SANDZ20006-2720 T

Leveraging the UML Metamodel:
Expressing ORM Semantics Using a UML Profile

by David Cuyler, Sandia National Laboratories

Abstract

This paper is a proposal for a UML Profile to facilitate expression of Object Role Modeling
semantics in terms of the UML 1.3 Meiamods!. The profile uses the extension mechanisms
inherent to UML to clarify usage and semantics where necessary, and it proposes the use of the
XML Metadata Interchange (XMI) specification for model exchange. Once expressed in terms of
the UML Metamodel, ORM models can then be shared among UML-based tools and can be
stored, managed and controlled via UML-based repositories. The paper provides an example of

UML

Since its inception in the mid-1990s the Unified Modeling Language (UML) has become the
dominant Object Oriented software modeling language. The UML specification prescribes both
a diagram notation and a metamodel. The notation is particularly complete and capable as the
means to document the structural and behavioral characteristics of software. However,
modeling persistent storage structures has not been one of UML’s strong points. The UML
notation especially neglects constructs useful for precise analysis, design, development and
management of relational schemata. Data modeling-specific notations and techniques have
generally been stronger at this task than those oriented around UML. The UML metamodel,
however, provides a structure that accommodates semantic information beyond what is typically
expressed in the UML notation. In particular, the UML extension mechanisms of stereotypes,
tagged values and constraints provide a basis for significantly expanding the applicability of the
UML. This paper proposes a means by which the semantics of a specific data modeling notation
(Object Role Modeling - ORM) could be accurately expressed in terms of the UML metamodel
and its native extensions with no loss of semantic content.

XMi

Analysis and design tools today generally lack sufficient mechanisms for sharing content with
other tools. Recently the QMG has published the definition of XM! , the XML Metadata
Interchange Format, for interchange of model information among tools. XMl is not the first
attempt to address the issue of a common format for sharing models. CASE Data Interchange
Format (CDIF), MetaData Interchange Specification (MDIS) and others represent attempts to
define such a format. As an XML grammar, XMl has an advantage over its forerunners, in that
XML is a freely published standard and is supported by a growing number of effective and
inexpensive tools.

ORM

Object Role Modeling (ORM), as defined by the work of Dr. Terry Halpin , and with a heritage in
Natural Language Information Analysis Method (NIAM), has one of the richest content models
of any persistent modeling grammar. ORM is unique among the data modeling techniques
mentioned above as it can be used to document a persistent data model for both relational and
object schemata. Dr. Halpin has recently published several warks comparing ORM with UML,
and in them has implied that conversion of an ORM model to UML might be possible. This

Sandia is a multiprogram Iaboratory
operated by Sandia Corporation, a
Lo;kheed Martin Company, for’the
United States Department of Energy
under contract DE-AC04-94A1 85000,

paper provides a definition, in the form of a UML Profile, that provides the extensions necessary
to perform this conversion and to accurately reflect the semantic content of an ORM model. It
also demonstrates a significant conversion via software. The XMI 1.1 definition provides the
UML output format. A sample model that comes with a popular ORM tool provides the input.
ORM semantics and usage differ from those typically associated with UML primarily in the
following areas:

What would normally be considered an Attribute in UML is represented in ORM as an
Association (FactType).

A typical ORM Constraint restricts the allowed population of an AssociationEnd (Role) or
a set of AssociationEnds. This contrasts with the UML, where constraints typically
govern whole Associations, Classes, or Behavioral Features.

The ORM analysis process relies heavily on sample populations of associations (Links)
to assist in the determination of Constraints. This is not consistently used in UML
techniques.

ORM methods are typically used to model persistent data stores, helping to optimize the
data structure and reduce the incidence of anomalies in the population of the data store.
UML is typically used to model run-time characteristics of software.

