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ABSTRACT

OPT++ provides an array of optimization tools for solving scientific and
engineering design problems. While these tools are useful, all of the code is
serial. With increasingly easy access to multiprocessor machines and clusters
of workstations, this results in unnecessarily long times to solution. In order
to correct this problem, we have implemented a number of parallel techniques
in OPT++. In particular, we have incorporated a speculative gradient algo-
rithm that drastically reduces the time to solution for standard trust-region
and line search algorithms. In addition, we have implemented a new version
of the Trust-Region Parallel Direct Search (TRPDS) algorithm of Hough and
Meza that yields a significant reduction in solution time for problems with
expensive function evaluations.
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1 Introduction

Optimization of functions derived from the modeling and simulation of some
physical process constitutes an important class of problems in many engi-

neering and scientific applications. Often, the computer simulation entails
the solution of a system of nonlinear partial differential equations (PDE) in
two or three dimensions. Other applications include particle dynamics sim-
ulations or problems in chemical kinetics. The main characteristic of these
types of problems is that the function evaluation is computationally expen-
sive and dominates the total cost of the optimization problem. Depending on
the nature of the application and the solution method employed, there can
also be noise associated with the evaluation of the objective function. This
noise can usually be reduced, but only at the cost of making the computa-
tion time even greater. In many of these applications, derivative information
is also not available or must be computed using finite differences, thereby
increasing the cost of the optimization and generating noisy gradients. For-
tunately, the dimension of the optimization problem in many of these optimal
design problems is small (usually on the order of tens of parameters). In this
study, we will concentrate on techniques for parallelizing unconstrained opti-
mization algorithms when the number of available processors is comparable
to the number of optimization parameters. The rationale for this decision
is that although massively parallel computers are available, the majority of
computational power in most industrial or scientific settings consists of small
clusters of shared memory processors (SMP’S) or networks of workstations
(NOW’s) that can be used in a similar capacity.

Schnabel [IO] gave an excellent review of the challenges and limitations
in parallel optimization. In that review, Schnabel identified three major
levels for introducing parallelism: 1) parallelize the function, gradient, and
constraint evaluations, 2) parallelize the linear algebra, and 3) parallelize the
optimization algorithm at a high level. There have been many attempts to
parallelize nonlinear optimization methods at all of these levels. A description
of these efforts can be found in, e.g., [7]. In this study, we choose to focus
on the third option due to the characteristics of the problems mentioned
above. In particular, the first option is not usually available to us because
for many situations we do not have access to the source code for the function
or the constraints. In addition, the dimension of the optimization problems of
interest is usually small, and therefore parallelizing the linear algebra would
not yield any benefits.
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In this paper, reconsider two classes of parallel optimization methods.

The first isaspeculative gradient approach introduced by Byrd, %hnabel,
and Shultz [2]. This is a line-search algorithm that speculatively computes
components of the finite difference gradient at the trial point while the func-
tion is being evaluated at that point,. Since the trial point is accepted the
majority oft he time, this can result in. subst ant ial computational savings over
the non-speculative version of the algorithm. The other class of methods is
the Trust-Region Parallel Direct Search (TRPDS) algorithm developed by
Hough and Meza [7]. This method combines a trust-region method with a
parallel direct search (PDS) method in a way that retains the best proper-
ties of both. TRPDS provides computational savings over both the standard
trust-region and the PDS methods. In addition, it provides a great deal of
flexibility to allow the incorporation of techniques that will result in further
savings.

The remainder of the paper is organized as follows. In section 2, we de-
scribe the speculative gradient approach mentioned above. In section 3, we
describe the TRPDS algorithm and how it fits into the generalized approx-
imation model framework. In addition, we describe a modification to the

TRPDS algorithm that promises computational savings over the original im-
plementation. Section 4 contains numerical comparisons of the algorithm on
a set of standard test problems, as well as on an engineering application. Sec-
tion 5, the final section of the paper, contains a discussion of the conclusions
and future research directions.

