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Abstract

Optimal estimation theory has been applied to the problem of estimating process variables
during vacuum arc remelting (VAR), a process widely used in the specialty metals industry to
cast large ingots of segregation sensitive and/or reactive metal alloys. Four state variables were
used to develop a simple state-space model of the VAR process: electrode gap (G), electrode
mass (M), electrode position (X) and electrode melting rate (R). The optimal estimator consists
of a Kahnan filter that incorporates the model and uses electrode feed rate and measurement
based estimates of G, M and X to produce optimal estimates of all four state variables.
Simulations show that the filter provides estimates that have error variances between one and
three orders-of-magnitude less than estimates based solely on measurements. Examples are
presented that verify this for electrode gap, an extremely important control parameter for the
process.
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Introduction

Vacuum arq remelting (VAR) is a process used throughout the specialty metals industry for o$.~~

controlled casting of segregation sensitive and reactive metal alloy ingots. Of particular
importance in the former group are nickel-base superallo ys, whereas common reactive metal
aIlo ys include titanium and zirconium alloys. In this process, a cylindrically shaped, alloy
eleetrode is loaded into the water-cooled, copper crucible of a VAR furnace, the fi.umace is
evacuated, and a DC arc is struck between the electrode (cathode) and some start material (e.g.
metal chips) at the bottom of the crucible (anode). The arc heats both the start material and the
eleetrode tip, eventually melting both. As the electrode tip is melted away, molten metal drips
off and an ingot forms in the copper crucible. Because the crucible diameter is typically 0.05-
0.15 m larger than the electrode diameter, the electrode must be translated downward toward the
anode pool to keep the mean distance between the electrode tip and pool surface constant. This
mean distance is called the electrode gap. The objective of VAR is to produce an ingot of
appropriate grain structure that is free of segregation, porosity, shrinkage cavities, or any other
defects associated with uncontrolled solidification during casting. A schematic depiction of the
VAR process is presented in Figure 1.
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Figure 1. A schematic diagram of a VAR furnace.

In industrial practice, several process variables are monitored and recorded to track the progress
and evaluate the status of the VAR process. These include arc voltage, melting current,
electrode positio~ and electrode mass. Additionally, during VAR of premium grade
superalloys, drip-short frequency is added to this list. A drip-short occurs when a molten metal
droplet hanging down from the electrode tip contacts the surface of the molten pool atop the
ingot thereby causing a momentary interruption of the arc.* The frequent y of these events can
be related to the magnitude of the electrode gap. 2 Electrode gap can also be estimated horn the
magnitude of the mean arc voltage.3

Accurate estimation of electrode gap is critical to successfully carrying out the VAR process.
Variations in this parameter can cause defects to form in the ingot.4 Unfortunately, electrode



gap estimates based on arc voltage and drip-short frequency are very noisy and averaging over
tens of seconds is required to obtain sufficiently accurate information. Melt rate estimates based
on electrode weight measurements are worse still. It is common practice in many industrial melt
shops to estimate melt rate from the slope of a twenty minute sliding window of electrode mass
data.

The problem of noisy estimates directly impacts the problem of process control. Commanded
electrode velocity is dependent on average drip-short frequency or arc voltage for feedback.
This makes for a highly damped electrode drive system that is unable to react to process
transients and upsets in a timely fashion. Melt rate estimates are either so noisy or so highly
damped that active current control using melt rate estimates for feedback is not practical.
Common industrial practice requires that the melting current be controlled to a constan~ steady-
state value characteristic of a material and electrode/ingot size. Occasionally a shop will use
measured melt rate to trim around the steady-state current.

This paper focuses on the development of a VAR process filter that facilitates acquiring
accurate, instantaneous variable estimates for the purpose of process monitoring and electrode
gap control. A dynamic model of electrode gap is developed and a discrete state-space model of
the process is formed in terms of four state variables: electrode gap (G), electrode mass (M),

electrode position (X), and electrode melting rate (R= M). The single input to the system is

electrode drive velocity, X, written as V below. An optimal estimator is then developed using
Kalman filter theory. The performance of the filter is evaluated using simulations. Electrode gap
data are presented from actual laboratory and industrial tests to verify the performance
improvements predicted by the simulations.

