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Abstract

As a joint is loaded, the tangent stiffness of the joint reduces due to slip at inter-
faces. This stiffness reduction continues until the direction of the applied load is
reversed or the total interface slips. Total interface slippage in joints is called macro-
slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiff-
ness immediately rebounds to its maximum value. This occurs due to stiction effects at
the interface. Thus, for periodic loads, a softening and rebound hardening cycle is pro-
duced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-
structures, this hysteretic trajectory can be approximated using simple polynomial
representations. This allows for complex joint substructures to be represented using
simple non-linear models. In this paper a simple one dimensional model is discussed.

Introduction

In many structural systems, joints and interfaces are the primary subcomponents respon-
sible for energy loss. Although the mechanisms which produce energy loss in joints and
interfaces are highly non-linear, in many structural systems, the majority of all dynamics
behave in a nearly linearly fashion, therefore, damping due to joints and interfaces are
usually approximated in some linear form (i.e. Rayleigh or modal damping[1]).

The use of more predictive models of joints and interfaces in structural systems is
important to the development of newer methodologies of design. In the past, structural
design was performed by using prototypes and experimental analysis. Numerical
dynamic analysis was usually only used after the initial design was complete when a bet-
ter understanding of dynamic response was required. When using numerical analysis in
this fashion, linearized methods of modeling damping developed from experimental
data, such as Rayleigh or modal damping approximations, were sufficient. At present,
newer methodologies of structural design are being developed. In these methodologies,
predictions of the response of a system will be produced without the use or with little or
no use of full system experimental data. These predictions will be made using numerical
models developed primarily from design drawings and physics level experiments. To
assure the accuracy of these predictions, better methods of modeling significant
“unknowns” such as damping in joints and interfaces are needed.

*This work was performed at Sandia National Laboratories, which is operated by Lockheed Martin Corp.
for the U.S. Department of Energy under contract No. DE-AC04-94AL.85000.
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Established methods for modeling damping are simply no longer acceptable for the devel-
opment of newer methodologies of design. In particular Rayleigh and modal damping is

limited in a number of respects.

* Rayleigh or modal damping parameters are usually approximated using experimen-
tal observations. Therefore, these method of modeling damping are inherently ad-
hoc and empirical. ,

* Joints not only damp the structure but also produce variations in structural stiff-
nesses - variations which are not predicted using Rayleigh or modal damping mod-
els. These approximations usually produce over-stiff predictions of structural
response.

» Rayleigh and modal approximations do not correctly represent variations in energy
loss per cycle due to variations in excitation amplitude. These approximations pre-
dict that the energy loss per cycle in a joint is proportional to the amplitude of exci-
tation raised to the second power; however, experiments show that for a real joint,
the exponent is usually between two and three.

In order to predictively model the response of a jointed structure without using ad-hoc
methods based on system level experimental analysis, a better understanding of the phys-
ics of a joint in a structure is required. From these physics, predictive models of joint and
interface substructures can be developed.

In general, joint interface motion can be very complicated, however global joint response
is usually not complex. Therefore, the response of most joints can be represented using
relatively simple, low order models. These low order models are advantageous froma
computational standpoint since they can quickly and efficiently determine the response of
a jointed sub-structure when integrated into a complex, high order representation of the
total structure. Of course, the parameters used in these reduced order models are highly
dependent on the constitutive relationships describing interface motion. Therefore, various
levels of modeling are required.

In the following sections, a high order, one dimensional joint model will be developed.
This model will be constructed using the finite element method. From this high order
model, a reduced order model of joint dynamics will be constructed. This low order model
will allow for the simple and efficient solution of transient dynamics when integrated into
a full system model.

A High Order One Dimensional Joint Model

Figure 1 is an illustration of a simple one dimensional joint. This joint consist of two bars
held together by a uniform normal load, N. A load, f(), is applied to the end of this joint.

As aresult of this applied load, the upper bar displaces a distance u (x) and the lower

upper
bar displaces a distance u;,,,,.(x) . The two bars undergo different displacements due to

slippage at the interface. This slippage produces energy absorption in the joint.
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Figure 1: Model of a one dimensional joint

To understand the physics of the joint in the Figure 1 in greater detail, a finite element
model of the joint was developed and used to simulate joint behavior. The description of
this model is given in Appendix A. Model parameters were assumed to be those given in
Table 1. The resulting model contained 160 physical degrees of freedom. Simulations
were performed to determine the response of the joint to a sinusoidal excitation. Figure 2
shows a sampling of the results of these simulations.Other researchers have obtained sim-
ilar results [2]. Results compared well to the closed form solution given by Goodman [3].

