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ABSTRACT

The transient exact solution of heat conduction in a two-domain composite cylinder is
developed using the separation of variables technique. The inner cylinder is isotropic and
the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary
conditions of the first and second kinds at the outer surface of the orthotropic layer. These
solutions are applied to heat flow calorimeters modeling assuming that there is heat
generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter
simulations are carried out assuming that the inner cylinder is filled with plutonium oxide
powder. The first objective in these simulations is to predict the onset of thermal
equilibrium of the calorimeter with its environment. Two types of boundary conditions at
the outer surface of the orthotropic layer are used to predict thermal equilibrium. The
procedure developed to carry out these simulations can be used as a guideline for the
design of calorimeters.

Another important application of these solutions is on the estimation of
thermophysical properties of orthotropic cylinders. The thermal conductivities in the
vertical, radial and circumferential directions of the orthotropic outer layer can be
estimated using this exact solution and experimental data. Simultaneous estimation of the

volumetric heat capacity and thermal conductivities is also possible. Furthermore, this




solution has potential applications to the solution of the inverse heat conduction problem
in this cylindrical geometry.

An interesting feature of the construction of this solution is that two different sets of
eigenfunctions need to be considered in the eigenfunction expansion. These
eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner

" cylinder and the thermal diffusivity in the vertical direction of the outér cylindrical layer.
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eigenfunction, Eq. (21)
eigenfunction, Eq. (24)

eigenfunction, Eq. (25)

volumetric heat source, W/cm’

heat transfer coefficient, W /(cm* °C)

index

modified Bessel function of the first kind and order zero
Bessel function of the first kind and order zero

modified Bessel function of the second kind and order zero
thermal conduEtivity in region 2 along r-direction, W/cmK
thermal conductivity in region 2 along z-direction, W/cmK
thermal conductivity in region 1, W/emK
indices in eigenfunctions

norm, Eq. (40)

norm, Eq. (41)

norm, Eq. (42)

upper limit of summation, Eq. (86)

heat flux function, Eq. (86), W /cm*

heat flux at r =5, Eq. (7), W /cm®

heat flux at z=0, Eq. (4), W /cm*

heat flux at z=d , Eq. (5), W /cm?

time, § |
environmental temperature, “C
temperature in regions 1 or 2, °C
prescribed surface temperature, °C

volume of region 1, cn®
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I8 coordinate, cm

Y, Bessel function of the second kind and order zero

z coordinate, cm

Greek

a,, thermal diffusivity in region 2, in z-direction, cm?/s

a'l thermal diffusivity in region 1, cm’/s
o Dirac delta function

¥,  eigenvalue for the r-direction in region 2, Eq. (18), cm

. eigenvalue for the r-direction in region 2, Eq. (22), cm™
. eigenvalue for the 7-direction in region 2, Eq. (26), cm™
Nn eigenvalue for the r-direction in region 1, Eq. (19), cm™
/- eigenvalue for the r-direction in region 1, Eq. (23), cm™
o eigenvalue for the r-direction in region 1, Eq. (27), cm™
Am eigenvalue for time, 5~

Ao eigenvalue for time, s~

A eigenvalue for time, s~

A,, initial condition constant, Eq. (49)

A,  initial condition constant, Eq. (50)

L1
mn

initial condition constant, Eq. (51)
M, v indices

Py, p, density of regions 1 and 2, kg/cm’®
& integer function

Introduction
This solution was originally developed as a result of the need for a thermal model for a
calorimeter experimental set-up intended to measure the power generated by 5 gallons

drums of enriched uranium or plutonium. The research on this experimental set-up will




lead to the development of a calorimeter capable of measuring the power from 55-gallon
shipping containers. Also, this calorimeter will be capable of measuring uranium contents
of objects such as fuel plates, weapons components, and other uranium processes
materials. The geometry of the solution presented here was selected as the most
simplified form of the calorimeter thermal model. It is assumed that the inner cylinder
constitutes the nuclear material and that the outer cylinder is a power sensor that
measures a bridge potential between the inner and outer surfaces of the outer cylinder.
The outer cylinder is assumed to be orthotropic because of the geometrical distribution of
the materials that compose this power sensor.

This paper discusses the procedure of the application of the separation of variables
technique to a system of two partial differential equations which gbvern the heat
conduction in a two-domain cylindrical geometry. An important part in the construction
of this solution is the calculation of the eigenvalues. The eigenvalues are calculated
“applying the boundary conditions at the outer surface, and the continuity of the
temperature and heat flux at the interface between the two cylindrical domains. Two sets
of eigenfunctions are defined for the construction of this solution. One eigenfunction set

applies for the case where ¢, >¢«,, and another set applies when ¢, <a,, .

