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Exact Solution of Heat Conduction in a

Two-Domain Composite Cylinder with

an Orthotropic Outer Layer

C. A. Ramos, and C. Rudy
Los Alamos National Laboratory

NIS-5 Safeguards Science and Technology
Los Alamos, New Mexico 87545

ABSTRACT

The transient exact solution of heat conduction in a two-domain composite cylinder is

developed using the separation of variables technique. The i~er cylinder is isotropic and

the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary

conditions of the first and second kinds at the outer surface of the orthotropic layer. These

solutions are applied to heat flow calorimeters modeling assuming that there is heat

generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter

simulations are carried out assuming that the inner cylinder is filled with plutonium oxide

powder. The first objective in these simulations is to predict the onset of thermal

equilibrium of the calorimeter with its environment. Two types of boundary conditions at

the outer surface of the orthotropic layer are used to predict thermal equilibrium. The

procedure developed to carry out these simulations can be used as a guideline for the

design of calorimeters.

Another important application of these solutions is on the estimation of

thermophysical properties of orthotropic cylinders. The thermal conductivities in the

vertical, radial and circumferential directions of the orthotropic outer layer can be

estimated using this exact solution and experimental data. Simultaneous estimation of the

volumetric heat capacity and thermal conductivities is also possible. Furthermore, this
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solution has potential applications to the solution of the inverse heat conduction problem

in this cylindrical geometry.

An interesting feature of the construction of this solution is that two different sets of

eigenfbnctions need to be considered in the eigenfunction expansion. These

eigenfimctions sets depend on the relative values of the thermal diffbsivity of the inner

cylinder and the thermal difisivity in the vertical direction of the outer cylindrical layer.

Nomenclature

a, b, d

ii

Cpl

=p2

cmn

c“mn

c**mn
Dmn

D;n

F l,mn

F 2,mn

F“I,mn

dimensions in Fig. 1, cm

2~bd

z a2

Fourier coefficients, Eqs. (14)or(15)

b~=

heat capacity of region 1, J/kgK

heat capacity of region 2, J/kgK

coefficients, Eqs. (17) and (28)

coefficients, Eqs. (21) and (30)

coefilcients, Eqs. (25) and (32)

coei%cients, Eqs. (17) and (29)

coefficients, Eqs. (21) and(31)

coefficients, Eqs. (25) and (33)

initial condition in region 1

initial condition in region 2

eigenfunction, Eq. (16)

eigenfimction, Eq. (17)

eigenfunction, Eq. (20)



F*2,mn

F**l,mn

F**2,mn

gi

h

i

I.

Jo

K.

k r2

k 22

4

k

??2,n

Nm

N;n

P

q(t)

q,]

!?,2

t

eigenfunction, Eq. (21)

eigenfhnction, Eq. (24)

eigenfimction, Eq. (25)

volumetric heat source, W/CVZ3

heat transfer coefficient, W’/(cnz2“C)

index

modified Bessel function of the first kind and order zero

Bessel fimction of the first kind and order zero

modified Bessel function of the second kind and order zero

thermal conductivity in region 2 along r-direction, JV/cnZK

thermal conductivity in region 2 along z-direction, W/cmK

thermal conductivity in region 1, W/cnZK

indices in eigenfhnctions

norm, Eq. (40)

norm, Eq. (41)

norm, Eq. (42)

upper limit of surmnatio~ Eq. (86)

heat flux fimction, Eq. (86), Wj cm2

heat flux at r = b, Eq. (7), W/ cm2

heat flux at z = O, Eq. (4), W/cm*

heat flux at z = d, Eq. (5), W’/cm2

time, s

environmental temperature, “C

temperature in regions 1 or 2, “C

prescribed stiace temperature, ‘C

volume of region 1, cm3

.

r 4kz2 J ‘r2



r coordinate, cm

Y* Bessel function of the second kind and order zero

z coordinate, cm

Greek

thermal diffhsivity in region 2, in z-direction, cm2/s

thermal diffbsivity in region 1, cm2/s

Dirac delta function

eigenvalue for the r-direction in region 2, Eq. (18), cm-’

eigenvalue for the r-direction in region 2, Eq. (22), cm-’

eigenvalue for the r-direction in region 2, Eq. (26), cm-’

eigenvalue for the r-direction in region 1, Eq. (19), cm-l

eigenvalue for the r-direction in region 1, Eq. (23), cm-l

eigenvalue for the r-d~ection in region 1, Eq. (27), cm-l

eigenvalue for time, S-’

eigenvalue for time, s-’

eigenvalue for time, s-’

initial condition constant, Eq. (49)

initial condition constant, Eq. (50)

initial condition constant, Eq.(51)

