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Abstract: A set of stability analysis algorithms have been developed for analysis of large-
scale nonlinear applications on parallel computers, and applied to 2D and 3D
incompressible flow applications. These analysis tools include several continuation
algorithms for locating and tracking bifurcations and a linear stability analysis capability.
The continuation algorithms are developed to be readily linked to application codes that

already use Newton’s method.
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1. Introduction

The nonlinear stability of a system must be well understood in order to design, operate,
and control an engineering system with a reasonable level of certainty. While
sophisticated algorithms exist for studying the stability of numerical models consisting of
small sets of ODEs, they have not been broadly applied to the high-fidelity engineering
models that are being solved today on parallel computers. A set of tools for performing
stability analysis of large-scale nonlinear systems have been developed at Sandia National

Laboratories, and include the following algorithms:




_» Parameter continuation algorithms, including pseudo arc-length for locating solution
multiplicity

A turning point bifurcation (a.k.a. fold) tracking algorithm

¢ A Pitchfork (symmetry breaking) bifurcation tracking algorithm

» A Hopf bifurcation tracking algorithm

» A linear stability analysis tool for approximating vleading eigenvalues.

The bifurcation analysis algorithms are collected in the LOCA library, that is designed to
be readily interfaced with codes that already use a full Newton method. While results for
all the algorithms will be shown in the oral presentation, in the limited space available here
we briefly describe just the pitchfork bifurcation tracking algorithm. The algorithm is
demonstrated on a CFD application modeled by the MPSalsa code. This code is an
unstructured grid finite elemenf code that simulates incompressible reacting flows on
massively parallel computers [1,2,3,4] using a full Newton method and thé Aztec iterative

linear solver library [5].

2. Numerical Methods Overview

The algorithms fall into two distinct categories: a set of bifurcation analysis tools and an

eigensolver.

The bifurcation algorithms are used to detect regions of multiple steady states and
delineate regions of qualitatively different behaviors. The algorithms -currently
implemented include zeroth order, first order, and pseudo arc-length continuation
algorithms [6,7], a turning point bifurcation tracking algorithm, pitchfork bifurcation

tracking algorithm, and a Hopf tracking algorithm. An excellent review article on
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algorithms for performing numerical bifurcation analysis has recently been publisgd§fr I
Each of the algorithms was implemented in the LOCA library using bordering algorithms,
which require minimal intrusiveness to codes that are already set up to do a fully coupled
‘Newton method. All routines except the Hopf bifurcation tracking algorithm where
written to have just three main calls to the application code: (1) Calculate a residual vector
given a solution vector and a parameter value; (2) Calculate a Jacobian matrix given a
solution vector and a parameter value; and (3) Solve a linear system given a Jacobian
matrix and right hand side. Since the linear systems all involve the same Jacobian matrix
as solved by the steady-state code, these algorithms do not require modification of the
matrix fill routine, sparse matrix allocation, or parallel communication maps. The Hopf

tracking algorithm also requires the computation of a mass matrix (the coefficient matrix

of the time derivative terms) and a linear solver for a complex-valued matrix [9].

Due to limited space, only the outline of the pitchfork bifurcation tracking algorithm will
be shown. The algorithm is an extension of a usual Newton iteration for reaching a steady-

state solution vector x for a given parameter p, which is to solve

R(x, p) = O with Newton iteration Jdx = —R, 2.1

where R is the residual equations from the PDE discretization, J is the Jacobian matrix,

and Ox is the update to the latest estimate of the solution vector.

To locate a pitchfork bifurcation, we want to find the point on the symmetric solution
branch where one eigenvalue is zero. We use these conditions to formulate a Newton
method. To start the algorithm, a vector ¥ that is antisymmetric with respect to the

symmetry that is broken at the pitchfork is required. This vector is generated using an
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<2 7" eigensolver, by calculating the eigenvector associated with the eigenvalue that is crossing

zero at the pitchfork. The algorithm consists of a system of system of 2N, + 2 unknowns
(x,n, € and p), where N, is the length of x (and the order of J), n is the null vectors at
the pitchfork bifurcation, and € is a slack parameter representing the asymmetry in the
system. (If the numerical system is truly symmetric, then the algorithm will drive € to
zero, but if there is a slight asymmetry in the problem -- perhaps due to a nonuniform

mesh -- then € will be nonzero.) The 2N _+2 equations specifying the pitchfork

bifurcation are,

R(x,p)+e¥ = 0

J(x,pyn=20
(x,%) = 0 2.2)
I'n = 1.

The first equation specifies that the solution is a steady state when the slack parameter is
driven to zero, and the second equation specifies that the system is singular. The third
equation (containing an inner product) forces the solution vector x to be off of the
asymmetric branches, and the last equation normalizes the length of the null vector. The

form of I' , often chosen to be ¥, can be chosen by the user.