-Analysis
The heat conduction equation in the isotropic inner cylinder is
kl—i-g(r%?)+k, aa—zz]j—+gl(r,z,t)=,olcplg(§zti in O<r<a €]
Also, the diffusion equation in orthotropic outer layer has the form
k., _rlj—a%[r%%)-{-kﬂ %+g2(r,z,t)=p2cp2%% ina<r<b )

where g,(r,z,f) and g,(r,z,t) are volumetric heat source functions. The volumetric heat

generation function g,(r,z,t) could include the heat flux at the surface » =5 . Subscripts




1 and 2 indicate the inner and outer cylinders respectively. The solutions of Egs. (1) and

(2) are sought for the following boundary and initial conditions

gg:O at - r=0 3)
ar.
k,%7i=qzl(r,t) at z=0in0O<r<a 4)
4 :
kl-%ﬁ:qzz(r,t) at z=d nO<r<a %)
4
o7, .
kzza—=0 at z=0and z=d ina<r<b (6)
k,z%]-;l=qo(z,t) atr=bin 0<z<d @)
I(r,z,0)= f(r,z) and T,(r,z,0) = f,(r,z) 3

To make the presentation of this solution more compact, the top and bottom surfaces of
the outer cylindrical layer are assumed to be insulated. An additional solution for
prescribed temperature at the surface » =5 is also constructed by replacing Eq. (7) with
the boundary condition

T,(b,z,t)=T(z,f) in 0<z<d ®

The solution is obtained applying a standard transformation in the r direction as

kzZ
kr2

F= r (10)

Equation (10) transforms the heat conduction equation in region 2 as
2 —_
;9:(767})+57}+g2(”2”)= Lo a<r<b (11)
ror\ or 0z k,, a,, Ot
The compatibility conditions at the interface » = g are taken as

I(a,z,t)=T,(a,z,t) (12)
oT, oT, ,
klgl=k’2—a-;2_ atr=a (13)

The separation of variables technique applied to the homogeneous forms of Egs. (1) and

(11) produces two eigenfunction expansions with the form




<« ]

Tnz0)=Y Y Ay (@) Fp(rs2)expl- 2, 1)

m=0 n=0
+€i) i L) Fon(r D expl= 22, 1) for i=12 and @, <a,, (14
m=1 n=1
T2 =3 3 A Fop(r.Dexpl- 2, 1)
m=0 n=0
+3 3 Lo FLe D22 fori=12 wmd g >a, (15
m=1 n=1

the eigenfunctions £, (r,z) for i=12 are defined as
Fo(r,2)=Jy(,,,r) coslnz 2/ d) (16)
Fyn(7:2) =[Coop Jo(Vk?) + D, Yo (7 k)] cos(nrr 2/ d) 17
“where k=./k,,/k,, J, and ¥, are the zero order Bessel’s functions of the first and

second kinds respectively, 7,,, and 7, arerelated to 4, by the equations

ymn = A’fnn /azZ —(nn‘/d)z (18)
T = @, — (n7/ )’ 19)

in which «,, = p,c,,/k,, and a, = pc, /k . The upper limit, £(n), of the summations

appearing in Eqgs. (14) and (15) is an integer function that depends on the number of

eigenvalues present for each specified value of n. The eigenvalues \/ A2 la,—(nx/d)

and \ﬁfm, /e, —(nm/d)* can be real or imaginary depending on the relative values of

@, and a. When @ <a,, &,/a,-(nz/d)? can be real or complex while

\/ 2 Ja,—(nm/d)’ takes over real values only. For the case when a, >a,,,

\/ A /a, —(nz/d) can be real or imaginary while \/;Ifm, /e, ~(nr/d)* assumes real
values only. This results in two different sets of eigenfunctions to be used in the
construction of the solution. The eigenfunctions appearing in the second terms of Eqgs.

(14) and (15) make these eigenfunctions sets different. For the case where ¢, <a,, the

%

eigenfunctions, F,

i,mn

(r,z) for i=1,2; have the form
F},,(r,2) = Jo (), ) cos(nz z/ d) (20
F'Ztmn (7‘, Z) = [C*

mn

L (k) + DLy Ko (k)| cos(nr 2/ d) @1)




in which [, and K, are zero order modified Bessel’s functions of the first and second

kind respectively. The eigenvlaues 7,, and y,, are related to /1, through the equations

Vo =A(nz/dY = 73 2, 22)
Ton =Nl —(nz/dY (23)
The eigenfunctions appearing in the second term of Eq. (15) apply when ¢, >a,, and are
given by
Eo (. 2)=1y(mr) cos(nr z/ d) (24)
Fyrn(r,2) =[Co0 Ty (rinr) + Do Yoy Jeos(n 2/ d) (25)
where 7, and y,, arerelated to A, by the equations
Von=AEtla,~(nx/ d) (26)
mo =z /dyY - A2 g 27)

