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Consolidation of Modal Parameters from Several Extraction Sets
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ABSTRACT

Experienced experimentalists have gone through the
process of attempting to identify a final set of modal
parameters from several different sets of extracted
parameters. Usually, this is done by visually examining the
mode shapes. With the advent of automated modal
parameter extraction algorithms such as SMAC (Synthesize
Modes and Correlate), very accurate extractions can be
made to high frequencies. However, this process may
generate several hundred modes that then must be
consolidated into a final set of modal information. This has
motivated the authors to generate a set of tools to speed the
process of consolidating modal parameters by mathematical
(instead of visual) means. These tools help quickly identify
the best modal parameter extraction associated with several
extractions of the same mode. The tools aiso indicate how
many different modes have been extracted in a nominal
frequency range and from which references. The
mathematics are presented to achieve the best modal
extraction of multiple modes at the same nominal frequency.
Improvements in the SMAC graphical user interface and
database are discussed that speed and improve the entire
extraction process.

NOMENCLATURE

FRF: frequency response function
SvVD: Singular Value Decomposition
@ i" mode shape

w; i” natural frequency

u; i" left singular vector of SVD
MIF: Mode Indicator Function

NMIF: Normal Mode Indicator Function
CMIF: Complex Mode Indicator Function
MAC; Modal Assurance Criteria
MACSVy MAC using left singular vector U,

*Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the U.S.
Department of Energy under Contract DE-AC04-94AL85000.

INTRODUCTION AND MOTIVATION

Many organizations are relying on innovative model
validation techniques and higher fidelity models to assess
the quality of a design. Under certain conditions, models are
being used to qualify hardware. A process is required which
includes validating the models so that one has confidence in
the modeling approach and the predicted results. For a
structural dynamics model, this puts high demands on
experimental results and more specifically the modal
parameter extraction process. The estimation accuracy and
the modal parameter reduction efficiency are critical features
in the success of the model validation process.
Organizations desire accurate results delivered quickly that
include higher frequency ranges than were previously
obtained. When the frequency range is extended, typically
the modal density is increased. To extract these modes,
more force inputs are required to separate the modes in
areas of high modal density. In addition, there is more data
to reduce due to the number of modes required.

The ideal solution to this problem is an algorithm that
automatically extracts modal parameters from large sets of
experimental data. The SMAC (Synthesize Modes and
Correlate) Modal Extraction Package has been developed
over the past few years to meet these needs "**, A recent
enhancement to the SMAC algorithms has included a
graphical user interface that enables the user to easily enter
analysis parameters and evaluate the results of the modal
extraction. In addition, a set of tools has been developed to
speed the process of consolidating modal parameters from a
multi-reference experiment based on a mathematical
algorithm.

THEORY OF SMAC EXTRACTION PACKAGE

The SMAC algorithm is based upon the modal filtering
approach rather than an assumed matrix polynomial form. In
the strictest sense this means that there must be at least as
many response measurements as there are active modes in
the frequency band of interest. The sensors should be
placed so that the associated experimental mode shape
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matrix is well conditioned for inversion. Since SMAC is not
based on a matrix polynomial, there are no computational
roots, eliminating a major set of decisions the analyst must
make in deciding on the true system roots. Details of the
SMAC theory can be found in the references %4,

ENHANCEMENTS TO SMAC EXTRACTION PACKAGE

There have been a number of recent enhancements to the
SMAC Modal Extraction Package that have increased the
speed and improved the overall extraction process. The
SMAC algorithms have been implemented in MATLAB™ and
take advantage of the IDEAS™ to MATLAB™ data translation
software IMAT™ ., A new graphical user interface has been
designed around the SMAC algorithms and is described in
this section of the paper. The initial interface window for
SMAC enables the user to select the type of input data that
will be analyzed. Currently, the SMAC algorithms are able to
process FRF data from IDEAS™ binary (*.afu), MATLAB™
binary (*.mat) and ASCII universal files using the SDRC
format.