: L : b e : force
i 6 .2
E elastic modulus 30.0x10 lbf/ln
A cross sectional area 1.0 inz
L length of joint 20.0 in
L coefficient of friction 0.25
.2 ) .
NV normal load 1.0 lbf/ n displacement

Table 1: Parameters for Example Problem ~ Figure 2: Hysteretic res;;onse of the joint

to a harmonic load

A Low Order Joint Model

In the above section, a one dimensional joint was modeled and simulated using the finite
element solution shown in Appendix A. This finite element model contained a (relatively)
large number of degrees of freedom; however, the response of the joint to a harmonic exci-
tation was relatively simple (see Figure 2). In many cases, for joints not undergoing
macro-slip, as the geometric complexity of the joint become greater, the complexity of
joint response increases very little; therefore, the added complexity of using a large num-
ber of degrees of freedom to represent the response of a joint in simulations does little to




improve the fidelity of the total solution. Thus, a reduced order representation of joint
response is highly desirable. In this section, a reduced order representation of the above
one dimensional joint is discussed.

A reduced order representation of the above one dimensional joint can be derived by
understanding the behavior of the joint. If the excitation force were not a harmonic excita-
tion but a ramp excitation which started at zero and progressed to a large load level, the
force displacement curve would look similar to that shown in Figure 3. The initial slope of

this curve, k,, , , is the maximum stiffness of the joint. This stiffness occurs at the begin-

ning of the ramp since all points along the interface are in stuck together and the joint
behaves as if its interfaces were welded. The minimum slope of this curve, k is the
stiffness which the joint obtains immediately before macro-slip. The maximum force
which the joint can withstand, f,, ., will occur at the point of minimum stiffness.
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Figure 3: Element of joint behavior

If the input force in the above example is not ramped up to f, . , but is increased to some
value less than f, . and then reversed, the stiffness of the system immediately returns to

k,,..- This is because points which are in slip must go into stick before they can go into
slip in the opposite direction. Therefore, at reversal, all points stick and the stiffness goes
to a maximum. After reversal a new trajectory can be approximated by knowing the dis-
placement and force at reversal, (d,, j;) , and by knowing the displacement, and force, and

stiffness at macro-slip,(d,, ., f1n 00 Kmin) -

Figure 4 illustrates how this approximation is derived. The trajectories of joint responses
are often not complicated, and therefore, can be approximated using simple polynomial

functions. The construction of a trajectory on reversal can be estimated by solving for a
fourth order polynomial representation which passes through (d,, f;) with aslopeof k,, .

maxr — max @2d with a slope of k. . This trajectory is recalculated

and passes through —-d



each time load reversal occurs. The result is a simple, yet reasonable, reduced order
approximation of joint response.

Aforce (b f)

load and displacement
reversal

displacement(inches)

Figure 4: The construction of a new trajectory after reversal

The above reduced order modeling methodology was applied to the example problem in
Figure 2. Trajectories from the two models where compared. Shown in Figure 5 is one of
those trajectories. As can be seen in this figure, the trajectories for the full order finite ele-
ment model and the low order model are very similar.
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Figure 5: Reduced and full order model response

There are a number of benefits to using the low order model presented above.

* As the level of micro-slip in the joint decreased, the order of the finite element model

has to be increased significantly to produce a reasonable response; however the order
of the reduced order model remains constant.

* As the number of degrees of freedom in the finite element model are increased, the

conditioning of the matrices in equation 4 (in Appendix A) becomes poorer. The low
order model does not exhibit this behavior.
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* As the number of degrees of freedom in the finite element model increases the time to
solve equation 4 also increases. In general, the reduced order model runs more quickly
than the finite element model.

* The low order model can also easily be integrated into a full body model in a structural
dynamics solution. By using the reduced order model discussed in this paper, the time

domain response of a 2084 [b, mass attached to the Figure 1 joint was simulated. Fig-

ure 6 shows the results from this simulation. There is no damping matrix in this simu-
lation, but, as expected, the hysteretic loss produces a finite amplitude response to a
harmonic force excitation on the mass.
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Figure 6: Time history response of jointed system.
to harmonic excitation

Conclusions and Future Work

In general, the simplified, reduced order model presented in this paper accurately repre-
sented the observed behavior of the higher over model. In the future, we propose to
expand the above method to solve for the reduced order non-linear response of a multi-
dimensional joint.
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Appendix #1: Finite Element Model of Figure #1 Type Joints

In this appendix, a finite element model for the joint shown in figure 1 is described. In
developing this model, it is assumed that

* The bars are thin, and therefore; the normal stress through the thickness
of the bars is a constant,

» The maximum shear force at the interface is given by,
B max = u N "

The equation of motion for a bar is given by

2
EAg—% - B | ()
x .

where

E = elastic modulus ( lbf/ inz) , A = cross sectional area of bar ( inz)

U= Uye, (X)), OF Uy, () in (in), and B = shear force (Iby) .