This algorithm does not require the user to formulate the pitchfork problem different from
the physical problem. The symmetry is found by the eigensolver. An alternative approach
requires the user to specify the symmetry being broken through meshing and boundary
conditions. This involves more user intervention and in some cases can be difficult to
implement, when the boundary conditions destroy the sparsity pattern of the finite element

method.




These equations are solved using a Newton method using W as an initial guess for n. A
bordering algorithm is used to solve the Newton step that requires six linear solves of the
matrix J, and is equivalent to solving the sizev 2N, +2 once. The biggest numerical
difficulty in solving for bifurcations using a bordering algorithm is that we use an iterative
solver (which is required for efficient solves of large systems) to solve the same matrix
which we are driving singular. However, we have found the iterative solvers work well

)Y

unless we try to locate the bifurcation to more than 4 digits of accuracy.

The algorithms and parallel implementation of linear stability analysis algorithms have
been detailed in published articles [10,11,12]. A linearization of the problem about a
steady state leads to a generalized eigenvalue problem. A Cayley transformation is used to
transform the eigen spectrum in a way that an Amoldi iteration will converge to the
eigenvalues of interest. We use the ARPACK library to perform the Arnoldi iteration
[13,14]. The main computational hurdle for a scalable algorithm is the solution of the
linear set of equations to sufficient accuracy with an parallel iterative matrix solver.
Details are Afound in a previous paper, which contains the approximation of the 6 rightmost

eigenvalues of an order 4 Million unknown reactor analysis problem [11].

3. Application of Scalable Stability Analysis

To brieﬂy illustrate the scalable bifurcation analysis capabilities, we present results for the
symmetry breaking of two opposed jets. The problem comes from an analysis of the
counterflow jet reactor, an experimental system that has been used to measure gas phase
kinetics in a wall-less environment [15,16]. It has been shown that. at steady state, the
- stagnation point between two opposing jets can be located away from the midpoint

distance between them, even if the jets have equal mass flow rates and the system is




isothermal. It is found that for high enough flow rates, described by the Reynolds number
(based on the gap length between the jets), Re, the symmetric solution becomes unstable
to the asymmetric solutions. Figure 2.1 depicts two steady-state flow profiles, for the

symmetric and asymmetric solution branches.

The initial pitchfork bifurcation is detected using the linear stability analysis capability. At
each step along a continuation run, where steady state solutions are calculated at
increasing values of Re, the rightmost eigenvalues were approximated. When a single real
eigenvalue crossed through zero to the positive half plane, signaling a pitchfork
bifurcation, the pitchfork tracking algorithm (2.2) was started. The flow rate (Re) at
which the pitchfork occurs is converged to using Newton’s method. Once one pitchfork is
located, it is easily tracked as a function of a second parameter, a geometric aspect ratio
comparing the diameter of the inlet jet to the gap between the jets. Figure 2.2 show the
curve of pitchfork bifurcations in the two-parameter space for a 2D calculation of
rectangular jets. Figure 2.3 and Figure 2.4 show the same results for circular jets, a more
accurate model for the counterflow reactor, which are calculated in 2D using cylindrical
coordinates and repeated in 3D using Cartesian coordinates. By tracking the bifurcation
point, an operability chart is directly generated that shows the maximum flow rate at

which the reactor can be operated to still avoid the asymmetric solutions.

4. Conclusions

A set of bifurcation analysis algorithms and a linear stability analysis capability have been
successfully implemented around a massively parallel incompressible flow code. The
algorithms rely only on iterative matrix solvers and so are scalable to large problems, and

are designed to be easily implemented around application codes. In one example problem,




the locus of pitchfork bifurcations delineating symmetric and asymmetric operation of a
counterflow jet reactor were automatically calculated. The pitchfork algorithm has been
shown to work on problems as large as 350,000 unknowns distributed across 256

processors of a distributed memory parallel computer.
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Figure 2.1 Streamline profiles of the counterflow jet reactor, showing both the symmetric solution
(top) and the asymmetric solution (bottom) that arise due to a pitchfork bifurcation.

Figure 2.2 Two-parameter bifurcation set showing the locus of pitchfork bifurcations for 2D
infinite planar jets (i.e. Cartesian coordinates). The curves delineate regions where stable steady
state solutions exhibit symmetric or asymmetric flow profiles. The model consisted of 19000
unknowns and was run on 24 processors.

Figure 2.3 Two-parameter bifurcation set showing the locus of pitchfork bifurcations for opposed
circular jets in 2D (using cylindrical coordinates). The curves delineate regions of symmetric and
asymmetric flow profiles.The 2D model consisted of 15000 unknowns and was run on 24
Processors.

Figure 2.4 Two-parameter bifurcation set showing the locus of pitchfork bifurcations for opposed
circular jets in 2D (using cylindrical coordinates) and in 3D, for small aspect ratios.The curves
delineate regions of symmetric and asymmetric flow profiles, and differ only due to the lower
resolution of the 3D calculation.The 2D model consisted of 15000 unknowns and was run on 24
processors, and the 3D model consisted of 350,000 unknowns and was run on 256 processors.
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