The contact conditions at the interface » =a, Egs. (12) and (13), yield the constants C,,,,
C..D,.,C,, and D, appearing in Egs. (17), (21) and (25) as

Con =7 Voug Ao @l (V@) | 2+ 7 11 k0 I, (1@ (V@ (2K)  (28)
Do = 7 Y yn @ Jo D\ (V@) | 2 = 7 1, b0 (1,0, o (7 1s@) /(2K ) (29)

Con =Y mn & o (y@ K (7,1, @) + 17, K@y (10, D)Ko (73, @) ] KK (30)

D =¥ un @ S @ L, (¥ 31n@) = T 68 Ty (130 o (¥ @) [ K 5K (31

Con =7 Y n @ Ly (XY @)1 2 = 7 17, @ 1 (17, @) 1 (¥, @) (2K, ) (32)
Dy =7 ¥ o 8 11,0\ (Y @) 1 2+ 72 1, Ko 1 (17,0 @) o (7 @) /(2K,5) (33)

The homogeneous form of boundary condition (7) yields the transcendental equations

D

mn?°®

for the estimation of the eigenvalues 4,,, 4., , and A . The transcendental equation that
produces the eigenvalues 4, applies for ¢, <a,, or @, >¢«,, and has the form

Con ! Dy = =F,(¥ ) J,(¥ b)) (34)
The case o, <a,, produces the transcendental equation

Cl:m /D;m = —Kl (}’;1"5)/11(]/;"5) (35)




which is used to calculate the eigenvalues 4. When a, >¢,, the transcendental
equation

Con/ D ==Y (7nb) 1 (7o) (36)
produces the eigenvalues A, . The eigenvalues obtained from Egs. (34) and (35) are used
to construct the solution given By Eq. (14) while the eigenvalues obtained from Egs. (34)
and (36) are used to generate the eigenfunction expansion (15).

Orthogonality. An orthogonality study showed that
[ 1

a d b d
(liv —ﬂfnn) I J plcplFl',,uvI:l',mnrdrdz + J- _[ch F'Z va12 mnrdrdz = 0 (37)

_r=0 z=0 r=a z=0 B
a d b d i
(/1‘2 - ‘2) _"plc F;/lvFi mnrdrd2+ ,‘. Ipchzﬁ} /'JVF’2 ’"”rdrdz =0 (38)
Lr=0 z=0 r=a z=0 E
a d b d
2] 1 T st e | Josbs Fera] 0 G
r=0 z=f r=a z=0

The term between square brackets in Egs. (37), (38), and (39) is equal to zero except

when x4 =m and v =n. Therefore the norms are

N,, = j‘ djp,cp, (B, ) rdrdz+ bj ‘]‘pchz(F;’mn ) rdrdz (40)
r=0 z=0 r=a z=0
a d
I Iplcpl( Lmn rdrdz+ ‘[ jp2 p2( 2mn) rdrdz (41)
r=0 z=0 r=aq z=0
a d
j Ip]cp,( lmn) rdrdz + _" jpz pz( 2,,,,,) rdrdz (42)
r=0 z=0 r=a z=0

Temperature Solutions. The temperature solutions are obtained substituting Egs.
(14) and (15) into Egs. (1) and (2), and making use of the two-dimensional eigenvalue
problem and the orthogonality conditions (37), (38), and (39) to obtain

dA 1
mn { I Ipl cag(r, 2,0k, (r,2)rdrdz

dt Nmn r=0 z=0
o | TreneatrznB z)rdrdz}exp(z;., 1) “3)
r=a z=0

@ N

mn

r=0 z=0

dA: a d
mn { ." J' cn&(r. 2,0, (r,z)rdrdz




b d ‘
+ I jp2cp2g2(r,z,t)Fz",mn(r,z)rdrdz}exp(l:fn t) (44)

r=aq z=0

dAu 1 a d

_d;n_n_ = N;;, |:r=£ Z;‘;plcplgl(rs z, t)F;,mn(r,z)rdrdz
b d '

+ | Ipchzgz(r,z,t)F;,;n(r,Z)rdrdZ]CXP(l;‘f t) (45)
a o ’

The differential equations (43), (44), and (45) are integrated and substituted into Egs.
(14) and (15). The resultant integration constants are calculated applying the initial
conditions (8). The final forms of the functions 4,,(t), 4, (¢), and 4, (¢) are

