

DE-FG02-93ER61707

Boothman, David, A.

DOE Report No.: DOE/ER/61707-6

Title: **ROLE OF CELL CYCLE REGULATION AND MLH1, A KEY
DNA MISMATCH REPAIR PROTEIN, IN ADAPTIVE
SURVIVAL RESPONSES**

Report Period: Final Report

RECEIVED
JUL 06 2000
OSTI

Principal Investigator **David A. Boothman, Ph.D.**

Contractor's Name
and Address **University of Wisconsin-Madison
Madison, Wisconsin 53792**

Present Address: **Department of Radiation Oncology
10900 Euclid Avenue (BRB-326 East)
Case Western Reserve University
Cleveland, Ohio 44106-4942
Tel.: (216) 368-0840
Fax: (216) 368-1142
e-mail: *dab30@po.cwru.edu***

Report Date: **August 11, 1999**

Prepared For: **THE U.S. DEPARTMENT OF ENERGY
AGREEMENT NO.: DE-FG02-93ER61707**

DOE Contract Manager: **Dr. Arthur Katz/Dr. Marvin E. Frazier**

PROCESSED FROM BEST AVAILABLE COPY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Role Of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses

I. INTRODUCTION: Due to several interesting findings in our laboratory on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), we separated this grant into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed. In the first set of Specific Aims, we examined the role of PCNA, cyclins A and D1, cdk2, and xips5 & 13 (once cloned) in the G₁/G₂ cell cycle regulation checkpoint, which occurs in certain human cancer cells during ASRs caused by low dose ionizing radiation (IR) exposures. These experiments entailed cloning xips5 & 13, and then examining the role of these x-ray-inducible proteins (xips), along with specific cell cycle regulatory proteins (i.e., PCNA, cyclins A and D1, and cdk2), in ASRs. These experiments were performed as a direct continuation of our recent past work on this DOE grant.

In the second set of Specific Aims, we examined the role of the human DNA mismatch repair protein hMLH1, in G₂/M cell cycle checkpoint arrest, which occurs following IR, 5-fluoro-2'-deoxyuridine (FdUrd), or 6-thioguanine (6-TG) exposures; FdUrd and 6-TG were used as positive controls for MMR detection and subsequent responses. Our goals in these experiments were to further explore the apparent dual role of the hMLH1 protein in both MMR and G₂/M cell cycle checkpoint regulation. We also examined the potential interactions of hMLH1 in ASRs, thus unifying the two sets of Specific Aims. Finally, we have completed our studies on the role of DNA-PK in ASRs, and found that this DSB repair complex does not play a role in ASRs.

The following Specific Aims were explored:

Specific Aim #1 (A1): To determine the effects of altered regulation of cyclins A & D1, PCNA, and cdk2 on ASRs in human normal compared to cancer cells (Years 0-3).

Specific Aim #2 (A2): To clone xips 5 & 13 using unique DNA sequences previously determined (to produce antibodies to each of the proteins, and then determine the effects of altered regulation of xips 5 & 13 proteins on ASRs in human cancer compared to normal cells (as described in Specific Aim #1) (Years 0-3).

Specific Aim #3 (A3): To determine the effects of altered hMLH1 expression on ASRs occurring in human and rodent cells (Years 0-1).

Specific Aim #4 (A4): To determine whether DNA mismatch repair (MMR) in general, or the hMLH1 protein specifically regulates G₂/M cell cycle checkpoint arrest (Years 0-3).

Specific Aim #5 (A5): To determine if the loss of the hMLH1 protein (or hMSH2 protein) alters G₂/M or G₁/G₂, and pinpoint the exact G₂/M cell cycle checkpoint arrest which occurs differentially in parental (wild-type) or hMLH1-proficient compared to hMLH1-deficient cells (Years 0-3).

Specific Aim #6 (A6): To further delineate the cell cycle position of hMLH1-proficient compared to hMLH1-deficient cells after IR, 6-TG or FdUrd treatment (Years 0-1).

Specific Aim #7 (A7): To determine what proteins interact with the hMLH1 protein, and to determine if these hMLH1-protein complexes control G₂/M or G₁/G₂ cell cycle checkpoints (Years 0-3).

III. PROGRESS REPORT-SUMMARY OF PUBLISHED DATA.

Progress on Specific Aims #1-3.

Characterization of ASRs In Human Normal and Neoplastic Cells. Human normal and neoplastic cells were exposed to low "priming" doses of IR (5 cGy/day) over a 4 day period. Primed and unprimed (untreated, mock-irradiated) cells were then exposed to a high "challenging" dose of IR on day 5. Challenging doses were selected to give equitoxic survival levels (20% survival with no time for recovery) for each cell type (Table 1: Boothman et. al., (1)). Low dose primed U1-Mel and HEp-2 cells demonstrated 2.3- to 2.4-fold survival enhancement over their unprimed counterparts following a high dose challenge as measured by colony-forming ability (U1-Mel survival increased from 24% to 56% and HEp-2 survival increased from 17% to 41%). Enhanced survival due to low dose IR was prevented by 4 hr transient post-irradiation, 5 µg/ml actinomycin D (data not shown) or 10 µg/ml cycloheximide treatments, indicating that both new transcription and protein synthesis were

required for the emergence of the more radioresistant phenotype. In contrast, survival enhancement responses were not observed in normal human fibroblasts or in HTB-152 neoplastic cells at any priming dose tested (1, 18).

Influence of Priming Doses on ASRs. We previously noted that differences in transcriptional responses were dose-dependent (2, 14, 114), so we investigated the possibility that different cells required different priming doses for ASRs. Confluence-arrested human U1-Mel, HEp-2, and GM2936B cells were treated with various priming doses of IR, challenged or not with a high dose of radiation, and then treated with or without CHM (10 μ g/ml) for 4 hr post-irradiation. Significant ASRs were seen in U1-Mel and HEp-2 cells using a range of priming doses between 1-10 cGy/day X 4 days. In contrast, we failed to note significant ASRs in GM2936B cells using priming doses of 0.1-0.5 cGy/day X 4 days.

We then investigated the longevity of ASRs. Cells were primed as before using either 5 cGy/day x 4 days for U1-Mel and HEp-2 cells or 0.5 cGy/day x 4 days for GM2936B cells. Primed cells were then exposed to an equitoxic high dose challenge at various times (1-5 days) thereafter to determine how long the ASR could be maintained. No ASRs were noted in normal human fibroblasts. In U1-Mel and HEp-2 cells the observed ASRs steadily decreased with time (in days) and were prevented by 4 hr transient post-irradiation treatment with 10 μ g/ml CHM. By 5 days after the last priming dose, no ASRs were observed.

Dose-Response Effects On ASRs. Confluence-arrested U1-Mel, HEp-2, and GM2936B cells were treated with or without priming doses of 5 cGy/day X 4 days; GM2936B cells were also treated with 0.5 cGy/day X 4 days. Cells were then challenged with various high doses of IR to generate dose-response curves. Survival Enhancement Ratios (SERs), analogous to Dose Enhancement Ratios (115-117), were then calculated. U1-Mel and HEp-2 cells exhibited SERs of 2.0 and 2.2, respectively, after cells were primed with 5 cGy/day X 4 days. As expected, GM2936B cells demonstrated no ASR at 0.1-5.0 cGy/day X 4 days. Post-IR exposure to 10 μ g/ml CHM blocks ASRs in U1-Mel or HEp-2 cells. In our recent paper (1) we summarized a series of experiments in which various confluence- and low serum-arrested human cells were examined for ASRs at various priming doses. Only U1-Mel and HEp-2 human cancer cells demonstrated ASRs at specific optimal priming doses. Human normal fibroblasts did not show ASRs. These descriptive data developed over the course of the first six years of this grant have now allowed us to examine primed and challenged cells for molecular markers of ASRs, which act in DNA repair and/or the establishment of ASRs by regulation of the cell cycle at the G_0/G_1 checkpoint.

Flow Cytometric and Labeled Nuclei Assessments. We determined the cell cycle distribution of confluence and low serum-arrested human cells 4 hr after IR using flow cytometry and measured of [³H]thymidine-labeled nuclei (1). Throughout the ASR treatments, human normal and neoplastic cells remained in G_0/G_1 (>95% of the cells were in G_0/G_1 by flow cytometry); their population distributions were not affected by low or high dose challenges. We also replated primed and unprimed cells to determine their plating efficiencies and to monitor the re-entry into the cell cycle (1). Both primed and unprimed cells of all lines were >93% viable. From these experiments, we noted that primed U1-Mel or HEp-2 cells entered S phase (as measured by increases in [³H]thymidine incorporation and cell number) within 6-8 h, whereas unprimed cells entered S phase in 12-14 h depending upon cell type, after low density replating (1).

Identification of Transcripts Whose Levels Were Altered During ASRs In U1-Mel Cells. To identify molecular markers of ASRs in human cells, we examined previously identified and isolated xips1-12 (4) transcript levels for alterations during low priming and high dose challenging exposures of IR (i.e., 450 cGy) in human U1-Mel cells (1). We also examined alterations in other transcripts, including cyclins A,B,D1 (Prad 1), cdc glutathione-S-transferase- π , thymidine kinase, small proline rich protein, DT Diaphorase, tissue-type plasminogen activator, c-fos, c-jun, transforming growth factor- β (TGF- β), p53, and several loading standards, including 36B, β -2-microglobulin, and actin. Primed and unprimed U1-Mel cells were also treated with or without 10 μ g/ml CHM or 5 μ g/ml actinomycin D for 4 hr immediately after each priming or high dose challenge and total RNA was subsequently extracted. Changes in transcript levels were measured via scanning densitometry (1, 4, 18) and normalized for loading variations using 18S and 28S rRNA levels from the ethidium bromide stained gels, 36B levels, or actin or β -2-microglobulin levels as loading standards to calculate relative mRNA abundance levels as described (1, 2, 4).