None of these differences violates intrinsic capabilities of the UML metamodel. Rather they

Author: David Cuyler, Sandia National Laboratories: mailto:dscuyle @ sandia.aoyv
Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

References

Model: A UML Profile for Obiect Role Modeling v.0.5 (this model)
MetaModel: UML v.1.3

MetaMetaModel: MOF v.1.3

XML Metadata Interchange (XM v.1.1 (Proposed)
Requirements for UML Profiles {Green Paper}

White Paper on the Profile mechanisim

W3C XML _1.0 Definition

W3C XSL Definition

Obiect Role Modeling Web Site

Dr. Terry Halpin on UML and ORM

Journal of Conceptual Modeling

Persistence Modeling in the UML

An ORM Model Expressed in Accordance With This Profile
XSL 1o Transtorm an XMt Model o HTML

Dr. Terry Halpin, Conceptual Schema and Relational Database Design, revised 2nd ed. ,
(WytLytPub, 1999).

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefuiness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegiblé
in electronic image products. Images are
produced from the best available original
document.

s

NOV 15 2000
GST|

Object Role Modeling techniques produce a detailed domain model from the perspective
of the business owner/customer. The typical process begins with a set of simple
sentences reflecting facts about the business. The output of the process is a single
model representing primarily the persistent information needs of the business. This type
of model contains little, if any reference to a targeted computerized implementation. It is
a model of business entities not of software classes. Through well-defined procedures,
an ORM model can be transformed into a high quality object or relational schema.

UML Profile for Object Role Modeling

1. Introduction

2. Summary of Profile

1. Identified Subset of UML 1.3

Core Association
Core AssociationClass
ore AssociationEnd
ore Attribute
ore Class
Core Constraint
Core DataType
ore Dependency
Core Generalization
Model Management Elementimport

Model Management Model
Model Management Package
Model Management SubSystem
Extension Mechanisms [Stereotype

Extension Mechanisms lTaggedValue

Common Behavior DataValue
iCommon Behavior Instance
Common Behavior Link
Common Behavior LinkEnd

|Common Behavior LinkObject

Common Behavior

Object

2. Stereotypes

lClass
Class

«entityType»

«valueType»

AssociationClass
JAttribute
Attribute
Constraint
Constraint
Constraint
IConstraint
Constraint

Constraint

Link
LinkEnd

«nestedObjectType»

«referenceMode>»

«valueAttribute»

«ormConstraint»

«unigue»
«mandatory»
«frequency»
«ring»

«set»
«factlnstance»

«rolelnstance»

Association «factType»
Association «derivedFactType» | «factType»
Association «unaryFactType» «factType»
AssociationEnd |«ormRBole»

«ormConstraint»

«ormConstraint»

«ormConstraint»

«ormConstraint»

«ormConstraint»

3. Tagged Values

«factType»

«detivedFactType»

sentence

isStored

«derivedFactType» derivationRule
«ormRBole» textBefore
«ormRBole» textAftér
«ormBole» reading
«hestedObjectType» Isentence

«unigue» isPrimary
«frequency» multiplicity
«<ring>» | ringType
«set» setType
«set» numberQOfSets
«set» rolesPerSet

Constraints

«set»

binaryFactOnly

roleHeritage

ordered

roleHeritage -

min2Sets

3. Stereotypes and Notation

1.

Static Structure Stereotypes

Stereotypes of constructs typically associated with a Static Structure (Class)
Diagram.

1.

«entityType» : Class An object type (Class) that represents a collection
of real-world objects having similar characteristics, some of which may be
useful for identification. The characteristics may be inherited from a
supertype. On transformation, an entity type generally maps to a Class. in
an ORM model, an entity type appears as a solid ellipse.

«valueType» : Ciass An object type (Class) that represents a domain or
a set of allowed literal values. On transformation a value type generally
maps to a Class Attribute. In an ORM model, a value type appears as a
dotted ellipse.

«factType» : Association A fact type consists of one or more object types
and predicates indicating the roles played by the object types. In an ORM
model, a fact type appears as a contiguous series of a number of role
rectangles equal to the number of object connections.

Required Tags

1. sentence : string [0..1] A skeletal verbalization of the primary fact
sentence with a placeholder for each role. This sentence can be
derived by concatenating the text values and placeholders

4.

associated with each role.

«derivedFactType» «faciType» : Association A fact type whose
instances can be derived algorithmically from instances of other fact
types.