1 ¢ a d
Ay =Dy +—— | [ [ [pen8ir2.0)F, (. 2)rdrdz
mn =0 r=0 z=0
b d
+ I j PrC2 8 (7,2, r)ﬂ’mn(r,z)rdrdz}exp(lfm r)dr (46)

r=a z=0

* * | 1 ‘ ¥ d *
4,0=A + v I[ j jp,cplgl (r.z,7)F,,(r,2)rdrdz

mn =0 r=0 z=0
b d

+ I _fpchzgz(r,z,r)]’ztmn(r,z)rdrdz}exp(i;i r)dr (47

r=a z=0

.Ntt
mn =0 r=0 z=0

t a d '
AZL(t):A‘;n + 1 ![ j Iplcp!gl(razaT)Fl,;m(rsZ)rdrdz

b d

+ J. Ipch2g2(r, z,7)F;,,(r, z)rdrdz] exp(/l;,',f r)dr (48)

r=a z=0

where the integration constants A, A, ,and A’ are given by

mn

1% “
A, = N I: ,‘- jplcﬂ‘ﬁ(r’Z)F;,mn(r,Z)rdrdz
r=0 z=0

+

r

. 1 a d .
Ko =— [j [PCn i, D) Fy (7, 2)rdrdz

mn

gg_ o
e R

chpzfz(r,Z)Fz,mn(r,Z)rdrdZ] (49)

[}
(=3

k4

>

r=0 z=0
b

d
+ | [penfir DF G, z)rdrdz] (50)

r=a z=0



1
N‘*

mn

a d
AT = [ [pepdir, D), (r,2)rdrdz
r=0 z=0

+ ]‘ ‘]‘pchz f(r. D), (r, z)rdrdz} (63))
rea 220

Equations (46) through (51) provide explicit expressions for the functions 4,,(¢),
A4,.(1), and 4, () that should be used in the construction of the temperature solutions
given by Eqgs. (14) and (15). The eigenvalues calculated using Egs. (34) and (35) or Egs.
(34) and (36) apply for a solution with a prescribed heat flux at the surface » =54 . This is
the case of Eq. (7). If a solution with a different boundary condition at the surface r =4
is needed, the transcendental equations (34), (35), and (36) need to be modified. For

example, for a prescribed temperature at the surface r =5, Eq.(9) yields the following

transcendental equations

Con! Dy ==Yy (# D)/ Iy (V) for & <, or & >0, (52)
C;! Dy ==Ky (7o0) L) for @, <a,, (53)
Com ! Dy =~Yo(ynb) 1 Jo(ymmb) fore, >a,, (54)

It is pointed out that Eqs. (14) through (33) and Egs. (46) through (51) can still be used to
construct the solution for a prescribed temperature at the surface »=5. The only
difference arises in the calculation of the eigenvalues which is carried out using Egs. (52)
and (53) or Egs. (52) and (54). A convective boundary condition at the surface »=5
requires that

—k,z%Tl+hT2=hTw at r=bin 0<z<d (55)
/s

where % is the heat transfer coefficient and 7, is the temperature of the environment.

Equation (55) produces the following transcendental equations

_k"z k}/ﬂm [ mn Jl(}’mng)"- Dmn K(ymni;)]=
_h[Cmn JO(}’mnb)+Dmn Y;)(ymnb)] for (24 <a22 or ; >az2 (56)

—kr2 k}/;m [C;mIl (}/;mg) - D;m KI (}/;mg)]z




—h C;mIO(},;mg) +D], Ko(}';nl;)] for @, <a, &7

mn *1

—kkyo e nonE)+ Do Y rnh)]=

~hlCo )+ DL Kb for g >a, (58)
Once the eigenvalues from Egs. (56) and (57) or Eqgs. (56) and (58) are calculated, the
solution for this convective boundary condition can be constructed using Egs. (14)-(33)
and Egs. (46)-(51). It can be seen from the transcendental equations (56)-(58) that the

computation of the eigenvalues for the convective case becomes more demanding.

Thermal Equilibrium Prediction

Parametric studies for the prediction of thermal equilibrium can be carried out using
the temperature solutions, Eqs. (14) and (15), and an appropriate boundary condition. The
selection of the boundary condition depends on the particular application. For example, if
the calorimeter is releasing heat to an environment at a temperature 7., a convective
boundary condition, Eq. (55), is more appropriate. When the outer surface of the
calorimeter is maintained at a constant temperature by meané of a temperature control
system, a boundary condition of the first kind, Eq. (9), is a better choice. The prescribed
heat flux boundary condition, Eq. (7), is useful to estimate the time required for thermal
equilibrium when a specified amount of heat is being extracted at the surface r =5 . This
boundary condition is useful in design calculations to determine an appropriate choice for
a temperature control system. Simulations for prescribed temperature and heat flux
boundary conditions are presented in this paper. The inner cylinder in these simulations is
composed of PuO, powder. Effective properties are used in this case (R.G. Deissler and
C. S. Eian, 1952), and they include the effects of the porosity and fill gas of the
plutonium oxide powder. The thermal equilibrium predictions are carried out assuming

that the PuO, powder is filled with air. The thermal properties of the outer cylindrical




layer are takén as generic. The experimental estimation of the thermophysical properties
of the inner cylinder and the outer cylindrical layer is a subject for future research.