The graphical interface for SMAC provides the user with an
easy means to input parameters. The first window that
requires the input of analysis parameters is shown in Figure
1. At this interface the user will select parameters that will
effect the execution of the pseudo-inverse and ultimately the
entire modal analysis. The two major user selections at this
interface are the solution method (i.e., real or complex
modes) and the condensation of the experimental data that
will be processed by SMAC. In Figure 1 the frequency range
has been modified to include FRF data from 425 to 3250 Hz
in the calculation of the pseudo-inverse. If all the mode
shapes are independent, SMAC can process the entire
frequency range, but if some mode shapes are not
independent, reducing the frequency band is necessary.
This frequency range specification enables the user to focus
the analysis in a particular segment of the data.
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After the pseudo-inverse has been calculated on the
selected set of experimental FRFs, the correlation
coefficients are determined over a specified frequency band.
Before executing the correlation calculation the user must
specify an initial estimate of damping, the number of
frequency lines used in the correlation process and the
frequency band to analyze (Figure 2). It should be noted that
the bandwidth of fit must lie within the modified frequency
range that was selected in the calculation of the pseudo-
mverse
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Figure 2. SMAC Correlation Coefficient Interface
The result of the correlation calculation is the curve
. displayed in Figure 3. A frequency at which there is a high
correlation value is an indication of a mode of the system.
The correlation value plot is typically generated with a
frequency resolution similar to that of the experimental FRF
data. The analyst may choose a threshold or minimum value
in that interface below which no peaks are considered. In
our experience only correlation coefficient peaks above 0.9
are worthy of investigation; however, this probably varies
considerably from structure to structure. The frequency of
each peak is saved and displayed in a table, and these
become the starting points for the automated SMAC fitting

algorithm.
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Next the automated algorithms are executed. The algorithm
starts with the first frequency from the table of peaks and the
initial guess of the damping ratio. The user specifies the
frequency band by selecting a percentage of the root
frequency, typically 0.5 to 3 percent (Figure 4). Two routines,
which operate in a similar manner, are used to converge on
the root. In the first routine the correlation coefficients are
calculated at ten equally spaced frequency points using the
selected narrow frequency band and the assumed damping.
Then a parabola is fit to the ten points, and the frequency at
the maximum point of the parabola is calculated and
becomes the first estimate of the natural frequency. Then the
second routine is executed, which is exactly like the first
except now the correlation coefficients are calculated at ten
equally spaced damping points using the selected damping
range, chosen by the user in Figure 4, and the frequency
estimate just calculated above. A best estimate of damping
is then obtained from the parabolic fit.
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The program switches back and forth between these two
routines. With each switch the range of frequency and/or
damping is reduced. When the damping ceases to change
more than 0.5 percent of the damping value, the root is
considered successfully converged and is saved. [f the
optimization process attempts to extend beyond the original
frequency range, the root is rejected. Sometimes the same
root is converged upon from two different starting points, so
there is a built-in check to eliminate duplicate roots. Then the
program repeats the process for the second frequency in the
peak table and continues until all candidate roots have been
converged upon or eliminated. Figure 5 displays the output
of the automated SMAC fitting for a set of experimental data.
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Figure 5. SMAC Roots for Synthesis and Mode Shape
Generation
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Typically, the automated SMAC algorithms can calculate 90
percent of the roots. It has been found that the automated
process sometimes misses roots when two roots are within
the initial 0.5 to 3 percent frequency band, or the damping
ratio is very low or out of the range of the damping ratios that
the analyst considered reasonable. A manual version of
these algorithms can be used to converge on any roots that
are missed (Figure 5 —~ Frequency Fit and Damping Fit).
These omissions are discovered in the MIF quality
comparisons, and the roots can be extracted through the
manual process.