indices

density of regions 1 and 2, kg/cm3

integer function

Introduction

This solution was originally developed as a result of the need for a thermal model for a

calorimeter experimental set-up intended to measure the power generated by 5 gallons

ckums of enriched uranium or plutonium. The research on this experimental set-up will



lead to the development of a calorimeter capable of measuring the power from 55-gallon

shipping containers. Also, this calorimeter will be capable of measuring uranium contents

of objects such as fhel plates, weapons

materials. The geometry of the solution

simplified form of the calorimeter thermal

constitutes the nuclear material and that

components, and other uranium processes

presented here was selected as the most

model. It is assumed that the inner cylinder

the outer cylinder is a power sensor that

measures a bridge potential between the inner and outer surfaces of the outer cylinder.

The outer cylinder is assumed to be orthotropic because of the geometrical distribution of

the materials that compose this power sensor.

This paper discusses the procedure of the application of the separation of variables

technique to a system of two partial differential equations which govern the heat

conduction in a two-domain cylindrical geometry. An important part in the construction

of this solution is the calculation of the eigenvalues. The eigenvalues are calculated

applying the boundary conditions at the outer surface, and the continuity of the

temperature and heat flux at the interface between the two cylindrical domains. Two sets

of eigenfunctions are defined for the construction of this solution. One eigenfimction set

applies for the case where czl> a,z and another set applies when al

Analysis

The heat conduction equation in the isotropic inner cylinder is

Also, the diffusion equation in orthotropic outer layer has the form

c aZz.

O<r<a (1)

()~~a d~ + ~ d’q aq
— r— — + g2(r, z,t) = p2cp2 — ina<reb (2)

‘2r& % ‘2 az’ at

where g, (r, Z,t) and g2(r, z, t) are volumetric heat source functions. The volumetric heat

generation fi.mction gz (r, z, f) could include the heat flux at the surface r = b. Subscripts
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1 and 2 indicate the inner and outer cylinders respectively. The solutions of Eqs. (1) and I
(2) are sought for the following boundary and initial conditions

a~
—=0 at
ar

r=()

@_
l~–q,l(r,t) at z= OiIIO<r<C2

~ q
1~=gz2(r,0 at Z=din O<rca

~ 8&_
—–O at z=oandz=dina<r<b

‘2 82
~ aq

—=qO(z,t) atr=bin O<z<d
‘2 ar

(3)

(4)

(5)

(6)

(7)

~(r,z,O) = ~(r, Z) and ~(r, zN) = L(r, Z) (8)

To make the presentation of this solution more compact, the top and bottom surfaces of

the outer cylindrical layer are assumed to be insulated. An additional solution for

prescribed temperature at the surface r = b k also constructed by replacing Eq. (7) with

the boundary condition

T2(b,z,t)=z(z,t) in O<z Cd (9)

The solution is obtained applying a standard transformation in the r direction as

Jk
F= ~r

k r2

Equation (1O)transforms the heat conduction equation in region 2 as

[)

I a ~aT2 1 a~+ 3*T2 + g2(~?z>o _.— —— inti<r<;
Y 8F ~– az2 k 22 aZ2 i?t

The compatibility conditions at the interface r = a are taken as

~(a, z,t) = T2(a,z,t)

aT
4+”kr2~ atr=a

(lo)

(11)

(12)

(13)

The separation of variables technique applied to the homogeneous forms of Eqs. (1) and

(11) produces two eigenfimction expansions with the form
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(14)

~(r,z,t) = ~ ~ An(t) ~,~~(r,z)exp(-2~n 1)
m=on.o

-+’~ $ .4~n(t)~~~~(r,z)exp(– Ax, t) for i = 1,2 and a, > aZ2 (15)
In=l n=l

the eigenfunctions ~,~n(r, z) for i =1,2 are defined as

q,mn(r,z) = Jo(qmnr)cos(rzzz/d) (16)

~,m.(r,z) = [CmnJo(Ymn~)+ D.nK(ym.~)]cos(n~ z Id) (17)

where k = ~-, Jo and Y. are the zero order Bessel’s functions of the first and

second kinds respectively, y~~ and q~~ are related to l~n by the equations

Ynm= %. l% –(n?r ld)2 (18)

in which az2 = p2cp2 / kZ2 and al = plcpl /&. The upper limit, ~(n), of the summations

appearing in Eqs. (14) and (15) is an integer fi.mction that depends on the number of

eigenvalues present for each specified value of n. The eigenvalues ~A~n/ aZ2– (m / d)2

f al – (mr I d)2 can be real or imaginary depending on the relative values of

az2 and a,. When al < aZ2 ~A~~/az2 -(nz/d)2 can be real or complex while

A:n/aI – (nz / d)2 takes over real values only. For. the case when al > az2,

2~nf al – (rm I d)2 can be real or imaginary while & I aZ2– (nrr I d)2 assumes real

values only. This results in two different sets of eigenfunctions to be used in the

construction of the solution. The eigenfhnctions appearing in the second terms of Eqs.