Transcripts hybridizing to xip5 (~7 kb) gradually accumulated after each 5 cGy priming dose of radiation in growth-arrested human U1-Mel or HEp-2 cells. Likewise, a 0.5 kb transcript related to xip12 (hereafter referred to as xip13) gradually increased in response to low priming doses of radiation (1). The transcript corresponding to the original xip12 cDNA clone (~10 kb) did not change, except in response to a high dose of radiation, and the

levels of expression of this gene were not different between primed and unprimed cells receiving 450 cGy (data not shown). Transcript levels of both xips5 & 13 in primed cells following a high dose challenge were not as high as those observed in unprimed U1-Mel cells which had been challenged with a single high dose (450 cGy) of IR. This may signify negative feedback control of gene expression due to low dose exposures. Treatment of U1-Mel or HEp-2 cells with actinomycin D for 4-5 hr after each exposure to radiation prevented expression of xips5 and 13 during priming and high doses of radiation (1, 4). These data indicate that new gene transcription is responsible for dramatic increases in xips5 and 13 during ASRs and suggest that new transcription and translation of protein required for ASRs. Interestingly, we also demonstrated that new changes in any of the more common transcription factors did not occur during ASRs, suggesting alterations in more novel transcription factors are likely to take place which regulate ASRs (3).

We also examined the expression of other transcripts which were known to be cell cycle-regulate implicated in DNA repair, or induced by IR. Cyclin transcripts were examined since many X-ray-inducible proteins (12) and transcripts (4) from U1-Mel cells were also cell cycle-regulated (Boothman et. al., unpublished data), and changes in cyclin B transcript and protein levels were reported following acute doses of radiation in HeLa cells (19). We found that cyclin A transcripts accumulated during low priming doses (1). It is interesting that changes in the levels of cyclin A were not observed in unprimed U1-Mel cells exposed only to a high challenging dose of radiation. Cyclin D1 (Prad 1) transcript levels also increased after IR; however, its levels did not continually increase with each priming dose, and similar levels were observed after 5 or 450 cGy. Like xips5 & 13, levels of glutathione-S-transferase- π gradually increased following low doses of IR. After correcting for loading variations, cyclin A, cyclin D1, and GST- π increased 300%, 200%, and 50%, respectively, in primed cells exposed to 450 cGy compared to unprimed cells treated with 450 cGy. Similar transcript responses described above were found in HEp-2 cells during ASRs (1).

Several other transcript levels were either not affected by low priming doses of radiation or were never expressed under any of the conditions used, except in log-phase control cells. Differences in xips1,2,3,4,7,8,9,10 & 12, cyclin B1, DT diaphorase, cyclophilin, gelatinase, stromelysin, 36B4, actin, β -2-microglobulin, tissue-type plasminogen activator, p53, c-fos, c-myc, and egr-1 were not noted between primed and unprimed cells, or after challenge with a high dose of IR (1). Transcripts which were not expressed in the ASR experiments described above, but were expressed in log-phase U1-Mel cells, included: thymidine kinase, cdc2, cyclin B1, TIMP-1, and collagenase-1. Similar transcript responses described above were also found using HEp-2 cells. xip8 protein levels, which bind to Ku70 and may be a crucial factor for cell death after IR treatment (Yang et. al., *Nature Medicine*), was expressed in confluence-arrested cells and turned off on log-phase cells.

Protein Expression Analyses Before and After ASRs in HEp-2, U1-Mel, Normal Human Fibroblast and Other Human Cell Lines. We then characterized molecular changes in proteins during ASRs in human cells. More specifically, we concentrated on the human neoplastic HEp-2 and U1-Mel cells compared to normal human fibroblasts, GM2936B, GM2907A, and GM2937A cells. We repeated and confirmed the transcriptional up-regulation of cyclin D1, cyclin A, xips5, & 13 in HEp-2 and U1-Mel cells (above). However, these transcriptional increases were not observed in any of the normal human fibroblasts examined. Furthermore, we did not observe increases in radiation resistance to a high dose challenge after low dose IR adaptation in normal human fibroblasts. *Therefore, to date we have not observed ASRs in normal human cells. The only ASRs we have observed were in human U1-Mel and HEp-2 cells (1).* Why were U1-Mel and HEp-2 cells able to produce ASR while other normal human fibroblasts were not? In the next three years, we will examine specific gene products which we believe may regulate ASRs in HEp-2 and U1-Mel cells, and investigate their role(s) in ASRs in U1-Mel and HEp-2 cells compared to normal cells. We have completed experiments with other cell models, such as various scid mouse cells +/-DNA-PK, and human HCT-116 cells +/-hMLH-1 gene product, in order to investigate the role of specific gene products in ASRs in human cells. We have eliminated DNA-PKcs as playing a role in ASRs in rodent cells using a comparative analysis of scid and CB17 cells (118).

To investigate the potential role of cyclin A, cyclin D1, PCNA, pRb (retinoblastoma protein), WAF1/CIP1/p21, mdm-2, and p53 proteins in ASRs in human HEp-2 and U1-Mel cells compared to various normal human fibroblasts (GM2937A, GM2907A, and GM2936B), we examined Western immunoblot and Immunoprecipitation/Western immunoblot analyses on unirradiated, low dose primed (1-5 cGy X 4 days), low dose primed and high dose challenged (1-5 cGy X 4 days + 300-450 cGy) compared to high dose challenge alone (300-450 cGy) U1-Mel cells. Analyses of our data have demonstrated some surprising conclusions.

First, the increases in cyclin D1 and PCNA transcripts previously observed (above) did not result in apparent increases in protein levels (Boothman et. al., *Mutat. Res.*, 1996). On the other hand, we were surprised to find extremely high, constitutive levels of cyclin D1 and PCNA levels (20- to 50-fold) in U1-Mel and HEp-2 cells.

compared to normal human fibroblasts. Since U1-Mel and HEp-2 were the only cell lines to demonstrate ASR we concluded from these data that increases in cyclin D1 and PCNA transcripts after low doses of radiation which confer ASRs were insignificant compared to the elevated endogenous protein levels of PCNA and cyclin A with U1-Mel and HEp-2 cells prior to low level radiation. *These data indicate that PCNA and cyclin D1 protein levels were not altered after low level IR, and that other proteins, which make up this DNA repair complex, must increase after low level radiation in order for this DNA repair complex to confer ASRs in certain human cell lines.* Western blot analyses of HEp-2 and U1-Mel cells during ASRs and after high dose challenges demonstrated no alterations in PCNA levels after low or high dose challenging events, and there were no increases in protein levels during ASRs. PCNA levels were, however, greatly elevated in U1-Mel and HEp-2 cells compared to normal human fibroblasts and the human colon cancer cell line HCT-116. PCNA levels were not altered by low or high dose IR and we, therefore, concluded that elevated levels of PCNA may be important for ASRs, but are not a major controlling factor.

Similar results, surprisingly, were discovered for cyclin D1. Cyclin D1 levels in arrested cells have been reported to be extremely low (119). In HEp-2 and U1-Mel cells, however, their levels were remarkably elevated compared to normal human fibroblasts and HCT-116 cells, both of which do not demonstrate ASRs. We found that cyclin D1 levels, as for PCNA (above), were constitutively present at very high levels in U1-Mel and HEp-2 cells. Retinoblastoma (pRb) and Topo I protein levels were also not affected by low or high dose IR, as previously described (120). We are currently examining changes in the phosphorylation level of the pRb protein before and after IR to further pinpoint the position of cell cycle regulation during ASRs. Similar results were found in HEp-2 cells using either Western blot or immunoprecipitation analyses, in which Western immunoblot analyses are the used to demonstrate specific protein levels. We also examined p53 and cdk2 levels during ASRs and after high dose challenges. No alterations in p53 or cdk2 levels were noted during low doses (5 cGy) of IR. As recently described (121), p53 levels in human U1-Mel cells were induced by high doses of radiation. A similar lack of cdk2 protein responses with HEp-2 cells were also observed. These data suggest that cdk2 and cyclin D1 protein levels do not change, but do not necessarily mean that cyclin-dependent cdk2 enzyme levels are not altered after low dose IR. This is currently being examined in our laboratory.

As indicated above, we also examined changes in cyclin A transcript and steady state protein levels using Western and immunoprecipitation blotting analyses before and after low ASR radiation doses compared to high doses of IR. Unlike the responses found above for cyclin D1 and PCNA, cyclin A levels were not present before low dose priming. During low dose priming, cyclin A levels dramatically increased as observed by Western blot and immunoprecipitation analyses (Boothman et. al., in preparation). Since this protein increased at both the transcript and translational levels following low doses of IR, it is a likely candidate for controlling ASRs in certain human cells. These data, in combination with our data demonstrating elevations in PCNA and cyclin D1 protein levels described above using U1-Mel and HEp-2 cells, suggest that all three protein levels (at least) must be present at one time to comprise a DNA repair complex. This complex may be composed of cyclin D1 and PCNA (which are constitutively elevated in HEp-2 and U1-Mel cells), and cyclin A. Cyclin A may be the controlling protein which is inducible or whose expression increases due to altered cell cycle regulation following repeated low doses of IR. Cyclin A may control ASRs through apoptotic inhibition mechanisms, or it may in turn control (activate) other proteins which participate in ASRs in certain human cells. We will explore the role of cyclin A in ASR using doxycycline-inducible, cyclin A expression plasmids as described in the first set of Specific Aims of the current DOE grant renewal. ASRs will be analyzed in U1-Mel and HEp-2 cells (which have elevated PCNA and cyclin D1 levels) with or without sense/antisense cyclin A expression. These experiments will test the hypothesis that ASRs are regulated by cyclin A levels. Endpoints measured will include colony forming abilities (for ASRs), sister chromatid exchanges, apoptosis [by morphology, pol(ADP-ribose) polymerase cleavage, and flow cytometry], and cell cycle population analyses via flow cytometry. We will also analyze cyclin A, cyclin D1, and PCNA transcript and protein levels via Northern blot analyses, Western blot analyses, and immunoprecipitation, respectively.

Progress on Specific Aims #4-7:

Summary of Cell Cycle Regulation of DNA Mismatch Repair Proteins. HNPCC is a cancer susceptibility syndrome caused by mutations in several genes involved in MMR, including *hMSH2*, *hMLH1*, or *hPMS2*. Recent reports suggested that *hMSH2* and *hMLH1* have a role in the regulation of the cell cycle (7, 40, 122). To determine if these genes are cell-cycle regulated, we examined their mRNA and protein levels throughout the cell cycle in synchronized IMR-90 normal human lung fibroblasts (5). We recently demonstrated that the levels of *hMSH2* mRNA and protein do not change appreciably throughout the cell cycle. In contrast, while *hMLH1* mRNA levels remain constant, a modest (~50%) increase in its protein levels during late G₁- and S-phases of the cell cycle occurred. The levels of *hPMS2* mRNA fluctuated mildly (decreasing 50% in G₁ and increasing 50% in S-phase).