2 Speculative Gradients

One approach to the type of optimization problems considered in this paper
is to use a traditional Newton method. This type of method comes in two
flavors: line search and trust region. These methods have the benefit of desir-
able convergence properties; however, they offer few options for parallelizing
at a high level. One notable exception was introduced by Byrd, Schnabel,
and Shultz in 1988 [2]. Because analytic gradients are not typically available
in our applications, it is perfectly reasonable to assume that they will be
approximated by finite differences. Byrd et al. suggest a straightforward way
to take advantage of multiple processors when using a line search method
with finite difference gradients. In” particular, extra processors are used to
compute components of the finite difference gradient at the trial point while
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the function is being evaluated at that point. This is referred to as a specu-
lative gradient approach, and the idea applies equally well in the trust-region
setting. W-e focus on using the speculative gradient idea with a trust-region
method for the remainder of this paper.

Recall that in each iteration of a trust-region method, a quadratic model
of the objective function, ~, is formed, and a region in which the model is
trusted to approximate the actual function accurately is determined. A trial
step is then computed by approximately solving the following subproblem:

min ~(s) = g(xC)% + ;STHCS, (1)
selR”

s. t. 1142<Jo

where XCis the current point, s is the step, g (XC) is the gradient of ~ at the
current point, Hc w V2 j (XC) is the Hessian approximation at the current
point, and 6. is the size of the trust region. Once a step has been computed,
the function is evaluated at the trial point, xt = XC+ s. If there is suffi-
cient decrease in the function value, the gradient and the Hessian are then
evaluated at that point.

In a parallel setting with p processors, p – 1 of the processors are sitting
idle while the function is evaluated at the trial point. The goal of the specu-
lative gradient approach is to remedy this inefficient use of processors in the
following manner. While we are evaluating the function at the trial point,
use the remaining p – 1 processors to calculate up to p – 1 components of
the finite difference gradient. If the trial point is accepted, we already have

P – 1 components of the gradient available and only need to calculate the
remaining n – (p – 1) components, where n is the dimension of the problem.
If the trial point is not accepted, we simply try again at the next trial point.
In that case, we have not lost any more computational time than was already
required for the function evaluation.

With the speculative gradients change, the trust-region algorithm is as
follows.



Algorithm 1. Trust-Region method with Speculative Gradients

Given p processors, XO, go, 110, 6., and q s (0,1)
fork =O,l,... until convergence do

fori=o,l,.. . until step accepted do
1. Find Sz that approximately solves (1)
2. Processor 1: evaluate f(x~ + s~)

Processor j: evaluate gj..l (xk + %) for j = 2,. ... P

3. Compute p = (j(x~ + Si) – ~(x~))/@(sz)
if p > q then

4. Accept step, set Xk+l := Xk + Si
5. Evaluate gj(xk + Si) for j = p,. . . , n – (p – 1)
6. Update Hk

else
7. Reject step

end if
8. Update (fk

end for
end for

Our current implementation only takes advantage of n+ 1 processors, even
if more are available. One way to take advantage of additional processors
would be to extend the speculative idea to computing as much of the finite

difference Hessian as possible. We leave this to future work and for the
purposes of this paper, we use a BFGS approximation to the Hessian.

3 TRPDS with Generalized Approximation
Models

In order to take advantage of the strengths of both the trust-region (TR) and
parallel direct search (PDS) classes of algorithms, Hough and Meza developed
the Trust-Region PDS (TRPDS) class of algorithms [7]. TRPDS employs
the standard trust-region framework, but uses PDS to solve a non-standard
subproblem to compute the step at each iteration. This subproblem is known
as the PDS subproblem and is defined as

min f(xc +s) (2)
SERn

s. t. [Isl]z < 26C,
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where XC is the current point, s is the step, and JC is the size of the trust
region. It is important to note that the only difference from the standard

trust-region method occurs in the computation of the step, s. In particular,
the actual objective function, rather than a quadratic model of that function,
is approximately minimized (using PDS) over the trust region.
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Figure 1: Overview of the TRPDS algorithm, The point XCP is the Cauchy
point, XIV is the Newton point, and xc is the current point. These points
are used to initialize the simplex over which PDS approximately minimizes
the function. The solid circle represents the trust region. The step length is
allowed to be twice the size of the trust region (dotted circle) to allow for the
possibility of taking a step longer than the Newton step.