Thermal Equilibrium for a Prescribed Heat Flux at the Surface r=b. It is assumed
that there is a constant volumetric heat generation, g,, due to nuclear reactions in the
inner cylinder. When thermal equilibrium is reached in the calorimeter, the temperature at
any point should not change with time. This is known as a steady-state condition. In order
to achieve a steady-state condition, the energy released by the PuO, powder should be
equal to the energy transferred at the surface r=»5. This is the case where there are no
heat losses at the surfaces z=0 and z=d . When there are heat losses at the surfaces
z=0 and z=4d, a steady-state condition can be achieved if the energy released in the
inner cylinder, g,V,, is equal to the sum of the energy losses through the surfaces » =5,
z=0,and z=d.

An algorithm for the computation of the eigenvalues for the prescribed heat flux at
r =b case was developed prior to the construction of the solution given by Egs. (14) and
(15). The computer program that constructs this solution was written in FORTRAN. The
efficient and fast computation of the eigenvalues needs special attention. Due to the
nature of the transcendental equations (34)-(36), a large number of eigenvlaues may be
contained in a small interval and consequently, an algorithm that makes sure that all the
eigenvalues are included in the construction of the soiution is essential. The algorithm for
the calculation of the eigenvalues is not discussed here because of space limitations. With
the purpose of verifying the implenientation of the FORTRAN program and carrying out
preliminary thermal equilibrium predictions, it is assumed that the heat flux functions on

the right-sides of Eqs.(4) and (5) are constants, that is

k,%£=qzl=constant at z=0in O<r<a (59
z

o, .
k,—a—z—=q22=constant at z=d in0<r<a (60)

Furthermore, the boundary condition (7) is assumed to be constant




k,z%zq():constant at r=bin O0<z<d (61)

The construction of this solution is done using Eqgs. (59)-(61), (14)-(33), and (46)-(51) to

obtain
goF na’d o 4o F; wobd ;o quE,OOaz - 4. F wd’ /

I(r,z,t)=
2N, Ny 2Ny, 2Ny,

F, o(r.2)aJ (1, a)

E .z — -
- qodbz #) [CmoJ 00 ) + D, Xy (7,00 )Il —exp(— irOt )]
m=1 'm0+ ¥ m)

© , mn (7‘ Z)J (T]mna)
m=l n=0 77

mn mn-imn

£ L
—ay - f ]f,) U@, 1 g costna)f—expi20)] for @, >, (62)
m=1l n=1 77

mn-Imn

where i=1,2. For the case when ¢, <«,, this solution has the form

goE,ooazd fe %E,oobd fo qzzF;,ooa2 f— quF;',OOaz /

I(r.z,t)=
2Ny No, 2Ny 2Ny

+godz tmO(r’z)aJ(UmO )[l—eXp(—/fnot)]

2
m=1 nm() /q’m() k m0

- qodbz - mojv’ {CmoJ o7 mOb_ )+ D, Iy (7 mOb_ )Il —exp(—At )]

'S E'"” (l' Z)J (”mna)
B az—; Zo AN n {q P ) COS(n;:-)I] —exp(— ’13,. ) t)]

mn mn-imn

W& FL(r2) (e .
—a3'3 L DN, L costumy - exp(-220)]
m=1 n=1 ﬂ' N 77

mn= " mn"fmn

fori=12 and o, <@, (63)




Notice that Egs. (62) and (63) differ on the last summation term. Thermal equilibrium
with the environment is attained when the accumulation of energy in the two-domain
cylinder is equal to zero. This condition is satisfied if

EoVo —oAo ~9da 92242 =0 (64
where ¥, is the volume of the inner cylinder, 4, =2zbd is the lateral area of the outer
cylinder, and 4, = za’ is the area of the top‘or bottom surface of the inner cylinder. It is
assumed that there are no heat losses through the top and bottom surfaces of the outer
cylindrical layer. This assumption is made to make the presentation of the procedure
more compact. Furthermore, in practice the top and bottom sﬁrfaces of a calorimeter are
well insulated and heat losses through these surfaces are neglected.