(14) and (15) make these eigenfimctions sets different.

eigenfimctions, ~~~~(r,z) for i =1,2; have the form

For the case where al < a,2 the

~~mn(r,z) = Jo(q~~r) cos(nz z/d) (20)

F~&(r, z) = [C~~10(yjnb) + D~nKo(y~&)]cos(nz z / d) (21)
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in which 10 and KO are zero order modified Bessel’s functions of the first and second

kind respectively. The eigenvlaues v;. and y~~ are related to 1~~ through the equations

(m/ d)2 – A:, ICZZ1 (22)

7L = % fa, – (nz /d)* (23)

The eigefictions appearing in the second term of Eq. (15) apply when al > a,2 and are

given by
\

F&(r,z) = 10(q~r) cos(wrz /d) (y4)

~~~(r,z) = [c: JO(y~h) + D~~(Y~h)]cos(nz z/d) (25)

where q:. ~d Y~~are related to 1~~ by the equations

(26)

IIq:= (nn ld)2 – A~~/al (27)

The contact conditions at the interface r = a, Eqs. (12) and (13), yield the constants C~~,

Dmn, C:. , D:., C;, and D; appearing in Eqs. (17), (21) and (25) as

c.. = –Z YmnZJo(qmna)~(ym2i)f 2 + z qm.&aJ1(qmna)&(y#Z) /(%2) (28)

Dmn= ZYmntiJo(qmntz)J,(ym.q j 2 – z ~mn@ Jl(q..a)Jo(ym.@ /(zkr2) (29)

C:n =Y:n ii Jo(~~nu)K1(Yjn@ + v;.@J,(vl.Wo(y;.@ /1/m (30)

D~n=y~~ ii Jo(q~na)I1(y~nii) – Vmnb~J, (q&a)Io(yl#) I I/K (31)

C;= -xym. iiIo(q~a)~(y~ii)f 2 -X q; ~a~,(q~u)~(yJ~)/(2k,’) (32)

D:= z ymnii Io(q~a)J1(y~@ f 2 + z q; &a I,(q~a)Jo(yl@ K%) (33)

The homogeneous form of boundary condition (7) yields the transcendental equations

for the estimation of the eigenvalues Am., 2L, and Ifln. The transcendental equation that

produces the eigenvalues & applies for al < az2 or al > aZ2 and has the form

C&i Dmn= –~(ymn~) / J1(ymn~) (34)

The case al e az2 produces the transcendental equation

C:n I D;. = -Kl (j&;) / ~l(y;~ij (35)



which is used to calculate the eigenvalues 2~~. When al > azq the transcendental

equation

C; ID;= -~(y:;)/J,(y:;) (36)

produces the eigenvalues 2;,. The eigenvalues obtained from Eqs. (34) and (35) are used

to construct the solution given by Eq. (14) while the eigenvalues obtained from Eqs. (34)

and (36) are used to generate the eigenfimction expansion (15).

Orthogonality. An orthogonality study showed that

The term between square brackets in Eqs. (37), (38), and (39) is equal to zero except

when p = m and v = n. Therefore the norms are
a d bd

~ddz‘m. = J J Plcpl (K,nm)2rdr& + J JP2Cp2(F2,nm r r (40)
/.=0Z=f) r=a Z=o
o d 2 bd 2

()‘L = J J Plcpl(~~mn) ‘d’&+ f 1P2CP2 ‘2~mn ‘d’& (41)
r=O 2=0 rza Z4

Temperature Solutions. The temperature solutions are obtained substituting Eqs.

(14) and (15) into Eqs. (1) and (2), and making use of the two-dimensional eigenvalue

problem and the orthogonality conditions (37), (38), and (39) to obtain

(43)



L$d

+ H P2cp2g2(L zJ)F2:m. ]((r,z)rdrdz exp ~~~t) ((44)

UW*” 1mn _— _—

[
‘j jP,cp,~,(r,z,t)K~ln(r, z)r~r&dt N: ,=0 ,=0

bd

+
H

1

()Pzcpzfh(r, Z,OFjL.(r, z)rdrdz exp ~~~t (45)
ao

The differential equations (43), (44), and (45) are integrated and substituted into IEqs.

(14) and (15). The resultant integration constants are calculated applying the initial

conditions (8). The final forms of the fhnctions ~~ (t),xl~n(t),and ~~ (t) are

1

+ ~ ]pzcpzgz(r,z,~)~,m.(r, z)rdrdz exp(l~n r)dr
r’=a,?=0

(46)

(47)

JyM r=oLr=o z.(1

where the integration constants A~~, A~~, and A~~ are given by

[
Ann =+ j jP,cp,J(r?z)E,mn(r>z)rdra

mn r=l) z=()

1(48)

[
‘L.=+ j jPlcplf(r>z)E~mn(r> z)rdrdz

mn r=o z=(I

(50)
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Equations (46) through (51) provide explicit expressions for the fimctions zlm~(l),

“ ~.(t), and ~.(i) that should be used in the construction of the temperature solutions

given by Eqs. (14) and (15). The eigenvalues calculated using Eqs. (34) and (35) or Eqs.

(34) and (36) apply for a solution with a prescribed heat flux at the stiace r = b. This is

the case of Eq. (7). If a solution with a different boundary condition at the surface r = b

is needed, the transcendental equations (34), (35), and (36) need to be modified. For

example, for a prescribed temperature at the surface r = b, Eq.(9) yields the following

transcendental equations

Cm.I Dm, = –~(ym”~) IJO(ym~;) for czl< aZz or al > azz (52)

C~n/Dj~ = –Ko(y~m~) / lo(y~~;) for al < azz (53)

Cl/ D; = –~(y~~) /Jo(y~~~) for al > aZ2 (54)

It is pointed out that Eqs. (14) through (33) and Eqs. (46) through(51) can still be used to