Figure 1 illustrates the basic idea of TRPDS. See the paper by Hough
and Meza for details of the algorithm. [7].

Hough and Meza observed that the TRPDS class of algorithms fits into
the generalized trust-region framework of Alexandrov, Dennis, Lewis, and
Torczon [1]. The generalized framework provides a great deal of flexibility
both in the choice of trust-region model and in the method of computing
the step at each iteration. In particular, let a be an approximation to the
objective function, ~. If

1. a(xc) = j(xc),

2. Va(xC) = V~(xC),

and the sequence of steps generated during the optimization satisfies a frac-
tion of Cauchy decrease condition (FCD) according to a, then the standard
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trust-region convergence theory implies that this class of methods will con-
verge [1].

The TRPDS algorithm takes advantage of the flexibility in the step com-
putation in the sense that it solves a non-standard subproblem within the
trust-region framework. (Though a can be any model that satisfies condi-
tions 1 and 2, TRPDS currently uses the standard quadratic model.) We
build on that flexibility by extending the step computation to a two-phase
approach that incorporates the use of a second approximation model. The
first phase consists of using PDS to find the p best approximate solutions to
the following problem:

min 77-L(XC+ s)
sell?”

(3)

s. t. l~sllz< 2&,

where p is the number of processors and m is a computationally inexpen-
sive approximation to the objective function. Notice that this resembles
the PDS subproblem except the objective function has been replaced by an
approximation model. In the second phase of the step computation, each
processor evaluates the objective function at one of these p trial points. The
point that yields the lowest function value is returned as the trial point to
the trust-region framework and is processed according to the standard trust-
region algorithm. We refer to this variation of the TRPDS algorithm as
TRPDS(p).

A formal statement of the TRPDS(p) algorithm follows.
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Algorithm 1. TRPDS(p)

*

Given p processors, XO, gO, 110, 6., and q < (0,1)
fork =O,l,... until convergence do

1. So]ve Hksfi- = ‘gk
fori=O,l,... until step accepted do

2. Form an initial simplex using SN

3. Compute the p best approximate
using PDS

solutions sl, . . . , Sp to (3)

4. Determine s E {sl,. . . . sP} that minimizes ~(xk + s)
~. Compute p = (~(xk + sz) – .f(xk))/@(s~)
if p > q then

6. Accept step and set xk+l = xk + Sj2 evaluate g~+l, Hk+l
else

7. Reject step
end if
8. Update J

end for
end for

There are many issues to consider in the TRPDS(p) algorithm such as
forming the initial simplex and computing the PDS step; however, these
issues are discussed in [7] so we do not repeat the discussions here. Instead,
we focus on the computational impact of using an approximation model. The
results of our numerical study appear in the following section.

4 Numerical Results

In order to evaluate the performance of the extensions to the trust-region
and TRPDS algorithms, we chose a standard set of test problems from the
literature and an engineering application problem based on a computer model
of a chemical vapor deposition furnace.

In all of the tests, gradient approximations were computed using parallel
forward differences. Also, the TRPDS(p) algorithm requires an approxima-
tion model for the step computation. W-eused a quadratic model constructed
by forming a Taylor series expansion of the objective function, i.e.,

1
j(xC + s) H m(xC + s) = ~(xC) + g$s + —STHCS.

2
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Here gC = g(xC) is the gradient of ~ at the current point, and HC= H(xC) is
the current Hessian approximation.

4.1 Standard Test Probl~>ms

We used a number of test problems obtained from papers by Mor6, Gar-
bow, and Hillstrom [9], Byrd, Schnabel, and Shultz [2], and Corm, Gould,
and Toint [3]. For comparison purposes, we solved these problems with the

Table 1: Xest problems.

I Number I Problem

I 11 almost I

-1 broyden2b i

12

,



standard TRPDS algorithm, TRPDS (p), a standard BFGS trust-region al-
gorithm, and a 13FGS trust-region algorithm with speculative gradients. The
test problems are listed in Table 1.