After the process of extracting modal parameters using
SMAC, it is important to assess the quality of the extraction.
Comparisons of the synthesized and actual FRF data are a
typical method of checking whether all the modes of interest
in a particular frequency band have been properly identified.
A more global quality of fit is obtained by comparing
synthesized MIFs with the MIFs calculated on the actual
data. The MIF includes effects of the data from all the FRFs
in a single curve to indicate the modes. If the synthesized
MIF depicts modes in the same way as the MIF using the
experimental data, then there is high confidence in the
modal parameters. The Complex Mode Indicator Function
(CMIF) ™ is a good tool for comparing the strength of the
modes excited by a particular reference. However, the CMIF
can obscure the effects of the weakly excited modes in the
data. Because the SMAC algorithms have been shown to be
extremely robust in extracting not only well excited but also
weakly excited modes, the Normal Mode Indicator (NMIF) ™
is, typically, selected because it tends to be a more sensitive
comparison for all the modes. Viewing both these MIFs
comparisons is available through the graphical interface in
Figure & (Synthesis Method).

Each of the major graphical interfaces that have been
shown in the above figures provides direct access to the
experimental data. Selecting the “Plot FRFs” button from
any of these interfaces allows the user to view the
experimental data during the analysis process. Additionally,
all the modal parameters from an analysis are saved in a




database for easy access and re-loading into SMAC for
review or further analyses. The database of modal
parameters also has direct application into the modal
parameter condensation codes discussed below.

MODAL PARAMETER CONDENSATION APPROACH

With the advent of automated modal parameter extraction
algorithms, extractions can be made to high
frequencies"***%. Using the single-referenced SMAC
approach may generate several hundred modes that then
must be consolidated into a final set of modal information for
validating a finite element model. Typically, the process to
identify a final set of modal parameters from several
different sets of extracted parameters has been done by
visually examining the mode shapes. To speed the process
of consolidating modal parameters, a set of mathematical
(instead of visual) tools have been developed. These tools
quickly help identify the best modal parameters associated
with several extractions of the same mode. In general, the
more extractions of the same mode (from separate
references) in a condensation, the higher the confidence is
in that mode. The mathematical tools also indicate how
many different modes have been extracted in a nominal
frequency range, and from which references. The
mathematics are presented below.

The results of a SMAC analysis are stored in a database
structure that can be directly accessed by the modal
parameter condensation algorithms. Thus, after all
references from a particular experiment have been analyzed
using SMAC, each of their structures containing the specific
modal information (frequency ranges, correlation values,
MIF data and mode shapes) can be loaded into the modal
condensation routines. During the loading process the user
specifies an appropriate label for each of the modal
references. Then a very narrow frequency range is selected
to determine the best modal parameters associated with the
modes in that range. The first mathematical indicator
provided to the user is a modal fit quality factor. The quality
factor, equation (1), is defined as

(- NMIFy (o ))-( NMIE,,, (m,-\)— NMIF g, o ﬂ

u‘NMlFexp(“’i))

QF = *corr2, (1)

where «;is the natural frequency of the i* mode and
NMIF(;) is the value of the Normal Mode Indicator Function

at the natural frequency for either the experimental data (exp)
or the synthesized analytical fit (fit). The first part of Equation
(1) is a measure of how well the synthesized NMIF from the
SMAC fit compares to the NMIF from the experimental data
at the particular modal frequency of interest. That comparison
value is multiplied by the square of the correlation coefficient
for that mode from the SMAC fit. This gives an overall quality
factor between 0 and 1; where 1 indicates a very high quality

fit to the experimental data. It is important to use the quality
factor in conjunction with the value from the NMIF in
determining the best fit of the modes in the analysis band. A
quality factor of 0.99 and a NMIF value of 0.8 would indicate
a very good fit to a weakly excited mode. A better fit of the
mode (assuming the modes are the same) might be a quality
factor of 0.95 and a NMIF value of 0.25 since the mode would
be much stronger in the data.