S phase), while hPMS2 protein levels increased 50% in late G₁- and S-phases of the cell cycle. Our data indicate that, at least in synchronized normal human primary fibroblast cells, the machinery responsible for detection and repair of mismatched DNA bases is present throughout the cell cycle, with little modulation of hMLH1, hMSH or hPMS2 protein or mRNA levels (5).

Role of hMLH1 In G₂/M Cell Cycle Checkpoint Arrest.

MLH1 Expression Before and After IR. Two genetically matched human HCT116 colon carcinoma cell lines were used to determine whether MMR mechanisms played a role in survival after exposure to IR compared to 6-TG. We also investigated whether specific proteins involved in MMR (i.e., hMSH2 or hMLH1) were damage-inducible. The hMLH-1 protein was not expressed in parental HCT116 (hMLH1⁻) cells, but was expressed in HCT116 3-6 (hMLH1⁺) cells. This represents the first demonstration that HCT116 cells do not express the hMLH1 protein. Further comparisons suggested that the overall expression level of hMLH1 in HCT116 3-6 cells was qualitatively similar to those found in normal IMR-90 human fibroblast cells (123). hMSH2 protein levels were not altered by the chromosome 3 microcell transfer, since similar levels were expressed in both HCT116 (hMLH1⁻) and HCT116 3-6 (hMLH1⁺) cells and levels of hMSH2 were comparable to those levels present in IMR-90 normal human fibroblasts, as previously demonstrated (5).

We then examined the regulation of hMLH1 and hMSH2 proteins after IR. No changes in hMLH1 (80 kDa protein) or hMSH2 (100 kDa protein) levels were observed at 4-48 h after 5 Gy in HCT116 (hMLH1⁻) or HCT116 3-6 (hMLH1⁺) cells. Levels of alpha-tubulin were used as a loading control, since they were not altered after IR (4, 12). These data suggest that hMLH1 and hMSH2 proteins were not altered by IR in either cell line. In addition, the proteins do not appear to be cell cycle regulated, since significant changes in cell cycle distribution occurred over the course of the experiment following IR. These data are consistent with our recent cell cycle analyses of synchronized normal human IMR-90 fibroblast cells, in which hMLH1 and hMSH2 protein and transcript levels remained constitutively expressed during cell cycle progression (5).

Effect of hMLH1 Expression Deficiency on Survival After IR or 6-TG. We examined differences in sensitivities between HCT116 and HCT116 3-6 cells after IR (0-8 Gy) by limited dilution colony forming survival assays. A statistically significant difference in survival [p<0.049, (40)] between HCT116 (hMLH1⁻) and HCT116 3-6 (hMLH1⁺) cells was found, with the former being modestly more sensitive to IR damage. We also observed the previously reported (113, 124) phenomenon of "damage tolerance" of mis-incorporated bases in HCT116 cells following growth in the presence of 6-TG. HCT116 3-6 cells demonstrated a dramatic sensitivity to this agent (~50-fold), following 12 h pulses of 6-TG, in contrast to the reversed situation above with IR.

Effect of hMLH1 Deficiency on Cell Cycle Checkpoint Delays. We then examined differences in cell cycle checkpoint arrests between parental HCT116 and hMLH1-corrected HCT116 3-6 cells. HCT116 3-6 (hMLH1⁺) cells demonstrated extensive G₂/M cell cycle checkpoint arrest responses following a 5 Gy dose of IR, with levels nearly twice that of parental HCT116 (hMLH1⁻) cells given approximately equitoxic doses. The G₀/G₁ arrest was rather small in either cell line in the first 12 h. In addition, HCT116 3-6 cells arrested 12 to 24 h longer in the G₂/M phase of the cell cycle than HCT116 cells exposed to approximately equitoxic doses of IR. For example, 24 h following 5 Gy, 67% of irradiated HCT116 3-6 cells were in the G₂/M cell cycle phase, compared to 21% G₂/M cells in identically irradiated, parental HCT-116 cell population. The enhanced G₂/M arrest observed in HCT116 3-6 cells was dose-dependent up to 8 Gy, when nearly all cells appeared to be arrested in this phase of the cell cycle. Interestingly, no differences in the overall S-phase cell population for up to 24 h were noted using propidium dye staining and flow cytometric analyses before or after IR (or 6-TG, below) in HCT116 or HCT116 3-6 cells. Thus, the dramatic G₂/M cell cycle arrest in HCT116 3-6 cells appeared to precede and preclude any observable arrest at G₀/G₁. These data strongly suggest that loss of hMLH1 protein corresponded with a loss of competent, albeit not complete, G₂/M cell cycle checkpoint. The low degree of G₂/M cell cycle arrest observed in HCT116 cells may be caused by the generation of frank double strand breaks created by IR, at a point independent of hMLH1-dependent G₂/M cell cycle arrest.

Previously, a 50-fold enhanced survival of HCT116 (hMLH1⁻) over HCT116 3-6 (hMLH1⁺) was reported by Boland *et al.* (113, 122, 124, 125) following treatment of cells with *N*-methyl-*N*'-nitrosoguanidine (MNNG) or 6-TG. Furthermore, it was shown that HCT116 3-6 (hMLH1⁺) cells responded to these agents by arresting in G₂/M, while HCT116 (hMLH1⁻) cells continued to cycle normally. Using analogous conditions as those

previously described (113, 122, 124) a similar difference in cell cycle distribution following 6-TG treatment was observed. As previously noted (113, 122, 124), parental HCT116 cells demonstrated no change in the percentage of cells in G₂/M following 6-TG exposures. The G₂/M arrest observed in HCT116 3-6 cells following 6-TG treatment was dose-dependent, but not for HCT116 cells. While both cell types demonstrated sub-G₀/G₁ (apoptotic) peaks, a relative increase was consistently noted in the MMR-proficient HCT116 3-6 cells compared to the parental MMR-deficient HCT116 cells on day 6 (data not shown). The apoptotic responses observed were not, however, sufficient to explain the nearly 50-fold increase in lethality in the corrected HCT116 3-6 cells compared to HCT116 cells.

Effect of hMLH1 Deficiency on Damage-inducible Nuclear p53 Responses. Although parental and corrected HCT116 cells exhibited differences in radiation sensitivity and cell cycle alterations, both cell lines demonstrate similar IR-induced nuclear p53 levels following approximately equitoxic doses of IR. Interestingly, however, the kinetics of p53 induction, and specifically its loss over time following IR, differed significantly between the two genetically matched cell types. Evaluation of nuclear protein levels indicated that HCT116 3-6 cells maintained elevated levels of p53 protein beyond 24 h following doses as low as 2 Gy. HCT116 cells, however, demonstrate an equivalently high initial level of p53 induction at 2-4 h at all doses examined, but p53 levels were more transient and waned by 12 to 24 h, in a dose-dependent manner. The elevation of p53 protein levels (~50-fold higher than non-irradiated cells) was more long-lived in HCT116 3-6 cells, even though the cell cycle distribution varied widely over the course of the experiment. Interestingly, similar increases in nuclear p53 levels were observed in log-phase and confluence-arrested HCT116 (hMLH1⁻) or HCT116 3-6 (hMLH1⁺) cells (data not shown). These data strongly suggest that the induction of p53 was in direct response to DNA damage rather than to secondary cell cycle changes. No correlation between p53 induction and the timing or overall extent of cells at the G₂/M cell cycle checkpoint arrest were noted.

We noted dramatic induction of both nuclear and whole cell p53 levels in the HCT116 3-6 (hMLH1⁺) cells after 6-TG exposure, while no such increase was noted for MMR-deficient HCT116 (hMLH1⁻) cells until a dose of 6 μ M was used, even after 6 days of continuous drug exposure. These results are consistent with a role for p53 in response to DNA damage (26, 39, 126, 127) and strongly suggest that cells deficient in hMLH1 expression fail to recognize or process damage caused by 6-TG incorporation. The absence of p53 induction following 6-TG exposure in HCT116 (hMLH1⁻) suggests a role of the hMLH1 protein in both the detection of mismatch DNA base damage created by 6-TG, and in the intracellular signaling events which elicit the damage-inducible p53 post-transcriptional process (36, 126, 128).

E6 Expressing Cells Demonstrate That Neither G₁ Arrest, Nor A Functional p53 Affect the hMLH1-Mediate G₂/M Cell Cycle Checkpoint Arrest. To directly determine the role of p53 in the G₂/M cell cycle checkpoint arrest described above, we infected cells (HCT116 and HCT116 3-6) with retroviral expression vectors expressing the papillomavirus E6 protein. In addition, since it is possible from the data above that hMLH1 may play a role in G₁ cell cycle arrest or transition into S-phase, in conjunction with p53, we wished to explore the effects of loss of p53 on the cell cycle distribution effects following IR or 6-TG. The E6 protein is known to bind to, and target p53 for ubiquination and proteolysis and results in a loss of G₁ cell cycle arrest induced by DNA damaging agents (129). The efficiency of E6 in removing p53 protein (even from IR-induced cells) was demonstrated. Loss of p53 did not affect the overall levels of hMLH1 protein expressed, nor alter the levels of this protein following IR. Following 5 Gy, E6 transfectants of both cell types demonstrated similar cell cycle kinetics compared to nontransfected cells that retained intact p53 function. An exception was HCT116 E6 clones, which had a reduced G₀/G₁ arrest early after exposure and showed slightly greater G₂/M arrest than normal nontransfected and irradiated HCT116 cells. The loss of p53 function also did not affect survival following IR exposure. These data strongly suggest that p53 does not play a role in G₂/M cell cycle checkpoint arrest, nor in the survival differences observed between cells that express hMLH1 (HCT116 3-6) or cells which have lost expression of this MMR protein (HCT116 cells). These data, along with the lack of a difference in S-phase fractions between irradiated and nonirradiated HCT116 and HCT116 3-6 cells, also strongly suggest that hMLH1 does not play a role in G₁ cell cycle checkpoint arrest or G₁-S transition.