Required Tags

1. isStored : boolean [0..1] An indicator of whether the derived
instances of this fact type are stored. If not stored, instances are
calculated at run-time.

2. derivationRule : string [0..1] The algorithm by which instances of
this fact type are derived.

«unaryFactType» «faciType» : Association A fact type with a single role.
Indicates truth of the predicate when populated. Since UML well-
formedness rules disallow an Association with only one AssociationEnd, it
is necessary to represent a unary fact type as a binary fact type with a
Boolean value type playing the second role.

«ormRole» : AsscciationEnd The predicate text assigned to a role is read
in a specific order and includes a placeholder for each object type in a
coherently readable sentence structure. In an ORM model, a role appears
as a rectangle with a line connection to an object.

Required Tags

1. textBefore : string [0..1] Text associated with a role that appears
before the role’s placeholder in the primary reading of the fact
sentence.

2. textAfter : string [0..1] Text associated with a role that appears
after the role’s placeholder in the primary reading of the fact
sentence.

3. reading : string [0..1] The full sentence skeleton from this role’s
perspective (this role is the first role in the sentence). For fact
types with more than two roles, includes ’..” at the position of each
role.

«nestedObjectType» : AssociationClass A nested-facttype is an entity
type that is formed from a facttype to enable the facttype itself to play
roles. Generally, every role in the facttype must be constrained by a
single unique constraint. In an ORM model, a nested-facttype appears as
a solid ellipse surrounding the facttype.

Required Tags

1. sentence : string [0..1] A skeletal verbalization of the primary fact
sentence with a placeholder for each role. This sentence can be
derived by concatenating the text values and placeholders
associated with each role.

«referenceMode» : Aftribute The attribute or set of attributes that is used

. to uniquely identify an instance of an entity type. May be derived from

associations or the object type’s heritage.

«valueAttribute» : Atiribute The attribute that holds the value assigned to
an instance of a value type.

2. Constraint Stereotypes

The ORM language is rich with constraint types. Constraints consistently inolve
interactions among roles. This contrasts with standard UML, which focuses on
constraints for classes, associations and attributes.

1.

«ormConstraint» : Constraint A general constraint exhibiting properties
common to all ORM constraint types. This sterotype may be used to
document constraints that do not conform to the pre-defined constraint
stereotypes. Other ORM constraint stereotypes inherit from
ormConstraint.

«unique» «grmConstraint» : Constraint Constrains a set of roles in such
a way that each instance of the set of constrained roles is distinguishable
from every other instance. A unique constraint appears as a two-headed
arrow spanning the constrained roles.

Required Tags

1. isPrimary : boolean [0..1] A value of "true" indicates that a unique
constraint acts as the primary identifier for the relevant entity type.

«mandatory» «ormConstraint» : Constraint Specifies that every instance
of an object type's population must play the connected role. A mandatory
constraint may involve more than one role, in which case each instance of
the object type must play at least one of the connected roles. A
mandatory constraint appears as a small, filled circle at the point where a
role connector(s) touches the object type.

«frequency» «ormGonstraint» : Constraint Places a restriction on the
number of times a particular value, or set of values, can appear in the
population of one or more roles in a given facttype. Uses standard UML
constraint notation with the frequency range indicated in the constraint
body.

Required Tags

1. multiplicity :' multiplicityRange [0..1] The minimum and maxinum
number of instances permitted.

«ring» «ormConstraint» : Constraint Constrains a pair of roles to conform
to certain predefined characteristics, indicated by the semantics of the
ringType. This type of constraint only applies to the roles in a binary fact
type that associates an entity type with itself.

Required Tags
1. ringType : enum [0..1] The type of ring constraint.
Stereotype Constraints
1. binaryFactOnly : {Must constrain both roles of a binary fact type}

2. roleHeritage : {Both constrained roles must be played by object
types with common heritage}

2. «set» «grmConstraint» : Constraint A set constraint expresses a data
dependency among two or more ordered sets of roles.

Required Tags

1. setType : enum [0..1] The type of set constraint where 'subset’
specifies that instances of one role set must be a subset of
instances of a second role set; 'equality' requires that the
instances of each constrained role set must be the same as the
instances of each of the other constrained role sets; 'exclusion’
prevents instances of any one constrained role set from appearing
as instances of the other constrained role sets.