A second mathematical method for assessing the quality of
modal fits from a set of SMAC extractions is the Singular
Value Decomposition (SVD) ¥. The SVD is performed on the
mode shapes from the user-selected frequency range. The
singular values are used to indicate how many independent
modes have been identified in the frequency range of
interest. If there is large change (an order of magnitude or
greater) between the first and second singular values, this is
a strong indication that there is only one mode identified in
the bandwidth analyzed. However, if the difference in the
singular values is not significant, then there could be more
than one independent mode in the analysis band.

Another mathematical method used in the modal parameter
condensation is the Modal Assurance Criteria (MAC).
Equation (2) gives the general definition of the MAC applied
to analysis mode shapes

((DiT "Pj)2

— @
@ *0)@] 0

MACij =

where Q;j is the mode shape of the j" mode. The MAC

values provide the user additional mathematical information
about the linear independence of the modes from different
references in the analysis bandwidth. MAC values are also
calculated using the left singular vector U (from SVD
calculation) and the analytical mode shapes, Equation (3)
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MACSVij =

The left singular vector U, gives an estimate of the mode
shapes in the analysis range. The MAC values generated
from Equation (3) provide the user with information on which
references extracted each mode or if the extraction is a
mixture of multiple modes. The first singular vector should
be the best estimate with accuracy decreasing for
progressively higher singular values. Using all the
mathematical tools described above helps in the process of
determining the best modal fits of the experimental data.
Combining all the mathematical information together makes
the selection of an appropriate set of modal parameters
attainable for an experimental program that has many
references with several hundred extracted modes.
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MODAL PARAMETER CONDENSATION APPLICATIONS

The following examples show the mathematical results from
a modal parameter condensation of an electrical component
experiment. An experiment, using both a modal hammer and
shaker, was performed on the component. The SMAC
extraction algorithms were used to fit all the experimental
data up to 3 KHz and approximately 45 to 60 modes were
identified for each reference. The data below shows the
condensation process for six independent reference
locations used to excite the component.

Figure 6 displays two plots of the modal data. The first plot
shows the frequencies of the modes (asterisks) for each
reference up to a frequency of 1200 Hz. By selecting any of
the asterisks in the analysis band, the second plot displays
the corresponding NMIF for the reference from which that
mode was extracted. The dashed line is the NMIF
synthesized from the SMAC extracted modal parameters.
The first analysis frequency band selected was a narrow
band from 560 to 580 Hz. The output from the analysis is
listed below. A mode was fit for each of the six references in
that frequency band as evident in the first table. The
calculated quality factor is listed in the far right column for
each of the modes in the band. All the quality factors are
high, however, the largest value and best fit is from the
400y-reference location. The results from the SVD
calculation indicate only one dominant singular value in the
band. Additionally, the MAC analysis confirms that the six
mode shapes are essentially identical (off-diagonal MAC
terms equal to 0.999 and greater). For this analysis band the
decision on which mode to select as the “best fit” is rather
easy, As the analysis bands increase and move higher in
frequency the decisions do become more difficult.

Figure 6. Modal Parameter Condensation at 570 Hz

ref frequency damping corcoeff
100y 573.094 1.814 0.9995
200y 570.094 1.956 0.9874
300y 570.422 1.984 0.9877

NMIF  NMIFfit quality
0.0988 0.0532 0.9485
0.0551 0.0196 0.9385
0.0476 0.0356 0.9634

0.9669
0.8375
0.9456

400y 573.392 2.026 0.9949 0.0480 0.0269
10x 576.562 1.865 0.9940 0.1683 0.0416
17z 574.044 1.679 0.9998 0.0893 0.0402