construct the solution for a prescribed temperature at the stiace r = b. The only

difference arises in the calculation of the eigenvalues which is carried out using Eqs. (52)

and (53) or Eqs. (52) and (54). A convective boundary condition at the surface r = b

requires that

-kr2 ‘T’—+hT2=h Tm atr=b in O<z<d
i%

(55)

where h is the heat transfer coefficient and T. is the temperature of the environment.

Equation (55) produces the following transcendental equations

-k,, kYm [cM.J,(Y..~)+ Q. x(Ym.~)]=

(56)
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—
– h[c:Jo(Yl~) + w K(Y2P)1 for al > az2

(57)

(58)

Once the eigenvalues from Eqs. (56) and (57) or Eqs. (56) and (58) are calculated, the

solution for this convective boundary condition can be constructed using Eqs. (14)-(33)

and Eqs. (46)-(51). It can be seen from the transcendental equations (56)-(58) that the

computation of the eigenvalues for the convective case becomes more demanding.

Thermal Equilibrium Prediction

Parametric studies for the prediction of thermal equilibrium can be carried out using

the temperature solutions, Eqs. (14) and (15), and an appropriate boundary condition. The

selection of the boundary condition depends on the particular application. For example, if

the calorimeter is releasing heat to an environment at a temperature Tm, a convective

boundary condition, Eq. (55), is more appropriate. When the outer surface of the

calorimeter is maintained at a constant temperature by means of a temperature control

system, a boundary condition of the first kind, Eq. (9), is a better choice. The prescribed

heat flux boundary condition, Eq. (7), is useful to estimate the time required for thermal

equilibrium when a specified amount of heat is being extracted at the surface r = b. This

boundary condition is usefil in design calculations to determine an appropriate choice for

a temperature control system. Simulations for prescribed temperature and heat flux

boundary conditions are presented in this paper. The inner cylinder in these simulations is

composed of PuOZ powder. Effective properties are used in this case (R.G. Deissler and

C. S. Eian, 1952), and they include the effects of the porosity and fill gas of the

plutonium oxide powder. The thermal equilibrium predictions are carried out assuming

that the PuOZ powder is filled with air. The thermal properties of the outer cylinti[cal



layer are taken as generic. The experimental estimation of the thermophysical properties

of the inner cylinder and the outer cylindrical layer is a subject for fhture research.

Thermal Equilibrium for a Prescribed Heat Flux at the Surface r+. It is assumed

that there is a constant volumetric heat generation, gO, due to nuclear reactions in the

inner cylinder. When thermal equilibrium is reached in the calorimeter, the temperature at

any point should not change with time. This is known as a steady-state condition. In order

to achieve a steady-state condition, the energy released by the PuOZ powder should be

equal to the energy transferred at the surface r = b. This is the case where there are no

heat losses at the surfaces z = O and z = d. When there are heat losses at the surfaces

z = O and z = d, a steady-state condition can be achieved if the energy released in the

inner cylinder, gOVO,is equal to the sum of the energy losses through the surfaces r = b,

z= O,andz=d.

An algorithm for the computation of the eigenvalues for the prescribed heat flux at

r = b case was developed prior to the construction of the solution given by Eqs. (14) and

(15). The computer program that constructs this solution was written in FORTIL4N. The

efficient and fast computation of the eigenvalues needs special attention. Due to the

nature of the transcendental equations (34)-(36), a large number of eigenvlaues may be

contained in a small interval and consequently, an algorithm that makes sure that all the

eigenvalues are included in the construction of the solution is essential. The algorithm for

the calculation of the eigenvalues is not discussed here because of space limitations. With

the purpose of veri&ing the implementation of the FORTRAN program and carrying out

preliminary thermal equilibrium predictions, it is assumed that the heat flux functions on

the right-sides of Eqs.(4) and (5) are constants, that is

#~_