Filter Development

The electrode gap dynamics are described by the following differential equation:

G=iel–hhg–v. (1)

This equation states that, over a vanishingly short time interva~ the change in gap equals the

change in electrode length ( iel ) due to melting less the change in ingot height ( htig ) due to

mold filling and the change in electrode position due to its being driven down. The f~st term on
the right can be found by assuming that liquid metal leaves the surface as soon as it forms and

that the electrode tip surface is flat with an area given by && where & is the room temperature
cross-sectional area and & accounts for the effects of thermal expansion. The resulting
expression is .

ie, =
R

l%q&Ae

where pli~ is the liquid metal allo y densit y.

(2)

The second term in Eq. (1) is directly related to the f~st since the ingot is formed from material
melted off the electrode. The relationship is complicated by the fact that the ingot is being
cooled and its density is a function of both ingot height and radial ingot position. In steady-state,
it is assumed that the change in ingot height with time can be described by
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(3)

where K is a constant factor that corrects the room temperature electrodehngot area ratio (often
called the fill ratio) for thermal effects. This is born out in practice where it is found that, under
steady-state melting conditions, a linear drive speed is required to achieve a constant electrode
gap.

Substituting Eq.’s (2) and (3) into Eq. (1) gives the following expression for the time dependent
gap behavio~

(hG=J- ~–- –V=OR-V (4)
~fiqe Ae Ai

In practice, an average value for ct is estimated from melt data for a particular process.

Using the state-space formalism, the discrete time VAR process can be described by a matrix
equation of the form

Xn+l = Axn +Bun +NwR (5)

where A, B and N are the transition, input, and process noise matrices, respectively, x is the
state vector consisting of the four variables listed in the Introduction, and u is the control input
“vector” consisting only of the electrode drive speed. N operates on w, a vector characterizing
the uncertainty in the inputs that drive the plant as well as uncertainty in the plant itself. These
terms constitute the process noise. It is assumed that each component of w can be represented in
discrete time by a white sequence with zero-mean. In other words, the process noise is
uncorrelated and unbiased. The subscripts in Eq. (5) refer to time-steps in the discrete time
system. A, B and N are determined by considering the dynamics of the VAR process.

As seen above, changes in electrode gap are directly related to the relative velocities of the
growing ingot and moving, melting electrode. Converting Eq. (4) to discrete time and
accounting for process uncertainty, the electrode gap dynamics are described by

Gn+l =Gn +CYRnT-VnT-WXn(V) +ROTwan (6)

where T is the sample time, ~ is the nominal melt rate, w x, (v) quantifies the uncertainty in

electrode. position due to uncertain y in the electrode drive velocity, and w ~~ quantxles

uncertainty in ct. This uncertainty stems from surface variations in both the electrode and
crucible, variation in the electrode cross-sectional area due to voids, and fluctuating temperature
distributions in both the electrode and ingot.

The dynamics of the electrode mass are directly related to melt rate by

Mn+l =Mn–RnT. (7)

In words, the mass at twl is the mass at t. less what melted off in the time interval T.
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Position changes are tied directly to velocity according to

Xn+l =Xn +vn’I’+wxn(v). (8)

The position at t.+l is just the position at t. plus the distance moved in the last time step
corrected for the uncertainty in the electrode drive velocity.