Primary Embryonic Fibroblasts From MLH1 Knockout Mice Also Demonstrated Deficient G₂/M Cell Cycle Checkpoint Responses. Next, we wanted to demonstrate that the apparent hMLH1-dependent G₂/M cell cycle checkpoint arrest phenomena were not unique to HCT116 3-6 human colon carcinoma cells. Therefore, we performed identical cell cycle regulatory studies using fibroblasts from MLH1 knockout "C57BL/6J" (B6) black

mice and compared their responses to genetically matched, primary embryonic murine fibroblasts derived from parental wild-type mice before and after IR or 6-TG. In control experiments, we examined MLH1 and MSH protein expression in three representative clones: one homozygous wild type at the (MLH1^{+/+}) locus, or heterozygous (MLH1^{+/−}), and one homozygous mutant at this locus (MLH1^{−/−}). As expected, heterozygous and homozygous wild-type cells expressed normal basal levels of both MLH1 and MSH2, at levels similar to those previously found in IMR-90 cells (5). In contrast, homozygous mutant cells (MLH1^{−/−}) did not express the murine MLH1 protein, but did express normal levels of murine MSH2. Neither MMR protein levels appeared to vary following 6-TG or IR treatments. Interestingly, p53 levels within all of these clones did not vary following IR or 6-TG treatments, and remained constitutively high (data not shown). As in HCT116 (hMLH1^{−/−}) cells, embryonic fibroblasts which were deficient in expression of the MLH1 protein failed to arrest at the G₂/M cell cycle checkpoint following 6-TG or IR. In contrast and as with HCT116 3-6 hMLH1-expressing cells, wild-type embryonic fibroblasts derived from C57BL/6J mice which expressed normal levels of the MLH1 protein also demonstrated a dramatic G₂/M cell cycle checkpoint arrest in response to 6-TG or IR. Analyses of the S-phase cell populations in treated wild-type or MLH1 knock-out murine cells after 6-TG or IR demonstrated no apparent S-phase cell population differences, indicating little variation in G₁ cell cycle arrest between MLH1-expressing and MLH1-deficient cells after IR or 6-TG.

Summary of Data Supporting A Role of hMLH1 In G₂/M Cell Cycle Checkpoint Arrest After 5-Fluorouridine (FdUrd). We demonstrated above that DNA mismatch repair plays a role in the G₂/M cell cycle checkpoint using hMLH1-expressing or hMLH1-deficient HCT116 human colon carcinoma cells. We have also demonstrated that DNA mismatch repair-deficient HCT116 cells were 6-fold more resistant to the cytotoxic effects of FdUrd and 2-fold more resistant to 5-fluorouracil compared to genetically matched, DNA mismatch repair-proficient HCT116 3-6 cells. HCT116 3-6 and HCT116 cells were treated with 30, 15, 4, 1, and 0.1 mM FdUrd for 24 h and subsequently allowed to grow in drug-free medium. HCT116 3-6 cells treated with 1-4 mM FdUrd showed a dramatic G₂/M cell cycle checkpoint delay and significant apoptosis (as detected by flow cytometry) as early as 12 h post-treatment. In contrast, HCT116 cells continued to grow without apparent cell cycle redistribution or apoptotic responses, exhibiting damage tolerance in a similar fashion as following 6-TG treatment. Apoptotic responses characterized by flow cytometry were confirmed by Hoechst dye staining and morphological examination by light microscopy. Interestingly, both HCT116 and HCT116 3-6 cells exhibited > 5-fold increases in nuclear p53 protein levels after 1-4 mM FdUrd treatment, and the kinetics of their p53 inductive response appeared to be similar.

To determine if p53 protein responses or G₁ cell cycle checkpoint arrest played a role in this MMR-dependent, FdUrd-induced G₂/M cell cycle checkpoint delay and apoptotic response, HCT116 and HCT116 3-6 cells were infected with retroviral vectors expressing the papillomavirus E6 gene. Infected and control cells were then treated with various doses of FdUrd as described above. Nearly identical cell cycle, survival and apoptotic responses were observed in E6-expressing HCT116 3-6 cells compared to noninfected HCT116 3-6 cell indicating that p53 played no direct role in cell cycle, apoptotic or survival responses of these mismatch repair competent cells. Both E6-infected and noninfected HCT116 cells demonstrated near complete damage tolerance to FdUrd, indicating that the lack of mismatch repair was crucial to responses to FdUrd in these cells and not the p53 responses or G₁ arrest, in general. Rescue from FdUrd cytotoxicity in HCT116 3-6 cells was observed via the administration (24 h posttreatment) with 10 μM thymidine, whereas 10 μM uridine had no effect on FdUrd-mediated G₂/M cell cycle arrest, apoptosis, or loss of survival in HCT116 3-6 cells. These data strongly suggest a role for the MMR in the recognition of genetically unstable DNA, DNA mismatched bases caused by nucleotide pool imbalances via thymidylate synthetase inhibition, or by the rapid incorporation and removal of FdUrd into DNA.

C. RATIONALE AND/OR SIGNIFICANCE: Relationship to Mission of the DOE

Little or no molecular information regarding changes in gene expression after ultra-low doses of IR is known in human or rodent cells. Changes in gene expression and alterations in the more subtle types of DNA repair processes are undoubtedly important to the carcinogenic consequences of exposures to low doses of IR. ASRs in mammalian cells in response to low doses of IR have been reported for more than 40 years. Yet, the molecular basis for ASRs have been elusive. Over the last six years we identified, characterized, and isolated specific molecular probes (i.e., cyclin A, cdk2, xips5 & 13, cyclin D1 and PCNA) which are regulated during the establishment and challenging events of human cells demonstrating ASRs. The accomplishment of the proposed goals outlined in this renewal application will allow us to elucidate the coupled responses of transcription, DNA repair, and cell cycle progression which play a combined role in determining the extent of adaptive radioresistance.

by various human cells. The experiments outlined in the Specific Aims of Set #1 will allow us to establish the reagents with which we will be able monitor antisense and sense experiments and the influence of single genes (i.e. xips5 & 13) on ASRs in human cells. We now know that the majority of genetic alterations which appear to affect whether or not ASRs occur in human cells, take place during low "priming" doses of IR. The experiments in Specific Aims #1-3 allowed us to investigate the role of xips5 & 13, cyclin A, PCNA, and cyclin D1 in ASRs in human or rodent cells. The use of controlled doxycycline-inducible vectors allowed us to regulate the overall extent of specific key regulatory proteins (by sense or antisense), and thereby possibly allow us to regulate ASRs. Thus the experiments proposed in this DOE grant renewal represents the first described molecular probes for ASRs after low dose IR exposed cells.

In the second part of this grant we explored the role of a specific MMR protein (hMLH1) in the G₂/M cycle checkpoint arrest. Very little information is known about the mechanisms which regulate arrest at this important point in the cell cycle, although arrest at this checkpoint is clearly important for survival, apoptosis, responses, and carcinogenesis following IR. Our recent data (Preliminary data above) demonstrate a clear role for hMLH1 in a Mitotic checkpoint arrest following IR or FdUrd, using 6-TG as a control for the induction of MMI. X-irradiation + FdUrd are the treatment of choice for colon cancer cells and the studies described in Specific Aims #4-7 have added clinical significance for treatment of non-HNPCC compared to HNPCC patients, which comprise 5% of all colon cancer patients in the U.S. The experiments in Specific Aims #4-7 allowed us to further identify proteins which interact with hMLH1, and possibly act with hMLH1 to regulate G₂/M arrest.

Consortium/Contractual Arrangements. None.

REFERENCES (Relevant Literature Cited).

1. Boothman, D. A., Meyers, M., Odegaard, E., and Wang, M. Altered G₁ checkpoint control determines adaptive survival responses to ionizing radiation. *Mutation Research*. 358: 143-153, 1996.
2. Boothman, D. A., Burrows, H., Yang, C.-R., Davis, T. W., Odegaard, E., Wuerzberger, S. M., Planchon, T. M., Lewis, J. E., Pink, J., Meyers, M., Wilson-Van Patten, C., Sharda, N., and Kinsella, T. J. Damage sensing mechanisms in human cells after ionizing radiation. *International Journal of Radiation Research*, In Press, 1996.
3. Boothman, D. A., Odegaard, E., Sahidak, W. M., Meyers, M., and Yang, C.-Y. Lack of transcription factor alterations following ultra-low doses of ionizing radiation. In: *Congress Proceedings, Radiation Research* 1895-1995, (U. Hagen, D. Harder, H. Jung, and C. Streffler, eds.), Vol 2, 1995.
4. Boothman, D. A., Meyers, M., Fukunaga, N., and Lee, S. W. Isolation of x-ray-inducible transcripts from radioresistant human melanoma cells. *Proceedings of the National Academy of Sciences of the United States of America*. 90: 7200-4, 1993.
5. Meyers, M., Theodosiou, M., Acharya, S., Odegaard, E., Wilson, T., Lewis, J. E., Davis, T. W., Wilson-Van Patten, C., Fishel, R., and Boothman, D. A. Cell cycle regulation of the DNA mismatch repair genes hMSH3, hMLH1, and hPMS2. *Cancer Research*. 57: 206-208, 1997.
6. Davis, T. W., Meyers, M., Wilson-Van Patten, C., Kunugi, K. A., Boland, C. R., Kinsella, T. K., Fishel, R., and Boothman, D. A. Defective expression of the DNA mismatch repair protein, MLH1, alters G2-M cycle checkpoint arrest following ionizing radiation. *Cancer Research* 58: 767-778, 1998.
7. Wilson-Van Patten, C., Meyers, M., Davis, T. W., Kunugi, K. A., Cuthill, S., Garces, C., Koi, M., Boland, C. R., Kinsella, T., and Boothman, D. A. Role of DNA mismatch repair in 5-fluoro-2'-deoxyuridine (FdUrd) mediated cell death and cell cycle responses. *Cancer Res.*, Submitted, 1999.
8. Boothman, D. A. and Pardue, A. B. Inhibition of radiation-induced neoplastic transformation by beta-lapachone. *Proceedings of the National Academy of Sciences of the United States of America*. 86: 4963-1989.
9. Hollander, M. C. and Fornace, A. J., Jr. Induction of fos RNA by DNA-damaging agents. *Cancer Research* 49: 1687-92, 1989.
10. Sherman, M. L., Datta, R., Hallahan, D. E., Weichselbaum, R. R., and Kufe, D. W. Ionizing radiation regulates expression of the c-jun protooncogene. *Proceedings of the National Academy of Sciences of the United States of America*. 87: 5663-6, 1990.
11. Higo, H., Lee, J. Y., Satow, Y., and Higo, K. Elevated expression of proto-oncogenes accompanies enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation. *Teratogenesis, Carcinogenesis, & Mutagenesis*. 9: 191-8, 1989.
12. Boothman, D. A., Bouvard, I., and Hughes, E. N. Identification and characterization of X-ray-induced proteins in human cells. *Cancer Research*. 49: 2871-8, 1989.