—–qzl=constant at z= Oin O<r<a

‘ 82
(59)

(34 _
k—~z –q.z=const~t at z=d in O<r<a (60)

Furthermore, the boundary condition (7) is assumed to be constant
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~ aq

‘2 l%
—=qO=constant at r=b in Oez<d (61)

The construction of this solution is done using Eqs. (59)-(61), (14)-(33), and (46)-(51) to

obtain

~(r, z, t) =
goq,ooa2d~ qo~,wbd ~_ qz2q,@2 * q,*F&2 *

2NW - N,. 2N00 - 2NW

m ~,mo(r, Z)a Jl(qmoa)
+ god~ [l-exp(-~~ot)]

m=l %0 ZON.O

“ ~,mo(r~z)[cmoJo(ymoF)+~mo~(ymoi)I1-exp(-~io~)]
–‘odb;A:oNmo

II+4=2 COS(7VT) 1– exp(–l~~t)] for al > az2 (62)

where i = 1,2. For the case when al < aZ2 this solution has the form

~(r, z,t) =
goF&a2d t qo~,mbd t qzzfl,ma2 t _ qz1~,wa2 t

2N00 - Noo - 2N00 2N00

“ ~,mo(r~z)[~moJo(ymoF)+~mo~(ymoF)I1-exp(-~iot)–‘odb~A:oNmo

+ qZ2cos(rzn)~l - exp(-a~nt)]

for i =1,2 and al < aZ2 (63)
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Notice that Eqs. (62) and (63) differ on the last summation term. Thermal equilibrium

with the environment is attained when the accumulation of energy in the two-domain

cylinder is equal to zero. This condition is satisfied if

govo –90/40 –~zlfifd –~z2Ad = o (64)

where V. is the volume of the inner cylinder, ~ = 2mbd is the lateral area of the outer

cylinder, and Ad= za2 is the area of the top or bottom surface of the inner cylinder. It is

assumed that there are no heat losses through the top and bottom surfaces of the outer

cylindrical layer. This assumption is made to make the presentation of the procedure

more compact. Furthermore, in practice the top and bottom surfaces of a calorimeter are

well insulated and heat losses through these surfaces are neglected.

A solution that reaches steady-state conditions as t + m can be obtained from Eqs.

(62) and (63) by requiring that each one of the energies transferred through the surfaces

r = b, z = O, and z = d is equal to a fraction of the energy released in the inner cylinder.

This leads to the following definitions

!loAo = Xol?ofi , !/Al (65)= xzlgo~ , and 9zA = xz2goy

with the requirement that

Note that Eq.

accumulation

X. + Xzl + XZ2=1 (66)

(66) ensures the satisfaction of Eq. (64) which requires that there is no

of energy in the calorimeter. If x=,= XZ2, the resultant temperature

distribution given by Eqs. (62) and (63) is symmetric with respect to the plane z = d/ 2.

This symmetry condition is convenient to verify the numerical output of the FORTRAN

program used to implement Eqs. (62) and (63). This verification was done checking the

symmetry and comparing the numerical output of Eqs. (62) and (63) with a finite

elements implementation of the solution. The thermal equilibrium prediction can be

implemented using Eqs. (65) and (66). The assumption, X,l=x22, and Eqs. (65) lead to

xogOa2–—$ qz* =qzz =
‘0 - 2b

xzlgod (67)



Furthermore, substituting the

terms that multiply time, t, in

definitions of the heat fluxes given byEq. (67) into the

Eqs. (62) and (63) yields

[ 1

g,q@#72d (~o+~zl+~z2)goE,ooa2~ ~=*

2N00 – 2N00
(68)

Equations (65) and (68) show that all the terms that multiply the time, t,on the right-side

of Eqs. (62) and (63) cancel out when the definitions of the heat fluxes given by Eqs. (67)

are used. This is to be expected because Eq. (67) satisfies the energy balance (64).

Equations (62), (63), (67), and (68) yield

xogoa2d—
2

~1 ~O~’z)[c.oJo(y.o~) +~.iA(y.o~)][l-eM-aioO]z
mO mO

mm

m ~,mn(r, Z)J1(qmna)
– xzlgoad ~, N ~ [1+cos(nn)ll’-exp(-&)]

m=]n=O mn mnmn

w m ~’mn (~, z)J,(q* a)
– xz,goad xx ‘ ~.2 N. ~. ‘n [l+cos(nz)~l-exp(-2#nt)]

m=]j9sl rnn mnmn

for i = 1,2 and al < a,z

m~,mo(r,z)aJl(vmoa)
Ti(~>z>~) = g“d~ [1-exp(-2~ot)]

m=l 7.0 ‘;ONmO

mm

m q,~.(~, z)Jl(qmna)
– x,lgoad

ZmNmnVmn

[l+cos(nz)~l-exp(-&t)]
In=ln=o

(69)



.
!.

,

for i =1,2 and al > CZZZ (70)

An estimation of the time required to reach thermal equilibrium can be obtained using

Eqs. (69) or (70). Note that as t + m, the exponential terms in Eqs. (69) and (70) tend to

zero and limiting solutions independent of time are obtained, Preliminary calculations are

carried out using Eq. (69) assuming that the inner cylindrical region is filled with PuOZ

powder with the following thermophysical properties: ~ = 0.00243 W/(cnz “C) and

plcPl = 1.28 J /(cnz3 “C). These properties correspond to a porosity of 0.415. The porosity