Finally, the formulation assumes that the melt rate is a random variable with no driving term so
that the dynamics are simply described by

R~+l =R~ +WRn (9)

where w R~ quantfles the uncertain y in the melt rate. Note that Eq; (9) does not guarantee that

the melt rate will remain indefinitely at its initial value. Indeed, over a time period consisting of
many time steps it will randomly walk away from that value, the maximum step size of the walk
being determined by the uncertainty. In practice, the plant behavior differs from this because
one attempts to drive the melt rate with melting current. Insofar as the development of the falter
is concerned, this is irrelevant so long as one has correctly accounted for the process and
measurement noise sources.5

The development has assumed a straight electrode and crucible: & and Ai are not functions of
time. However, it is often the case that melting is performed with both tapered electrode and
crucible for the simple reason that a tapered casting is easier to remove from the mold. Because
of this, it is not uncommon for et to vary linearly by 10-20% over the duration of a VAR melt.
One may easily account for this non-random error by modeling the time-dependent behavior of
a, an exercise that adds complication to the filter development but nothing conceptually to the
way it works and performs. For this reason, the more complicated formulation is not given here.
However, a simple method of including this feature in the model is to linearize Eq. (4) about the
nominal values (W,~,Vo), and then add a new state variable Au=ct-@ where cx is now a
function of the amount of material melted.

Making appropriate substitutions, Eq. (5) can be written as

(lo)

which relates the electrode gap, mass, position and melt rate at tW1 to their values at t~ given
both deterministic and random inputs. A, B and N can now be derived from inspection of Eq.’s
(6)-(10). They are

[1

100ctT

O1O–T
A=

0010

0001

(11)



,,

-T

o

T

o 1

B=

and

N=

–1

o

1

0

ROT O

00

00

01

(12)

(13)

Besides state variables and inputs, the system is also characterized by outputs, some, or al~ of
whkh can be measured. The outputs for this system are taken to be electrode gap, mass and
position. The output equation is then given by

[1[
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Mn =C
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Rn

Again by inspection, it is seen the C must be given by
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Assuming that all outputs can be measured, the measurements at t. are modeled by
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(15)

(16)

where the elements of the column vector, Vn, characterize the measurement noise (assumed
white with zero mean) present in the gap, mass and position measurements.G

Given the process and measurement models embodied in Eq.’s (6)-(16), a Kalman filter (or
optimal state observer) can be constructed using known methods the details of which are
presented in standard texts on modern control system design.7 The equation for the filter in
discrete time is

in+l = Afin +Bun +M~(zn –Ckn) (17)



where & B and C are as defined above for the plant, and a “hat” over a variable denotes an

estimate. in +1 is the predicted system state at t.+l estimated from measurements and the

estimated state at tn. The Kahnan matrix, MK, is chosen so as to minimize the error covariance
of the estimated variables relative to their true values and can be derived from the steady-state
process and measurement noise covariances. There are as many columns in MK as measured
system outputs, and as many rows as state variables. In the present application, MK is a 4x3
matrix. Off-diagonal elements arise because of couplings between the variables. For example,

d is related to the measured values of all three outputs since WX,(V1 is a position term and

melt rate is directly related to electrode mass (Eq. (6)). Therefore, the fwst row of MK contains
all non-zero values. On the other hand, there is no measurement for a and, thus, no
corresponding element in MK. The difference term in Eq. (17), called the innovation, goes to
zero only in the case where the measurements are noise free and match perfectly the model
predictions. In this situation, the future state is perfectly predicted from the present state by the
system model, and all estimated values exactly equal the actual values. This situation never
holds in practice.

The Kahnan filter produces estimates of the future state and current outputs. These estimates are
tied to process and measurement noise through a model of the system according to an optimal
weighting scheme. If the process inputs and parameters are known with a high degree of
precision relative to the measured outputs, the estimates will not be greatly influenced by the
measurements, i.e. the filter ‘knows” that the measurements cannot be trusted. In this case, the
elements of MK will be very small and the estimator will be model based. The filter simply
takes advantage of the fact that the state of the system is nearly completely determined by the
physical constraints placed on it by the inputs and process variables coupled with knowledge of
the previous state. On the other hand, if relatively exact measurements are available, the
estimator will weigh them more heavily than the process model and the falter will be
measurement based. Obviously, if all the outputs can be measured exactly, they do not need to
be estimated.