The starting points used for the problems were the same as those given
in the references. All algorithmic parameters are listed below:

Table 2: Algorithmic parameters.

Maximum Iter 500
Maximum Fcn Eval 10000

Step ToIerance 1.49012 “X 10-8
Function Tolerance 1.49012 X 10-8

Gradient Tolerance 6.05545 X 10-6
LineSearch Tolerance 0.0001

The tests were run on a 64-processor SGI Origin 2000 with the IRIX 6.5
operating system. The step tolerance, the function tolerance, and the gradi-
ent tolerance were used as stopping criteria for the optimization algorithms
in the spirit of Gill, Murray, and Wright [4].

The results of the experiments for the standard problems appear in Fig-

ures 2 through 7. In our applications, the most important measure of per-
formance is the total time to solution of the problem; however, these test
problems are extremely inexpensive, making time measurements impractical.
Instead, we compare the total number of concurrent junction evaluations re-
quired for each method, where a concurrent function evaluation is defined
as in [7]. We feel that this is an accurate reflection of how much time the
algorithms require relative to each other since the computational cost of the
function dominates the cost of the algorithms in our applications.

First, we compare a standard BFGS trust-region algorithm to the same
algorithm with speculative gradient evaluations incorporated. For the specu-
lative gradient method with forward differences, the ideal number of proces-
sors is n + 1, where n is the dimension of the problem. In this case, we can

r

13



350

300(nc
o
“~ 250
76
&
g 200
.—
5c
/150
g
L

TFI with Parallel Grads vs. TR with Speculative Grads

50

0
0 5

,
= TR with Parallel Grads
m TR with Spec Grads

10 15 20 25
Test Problem Number

Figure 2: Comparison of BFGS trust-region algorithm and BFGS trust-region
algorithm with speculative gradients. The dimension of the problem is 8, and
the number oj processors used is 9. The BFGS trust-region algorithm with
speculative gradients beat the BFGS trust-region algorithm with parallel jinite
difference gradients.

speculatively calculate the entire gradient each time we evaluate the func-
tion at a trial point. So when the trial point is accepted, a second concurrent
function evaluation is not required as it is in the non-speculative approach.
N“ote that this implies that we can reduce the number of concurrent function
evaluations by up to 50 percent over the standard trust-region algorithm with
parallel finite difference gradients. Therefore, for our comparisons of these
two variants of the trust-region algorithm, we use n + 1 processors.

Results for n = 8 are shown in ~igure 2. As expected, for all of the test
problems, the BFGS trust-region algorithm with speculative gradients needs
fewer concurrent function evaluations than the standard BF’GS trust-region
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algorithm using only parallel finite differences. In the best cases, the specula-
tive gradient variant takes 50 percent fewer concurrent function evaluations.
These are the test problems for which we accepted the initial trial point at ev-
ery iteration. Even in the worst case (problem 9), where the initial trial point
was accepted only 76 percent of the time, the speculative gradient approach

required 43 percent fewer concurrent evaluations than the non-speculative
variant. Schnabel states that in his experience, Newton methods accept the

initial trial point about 60 – 70 percent of the time [10]. Based on that ob-
servation, as well as on the numerical resuIts presented here, we can expect
always to see a substantial benefit to using the speculative gradient variant
of Newton methods when finite difference gradients are required.

TRPDS VS. TRPDS@)

o
0 5

1
10

h L
15 20 25

mh I
Test Problem Number

Figure 3: Comparison of TRPDS algorithm and TRPDS(p) algorithm. The
dimension of the problem is 8, and the number of processors used& 9. The
TRPDS(p) algorithm beat the TRPDS algorithm nearly every time.
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Figure 4: Comparison of TRPDS and TRPDS(p). The problem dimension
is 8, and the number of processors used is 16. TRPDS(p) beat TRPDS on
most test problems.