Singular values =
301.2211
2.7247
2.5810
0.5636
0.4209
0.0886

MACSV =
0.9999
0.0001
0.0000
0.0000
0.0000
0.0000

0.9998
0.0000
0.0001
0.0000
0.0000
0.0000

0.9999
0.0000
0.0001
0.0000
0.0000
0.0000

0.9999
0.0001
0.0000
0.0000
0.0000
0.0000

0.9996
0.0003
0.0001
0.0000
0.0000
0.0000

0.9998
0.0001
0.0002
0.0000
0.0000
0.0000

MAC =
1.0000
0.9998
0.9998
1.0000
0.9993
0.9996

0.9998
1.0000
1.0000
0.9997
0.9996
0.9992

0.9998
1.0000
1.0000
0.9998
0.9996
0.9993

1.0000
0.9997
0.9998
1.0000
0.9993
0.9996

0.9993
0.9996
0.9996
0.9983
1.0000
0.9994

0.9996
0.9992
0.9993
0.9996
0.9994
1.0000

The next example shows the results of an analysis between
1975 to 2015 Hz for the same set of experiment data. In this
case there were four modes fit in this band. Notice that three
of the quality factors are above 0.94 and all of the NMIF
values are above 0.5. This indicates that in general the
modes in this frequency band are weakly excited from these
reference locations. The first two singular values from this
analysis are relatively close in magnitude to one another
indicating that there might be a couple of independent
modes in this band. The calculation between the mode
shapes and the left singular (MACSV) shows that the
primary singular vector U, is strongly correlated with the
second mode shape (from reference 300y). The second left
singular vector U, is most strongly related to the third mode
shape (from reference 400y). The modes from reference
300y and 400y have very high quality factors, 0.986 and
0.996 respectively. Finally, the general MAC calculation
indicates that these two mode shapes (from 300y and 400y)
are independent of each other with an off-diagonal term
equal to 0.0109. By viewing the NMIF (Figure 7) and using
the mathematical data provided it was determined that in this
frequency band there are two independent modes that were
identified by SMAC. The modes were excited from different
reference locations but are very close in frequency (2000.7
Hz versus 2001.7 Hz).
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Figure 7. Modal Parameter Condensation at 2000 Hz

NMIFfit
0.8426
0.5228
0.5282
0.8635

ref frequency damping corcoeff NMIF
200y 2011.027 1.030 0.9851 0.8462
300y 2000.663 1.805 0.9994 0.5285
400y 2001.719 1.853 0.9996 0.5294
10x 2010928 1.594 0.9446 0.9133

quality
0.947
0.986
0.996
0.380

singular values =
223.2719
122,5653
22.6849
16.9270

MACSV =
0.0330
0.6647
0.0639
0.2384

0.0237
0.9691
0.0046
0.0026

0.0329
0.8336
0.1280
0.0054

0.9975
0.0025
0.0000
0.0000

MAC =
1.0000
0.0197
0.6769
0.5226

0.6769
0.0109
1.0000
0.8076

0.5226
0.0183
0.8076
1.0000

0.0197
1.0000
0.0109
0.0183

UNCERTAINTY

The quality factor utilizing the NMIF provides the most
objective quantification of uncertainty for this work. If there
is a poor match of the synthesized MIF to the data, then
there is high uncertainty in the estimated modal parameters.
Measures such as the correlation coefficient provide
additional information regarding the uncertainty of the modal
extraction. Additionally, the authors have found that when
there is a poor estimate of the driving point residue
coefficient, specifically for weakly excited modes, then this
can produce erroneously large noisy mode shapes. These
large mode shapes will dominate the first singular vector and
destroy the effectiveness of the MACSV.

CONCLUSIONS

The SMAC algorithms have now been automated, allowing
the experimentalist to spend more time understanding
system dynamics and significantly less time in extraction.
These advances in modal extraction may generate several
hundred modes from an experimental data set that then
must be consolidated into a final set of modal information.
Thus, a set of mathematical methods has been developed
for condensing the modal parameters. These mathematical
tools have greatly increased the speed and confidence in the
modal extractions needed to support model validation
programs.
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