13. Lambert, M. and Borek, C. X-ray-induced changes in gene expression in normal and oncogene-transformed rat cell lines. *Journal of the National Cancer Institute*. 80: 1492-7, 1988.
14. Boothman, D. A., Davis, T. W., and Sahidak, W. M. Enhanced expression of thymidine kinase in human cells following ionizing radiation. *International Journal of Radiation Oncology, Biology, Physics*. 30: 391-1994.
15. Haimovitz-Friedman, A., Balaban, N., McLoughlin, M., Ehleiter, D., Michaeli, J., Vlodavsky, I., and Fuks, Z. Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. *Cancer Research*. 54: 2591-7, 1994.
16. Hallahan, D. E., Haimovitz-Friedman, A., Kufe, D. W., Fuks, Z., and Weichselbaum, R. R. The role of cytokines in radiation oncology. *Important Advances in Oncology* 71-80, 1993.
17. Witte, L., Fuks, Z., Haimovitz-Friedman, A., Vlodavsky, I., Goodman, D. S., and Eldor, A. Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cell. *Cancer Research*. 49: 5066-72, 1989.
18. Meyers, M., Shea, R., Seabury, H., Petrowski, A., McLaughlin, W. P., Lee, I., Lee, S. W., and Boothman, D. A. Role of X-ray-induced genes and proteins in adaptive survival responses. In: T. Sugahara, L. A. Sagan, and T. Aoyama (eds.), *Low dose irradiation and biological defense mechanisms*, pp. 263-266. Elsevier Science Publishers, 1992.
19. Muschel, R. J., Zhang, H. B., Iliakis, G., and McKenna, W. G. Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. *Cancer Research*. 51: 5113-7, 1991.
20. Muschel, R. J., Zhang, H. B., Iliakis, G., and McKenna, W. G. Effects of ionizing radiation on cyclin expression in HeLa cells. *Radiation Research*. 132: 153-7, 1992.
21. Muschel, R. J., Zhang, H. B., and McKenna, W. G. Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in HeLa cells. *Cancer Research*. 53: 1128-35, 1993.
22. Fornace, A. J., Alamo, I., and Hollander, M. C. DNA damage-inducible transcripts in mammalian cells. *Proc. Natl. Acad. Sci.* 85: 8800-8804, 1988.
23. Fornace, A. J., Nebert, D. W., Hollander, M. C., Luethy, J. D., Papathanasiou, M., Farnogni, J., and Holbrook, N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agent. *Molecular & Cellular Biology*. 9: 4196-4203, 1989.
24. Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J., Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. *Cell*. 71: 587-97, 1992.
25. Maltzman, W. and Czyzyk, L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. *Molecular & Cellular Biology*. 4: 1689-94, 1984.
26. Kastan, M. B. P53: a determinant of the cell cycle response to DNA damage. *Advances in Experimental Medicine & Biology*. 339: 291-3, 1993.
27. Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V., and Kastan, M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. *Proceedings of the National Academy of Sciences of the United States of America*. 89: 7491-5, 1992.
28. Boothman, D. A., Lee, S. W., Trask, D. K., Dou, Q.-P., and Hughes, E. N. X-ray inducible genes are proteins in human cells. In: *UCLA Symposia on Molecular and Cellular Biology*, Lake Tahoe, 1990, p. 309-317.
29. Boothman, D. A., Wang, M., and Lee, S. W. Induction of tissue-type plasminogen activator by ionizing radiation in human malignant melanoma cells. *Cancer Research*. 51: 5587-95, 1991.
30. Fukunaga, N., Burrows, H. L., Meyers, M., Schea, R. A., and Boothman, D. A. Enhanced induction of tissue-type plasminogen activator in normal human cells compared to cancer-prone cells following ionizing radiation. *International Journal of Radiation Oncology, Biology, Physics*. 24: 949-57, 1992.
31. Datta, R., Weichselbaum, R., and Kufe, D. W. Ionizing radiation down-regulates histone H1 gene expression by transcriptional and post-transcriptional mechanisms. *Radiation Research*. 133: 176-81, 1993.
32. Fornace, A. J., Jr., Zmudzka, B., Hollander, M. C., and Wilson, S. H. Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells. *Molecular & Cellular Biology*. 9: 851-3, 1989.
33. Sherman, M. L., Datta, R., Hallahan, D. E., Weichselbaum, R. R., and Kufe, D. W. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. *Journal of Clinical Investigation*. 87: 1794-7, 1991.
34. Koropatnick, J., Leibbrand, M., and Cherian, M. G. Organ-specific metallothionein induction in mice by irradiation. *Radiation Research*. 119: 356-65, 1989.

35. Fornace, A. J., Jr., Schalch, H., and Alamo, I., Jr. Coordinate induction of metallothioneins I and II in rodent cells by UV irradiation. *Molecular & Cellular Biology*. 8: 4716-20, 1988.
36. Kastan, M. B. and Kuerbitz, S. J. Control of G1 arrest after DNA damage. *Environmental Health Perspectives*. 101: 55-8, 1993.
37. Boothman, D. A., Hughes, E. N., and Pardee, A. B. The role of X-ray-induced DNA repair processes in mutagenesis and carcinogenesis. *Progress in Clinical & Biological Research*. 340E: 319-27, 1990.
38. McLaughlan, W. P., Shea, R., McKeever, P. E., and Boothman, D. A. Radiobiological effects and changes in the central nervous system in response to ionizing radiation. In: A. J. Levine and H. H. Schmid (eds.), *Molecular genetics of nervous system tumors*, pp. 163-177, 1993.
39. Kastan, M. B., Canman, C. E., and Leonard, C. J. P53, cell cycle control and apoptosis: implications for cancer. *Cancer & Metastasis Reviews*. 14: 3-15, 1995.
40. Davis, T. W., Meyers, M., Wison-Van Patten, C., Sharda, N., Yang, C.-R., Kinsella, T. J., and Boothman, D. A. Transcriptional responses to damage created by ionizing radiation: molecular sensors. Totowa, NJ: Humana Press, 1998.
41. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. *Cancer Research*. 51: 6304-11, 1991.
42. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. *Nature*. 362: 847-9, 1993.
43. Lowe, S. W. and Ruley, H. E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. *Genes & Development*. 7: 535-45, 1993.
44. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., and Jacks, T. p53 status and the efficacy of cancer therapy in vivo. *Science*. 266: 807-10, 1994.
45. Smith, M. L., Chen, I. T., Zhan, Q., O'Connor, P. M., and Fornace, A. J., Jr. Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. *Oncogene*. 10: 1053-9, 1995.
46. Pardee, A. B., Coppock, D. L., and Yang, H. C. Regulation of cell proliferation at the onset of DNA synthesis. *Journal of Cell Science - Supplement*. 4: 171-80, 1986.
47. Pardee, A. B. Multiple molecular levels of cell cycle regulation. *Journal of Cellular Biochemistry*. 54: 375-1994.
48. Lau, C. C. and Pardee, A. B. Mechanism by which caffeine potentiates lethality of nitrogen mustard. *Proceedings of the National Academy of Sciences of the United States of America*. 79: 2942-6, 1982.
49. Schlegel, R. and Pardee, A. B. Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. *Science*. 232: 1264-6, 1986.
50. Uckun, F. M., Tuel-Ahlgren, L., Song, C. W., Waddick, K., Myers, D. E., Kirihera, J., Ledbetter, J. A., and Schieven, G. L. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human T lymphocyte precursors, triggering apoptosis and clonogenic cell death. *Proceedings of the National Academy of Sciences of the United States of America*. 89: 9005-9, 1992.
51. Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. *Cell*. 74: 957-67, 1993.
52. Lowe, S. W., Jacks, T., Housman, D. E., and Ruley, H. E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. *Proceedings of the National Academy of Sciences of the United States of America*. 91: 2026-30, 1994.
53. Muschel, R. J., Bernhard, E. J., Garza, L., McKenna, W. G., and Koch, C. J. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. *Cancer Research*. 55: 995-8, 1995.
54. Hickson, I. D. and Harris, A. L. Mammalian DNA repair - use of mutants hypersensitive to cytotoxic agent. *Trends Genet*. 4: 101-106, 1988.
55. Rowley, R. Reduction of radiation-induced G2 arrest by caffeine. *Radiation Research*. 129: 224-7, 1992.
56. Rowley, R., Hudson, J., and Young, P. G. The wee1 protein kinase is required for radiation-induced mitotic delay. *Nature*. 356: 353-5, 1992.
57. Rowley, R. Radiation-induced mitotic delay: a genetic characterization in the fission yeast. *Radiation Research*. 132: 144-52, 1992.
58. Ross, W. E. and Bradley, M. O. DNA double-stranded breaks in mammalian cells after exposure to intercalating agents. *Biochimica et Biophysica Acta*. 654: 129-34, 1981.
59. Ross, W., Rowe, T., Glisson, B., Yalowich, J., and Liu, L. Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. *Cancer Research*. 44: 5857-60, 1984.