Filter Performance

A block diagram of the VAR process model coupled to the Kalman filter is shown in Figure 2.
A computer program was written using the Matlab~ programming language (The Math Works,
Inc., Natick, MA) for the purpose of evaluating the improvement in the Kalman estimated
outputs relative to the measured values. The simulations assume a 0.432 m (17 in.) diameter
electrode being melted into 0.508 m (20 in.) diameter ingot at a nominal melt rate of 0.060 kg/s
(476 lb/hr) and electrode drive speed of -1.8x10-5 m/s (2.6 in./hr). These parameters are typical
for VAR of Allo y 718. ot is taken to be 2.94x104 mlkg based on experience melting this type
and size material at this melt rate. This number is about 9% larger than what would be obtained
by simply setting E=K=l in the expression for U. In the simulations, a sample time of 4 seconds
was used.

The random sequences characterizing the process and measurement noise terms are each
described by a standard deviation and variance. In practice these are determined through process
characterization. For the simulations, OX(W was set to 2.0x104 m corresponding to an
uncertainty in V of 5.0x10-7 m/s, and @ was set to 1.0x1C)4 kg/s. ~a was estimated to be about
5% of the nominal value, or 1.3x10-5 fig, by assuming that the electrode and crucible radii
vary by only 4.001 m over the duration of the melt, that the density is known to within *1OO
kg/m3, and that the other parameters are constant. The measurement noise (standard deviation)
terms were set to 5X10-3m, 1 kg and 10-3 m for vG, vM and Vx, respectively. These are believed
to be typical of the measurement capabilities available on many VAR furnaces in industry.,
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Figure 2. A block diagram showing the VAR process coupled to the Kalman
falter. The Process Model replaces the actual plant in the simulations.

Figure 3 shows a plot of G and 6 (its filtered value) resulting from a 5000 s simulation for an
open-loop system (no feedback). V was set to 1.755 x10-5 m/s in this simulation. The figure

demonstrates that G (Ge) tracks the “true” gap (G) very well. Drift in the gap from the nominal
value of 0.01 m is due to the uncertainties in the system. Because of the random errors in the
system, the difference between the gap and its nominal value follows a random walk trajectory.

0.0115

0,011

0.0105

0.01

0.0095

Eml
l“’’’’’’’(’’’’’’’’”1

I I I I

o 1000 2000 3000 4000 5000

Time (S)

Figure 3. Simulated open-loop estimation of electrode gap.



~ is shown in Figure 4 plotted with the simulated measurement based estimate of electrode
gap. The noise reduction achieved through Kalman filtering is readily apparent. This effect is
seen in Table I, where error variances are tabulated for the measured and corresponding
estimated outputs of the simulation. Note that the variances in the simulated measurements
approximately equal the squares of the specifkd measurement noise terms, as required. Also

note that the error variance in & may change by as much as a factor of two from simulation to
simulation whereas the error variances for the other estimates are more stable.

0.03

0.0.25

0.02

0.015

0.01

0.005

0

-0.005

-0.01

1- J

1 1 I 1

0. 1000 2000 3000 4000 5000

Tittw(S)

Figure 4. Simulated measured (Gz) and filtered (Ge) electrode gap.

Table I. Variances of measured (-) and filtered (A) variables.

U-w@ – G) 2.5x10-5

Vizr.(d – G) 1.3X10-8

~Var.(A7 –M) 0.99

F=t--i
Var.(i – x) 2.3x10-Y



Gap estimation was found to be sensitive to either increases or decreases in the gap
measurement error indicating that the estimator, as defined, is neither completely model- nor
measurement based. However, estimates are insensitive to measurement error once it has been
increased beyond about 4.1 m, indicating that the estimator is model based under these
measurement conditions. In other words, if one cannot measure gap to better thfi _W.1 m under
these’ process conditions, the measurement is irrelevant to gap estimation. On the other hand, the
estimator is completely measurement based with respect to gap measurement at a measurement
resolution of&5x104 m. At this resolution, the estimator becomes superfluous.