For the upper bar, the finite element, approximation of (1) is given by
f=arT+kK V) (2a)

upper ™~ upper

where ' = [Of(t)O Q-JT,TT = |:B1, B, ...ﬁN]T,

T T, .
Uupp or = [uu " 2...uu1\J is a vector of nodal displacements along the upper bar.

For the lower bar, the finite element approximation of (1) is given by

0 =-aT+K (2b)

lowerUlower
T T T r. :
where 0 = [0 0 .. O:I s Uper = [ul1, uly ulN] is a vector of nodal displace-

ments along the lower bar.

Combining equations 2a and 2b gives

F = AT +KU (2¢)

where F = f A = a ,K = Kupper 0 ,and U = Uupper )
0 —a 0 Klower Ulower

The vectors and matrices in 2c must be partitioned and rearranged into known and
unknown quantities before unknowns can be solved for. At any node either the displace-
ment or the shear force is known. If the displacement is known and the shear force is
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unknown, then the node is said to be a stick node. If the displacement is unknown and the
shear force is known, then the node is said to be a slip node.

The matrices in 2c can be partition into stick and slip nodes by using transformation

. 2Nx2N NxN '
matrices @ € R Y and @, e R where

f . u.. T.
Fp = QIF = slip , Up - Qlu — slip , Tp - QZT — slip ,
fstick stick Tstick
-1 A A, -1 Ki Kiz
A, = 0,AQ; = K, = 0,KQ] = :
A21 A22 K21 K22
ZNSiXNsi 2N! Nsic 2Nsic XNsi 2N ic. N.\-i
Allem lip IP,AIZESK :lpx rk,AZIEER tick lp’Azzegi stick® N stick

2N, x2N, 2N ;;,x2N,

22N, A2, 2N X 2N
slip slip slip stick stic s
Kje®R ,Koe®R Ky e R

n'ckXZNstick

; 2N,
4 5
" KyeR ,

N, are the number of slip nodes, N,;., are the number of stick nodes, and the subscripts

slip
slip and stick define quantities associated with slip and stick nodes.

Therefore, in partitioned form, equation 2c becomes

u u
fslip Uslip
l {
foi AL ALIT K, K| {Ysii
{ ; l
sip = 11 12 slip + 11 12 sip (Zd)
fu A21 A22 Tstick K21 K22 Uu
stick stick
l 1
L fstick Ustick

where the superscripts # and / define quantities associated with the upper and lower bars,

and the vectors f;;, f.,;), Uy, and Uy, have been further partitioned form to show

similar quantities.

l !

In the above set of equations there are 2N + N_,;, unknowns (U}, ,U; lip> Ul Yssicrs

slip»

and T, ., ); however there are only 2N equations. Therefore, an additional N,; , equa-

tions are needed to solve this problem. When nodes of the upper and lower bars are not
slipping, they are a fixed distance apart. That is

d=UY,-Ul. 3)

stick —




where d is a constant while the nodes are sticking. Equation 3 represents the additional
equations needed to solve this problem. ‘

Combining equations 2d and 3 gives

F T .
f.l:lip U:lip
filip A, Kii Kz App Uilip
) — Ay | Vetip = Ky Ky Ay IE 4
Fsick 0 0 [I —I] 0 Usick
fin'ck Uitick
L d ] | Toick |

In equation 4, all known parameters are on the right side and all unknowns on the left.
There are 2N + N,; ; equations and 2N + N,; , unknowns. Therefore, this equation can

be solved for by inversion once stick and slip nodes are defined.

Initially all nodes are stick nodes. Due to the applied load, stick nodes can then become
slip nodes and slip nodes can return to being stick nodes. The conditions of going from a
stick node to a slip node and visa versa is given below.

*If[B,]| > B,.qx then |B] = B, and the node is moved from the stick set to the slip

set.
* If Au, along its path goes to zero, the node is moved from the slip set to the stick set.

The above conditions along with equation 4 are all that are needed to solve for the
response of the Figure 1 joint to an applied force, f(¢) . This solution method works well

when the number of degrees of freedom are small. As the order of the system is increased,
the conditioning of the inverted matrix in equation 4 becomes poor.