60. Wolff, S., Jostes, R., Cross, F. T., Hui, T. E., Afzal, V., and Wiencke, J. K. Adaptive response of human lymphocytes for the repair of radon-induced chromosomal damage. *Mutation Research*. 250: 299-306, 1991.
61. Wolff, S. Adaptation to ionizing radiation induced by prior exposure to very low doses. *Chinese Medical Journal*. 107: 425-30, 1994.
62. Wolff, S. Aspects of the adaptive response to very low doses of radiation and other agents. *Mutagenesis Research*. 358: 135-142, 1996.
63. Fearon, E. R. and Vogelstein, B. A genetic model for colorectal tumorigenesis. *Cell*. 61: 759-767, 1990.
64. Coleman, W. B. and Tsongalis, G. J. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. *Clinical Chemistry*. 41: 644-657, 1995.
65. Tlsty, T. D., Briot, A., Gualberto, A., Hall, I., Hess, S., Hixon, M., Kuppuswamy, D., Romanov, S., Sage, N. and White, A. Genomic instability and cancer. *Mutation Research*. 337: 1-7, 1995.
66. Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. *Cancer Res*. 51: 3075-3079, 1991.
67. Reid, B. J., Blount, P. L., Rubin, C. E., Levine, D. S., Haggitt, R. C., and Rabinovitch, P. S. Flow-cytometric and histological progression to malignancy in Barret's esophagus: prospective endoscopic surveillance of cohort [see comments]. *Gastroenterology*. 102: 1212-1219, 1992.
68. Cheng, K. C. and Loeb, L. A. Genomic instability and tumor progression: mechanistic consideration. *Advances in Cancer Research*. 60: 121-56, 1993.
69. Morgan, W. F. and Murnane, J. P. A role for genomic instability in cellular radioresistance? *Cancer and Metastasis Reviews*. 14: 49-58, 1995.
70. Marra, G. and Boland, C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. *Journal of the National Cancer Institute*. 87: 1114-25, 1995.
71. Lynch, H. T., Smyrk, T., and Lynch, J. F. Overview Of Natural History, Pathology, Molecular Genetics and Management Of Hnpcc (Lynch Syndrome). *International Journal of Cancer*. 69: 38-43, 1996.
72. Peinado, M. A., Malkhosyan, S., Velazquez, A., and Perucho, M. Isolation and characterization of allel losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. *Proceedings of the National Academy of Sciences of the United States of America*. 89: 10065-10069, 1992.
73. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., and Perucho, M. Ubiquitous somatic mutations: simple repeated sequences reveal a new mechanism for colonic carcinogenesis. *Nature*. 363: 558-61, 1993.
74. Aaltonen, L. E., Peltomaki, P., Leach, F. S., Sistonen, P., Pylkkanen, L., Mecklin, J.-P., Jarvinen, H., Powell, T. M., Jen, J., Hamilton, S. R., Petersen, G. M., Kinzler, K. W., Vogelstien, B., and de la Chapelle, A. Clues to the pathogenesis of familial colorectal cancer. *Science*. 260: 812-816, 1993.
75. Thibodeau, S. N., Bren, G., and Schaid, D. Microsatellite instability in cancer of the proximal colon. *Science*. 260: 816-9, 1993.
76. Weber, J. L. and May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. *American Journal of Human Genetics*. 44: 388-396, 1989.
77. Kornberg, A. and Baker, T. A. *DNA Replication*. New York: W.H. Freeman and Co. 147-148., 1992.
78. Levinson, G. and Gutman, G. A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in *Escherichia coli* K-12. *Nucleic Acids Research*. 15: 5323-38, 1987.
79. Cox, E. C. Bacterial mutator genes and the control of spontaneous mutation. *Ann. Rev. Genet.* 10: 135-156, 1976.
80. Lu, A. L., Clark, S., and Modrich, P. Methyl-directed repair of DNA base-pair mismatches in vitro. *Proceedings of the National Academy of Sciences of the United States of America*. 80: 4639-4643, 1983.
81. Fishel, R. A. and Kolodner, R. An *Escherichia coli* cell-free system that catalyzes the repair of symmetrical methylated heteroduplex DNA. *Cold Spring Harbor Symposia of Quantitative Biology*. 49: 603-609, 1984.
82. Fishel, R. and Kolodner, R. D. Identification of mismatch repair genes and their role in the development of cancer. *Current Opinion in Genetics & Development*. 5: 382-95, 1995.
83. Kramer, W., Kramer, B., Williamson, M. S., and Fogel, S. Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from *Saccharomyces cerevisiae*: homology of PMS1 to prokaryotic MutL and HexB. *Journal of Bacteriology*. 171: 5339-46, 1989.
84. Reenan, R. A. and Kolodner, R. D. Isolation and characterization of two *Saccharomyces cerevisiae* genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. *Genetics*. 132: 963-73, 1992.
85. Reenan, R. A. and Kolodner, R. D. Characterization of insertion mutations in the *Saccharomyces cerevisiae* MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. *Genetics*. 132: 975-8, 1992.

86. Prolla, T. A., Christie, D. M., and Liskay, R. M. Dual requirement in yeast DNA mismatch repair for MLH and PMS1, two homologs of the bacterial *mutL* gene. *Molecular & Cellular Biology*. 14: 407-15, 1994.
87. Strand, M., Prolla, T. A., Liskay, R. M., and Petes, T. D. Destabilization of tracts of simple repetitive DNA : yeast by mutations affecting DNA mismatch repair. *Nature*. 365: 274-6, 1993.
88. Fishel, R., Lescoe, M. K., Rao, M. R., Copeland, N. G., Jenkins, N. A., Garber, J., Kane, M., and Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. *Cell*. 75: 1027-38, 1993.
89. Leach, F. S., Nicolaides, N. C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., Peltomaki, P., Sistonen, P., Aaltonen, L. A., Nystrom-Lahti, M., Guan, X.-Y., Zhang, J., Meltzer, P. S., Yu, J.-W., Kao, F.-T., Chen, D., Cerosaletti, K. M., Fournier, R. E. K., Todd, S., Lewis, T., Leach, R. J., Naylor, S. L., Weissenbach, J., Mecklin, J.-P., Jarvinen, H., Petersen, G. M., Hamilton, S. R., Green, J., Jass, J., Watson, P., Lynch, H. T., Trent, J. M., de la Chapelle, A., Kinzler, K. W., and Vogelstein, B. Mutations of a *mutS* homolog : hereditary nonpolyposis colorectal cancer. *Cell*. 75: 1215-25, 1993.
90. Bronner, C. E., Baker, S. M., Morrison, P. T., Warren, G., Smith, L. G., Lescoe, M. K., Kane, M., Earabin, C., Lipford, J., Lindblom, A., Tannergard, P., Bollag, R. J., Godwin, A. R., Ward, D. C., Nordenskjold, M., Fishel, R., Kolodner, R., and Liskay, R. M. Mutation in the DNA mismatch repair gene homologue hMLH3 is associated with hereditary non-polyposis colon cancer. *Nature*. 368: 258-61, 1994.
91. Papadopoulos, N., Nicolaides, N. C., Wei, Y. F., Ruben, S. M., Carter, K. C., Rosen, C. A., Haseltine, W. A., Fleischmann, R. D., Fraser, C. M., Adams, M. D., Venter, J. C., Hamilton, S. R., Petersen, G. M., Watson, P., Lynch, H. T., Peltomaki, P., Mecklin, J.-P., de la Chapelle, A., Kinzler, K. W., and Vogelstein, B. Mutation of a *mutL* homolog in hereditary colon cancer. *Science*. 263: 1625-9, 1994.
92. Nicolaides, N. C., Papadopoulos, N., Liu, B., Wei, Y. F., Carter, K. C., Ruben, S. M., Rosen, C. A., Haseltine, W. A., Fleischmann, R. D., Fraser, C. M., Adams, M. D., Venter, J. C., Dunlop, M. G., Hamilton, S. R., Petersen, G. M., de la Chapelle, A., Vogelstein, B., and Kinzler, K. W. Mutations of two PMS homologues : hereditary nonpolyposis colon cancer. *Nature*. 371: 75-80, 1994.
93. Alani, E., Chi, N. W., and Kolodner, R. The *Saccharomyces cerevisiae* Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and insertions. *Genes & Development*. 9: 234-47, 1995.
94. Fishel, R., Ewel, A., and Lescoe, M. K. Purified human MSH2 protein binds to DNA containing mismatched nucleotides. *Cancer Research*. 54: 5539-42, 1994.
95. Acharya, S., Wilson, T., Gradia, S., Kane, M. F., Guerrette, S., Marsischky, G. T., Kolodner, R., and Fishel, R. hMSH2 Forms Specific Mispair-Binding Complexes With hMSH3 and hMSH6. *Proceedings of the National Academy of Sciences of the United States of America*. 93: 13629-13634, 1996.
96. Prolla, T. A., Pang, Q., Alani, E., Kolodner, R. D., and Liskay, R. M. MLH1, PMS1, and MSH2 interaction during the initiation of DNA mismatch repair in yeast. *Science*. 265: 1091-3, 1994.
97. Li, G. M. and Modrich, P. Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human *MutL* homologs. *Proceedings of the National Academy of Sciences of the United States of America*. 92: 1950-4, 1995.
98. Cohen, M. M. and Levy, H. P. Chromosome instability syndromes. *Advances in Human Genetics*. 18: 4: 149, 365-71, 1989.
99. Murray, A. W. Creative blocks: cell-cycle checkpoints and feedback controls. *Nature*. 359: 599-604, 1992.
100. Maity, A., McKenna, W. G., and Muschel, R. J. The molecular basis for cell cycle delays following ionizing radiation: a review. *Radiotherapy & Oncology*. 31: 1-13, 1994.
101. Powell, S. N. and Abraham, E. H. The biology of radioresistance: similarities, differences and interaction with drug resistance. *Cytotechnology*. 12: 325-45, 1993.
102. Beamish, H. and Lavin, M. F. Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. *International Journal of Radiation Biology*. 65: 175-84, 1994.
103. Fornace, A. J., Jr., Kinsella, T. J., Dobson, P. P., and Mitchell, J. B. Repair of ionizing radiation DNA base damage in ataxia-telangiectasia cells. *Cancer Research*. 46: 1703-6, 1986.
104. Canman, C. E., Wolff, A. C., Chen, C. Y., Fornace, A. J., Jr., and Kastan, M. B. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. *Cancer Research*. 54: 5054-8, 1994.
105. Scott, D., Spreadborough, A. R., and Roberts, S. A. Radiation-induced G2 delay and spontaneous chromosome aberrations in ataxia-telangiectasia homozygotes and heterozygotes. *International Journal of Radiation Biology*. 66: S157-63, 1994.
106. Zhen, W., Evans, M. K., Haggerty, C. M., and Bohr, V. A. Deficient gene specific repair of cisplatin-induced lesions in Xeroderma pigmentosum and Fanconi's anemia cell lines. *Carcinogenesis*. 14: 919-24, 1993.