Simulation shows that accurate mass measurements (+1 kg) are beneficial for electrode gap
estimation. However, improvements beyond this have little effect. Increasing the measurement
error adversely affects the gap estimate up to about HO kg. Under the process conditions
investigated, one might as well have no mass measurement at all if the error is increased beyond
this value. Thus, with respect to electrode mass measurement, the estimator is model based
beyond a measurement error of about 90 kg and measurement based at measurement errors
less than Al kg.

Simulation further indicates that gap estimation is not improved significantly by improving the
resolution of the position measurement under the simulation conditions investigated. One must
resist concluding from this that exact position measurements are of little intrinsic value to gap
estimation. This depends on the uncertainties characterizing thes ystem. For example, if one has

poor ram control, the error covariance in ~ may be significantly reduced by increasing the
position measurement resolution. In genera~ complete system characterization is required
before one can decide how to improve the estimation of important process variables.

Verification of Simulation Results for Electrode Gap

The simulations were performed for hypothetical situations considered to be typical of actual
VAR processes. It is appropriate to show some sample data to verify that significant reductions
in the noise characteristics of parameter estimates can be realized in actual practice by using
Kahnan filtering. As pointed out in the introduction, accurate electrode gap estimation is
necessary for successful control of the VAR process. Electrode gap data from two test melts are
shown below. Each example includes measurement based and Kahnan faltered estimates of
electrode gap. It should be noted that the falters used in the two examples differ in their details
from the one developed above. This is because the tests involved estimation of additional
control variables important for controlling aspects of the process not discussed in this paper.
Information concerning these tests and the estimators they employed is unavailable for
publication at this time. However, the dynamics described by Eq.’s (6)–(9) are captured in these
more general filters and the examples are appropriate to illustrate the improvements in noise
reduction realized by Kalman filtering.

The data shown in Figure 5 were acquired during VAR of 0.203 m diameter Alloy 718
electrode into 0.254 m diameter ingot on the VAR i%mace at Sandia National Laboratories.
Neither the electrode nor the crucible were tapered. Because there is no mass transducer (load
cell) on this i%mace, the measurement uncertainty is infinite for electrode mass. Melt rate
derived from position measurements during the interval shown was estimated to be 0.040M.002
kg/s and the drive speed noise was similar to that used for the simulations. A high resolution
encoder is mounted on the furnace so that the resolution in X was 10-5 m. The noise variance in
the drip-short based measurement of G was 2.6x10-5 m2. In comparison, the variance in the
Kalman filter estimate of G was 5. 1X10-9m2 giving a signal to noise improvement of about 70.
Drive speed control decisions were made every two seconds based on the filtered estimates. The
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controller was stable at very tight gaps (0.006 m). Intrusive gap measurements accomplished by
driving the ram down until a dead short was achieved demonstrated that the controller was
accurate to within the measurement error (M.001 m).
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Figure 5. Plot of Kalrnan faltered gap estimate (solid w/squares)
and estimates based on the measured drip short fkquency.

The data shown in Figure 6 were acquired during VAR of Allo y 718 of the same size and under
similar conditions to those for which the simulation was performed. Electrode gap was actively
controlled during this melt based on feedback from the estimator. TWO signiilcant differences
between the filter used for the simulation and the one used in the actual test melt must be noted.
First, the filter was designed based on a load cell transducer uncertainty of A.5 kg. Second,
because of a problem with data transfer from the position transducer, electrode position
measurements were not available for this test requiring’ an infinite position uncertainty to be
used in the filter design. Even without the position measurement, the reduction in noise of the
faltered gap estimates relative to those based on drip-short measurements is clearly significant.
The sudden change at -9.05 hours was the result of a commanded gap step tlom 0.012 m to
0.010 m.