A solution that reéches steady-state conditions as ¢ — o can be obtained from Egs.
(62) and (63) by requiring that each one of the energies transferred through the surfaces
r=b, z=0,and z=d is equal to a fraction of the energy released in the inner cylinder.
This leads to the following definitions |

- Godo = %80V , 94 = *.80K; ,and 9z24s = X280F; ‘ (65)

with the requirement that
Xo+X,+%x,=1 (66)
Note that Eq. (66) ensures the satisfaction of Eq. (64) which requires that there is no
accumulation of energy in the calorimeter. If x,=1x,,, the resultant temperature
distribution given by Eqgs. (62) and (63) is symmetric with respect to the plane z=d/2.
This symmetry condition is convenient to verify the numerical output of the FORTRAN
program used to implement Egs. (62) and (63). This verification was done checking the
symmetry and comparing the numerical output of Egs. (62) and (63) with a finite
elements implementation of the solution. The thermal equilibrium prediction can be

implemented using Egs. (65) and (66). The assumption, x,, =x,,, and Egs. (65) lead to

X, a
Qo=—""T>q,=9q,, =X,8,d (67)




Furthermore, substituting the definitions of the heat fluxes given by Eq. (67) into the

terms that multiply time, 7, in Egs. (62) and (63) yields

(68)

goF;,ooazd (% +x, + xzz)goF;,ooazd =0
2N,, 2N,, -

Equations (65) and (68) show that all the terms that multiply the time, ¢, on the right-side
of Egs. (62) and (63) cancel out when the definitions of the heat fluxes given by Egs. (67)
are used. This is to be expected because Eq. (67) satisfies the energy balance (64).
Equations (62), (63), (67), and (68) yield
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fori=12 and ¢, >2,, 70)

An estimation of the time required to reach thermal equilibrium can be obtained using
Egs. (69) or (70). Note that as t — «, the exponential terms in Eqgs. (69) and (70) tend to
zero and limiting solutions independent of time are obtained. Preliminary calculations are
carried out using Eq. (69) assuming that the inner cylindrical region is filled with PuO,
powder with the following thermophysical properties: & =0.00243 W /(cm °C) and
pc, =1.28J /(cm® °C) . These properties correspond to a porosity of 0.415. The porosity
is defined as the volume occupied by the fill gas over the tdtal volume. The fill gas is
assumed to be air. The dimensions of the inner and outer cylinders are taken as:
a=565cm, b=974cm, and d=11.0cm. The dimensions of the inner cylinder
correspond to a mass of 5kg of plutonium oxide powder. A power density of
3.00601202 % /kg (T.D. Knight and R.G. Steinke, 1997) is assumed to calculate the
volumetric heat generation, g,. The thermal properties of the outer cylinder are taken as:
k,=3TW/(cm°C), k,=08W/(cm*C), and p,c,,=3.037J /(em® °C). Constant
initial conditions equal to 25 °C are used to carry out these simulations. The variation of
temperature with respect to the radius at z=d /2 is shown in Fig. 2. Figure 2 also shows
the temperature curves for different values of time up to the time when thermal
equilibrium is reached. It is seen from Fig. 2 that thermal equilibrium is reached when
time is equal to 28360 seconds. This time corresponds to 7.88 houré. It is assumed that
thermal equilibrium is reached when there is no significant change in temperature with
time at any location of the two-domain cylinder. For this case the temperature at the
center of the cylinder is used as: lT{(O,d/ 2,28360)—7](0,(1/2,27360)] =3.15x107* °C.
For the set of thermophysical properties mentioned earlier, the smallest eigenvalue in Eq.
(69) is 4,,=3.25376x10" 572, Notice that exp[—(3.25376x107)" s™' 28360 5] ~1
which indicates that all the exponential terms in Eq. (69) are close to zero when

t =28360s. Furthermore, when the exponential terms are zero, Eq. (69) becomes




independent of time. The values of x,, x,, and x,, used in these simulations are:
x, =093, x,, =x,, =0.035.

It has been verified from calorimetric measurements that thé variation of the heat flux
at the surface » =4 can be expressed in terms of exponentials (C. L. Fellers and P.W.

Seabaugh, 1979; M. K. Smith and D. S. Bracken, 2000)
P i
q(t)=A+) B, exp(-p,, 1) (71)
v=1

The constants in Eq. (71) are estimated using experimental power measurements and a
nonlinear least-squares procedure. Equation (71) can be used to implement an energy
balance similar to Eq. (64). However, when Eq. (71) is used, the energy balance is
satisfied in the limit as # — . It is pointed out that a constant heat flux output form the
outer surface of the calorimeter since the beginning of an experiment would be difficult
to implement in the laboratory. Boundary condition (61) was selected to verify the
program and carry out preliminary equilibrium predictions. A more realistic boundary
condition is to maintain the outer surface of the calorimeter at a constant temperature.
This corresponds to boundary condition (9). Note from Fig. 2 that the temperature in the
outer cylindrical layer is nearly constant. The value of this temperature can be used to
make a more realistic thermal equilibrium prediction using boundary condition (9).
Typically, the temperature of the outer surface of a calorimeter is maintained constant
using a temperature control system.