is defined as the volume occupied by the fill gas over the total volume. The fill gas is

assumed to be air. The dimensions of the inner and outer cylinders are taken as:

a = 5.65 cm, b =9.74 cm, and d = 11.0 cm. The dimensions of the inner cylinder

correspond to a mass of 5 kg of plutonium oxide powder. A power density of

3.00601202 W/kg (T.D. Knight and R.G. Steinke, 1997) is assumed to calculate the

volumetric heat generation, gO. The thermal properties of the outer cylinder are taken as:

k =3.7 W /(cm “C), kzz =0.8 W /(cm ‘C), and P2CPZ=3.037 J /(cm3 “C). Constantr2

initialconditions equal to 25 ‘C are used to carry out these simulations. The variation of

temperature with respect to the radius at z = d/ 2 k shown in Fig. 2. Figure 2 also shows

the temperature curves for different values of time up to the time when thermal

equilibrium is reached. It is seen from Fig. 2 that thermal equilibrium is reached when

time is equal to 28360 seconds. This time corresponds to 7.88 hours. It is assumed that

thermal equilibrium is reached when there is no significant change in temperature with

time at any location of the two-domain cylinder. For this case the temperature at the

center of the cylinder is used as: 1~(0, d/2,28360) -~(O,d/2,27360)1 =3.15x 10A “C.

For the set of thermophysical properties mentioned earlier, the smallest eigenvalue in Eq.

(69) is & =3.25376 x10-3 s-’”. Notice that exp[-(3.25376x 10-3)2s-’ 28360 s] -1

which indicates that all the exponential terms in Eq. (69) are close to zero when

t= 28360s. Furthermore, when ihe exponential terms are zero, Eq. (69) becomes



,

independent of time. The values of XO, x,. , and X,z used in these simulations me:

X.= 0.93, X=l= X,2= 0.035.

It has been verified from calorimetric measurements that the variation of the heat flux

at the surface r = b can be expressed in terms of exponential (C. L. Fellers and P.W.

Seabaugh, 1979; M. K. Smith and D. S. Bracken, 2000)

q(f) = A+ jj B2V.1 exp(–q2vt) (71)
“=1

The constants in Eq. (71) are estimated using experimental power measurements and a

nonlinear least-squares procedure. Equation (71) can be used to implement an energy

balance similar to Eq. (64). However, when Eq. (71) is used, the energy balance is

satisfied in the limit as t+ CO.It is pointed out that a constant heat flux output form the

outer surface of the calorimeter since the beginning of an experiment would be difficult

to implement in the laboratory. Boundary condition (61) was selected to veri~ the

program and carry out preliminary equilibrium predictions. A more realistic boundary

condition is to maintain the outer surface of the calorimeter at a constant temperature.

This corresponds to boundary condition (9). Note from Fig. 2 that the temperature in the

outer cylindrical layer is nearly constant. The value of this temperature can be usecl to

make a more realistic thermal equilibrium prediction using boundary condition (9).

Typically, the temperature of the outer surface of a calorimeter is maintained constant

using a temperature control system.

Thermal Equilibrium for a Prescribed Temperature at the Surface r=b,, A

temperature solution is developed using the same thermophysical properties and initial

conditions used in the prescribed heat flux case. Boundary conditions (59) and (60) are

also used to construct this solution. The only difference here is the boundary condition at

r = b which is taken as

Tz(b,z,l)=~ =constant in O<z<d (72)
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Since the eigenfunctions used in the construction of the solution that should satis~

boundary condition (72) vanish at the surface r=h, thesolution converges poorly near

or at the surface r = b. In order to alleviate this difficulty, a simple temperature

transformation is defined as

@Jr,z,t) =~(r, z,t)-~ for i=l,2

Equation (73) transforms Eqs. (l)-(5), (7)-(8), and (72) into

ao
J=() at r=O
a’

~ ae, _
l~–qz,(r,t) at z= Oin O<r<a

ael _
4—8Z –q.z(r, t) at z=d in O<r<a

~ aeJ=() at z= Oandz. dina<r<b
‘2 a2

d2(b, z,t)=0 in O<z<d

61(r, z,O) = j“(r,z) and 02(r, z,O)= f~(r,Z)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(82)

The solution obtained from Eqs. (74)-(82) satisfies boundary condition (72) and has good

convergence behavior close to the surface r = b. The construction of this solution is done