Discussion

Optimal estirna~ion tecluiques were originally developed for application in systems where
measurements of key process variables are either very noisy or unavailable. Under such
circumstances, a predictive process model can be incorporated into a process “observer” as
depicted in Figure 2. Given the uncertainties in the measurements and mode~ the observer
(Kalman filter) can produce estimates of the state variables of known uncertainty. If no
measurement is available for a particular variable, the measurement uncertainty is set to infinity
and the filter produces a purely model based estimate of the variable. It is natural to apply this
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technology to estimating electrode gap in the VAR process where one encounters noisy
measurements that are often spoiled by common process disturbances.

3

2.5

2

1.5

1

0.5

0 1 .,...,...,.,...1.1
#.6 8.8 9 9.2 9.4

lime (hrs]

Figure 6. Plot of Kalman filtered gap estimate (solid w/squares)
and estimates based on the measured drip short Iiequency.

Given the noise inherent in drip-short and arc voltage data, it is to be expected that estimates of
electrode gap based on these data will be highly uncertain after only a few seconds of data
acquisition. Often the uncertain y in the estimate exceeds the magnitude of the control
reference. However, given the process inputs and noise characteristics, and the last state
estimate, one can determine, based on physics alone, how much the gap could possibly have
changed during the last time step. It is this physics based limitation that the filter imposes on the
gap measurement and, for this reason, this type of filtering is sometimes called “physical
filtering.” Physical filtering constrains the estimate to be consistent with the physical situation
as described by the model and the measurements. In the case of electrode gap, the filter requires
that the estimated change from one time step to the next be consistent with the electrode
velocity and melting rate as described by Eq. 6 as well as the measurement based estimation.
The relative weights of the two estimates are reflected in the elements of the Kahnan gain
matrix and depend on the process and measurement uncertainties.

Though the focus of this paper has been electrode gap estimation, it has been made clear that the
falter produces estimates of all state variables, including melt rate (Figure 2). Melt rate was not
included as a measurement because of the difilculty involved with obtaining” it from electrode
mass measurements as mentioned in the Introduction. This difficulty arises because of the noise
introduced into the measurement based estimate by taking the derivative of the mass transducer
output. Determining the slope over long time intervals (10-20 minute) of mass data helps with
the noise but introduces unacceptable lag into the estimate and effixtively “erases” short term



transients. The simple filter developed for this paper effectively addresses this issue and its use
in an actuals ystem would, no doubt, result in a significant improvement in melt rate estimation.
However, no experimental test involving this particular falter has been performed to confirm
this. The latest generation of VAR controllers developed by Sandia National Laboratories and
the Specialty Metals Process Consortium does, inde~ employ Kalman filtering to produce
accurate, relatively noise-free melt rate estimates, but the filtering’ relies on “asignflcantly more
complex state-space model with respect to electrode melting dynamics. As a result, the melt rate
estimate is affected by variables missing from Eq. (9) and the results are not germane to this
study. This more advanced technology is described in a disclosure recently submitted to the
United States Patent OffIce and further information related to it is not yet available for external
publication.

Conclusions

The following conclusions can be made from this work

1. Kahnan filtering provides a superior means of estimating electrode gap for VAR process
control. The estimates are significantly less noisy and provide the basis for improving both the
stability and response of the control system.

2. The Kalman filter development described here provides a means of estimating electrode
melting rate that is not dependent on differentiating the load cell output. Hence, the estimates
are not heavily damped and are useful for electrode gap control purposes.

3. The error variance of the gap estimate could be affected by either increasing or decreasing the
gap measurement uncertainty indicating that, under the process conditions of interest, the
estimator was neither completely model based nor measurement based. Increasing the
measurement error beyond M. 1 m is equivalent to having no gap measurement at all.

4. An accurate electrode mass measurement is beneficial for electrode gap control up to an
accuracy of& 1 kg under the process conditions investigated. Increasing the mass measurement
error to &O kg is tantamount to having no mass data at all.

5. Increasing or decreasing the position measurement error has little effect unless one has poor
ram control. With poor ram contro~ accurate, precise position measurement is beneficial.
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