We next compare TRPDS(p) to the standard TRPDS algorithm. For the
standard TRPDS algorithm, the ideal situation is to have the same number
of search scheme points (i.e., points at which PDS evaluates the function) as
processors so that there is only one concurrent function evaluation per PDS
iteration. In the case of TRPDS (p), it is not obvious what the ideal situation
is since, by design, there is only one concurrent function evaluation per PDS
iteration regardless of the number of search scheme points or processors.
Furthermore, it is not clear how the use of an approximation model will
affect the performance of the algorithm. For our initial tests, we fixed the
search scheme size at 2 x n, where n. is the dimension of the problem, and
we ran tests on n + 1 processors ancl 2 x n processors.

Results for n = 8 are shown in Figure 3 (with p = 9) and Figure 4 (with
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p = 16). We note that the concurrent function evaluations reported here
are evaluations of the actual (expensive) function. On average, TRPDS(p)
takes 36 percent fewer concurrent function evaluations than the standard
TRPDS algorithm. In essence, TRPDS(p) replaces some of the expensive
concurrent function evaluations done in TRPDS by inexpensive model eval-
uations. Thus, this new variant is able to reach the solution while incurring
a lower computational cost. There are some cases when the original TRPDS
does beat TRPDS(p) (e.g., problem 10). In these cases, the quadratic model
used by PDS is a particularly poor approximation to the function early in
the optimization. For this reason, more iterations, and thus more concurrent
function evaluations, are required to reach the solution.

Figures 3 and 4 indicate that the number of processors affects the perfor-
mance of TRPDS (p) relative to TRPDS. In fact, TRPDS(p) takes 43 percent
fewer concurrent function evaluations than TRPDS when p = n+ 1. The dif-
ference is not nearly as substantial when p = 2 x n. It is clear from the results

that TRPDS requires fewer concurrent function evaluations when p = 2 x n.
This is not surprising for the following reason. Recall that the search scheme
size is fixed at 2 x n. So when p = n + 1, TRPDS requires two concurrent
function evaluations per PDS iteration, whereas when p = 2 x n, only one
concurrent function evaluation is required per PDS iteration. On the other
hand, TRPDS(p) was designed so that only one concurrent function evalu-
ation per PDS iteration is required, regardless of the number of processors.
This accounts for the different relative performances of the two algorithms

on different numbers of processors, and it brings to light the interesting ob-
servation described in the following paragraph.

Figure 5 shows a comparison of TRPDS(p) for two different values of p.
In particular, we look at problems with n = 8 and compare performance for

P = n + 1 and p = 2 x n- Niotice that setting p = 2 x n yields little, if any,
improvement over p = n + 1. This is because the trial step is usually chosen
from the n + 1 best points as determined by the quadratic model. Thus, the
extra processors are being wasted on function evaluations that will not be
used. While we do not expect this to be true for all models or problems,
it does indicate that we must be careful when determining how to use the
processors available to us. For example, in this case, it maybe more beneficial
to use extra processors to speculatively evaluate a finite difference gradient
at the most promising trial points. .A-careful study of this and related issues
is deferred to future work.

Finally, we compare TRPDS(p) to the BFGS trust-region algorithm with
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speculative gradients. W-eshow results for tests with the number of processors
equal to n + 1 and 2 x n.

In Figure 6 we see that the BFGS trust-region algorithm with speculative
gradients requires fewer concurrent function evaluations than TRPDS(p). As
stated before, the case with the number of processors equal to n + 1 is the
optimal number of processors for speculative gradients, so we expect spec-
ulative gradients to be doing well here. However, TRPDS (p) demonstrates

that it can be competitive with speculative gradients.
Figure 7 compares TRPDS(p) with the speculative gradient BFGS trust-

region algorithm when the number of processors is 2 x n. Although the

TRP13S(p), dim = 8

350~
r

I

I

mmmh
15 20 25

Test F’roblem Number

Figure 5: Comparison o~TRPDS(p) with 9 and 16 processors. The dimension
of the problem is 8. The extra parallelism does not improve the number of
concurrent function evaluations for the TRPDS ~) algorithm. Perhaps the
extra parallelism can be put to better use.
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Tl?PDS(p) vs. TR with Speculative Grads
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Illhmb lh
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Figure 6: Comparison of TRPDS(p) and BFGS trust-region algorithm with
speculative gradients. The dimension of the problem is 8, and the number of
processors is 9. The number of concurrent function evaluations required by
the 13FGS trust-region algorithm with speculative gradients is less than the
number required by the TRPDS (p) algorithm on every problem.