using Eqs. (76)-(82), (14)-(33), and (46)-(51). Notice that when using Eqs. (14)-(33) and

(46)-(51) ~ should be replaced by 6, for i =1,2. The resultant solution has the form

~ ~,mo(r, z)aJ,(qmoa)
~(r,z,t) = c +god~ [l-exp(-l~ot)]

m=l 7.0 %ON.O



–a ~, ~, ‘7””!~’~)J~a) [CL,+qz, cos(nz)~l-exp(-A:nt)]
m=ln=o mn mn mn

for i =1,2 and al c azz (83)

where TO, and TO~ are the initial conditions in the inner and outer cylindrical layers,

respectively. These initial condhions are assumed to be constants. The solution that

applies when al > aZz is ‘givenby

m ~,mo(r, z)aJ1(qmoa)
~(r,z,t) = T + god~ [1-exp(-&J)]

m=l 7m0 %ONmO

m ~,mn(r,z)J,(q~.a)
–a ~, ~,

~:”%Jlm
[q., +qz, cos(~~)~l-exp(-~~nt)]

m=l n=O

for i = 1,2 and al > aZ2 (84)

Equations (83) and (84) become independent of time in the limit as 1+ 00. A more

realistic estimation of the time required for equilibrium can be obtained from Eqs. (83) or

(84). The surface temperature, ~, is assumed to be close to the surface temperatures

shown in Fig. 2. These surface temperatures were obtained from the Eq. (69). It is
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expected that the prescribed temperature thermal equilibrium model will predict a larger

equilibrium time because it contains the effects of the summation terms of Eq. (71). It is

assumed that the surface temperature, T,, is maintained at 21.321417 “C. The variation

of temperature with respect to the radius at z = d /2 generated by the prescribed

temperature model is shown in Fig. 3. Figure 3 also shows the temperature curves for

different values of time up to the time when thermal equilibrium is reached. It is seen

from Fig. 3 that thermal equilibrium is reached when time is equal to 32360 seconds.

This time corresponds to 8.99 hours. A criterion for thermal equilibrium that has the same

order of magnitude than the criterion used for the prescribed heat flux model

Also, the temperature at the center of the inner cylindrical region is

equilibrium criterion as: l~(O,d/2,32360) –~(O, d/2,31360)1 = 2.804x 10q

of the same thermal equilibrium criterion provides a basis for comparison

is used here.

used as an

“C. The use

between the

two models. The prescribed temperature model predicts thermal equilibrium 1.11 hours

later than the prescribed heat flux model. The prescribed temperature model prediction is

considered to be closer to experimental conditions.

temperature obtained from the prescribed heat flux

calculations with the prescribed temperature model.

However, note that a surface

model was used to start the

The fact that the prescribed

temperature model contains the effects of the summation terms on the right-hand side of

Eq. (71) can be seen by differentiating Eq. (83) with respect “to the radius to obtain the

heat flux at the surface r = b

-k,, aT
2 m a J, (qmoa) 8F2,m0

= -kr2 god~ ~mo &Nmo ~

F ~=~

[l-exp(-~~ot)]
~eb

– kr2Pl%l (To,l - I@ expy:’~) *dJ;y*) aF;’
m=1 mO r=b



+ Dmo[by(ymor)–W’.o=)jl

for al <aZ, (85)

Equation (85) is used to obtain the variation of the heat flux with time at z = d/ 2. Dlata

points are generated in the interval 3.236ss ts 32360s. The early transients are not

generated because they have litile influence on the onset of thermal equilibrium, which

occurs at larger times. Equation (71) is slightly modified to conform with the squared

eigenvalues that appear in the arguments of the exponential fimctions in Eq. (85)

q(O = A + jj ~2v-,f=p(–p~vO ([36)
“=1

The data set generated by Eq. (85), and Eq.(86) are used with a nonlinear least-squares

procedure to obtain the constants A, Bzv.l, and p2v.The Levenberg-Marquardt algorilhm

is applied to solve the nonlinear least-squares problem. The variance between the

estimated and exact heat fluxes for this nonlinear curve-fit is found to be equal. to

1.291x 10-15.The value of the upper limit of the summation in Eq. (86), P, is found tc)be

the constants in Eq. (86). The

Fig. 4. A graph of the residuals

graph of the

between Eqs.

equal to 29 in this minimization. When P = 29, a nonlinear least-squares problem that

involves 57 variables is solved to obtain

estimated and exact heat fluxes is given in

(85) and (86) is also shown in Fig. 5. The fh.ct that the residuals between Eq. (85) and

(86) have an order of magnitude of 10-9W /cm2 for times greater than 4000 seconds