Thermal Equilibrium for a Prescribed Temberature at the Surface r=b. A
temperature solution is developed using the same thermophysical properties and initial
conditions used in the prescribed heat flux case. Boundary conditions (59) and (60) are

also used to construct this solution. The only difference here is the boundary condition at

r =b which is taken as

T,(b,z,t)=T, =constant in 0<z<d

(72)




Since the eigenfunctions used in the construction of the solution that should satisfy
boundary condition (72) vanish at the surface r =5, the solution converges poorly near
or at the surface r=». In order to alleviate this difficulty, a simple temperature

transformation is defined as

0(r,z,t)=T(r,z,t)-T, fori=12 (73)
Equation (73) transforms Egs. (1)-(5), (7)-(8), and (72) into
1o( 06 %6, 06, .
kl;gr—(r—a—rl—]+k1 —Z-zl+gl(r,z,t)=plcpla—t‘ in O<r<a (74)
10( 06 50 28,
k,, ;g(r 6r2)+k22 6z22 +8,(752,0) = pyc, —5:‘—2 ina<r<b (75)
2 =0 at r=0 (76)
or
06, .
k,—6—=qzl(r,t) at z=0in0<r<a an
z
06, .
kl?j—:qﬂ(r,t) at z=d n0<r<a (78)
z
00, .
k22—5—=0 at z=0and z=d ina<r<b 79
z
6,(b,z,t)=0in 0<z<d (80)
6,(r,z,0)= f'(r,z) and 6,(r,z,0)= £, (r,2) (82)

The solution obtained from Egs. (74)-(82) satisfies boundary condition (72) and has good
convergence behavior close to the surface » =5 . The construction of this solution is done
using Egs. (76)-(82), (14)-(33), and (46)-(51). Notice that whén using Egs. (14)-(33) and
(46)-(51) T, should be replaced by 6, for i =1,2. The resultant solution has the form
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where T,, and T, are the initial conditions in the inner and outer cylindrical layers

respectively. These initial conditions are assumed to be constants. The solution that

applies when ¢, >a,, is given by
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Equations (83) and (84) become independent of time in the limit as  —> . A more

realistic estimation of the time required for equilibrium can be.obtained from Egs. (83) or

(84). The surface temperature, 7,, is assumed to be close to the surface temperatures

shown in Fig. 2. These surface temperatures were obtained from the Eq. (69). It is

”»



expected that the prescribed temperature thermal equilibrium model will predict a larger
equilibrium time because it contains the effects of the summation terms of Eq. (71). It is

assumed that the surface temperature, 7., is maintained at 21.321417 °C. The variation

of temperature with respect to the radius at z=d/2 generated by the prescribed
temperature model is shown in Fig. 3. Figure 3 also shows the temperature curves for
different values of time up to the time when thermal equilibrium is reached. It is seen
from Fig. 3 that thermal equilibrium is reached when time is equal to 32360 seconds.
This time corresponds to 8.99 hours. A criterion for thermal eqililibrium that has the same
order of magnitude than the criterion used for the prescribed heat flux model is used here.
Also, the temperature at the center of the inner cylindrical region is used as an
equilibrium criterion as: ]T, ©,d/ 2,32360)-7}(O,d/2,31360)] =2.804x10™ °C. The use
of the same thermal equilibrium criterion provides a basis for comparison between the
two models. The prescribed temperature model predicts thermal equilibrium 1.11 hours
later than the prescribed heat flux model. The prescribed temperature model prediction is
considered to be closer to experimental conditions. However, note that a surface
temperature obtained from the prescribed heat flux model was used to start the
calculaﬁons with the prescribed temperature model. The fact that the prescribed
temperature model contains the effects of the summation terms on the right-hand side of
Eq. (71) can be seen by differentiating Eq. (83) with respect to the radius to obtain the

heat flux at the surface r=5
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for ¢, <x,, (85)
Equation (85) is used to obtain the variation of the heat flux with time at z=d/2. Data
points are generated in the interval 3.236s5<7<32360s. The early transients are not
generated because they have little influence on the onset of thermal equﬂibrium, which
occurs at larger times. Equation (71) is slightly modified to conform with the squared

eigenvalues that appear in the arguments of the exponential functions in Eq. (85)

q()=A+Y B, exp(-g;, 1) (86)