speculative gradient method still usually takes fewer concurrent function
evaluations, TRPDS(p) is becoming more competitive. Note that the ad-
ditional processors (more than n+ 1) are not at all helpful to the speculative
gradient approach. If we continued to add more and more processors, we
could take advantage of them by also speculatively computing components
of a finite difference Hessian. Beyond that, however, the speculative gradient
method could make no further use of additional processors. On the other
hand, TRPDS(p) could use these processors, not only for speculative compu-
tation, but also for other enhancements, some of which will be discussed in
section 5. Thus, we expect the flexibility of TRPDS(p) to allow it not only

19



TRPDS(p) vs. TFi with Speculative Grads
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Figure 7: Comparison of TRPDS(p) and BFGS trust-region algorithm with
speculative gradients. The dimension of the problem is 8, and the number of
processors is 16. In this case, the BFGS trust-region algorithm with specula-
tive gradients beats TRPDS(p) on most problems. The three exceptions are
problems i/, 10, and 18.

to catch up with the BFGS trust-region with speculative gradients, but to
surpass it.

4.2 Furnace design test problem - TWAFER

.4s a second example, we chose an optimal control problem for a vertical,
multi-wafer furnace. Vertical furnaces can process up to 200 silicon wafers
in a single batch and have been used for thin film deposition, oxidation,
and other thermal process steps. The ‘evolution of vertical furnaces has been
driven by the need for process uniformity (that is, wafer-to-wafer and within-
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Figure8: Vertical Batch Furnace wiih Seven Control Zones

wafer uniformity) and high wafer throughput. Arecent variation ofthemul-
tiwafer reactor design is the small-batch, fast-ramp (SBFR) furnace. The
SBFR is designed to heat-up and cool-down quickly, thus reducing cycle
time andthermal budget. The SBFRconsists ofastack of50eight-inch(di-
ameter) silicon wafers enclosed in a vacuum-bearing quartz jar. The stack is
radiatively heated by resistive coil heaters contained in an insulated canister.
The heating coils can be individually controlled or ganged together in zones
to vary the emitted power along the length of the reactor; a seven-zone con-
figuration is shown in Figure 8. There are six control zones (each containing
several heating coils) along the length of the furnace and one heater zone in
the base. The zones near the ends of the furnace are usually run hotter than
the middle zones to make up for heat loss.

The thermal optimal control problem can be described as follows. Given

a set number of heating coils in a fixed zone configuration, find the optimal
power settings such that the temperature uniformity about a fixed set-point
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is maximized. The objective function, j, is defined by a least-squares fit of
the N discrete wafer temperatures, Ti, to a prescribed temperature, ~,

F (p) =:5 (T~– 2“)2
2=1

(4)

where the p are the unknown power parameters.
The engineering heat transfer model used in this example was developed

by Houf [6] specifically for the analysis of vertical furnaces (the actual simu-
lation code used in our experiments is called TWAFER). The heat transfer
formulation is simplified by using mass lumping and one-dimensional approx-
imations. The nonlinear transport equations are solved using the TWOPNT

solver [5], which uses a Newton method with a time evolution feature. There
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Figure 9: Comparison of standard trust-region method, trust-region with spec-
ulative gradients, TRPDS, and TRPDS(p) on 7-Zone T WAFER with 8 Pro-
cessors. The 13FGS trust-region aigorithm with speculative gradients is the
fastest algorithm.
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are many different parameter combinations that have been considered inpre-
vious studies of the TWAFER code [8]. For this particular example we used

only one configuration, namely a problem with 7 heater zones: one bottom
heater and six equally-sized side heaters. Each simulation used a model that
contained 100 wafers with ten discretization points per wafer. Our initial
guess for the powers was: p = [100, 200,300,2700,100,400, 2000].