suggests that the form of Eq. (86) should be used to carry out calorimetric thermal

equilibrium predictions. Figure 5 shows the residuals for times greater or equal than 1778

seconds.



The criterion used for thermal equilibrium in the prescribed temperature model is

applied to the heat flux at r = b represented by Eq. (85) to obtain

- k,, ~

[

(b,d /2,32360) - -k,, ~
1

(b,df 2,31360) =8.75 x10-8 (87)

Equation (87) shows that the order of magnitude of the variation of the heat flux between

32360 and 31360 seconds is 10-8W /cm’. Equation (86) obtained fi-om the nonlinear

least-squares procedure for P =29 can also be used to predict thermal equilibrium as:

lq(32360)–q(31360)1 = 8.74x10-8. Notice that the difference given by Eq. (87) is ve~

close to the difference given by Eq. (86).

In order to test the thermal equilibrium prediction capabilities of Eq. (86), a new data

set is generated using Eq. (85) in the interval 2.236s < t< 8067.24s. This period

represents 25°/0of the total time required to reach thermal equilibrium. Again, a nonlinear

least-squares procedure is applied to Eq. (86) and this new data set. The variance between

the estimated and exact heat fluxes for this curve-fit is found to be equal to 1.88x10-12,

Furthermore, the value of P is found to be equal to 17. Equation (86) with P=l 7 is used

to predict the onset of thermal equilibrium as: q(32360)–q(31360) = 8.78x 10“s. Notice

that this thermal equilibrium prediction compares very well with the one given by Eq.

(87). Furthermore, the percentage error between the heat flux (at thermal

predicted by this least-squares fimction and the exact value is only 0.005’Yo.

equilibrium)

Remarks and Conclusions

This study shows that it is possible to carry out thermal equilibrium predictions with

sufficient accuracy using the prescribed heat flux or temperature models. Furthermore,

the solutions developed here can be used to carry out parametric studies to investigate the

effects of the thermophysical properties of the outer cylindrical layer on the petiormance

of calorimeters.
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The data sets generated by Eq. (85) are curved fitted by Eq. (86) with excellent

accuracy. Furthermore, when Eq. (86) was applied to the data set contained in the interval

2.236s < ts 8067.24s, it predicted thermal equilibrium time and the heat flux at

equilibrium with very good accuracy. This is an encouraging result taking into

consideration that this data set represents only 25°/0of the total time required for thermal

equilibrium. However, further research is needed to test Eq. (86) with data sets Ihat

contain levels of noise that are usually encountered in calorimetric measurements.

The temperature solutions developed here can be used to solve an interesting class of

inverse heat conduction problems. Furthermore, these solutions and experimental ciata

can be used to estimate the thermophysical properties of the outer cylindrical Iayer. The

implementation of the temperature solution for a convective boundary condition at the

surface r = b is a subject for future research.
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FIGURE CAPTIONS

Figure 1. Two-domain cylindrical geometry.



Figure 2. Temperature distribution at z = d/ 2 generated by
Eq. (69). The curve for t = 28360 seconds corresponds
to the onset of thermal equilibrium for this model.

Figure 3.

Figure 4.

Temperature distribution at z = d/ 2 generated by
Eq. (83). The curve for t = 32360 seconds corresponds
to the onset of thermal equilibrium for this model.

Exact heat flux data generated by Eq. (85), and q(t)
given by the least-squares function (86).

Figure 5. Residuals calculated horn Eqs. (85) and (86) for the
data set in the interval 3.236s < ts 32360s.
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Figure 1. Two-domain cylindrical geometry.
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Figure 2. Temperature distribution at z = d/ 2 generated by
Eq. (69). The curve for t = 28360 seconds corresponds to tie
onset of thermal equilibrium for this model.
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Figure 3. Temperature distribution at z = d/ 2 generated by
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onset of thermal equilibrium for this model.
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