2. numberOfSets : int [0..1] The number of sets constrained.

3. rolesPerSet : int [0..1] The number of roles in each constrained
set.

Stereotype Constraints

1. ordered : {Roles constrained are ordered by set sequence, then
by role within set}

2. roleHeritage : {Roles occupying the same position in each role set
must be played by object types with common heritage}

3. min2Sets : {Canstrains at least two sets of one or more roles}

2. Instance Stereotypes

Object Role Modeling techniques rely on concrete examples as the basis for
developing a model. Examples are always populations of fact types.

1. «factinstance» : Link An example fact instance useful for discussion with
user-owners to validate facts and derive constraints.

2. «rolelnstance» : LinkEnd The~value associated with a role in a fact
instance.

«metaclass»
Core::Class

«metaclass»
Core::Attribute|

«metaclass»
Core::AssociationClass|

«stereotypeBase» <stereotyper

[m——————m——— o entityType

]

i

!

I

: «stereotypeBase» <stersotypen

e] valueType
«stereotypeBase» <stereotyper

[mm———————————— valueAttribute|

[

}

!

1

!

|«stereotypeBase» «stereotype»

] referenceMode|

«stereotypeBase» <stereotype»
K-~ — o — e m nestedObjectType|

sentence : String |

«metaclass»

Core::Constraint

«stereotypeBase»

«stereotype»
ormConstraint

ORM Profile Extensions

«metaclass»
Core::Association

«stereotypeBase»

<_ _____________

«stereotype»

factType

sentence : String

T

«stereotype»
derivedFactType

«stereotype»

isStored : Boolean

derivationRule : String

unaryFactType|

«metaclass»
Core::AssociationEnd

«metaclass»
Common Behavior::Link

«metaclass»
Common Behavior::LinkEndy¢ — — — . _

AN

«stereotype»
unique
isPrimary : Boolean

«stereotype»
mandatory

«stereotype»
frequency

«stereotype»
ring

multiplicity : MultiplicityRange

ringType : ringTypeEnum

{Must constrail
both roles of a

binary factType}

{Both constrain
roles must be

played by object

types with common

heritage}

{Roles constrained ar
ordered by set sequence,

l «stereotypeBase»

«stereotype»
ormRole

textBefore : String
textAfter : String
reading : String

«stereotypeB

(___________

«stereotypeBase»

«stereotype»
factinstance

«stereotype»
rolelnstance

{Constrains at le:
two sets of one or
more ormRoles}

set

«stereotype»

setType : setTypeEnum
numberOfSets : Integer
rolesPerSet : Integer

then by role in set}

{Roles occupying t
same position in
each set must be
played by object

types with common
heritage}

ORM Profile UML Subset

Extension Mechanisms::Stereotype]

«metaclass» «metaclass»

Extension Mechanisms::TaggedValtEI

«metaclass» «metaclass» «metaclass» «metaclass»
Model Management::Package| Model Management::Model Model Management::SubSystem Model Management::Elementimport,
«metaclass» «metaclass» «metaclass» «metaclass» «metaclass»
Core::Association Core::AssociationClass Core::AssociationEnd Core::Attribute Core::Class

«metaclass» «metaclass» «metaclass»
Core::Constraint Core::DataType Core::Dependency|

«metaclass»
Core::Generalization

«metaclass» «metaclass»
Common Behavior::Link Common Behavior::LinkEnd
«metaclass» «metaclass» «metaclass» «metaclass»
Common Behavior::Instance Common Behavior::DataValue Common Behavior::Object Common Behavior::LinkObject

Tag Data Types

«enumeration»

«datatype»

Data Types::Boolean acyclic

Data Types::ringTypeEnum

antisymmetric

«datatype»
Data Types::String

asymmetric

intransitive

irreflexive

symmetric
acyclic-intransitive
asymmetric-intransitive

intransitive-symmetric
irreflexive-symmetric

«enumeration»
Data Types::setTypeEnum
equality
exclusion
subset

«datatype»
Data Types::MultiplicityRange