Figures 9 and 10 compare the total wall clock time required for solution

by the standard trust-region, BFGS trust-region with speculative gradients,
TRPDS, and TRPDS(p) algorithms. Comparisons are shown with n + 1 and
2 x n processors.

As in the previous test problems, going from a standard BFGS trust-
region algorithm to one using speculative gradients gives us approximately
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Figure 10: Comparison of standard trust-region method, trust-region with
speculative gradients, TRPDS, and TRPDS(p) on ?’-Zone TWAFER with 14
Processors. TRPDS(p) takes the same amount of time to solution
processors. Perhaps the extra processors can be put to better use.

as with 8
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44 percent improvement in wall clock time in this case, and TRPDS(p) gives
nearly 80 percent improvement over TRPDS. The BFGS trust-region algo-
rithm with speculative gradients is significantly faster in wall clock time than
the standard TRPDS algorithm and somewhat faster than TRPDS(p). Note
however, that the number of processors used in this example is n+ 1, the ideal
case for speculative gradients. Furthermore, TRPDS is doing two concurrent
function evaluations per iteration in this case.

In Figure 10, we have 2 x n processors. Notice that while the speculative
gradient algorithm and TRPDS(p) algorithm perform exactly as they did on
the smaller number of processors in Figure 9, TRPDS is starting to catch
up. This is not surprising for the reasons already discussed with the standard
test problems. We emphasize again that because of its flexibility, we expect
that TRPDS(p) can be modified to make better use of additional processors,
yielding an algorithm faster than the speculative gradient approach.

5 Conclusions

We have added an option to calculate speculatively the gradient in the stan-
dard BFGS trust-region algorithm. Furthermore, we have added a new phase
to the solution of the PDS subproblem in the TRPDS algorithm that takes
advantage of an approximation model. Both of these options take advantage
of parallel processing. These two options were tested on a standard set of
test problems and on an engineering application. On these test problems,
the BFGS trust-region method with speculative gradients tended to do better
than the non-speculative variant, requiring up to 50 percent fewer concurrent
function evaluations and shorter wall clock time. Similarly, TRPDS(p) gen-
erally performed better than the standard TRPDS algorithm, requiring an
average of 36 percent fewer concurrent function evaluations and shorter wall
clock time. On these problems, the BFGS trust-region, method with spec-
ulative gradients tended to perform better than TRPDS (p) using the same
performance criteria. However, TRPDS(p) is close enough to show promise,
and it offers a great deal of flexibility for future performance-enhancing mod-
ifications. We discuss our future plans below.

In order to improve the TRPDS(p) algorithm, we would first like to de-
termine which parameters have the greatest impact on the performance of
the algorithm. We expect to use techniques from the design and analysis of
computer experiments (DACE) literature in order to conduct this study.
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Another factor to consider is that, like the traditional TRPDS algorithm,
we expect TRPDS(p) to be robust in the presence of noise. The results of
Hough and Meza [7] show that TRPDS outperforms a standard trust-region
method in the presence of noisy function values and gradient approximations.
We would like to compare TRPDS(p) and the BFGS trust-region method
with speculative gradients on a problem with noisy functions.

In order to take advantage of the great flexibility of TRPDS(p), we would
like to incorporate different types of approximation models, not only in the
PDS phase of the algorithm, but also within the trust-region framework. .Al-
though the quadratic model has served us well, there may be approximation
models more suitable for the applications of interest. Alexandrov, Dennis,
Lewis, and Torczon [1] cite several examples that we would like to try. With
multiple models to choose from, we would like to come up with a model
management framework, as suggested in [I], where the approximation model
could change at every iteration. We would also like to consider alternatives
to the PDS subproblem with other computationally inexpensive approaches.

Finally, we intend to extend our work with speculative computations.
In particular, we would like to incorporate a speculative Hessian evaluation
in the standard trust-region method. We would also like to incorporate
speculative gradient evaluations in TRPDS(p).

Acknowledgments: The authors wish to thank John Dennis, Juan
Meza, and Virginia Torczon for many helpful discussions and suggestions.
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