val
The data set generated by Eq. (85), and Eq.(86) are used with a nonlinear least-squares
procedure to obtain the constants 4, B,, ;,and ¢,,.The Levenberg-Marquardt algorithm
is applied to solve the nonlinear least-squares problem. The variance between the
estimated and exact heat fluxes for this nonlinear curve-fit is found to be equal to
1.291x107" . The value of the upper limit of the summation in Eq. (86), P, is found to be
equal to 29 in this minimization. When P =29, a nonlinear least-squares problem that
involves 57 variables is solved to obtain the constants in Eq. (86). The graph of the
estimated and exact heat fluxes is given in Fig. 4. A graph of the residuals between Egs.
(85) and (86) is also shown in Fig. 5. The fact that the residuals between Eq. (85) and
(86) have an order of magnitude of 10~ W /cm® for times greater than 4000 seconds
suggests that the form of Eq. (86) should be used to carry out calorimetric thermal
equilibrium predictions.r Figure 5 shows the residuals for times greater or equal than 1778

seconds.

-




The criterion used for thermal equilibrium in the prescribed temperature model is

applied to the heat flux at » =5 represented by Eq. (85) to obtain
-k, %?—(b,d 12,32360) —-[— k., —(?a%(b, d/ 2,31360):' I =8.75x107 87

Equation (87) shows that the order of magnitude of the variation of the heat flux between
32360 and 31360 seconds is 107 W /cm®. Equation (86) obtained from the nonlinear
least-squares procedure for P =29 can also be used to predict thermal equilibrium as:
|9(32360) - (31360)| =8.74x10™® . Notice that the difference given by Eq. (87) is very
close to the difference given by Eq. (86).

In order to test the thermal equilibrium prediction capabilities of Eq. (86), a new data
set is generated using Eq. (85) in the interval 2.236s5<7<8067.24s. This period
represents 25% of the total time required to reach thermal equilibrium. Again, a nonlinear
least-squares procedure is applied to Eq. (86) and this new data set. The variance between
the estimated and exact heat fluxes for this curve-fit is found to be equal to 1.88x107,
Furthermore, the value of P is found to be equal to 17. Equation (86) with P=17 is used
to predict the onset of thermal equilibrium as: |¢(32360) - g(31360)| =8.78x10°*. Notice
that this thermal equilibrium prediction compares very well with the one given by Eq.
(87). Furthermore, the percentage error between the heat flux (at thermal equilibrium)

predicted by this least-squares function and the exact value is only 0.005%.

Remarks and Conclusions

This study shows that it is possible to carry out thermal equilibrium predictions with
sufficient accuracy using the prescribed heat flux or temperature models. Furthermore,
the solutions developed here can be used to carry out parametric studies to investigate the
effects of the thermophysical properties of the outer cylindrical layer on the performance

of calorimeters.




The data sets generated by Eq. (85) are curved fitted by Eq. (86) with excellent
accuracy. Furthermore, when Eq. (86) was applied to the data set contained in the interval
22365 <t<8067.24s, it predicted thermal equilibrium time and the heat flux at
equilibrium with very good accuracy. This is an encouraging result taking into
consideration that this data set represents only 25% of the total time required for thermal
equilibrium. However, further research is needed to test Eq. (86) with data sets that
contain levels of noise that are usually encountered in calorimetric measurements.

The temperature solutions developed here can be used to solve an interesting class of
inverse heat conduction problems. Furthermore, these solutions and experimental cata
can be used to estimate the thermophysical properties of the outer cylindrical layer. The
implementation of the temperature solution for a convective boundary condition at the

surface r =5 is a subject for future research.
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FIGURE CAPTIONS
Figure 1. Two-domain cylindrical geometry.




Figure 2. Temperature distribution at z=d /2 generated by
Eq. (69). The curve for r = 28360 seconds corresponds
to the onset of thermal equilibrium for this model.

Figure 3. Temperature distribution at z=d/2 generated by
Eq. (83). The curve for #=32360 seconds corresponds
~ to the onset of thermal equilibrium for this model.

Figure 4. Exact heat flux data generated by Eq. (85), and ¢(¢)
given by the least-squares function (86).

Figure 5. Residuals calculated from Eqs. (85) and (86) for the
data set in the interval 3.2365 <7 <32360s.




Figure 1. Two-domain cylindrical geometry.
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Figure 2. Temperature distribution at z=d /2 generated by
Eq. (69). The curve for ¢ = 28360 seconds corresponds to the
onset of thermal equilibrium for this model.
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Figure 3. Temperature distribution at z=d/2 generated by
Eq. (83). The curve for 7=32360 seconds corresponds to the
onset of thermal equilibrium for this model.
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Figure 4. Exact heat flux data generated by Eq. (85), and ¢(z)
given by the least-squares function (86).
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Figure 5. Residuals calculated from Egs. (85) and (86) for the

data set in the interval 3.236 s <1 <32360 5.