107. O'Connor, P. M., Ferris, D. K., Hoffmann, I., Jackman, J., Draetta, G., and Kohn, K. W. Role of the cdc25 phosphatase in G2 arrest induced by nitrogen mustard. *Proceedings of the National Academy of Sciences of the United States of America.* 91: 9480-4, 1994.
108. McKenna, W. G., Iliakis, G., Weiss, M. C., Bernhard, E. J., and Muschel, R. J. Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. *Radiation Research.* 125: 283-7, 1991.
109. Bernhard, E. J., Maity, A., Muschel, R. J., and McKenna, W. G. Increased expression of cyclin B1 mRNA coincides with diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine. *Radiation Research.* 140: 393-400, 1994.
110. Maity, A., McKenna, W. G., and Muschel, R. J. Evidence for post-transcriptional regulation of cyclin B mRNA in the cell cycle and following irradiation in HeLa cells. *EMBO Journal.* 14: 603-9, 1995.
111. Wang, J. C. DNA topoisomerases. *Current Opinions in Cell Biology.* 1: 533-535, 1985.
112. Slichenmyer, W. J., Nelson, W. G., Slebos, R. J., and Kastan, M. B. Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. *Cancer Research.* 53: 4164-8, 1993.
113. Koi, M., Umar, A., Chauhan, D. P., Cherian, S. P., Carethers, J. M., Kunkel, T. A., and Boland, C. R. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. *Cancer Research.* 54: 4308-12, 1994.
114. Boothman, D. A., Lee, I. W., and Sahajdak, W. M. Isolation of an X-ray-responsive element in the promoter region of tissue-type plasminogen activator: potential uses of X-ray-responsive elements for gene therapy. *Radiation Research.* 138: S68-71, 1994.
115. Boothman, D. A., Trask, D. K., and Pardee, A. B. Inhibition of potentially lethal DNA damage repair in human tumor cells by beta-lapachone, an activator of topoisomerase I. *Cancer Research.* 49: 605-12, 1989.
116. Boothman, D. A., Wang, M., Schea, R. A., Burrows, H. L., Strickfaden, S., and Owens, J. K. Posttreatment exposure to camptothecin enhances the lethal effects of x-rays on radioresistant human malignant melanoma cells. *International Journal of Radiation Oncology, Biology, Physics.* 24: 939-48, 1992.
117. Lamond, J. P., Kinsella, T. J., Wang, M., and Boothman, D. A. Radiation lethality enhancement with 9-aminocamptothecin: comparison to other topoisomerase I inhibitors. *Int. J. Radiat. Oncol. Biol. Phys.*, 36(2): 369-376, 1996.
118. Odegaard, E. and Boothman, D. A. DNA-dependent protein kinase (DNA-PK) does not play a role in adaptive survival responses to ionizing radiation. *Perspectives in Environmental Health Sciences.* 10 (1): 301-305, 1997.
119. Prelich, G., Kostura, M., Marshak, D. R., Mathews, M. B., and Stillman, B. The cell cycle-regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. *Nature.* 326: 471-475, 1987.
120. Boothman, D. A., Fukunaga, N., and Wang, M. Down-regulation of topoisomerase I in mammalian cells following ionizing radiation. *Cancer Research.* 54: 4618-26, 1994.
121. Yang, C.-Y., Odegaard, E., Wilson-Van Patten, C., and Boothman, D. A. Modulation of retinoblastoma control proteins by ionizing radiation. *Radiation Res.*, In Preparation.
122. Koi, M., Umar, A., Chauhan, D. P., Cherian, S. P., Carethers, J. M., Kunkel, T. A., and Boland, C. R. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. *Cancer Research.* 54: 4308-12, 1994.
123. Meyers, M., Theodosiou, M., Acharya, S., Odegaard, E., Wilson, T., Lewis, J. E., Davis, T. W., Vanpatten, C. W., Fishel, R., and Boothman, D. A. Cell cycle regulation of the human DNA mismatch repair genes *hMSH2*, *hMLH1*, and *hPMS2*. *Cancer Research.* 57: 206-208, 1997.
124. Hawn, M. T., Umar, A., Carethers, J. M., Marra, G., Kunkel, T. A., Boland, C. R., and Koi, M. Evidence for connection between the mismatch repair system and the G2 cell cycle checkpoint. *Cancer Research.* 55: 3721-5, 1995.
125. Boland, C. R. Roles of the DNA mismatch repair genes in colorectal tumorigenesis. *International Journal of Cancer.* 69: 47-49, 1996.
126. Nelson, W. G. and Kastan, M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. *Molecular & Cellular Biology.* 14: 1815-23, 1994.
127. Canman, C. E., Gilmer, T. M., Coutts, S. B., and Kastan, M. B. Growth factor modulation of p53-mediated growth arrest versus apoptosis. *Genes & Development.* 9: 600-11, 1995.

128. Lane, D. P., Midgley, C. A., Hupp, T. R., Lu, X., Vojtesek, B., and Picksley, S. M. On the regulation of the p53 tumour suppressor, and its role in the cellular response to DNA damage. *Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences.* 347: 83-7, 1995.
129. Lane, D. P. The regulation of p53 function: Steiner award lecture. *International Journal of Cancer.* 57: 623-1994.
130. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. Transcriptional activation by tetracycline in mammalian cells. *Science.* 268: 1766-1769, 1995.
131. Gossen, M. and Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. *Proceedings of the National Academy of Sciences of the United States of America.* 89: 5547-5 1992.
132. Planchon, S. M., Wuerzberger, S., Frydman, B., Witiak, D. T., Hutson, P., Church, D. R., Wilding, G., and Boothman, D. A. Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response. *Cancer Research.* 55: 3706-11, 1995.
133. Bronner, C. E., Baker, S. M., Morrison, P. T., Warren, G., Smith, L. G., Lescoe, M. K., Kane, M., Earabin, C., Lipford, J., Lindblom, A., and et al. Mutation in the DNA mismatch repair gene homologue hMLH1 associated with hereditary non-polyposis colon cancer. *Nature.* 368: 258-61, 1994.
134. Borts, R. H., Leung, W. Y., Kramer, W., Kramer, B., Williamson, M., Fogel, S., and Haber, J. E. Mismatch repair-induced meiotic recombination requires the pms1 gene product. *Genetics.* 124: 573-84, 1990.
135. Marra, G. and Boland, C. R. DNA repair and colorectal cancer. *Gastroenterology Clinics of North America.* 25: 755, 1996.
136. Umar, A., Buermeyer, A. B., Simon, J. A., Thomas, D. C., Clark, A. B., Liskay, R. M., and Kunkel, T. A. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. *Cell.* 87: 65-7, 1996.

Articles Published Under DOE Grant Period

Peer-Reviewed Journal Publications

- Boothman, D.A., Wang, M., and Lee, S.W.** Induction of tissue-type plasminogen activator by ionizing radiation in human malignant melanoma cells. *Cancer Res.* 1991; 51: 5587-5595.
- Boothman, D.A., and Lee, S.W.** Regulation of gene expression in mammalian cells following ionizing radiation. *Yokohama Medical Bulletin* 1992; 42:137-149.
- Boothman, D.A., Wang, M., Schea, R.A., Burrows, H.L., Strickfaden, S., and Owens, J.K.** Posttreatment exposure to camptothecin enhances the lethal effects of X-rays on radioresistant human malignant melanoma cells. *Int. J. Radiat. Oncol. Biol. Phys.* 1992; 24: 939-948.
- Fukunaga, N., Schea, R.A., Burrows, H.L., and Boothman, D.A.** Enhanced induction of tissue-type plasminogen activator in normal human cells compared to cancer-prone cells following ionizing radiation. *Int. J. Radiat. Oncol. Biol. Phys.* 1992; 24: 949-957.
- Boothman, D.A., Meyers, M., Fukunaga, N., and Lee, S.W.** Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells. *Proc. Natl. Acad. Sci., USA.* 1993; 90: 7200-7204.
- Boothman, D.A., Majmudar, G., and Johnson, T.** Immediate X-ray-inducible responses from mammalian cells. *Radiat. Res.* 1994; 138: 44-46.
- Boothman, D.A., Lee, I.W., and Sahijdak, W.S.** Isolation of an X-Ray-Responsive Element (XRE) in the promoter region of tissue-type plasminogen activator: potential uses of XREs for gene therapy?" *Radiat. Res.* 1994; 138: 68-71.
- Boothman, D.A., Davis, T.W., and Sahijdak, W.M.** Enhanced expression of thymidine kinase in human cells following ionizing radiation. *Int. J. Rad. Oncol. Biol. Phys.* 1994; 30(2): 391-398.
- Boothman, D.A., Meyers, M., Odegaard, E., and Wang, M.** Altered G₁ checkpoint control determines adaptive survival responses to ionizing radiation. 1996; *Mutation Research* 358(2): 143-153.
- Meyers, M., Davis, T.W., Van Patten, C., Odegaard, E., Fishel, R., and Boothman, D.A.** Cell cycle regulation of the human DNA mismatch repair genes, hMSH-2, hMLH-1 and hPMS-2. 1997; *Cancer Res.*, 57(2): 206-208.
- Boothman, D.A., Burrows, H., Yang, C-R., Odegaard, E., Wuerzberger, S.M., Planchon, S.M., Lewis, J.E., Pink, J., Meyers, M., Davis T.W., Van Patten, C., Sharda, N., and Kinsella, T.J.** Damage sensing mechanisms in human cells after ionizing radiation. 1997; *STEM CELLS* 15: 27-42.

- Limoli, C.L., Kaplan, M.I., Corcoran, J., Meyers, M., **Boothman, D.A.**, and Morgan, W.F. Chromosome instability and its relationship to other endpoints of genomic instability. 1997; *Cancer Research*, 57(24): 5557-5563.
- Davis T.W., Van Patten, C., Meyers, M., Kinsella, T.J., Boland, R., Fishel, R. and **Boothman, D.A.** Defective expression of the DNA mismatch repair protein, hMLH1, alters G₂/M arrest following ionizing radiation. 1998; *Cancer Res.*, 58(4): 767-778.
- Odegaard, E., Yang, C-R., and **Boothman, D.A.** DNA-dependent protein kinase (DNA-PK) does not play a role in adaptive survival responses to ionizing radiation. 1998; *Perspectives in Environmental Health Sciences*, 106: 301-305.
- Limoli, C.L., Hartmann, A., Shepard, L., Yang, C-R., **Boothman, D.A.**, Bartholomew, J., and Morgan, W.F. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. 1998; *Cancer Res.*, 58: 3712-3718.
- Boothman, D.A.**, Odegaard, E., Yang, C-R., Hosley, K., and Mendonca, M. Molecular analyses of adaptive survival responses (ASRs): role of ASRs in radiotherapy. 1998; *Human and Experimental Toxicology* 17: 448-453.
- Badie, B., Goh, C.S., Klaver, J., Herweijer, H., and **Boothman, D.A.** Combined radiation and p53 gene therapy of malignant glioma cells. 1999; *Cancer Gene Therapy* 6: 155-162.
- Mendonca, M.S., Howard, K.L., Farrington, D.L., Desmond, L.A., Temples, T.M., Mayhugh, B.M., Pink, J.J., and **Boothman, D.A.** Depayed apoptotic responses associated with radiation-induced neoplastic transformation of human hybrid cells. 1999; *Cancer Res.*, In Press.

Papers Published in Non-Peer-Reviewed Journals.

