elements in the depth and 1 element in the thickness. Likewise, the outer cylinder is
meshed with 16 elements circumferentially, 3 elements in the depth and 1 element in
the thickness.

Using the proposed method, both the deformation of the two cylinders and the
pressure fields are uniform to within the smoothness and order of the the boundary

discretization, see Figures 19 and 20 ¥. On the other hand, if the two-pass penalty

¥ Note that arclength is used to parameterize the circumferential direction in the pressurdots.
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method described in the Appendix is employed with penalty € = 1.0 x 10?, a uniform
pressure field can also be obtained, see Figure 21, albeit with an order of magnitude
difference in the pressures compared to the Lagrange multiplier solution and accompa-
nied by large violations of the impenetrability constraint. An increase of the penalty
parameter to ¢ = 5.0 x 10% results in erratic and highly oscillatory pressure pro-
files suggestive of over-constrained surfaces, see Figure 22. A further increase in the
penalty parameter of this two-pass simulation does not produce convergent solutions.
This example illustrates the stability issue associated with two-pass approximations
that are potentially hidden when a penalty regularization is used to enforce the im-
penetrabiﬁty constraint. Again, the proposed reduced constraint method appears to

be completely free of such a deficiency.

6 Conclusions

A systematic means has been devised for satisfying the impenetrability constraint and
constructing a basis for the contact pressure fields in three-dimensional finite elements.
The new approach alleviates the geometric bias and surface locking problems of many
traditional methods. Furthermore, the simple scheme that employs boundary faces
of the underlying domain elements for integration is shown to be sufficient to satisfy
the contact patch test and provides a robust and efficient framework for accurate

three-dimensional computations.
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Appendix: Node-on-surface Contact Treatments

Equilibrium on C implies continuity of the normal traction, see equation (8). In
order to circumvent the need to explicitly introduce pressure interpolations, node-on-
surface treatments attempt to apply this condition directly to the equivalent nodal
forces of the two meshes along Cj,. In this Appendix, traditional and non-traditional
node-on-surface algorithms are examined in connection with the formulation of the
governing equations developed in Section 3.

To derive node-on-surface formulations consistently with equations (9)-(11), let
U, W P2 and Q5 be again defined as in Section 4. The key characteristic of a
node-on-surface algorithm in the present context is the definition of the weighting
function 7y, € Ry. Specifically, let

= S g = 8, (23)
xgel's,
where ¢% denotes the restriction on I'g), of the standard domain interpolation function
associated with boundary node 1.

Taking into account the preceding choices of admissible fields, the equivalent nodal

force F¢ at I due to contact is found from (9) to be
Ff = [ orotnde.
Fg,h

Employing nodal quadrature, F¢ can be approximated by
F§ = (—pfnf) > jouw,

where pf and n} denote the pressure and the outward unit normal at I, respectively. -

x5 (E)
BT

Jacobian and w, the integration weight for element e at node I. In addition, use

Also, in the previous equation j& = det | ]e is the piecewise continuous surface

of nodal quadrature on C* in equation (10) directly implies that the constraint of

impenetrability is enforced at all nodal points x§. Finally, equation (11) becomes

/ﬁwm=0- (24)
C

Ignoring the difference in direction between n® and —n?, equation (24) can be inter-

preted in terms of equivalent nodal forces as

F} = — P5p*n%*da = / %p°n? da . (25)
_JCe c8
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The right-hand side of equation (25) provides a precise rule for distributing F¢ on
892. In particular, consistent equivalent nodal forces due to contact can be calculated
on an by first projecting ¢¢ on the interpolation functions '¢? associated with the
nodes lying on 695 , then evaluating the resulting integrals. Except for very special
cases, such equivalent nodal forces are not “equivalent” to those resulting from first
applying —F¢ to the projection of node I on 695 and then distributing —F¢ on 607
by the rule

Fj = ¢5(-Ff), (26)

as is routinely done in traditional node-on-surface implementations. Therefore, this
procedure leads to violation of the discrete counterpart of (11)*.

The preceding analysis pertains to one-pass node-on-surface formulations. C;)r—
responding two-pass formulations can be obtained by integrating (10) using nodal
quadrature over the boundary nodes of both surfaces and letting the weighting func-

tion 7y, be defined as

=y Y T = ) T,

a=1,2 x§ El"':h a=1,2

This, in effect, amounts to repeating the traction distribution twice, each time with
one of the two surfaces providing the equivalent nodal forces and the other distributing
them to its boundary nodes according to (25) or, incorrectly, (26).

A traction-based (as opposed to resultant force-based) one-pass algorithm, which
is consistent with the discrete counterpart of equation (11), can be obtained as follows:
first, with reference to (23), admit a pressure interpolation on I'? in the form

p* = $%p*. (27)

Then, the pressure p* is determined at all nodal points of I'? by defining ¢ with the
aid of {14) as a sum of Dirac-delta functions taken precisely at these nodal points

and, subsequently, enforcing the discrete counterpart of (10). On the other hand,

*The application of equal-and-opposite resultant forces is often justified by appealing to
some form of Newton’s third law, where the element nodes play the role of mass particles.
Of course, no such law holds true in continuum mechanics. Rather, linear momentum

balance can be invoked to derive the traction continuity condition (7).
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nodal values of p° are determined on I'? by collocation with p*, corresponding to the

choice

reo = ().

x’i Erf,h

A corresponding two-pass algorithm may be defined in an analogous fashion: the
pressures p* and p° satisfy the nodal gaps g¢ and gg of both surfaces. However,
in this case, a consistent construction using the interpolations (27) employed in the
continuous one-pass algorithm is problematical. Indeed, if the pressures p® and p°
are determined so g% =0 and g? = 0 at each node on C* and CP, then it is not, in
general, possible to additionally satisfy the weak surface balance (11). In this case,
the two simultaneous Signorini-like problems are very weakly coupled, with the only
~ coupling between p* and p® being derived from the similarity of the gap functions g
and g”. To effect this gap-based coupling of the pressure fields in a direct fashion, a
penalty formulation can be employed, such that

p* = €g%,
where ¢ > 0 is the penalty coefficient.
Numerical results using the above one- and two-pass algorithms are included in

Section 5 to provide a basis for assessing the accuracy of the proposed formulation.
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Figure 1: Definition of a distance function
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Figure 2: Non-conforming meshes
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Figure 3: Patterning for a patch of elements
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Figure 4. Reference contact element
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Figure 5: Point-collocation of pressure
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Figure 6: Contact element for partial contact
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Figure 7: Patch test
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Figure 8: Mesh for punch and foundation

34




25

Punch —

20+ ]
: Foundation -----

Figure 9: Pressure fields for punch problem
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Figure 10: Comparison of pressure fields for punch problem
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Figure 11: Undeformed mesh for analytical comparison
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Figure 12: Pressure fields for Hertzian problem
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Figure 14: Undeformed mesh for one-pass comparison
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Figure 16: Comparison of reduced constraint formulation and one pass
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Figure 18: Deformed mesh for one-pass method using uppér surface
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Figure 21: Pressure for two-pass penalty formulation, € = 1.0 x 102
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Figure 22: Pressure for two-pass penalty formulation, € = 5.0 x 102
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