- Meyers, M., McCaffrey, J., Odegaard, E., and **Boothman, D.A.** X-ray-inducible transcripts and altered cell cycle regulation are involved in adaptive survival responses in human cells. 1995; *Radiat. Res.*, 141: 119-120.
- Boothman, D.A.**, Odegaard, E., Sahijdak, W.M., Meyers, M., and Yang, C-R. Role of cyclin A in adaptive survival responses. Contributed as part of the 10th International Congress of Radiation Research, 1997.
- Boothman, D.A.**, Odegaard, E., Yang, C-R., Hosley, K., and Mendonca, M. Molecular analyses adaptive survival responses (ASRs): role of ASRs in radiotherapy. 1998; *Belle Newsletter.*, In Press.

- Boothman, D.A.**, Hughes, E.N., and Pardee, A.B. The role of X-ray-induced DNA repair processes in mutagenesis and carcinogenesis. *Mutation and the Environment*, (M. Mendelsohn, Ed.), *Prog. Clin. Biol. Res.* 1990, 340E: 307-318.
- Meyers, M.**, Schea, R.A., Seabury, H., Petrowski, A., McLaughlin, W.P., Lee, I., and **Boothman, D.A.** Role of X-ray-induced genes and proteins in adaptive survival responses. In: "Low Dose Irradiation and Biological Defense Mechanisms", (Sugahara T, Sagan LA, & T Aoyama, Eds.) Elsevier Science Publishers B.V. 1992; 263-266.
- Boothman, D.A.** Molecular and cellular level studies (I) of adaptive survival responses in human cells.. In: "Low Dose Irradiation and Biological Defense Mechanisms", (Sugahara T, Sagan LA, & T Aoyama, Eds.) Elsevier Science Publishers B.V. 1992; 483-484.
- Boothman, D.A.** "Oncogenes and Tumor Suppressor Genes in Human Malignancies" edited by Christopher C. Benz and Edison T. Liu for Kluwer Academic Publishers. 1993.
- Boothman, D.A.**, Odegaard, E., Sahijdak, W.M., Meyers, M., and Yang, C-R. Lack of transcription factor alterations following ultra-low doses of ionizing radiation. In: *Radiation Research 1895-1995 Congress Proceedings*, 10th International Congress of Radiation Research, Wurzburg, Germany, Vol. 2: 676-681, 1996.
- Sharda, N.**, Yang, C-R., Kinsella, T.J., and **Boothman, D.A.** Radiation Resistance. In: *Encyclopedia of Cancer*, (Bertino, J.R., ed.) Academic Press, 1996; Vol III: 1409-1419.
- Davis, T.W.**, Wilson-Van Patten, C., Yang, C-R., Sharda, N., Meyers, M., Kinsella, T.J., and **Boothman, D.A.** Trasncriptional Responses to damage created by ionizing radiation. In: "DNA Damage and Repair, Vol. 2:DNA Repair in Higher Eukaryotes, (Nickoloff, J.A. and Hoekstra, M., eds.). Humana Press, Inc., Totowa, NJ. pp. 223-261, 1998.

Articles Published Under DOE Grant Period

Peer-Reviewed Journal Publications

- Boothman, D.A.**, Wang, M., and Lee, S.W. Induction of tissue-type plasminogen activator by ionizing radiation in human malignant melanoma cells. *Cancer Res.* 1991; 51: 5587-5595.
- Boothman, D.A.**, and Lee, S.W. Regulation of gene expression in mammalian cells following ionizing radiation. *Yokohama Medical Bulletin* 1992; 42:137-149.
- Boothman, D.A.**, Wang, M., Schea, R.A., Burrows, H.L., Strickfaden, S., and Owens, J.K. Posttreatment exposure to camptothecin enhances the lethal effects of X-rays on radioresistant human malignant melanoma cells. *Int. J. Radiat. Oncol. Biol. Phys.* 1992; 24: 939-948.
- Fukunaga, N., Schea, R.A., Burrows, H.L., and **Boothman, D.A.** Enhanced induction of tissue-type plasminogen activator in normal human cells compared to cancer-prone cells following ionizing radiation. *Int. J. Radiat. Oncol. Biol. Phys.* 1992; 24: 949-957.
- Boothman, D.A.**, Meyers, M., Fukunaga, N., and Lee, S.W. Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells. *Proc. Natl. Acad. Sci., USA*. 1993; 90: 7200-7204.
- Boothman, D.A.**, Majmudar, G., and Johnson, T. Immediate X-ray-inducible responses from mammalian cells. *Radiat. Res.* 1994; 138: 44-46.
- Boothman, D.A.**, Lee, I.W., and Sahijdak, W.S. Isolation of an X-Ray-Responsive Element (XRE) in the promoter region of tissue-type plasminogen activator: potential uses of XREs for gene therapy?" *Radiat. Res.* 1994; 138: 68-71.
- Boothman, D.A.**, Davis, T.W., and Sahijdak, W.M. Enhanced expression of thymidine kinase in human cells following ionizing radiation. *Int. J. Rad. Oncol. Biol. Phys.* 1994; 30(2): 391-398.
- Boothman, D.A.**, Meyers, M., Odegaard, E., and Wang, M. Altered G₁ checkpoint control determines adaptive survival responses to ionizing radiation. 1996; *Mutation Research* 358(2): 143-153.
- Meyers, M., Davis, T.W., Van Patten, C., Odegaard, E., Fishel, R., and **Boothman, D.A.** Cell cycle regulation of the human DNA mismatch repair genes, hMSH-2, hMLH-1 and hPMS-2. 1997; *Cancer Res.*, 57(2): 206-208.
- Boothman, D.A.**, Burrows, H., Yang, C-R., Odegaard, E., Wuerzberger, S.M., Planchon, S.M., Lewis, J.E., Pink, J., Meyers, M., Davis T.W., Van Patten, C., Sharda, N., and Kinsella, T.J. Damage sensing mechanisms in human cells after ionizing radiation. 1997; *STEM CELLS* 15: 27-42.

- Limoli, C.L., Kaplan, M.I., Corcoran, J., Meyers, M., **Boothman, D.A.**, and Morgan, W.F. Chromosome instability and its relationship to other endpoints of genomic instability. 1997; *Cancer Research*, 57(24): 5557-5563.
- Davis T.W., Van Patten, C., Meyers, M., Kinsella, T.J., Boland, R., Fishel, R. and **Boothman, D.A.** Defective expression of the DNA mismatch repair protein, hMLH1, alters G₂/M arrest following ionizing radiation. 1998; *Cancer Res.*, 58(4): 767-778.
- Odegaard, E. Yang, C-R., and **Boothman, D.A.** DNA-dependent protein kinase (DNA-PK) does not play a role in adaptive survival responses to ionizing radiation. 1998; *Perspectives in Environmental Health Sciences*, 106: 301-305.
- Limoli, C.L., Hartmann, A., Shepard, L., Yang, C-R., **Boothman, D.A.**, Bartholomew, J., and Morgan, W.F. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. 1998; *Cancer Res.*, 58: 3712-3718.
- Boothman, D.A.**, Odegaard, E., Yang, C-R., Hosley, K., and Mendonca, M. Molecular analyses of adaptive survival responses (ASRs): role of ASRs in radiotherapy. 1998; *Human and Experimental Toxicology* 17: 448-453.
- Badie, B., Goh, C.S., Klaver, J., Herweijer, H., and **Boothman, D.A.** Combined radiation and p53 gene therapy of malignant glioma cells. 1999; *Cancer Gene Therapy* 6: 155-162.
- Mendonca, M.S., Howard, K.L., Farrington, D.L., Desmond, L.A., Temples, T.M., Mayhugh, B.M., Pink, J.J., and **Boothman, D.A.** Depayed apoptotic responses associated with radiation-induced neoplastic transformation of human hybrid cells. 1999; *Cancer Res.*, In Press.

Papers Published in Non-Peer-Reviewed Journals.

- Meyers, M., McCaffrey, J., Odegaard, E., and **Boothman, D.A.** X-ray-inducible transcripts and altered cell cycle regulation are involved in adaptive survival responses in human cells. 1995; *Radiat. Res.*, 141: 119-120.
- Boothman, D.A.**, Odegaard, E., Sahijdak, W.M., Meyers, M., and Yang, C-R. Role of cyclin A in adaptive survival responses. Contributed as part of the 10th International Congress of Radiation Research, 1997.
- Boothman, D.A.**, Odegaard, E., Yang, C-R., Hosley, K., and Mendonca, M. Molecular analyses adaptive survival responses (ASRs): role of ASRs in radiotherapy. 1998; *Belle Newsletter.*, In Press.
- Boothman, D.A.**, Hughes, E.N., and Pardee, A.B. The role of X-ray-induced DNA repair processes in mutagenesis and carcinogenesis. *Mutation and the Environment*, (M. Mendelsohn, Ed.), *Prog. Clin. Biol. Res.* 1990, 340E: 307-318.

- Meyers, M., Schea, R.A., Seabury, H., Petrowski, A., McLaughlin, W.P., Lee, I., and **Boothman, D.A.** Role of X-ray-induced genes and proteins in adaptive survival responses. In: "Low Dose Irradiation and Biological Defense Mechanisms", (Sugahara T, Sagan LA, & T Aoyama, Eds.) Elsevier Science Publishers B.V. 1992; 263-266.
- Boothman, D.A.** Molecular and cellular level studies (I) of adaptive survival responses in human cells.. In: "Low Dose Irradiation and Biological Defense Mechanisms", (Sugahara T, Sagan LA, & T Aoyama, Eds.) Elsevier Science Publishers B.V. 1992; 483-484.
- Boothman, D.A.** "Oncogenes and Tumor Suppressor Genes in Human Malignancies" edited by Christopher C. Benz and Edison T. Liu for Kluwer Academic Publishers. 1993.
- Boothman, D.A.**, Odegaard, E., Sahijdak, W.M., Meyers, M., and Yang, C-R. Lack of transcription factor alterations following ultra-low doses of ionizing radiation. In: Radiation Research 1895-1995 Congress Proceedings, 10th International Congress of Radiation Research, Wurzburg, Germany, Vol. 2: 676-681, 1996.
- Sharda, N., Yang, C-R., Kinsella, T.J., and **Boothman, D.A.** Radiation Resistance. In: Encyclopedia of Cancer, (Bertino, J.R., ed.) Academic Press, 1996; Vol III: 1409-1419.
- Davis, T.W., Wilson-Van Patten, C., Yang, C-R., Sharda, N., Meyers, M., Kinsella, T.J., and **Boothman, D.A.** Trasncriptional Responses to damage created by ionizing radiation. In: "DNA Damage and Repair, Vol. 2:DNA Repair in Higher Eukaryotes, (Nickoloff, J.A. and Hoekstra, M., eds.). Humana Press, Inc., Totowa, NJ. pp. 223-261, 1998.