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Relativistic quantum dynamics requires a unitary representation of the Poincar6
group on the Hilbert space of states. The Dynamics of many-body systems must
satisfy cluster separability requirements. In this paper we formulate an abstract
framework of four-dimensional Euclidean Green functions that can be used to con-
struct relativistic quantum dynamics of N-particle systems consistent with these
requirements. This approach should be useful in bridging the gap between few-
body dynamics based on phenomenological mass operators and on quantum field
theory.

1 Introduction

The superposition principle and the space-time symmetry are realized in relativis-
tic quantum mechanics by a Hllbert space of states with a unitary representation
of the inhomogeneous Lorentz group (Poincar6 group).1 Various representations of
single particle states are well kno-ivn.2Since the components of the four-momentum
p are constrained by the mass, P* = –rnz, there is a choice of convenient indep-
endent momentum variables in the wave function: For instance the components 17
orthogonal to some fixed time-like vector, or the components p+. pl orthogonal to
some null-vector. For particles with spin the functions representing state vectors
are functions of spin variables undergoing lVigner rotations. All these representa-
tions are equivalent. States of noninteracting particles are represented by tensor
products of single particle states.

In quantum mechanics the Hilbert space of state vectors is the same for free
and interacting particles. The interactions are implemented by modifications of
the Poincar6 generators. Following Bakamjian and Thomas3 this has been clone
modifyhg the mass operator, leaving the spin operator independent of interac-
tions. The Poincar6 generators obtain as functions of kinematic components of
the four momentum operator and canonically conjugate positions, the mass oper-
ator, the spin operator. The choice of these kinematic components determines the
“form of dynamics”.4 The principal difficulty in thk approach is the realization of
cluster separability.s The properties of any isolated cluster of particles should not
dep&nd on the presence or absence of other clusters. The solution involves the re-
cursive construction of appropriate many-body interactions in the many-body mass
operators.6 There are no theorems defining minimal many-body interactions.

Alternatively, single-particle states can be represented by equivalence classes
of covariant functions of the four-momentum with the positive semi-definite inner
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product measure alp(p) := d~p~(pa+ rn2)8(po). For particles with spin the functions
representing state vectors are Lorentz covariant functions of spinor indices with a
semi-definite inner product measure. Starting from kinemat ically covariant func-
tions representing multi-particle states, interactions can be introduced modifying
the semi-definite inner product measure.7

For free fields (free particles) Poincar6 generators obtain by integration of
the energy-momentum tensor over a three-dimensional manifold in the L1inkowski
space.8 Interactions in the energy-momentum tensor require local commutation
relations and infinitely many degrees of freedom. The action of these Poincar6
generators on Fock-space vectors produces linear functional over the Fock space.
not vectors in Fock-space. The Hilbert spaces of free and interacting fields are
necessarily inequivalent.

Minkowski-Green functions are defined by vacuum expectation values of time-
ordered products of local renormalized Heisenberg fields. Using assumed spectral
properties of the intermediate states and the asymptotic properties of the fielcl
operators there are simple relations to observable bound-state masses, scattering
amplitudes and form factors. The principal problem is to establish a quantitative
relation of “approximations” to a theory local operators.

A central feature in the formulation of relativistic quantum theory is the ab-
sence of finite-dimensional unitary representations of the Lorentz group, 0(1. 3).
This is the reason the representation of states by Lorentz covariant functions re-
quires a semidefinite inner product measure. However, the Lorentz group is relatecl.
by complexification, to the orthogonal group in four dimensions, O(4) which does
have finite dimensional unitary representations. The unitary representations of
the real Euclidean group E(4) together with invariant Green operators are USe-
ful in the formulation of Poincar6 invariant dynamics. Thk. connection has been
exploited extensively in quantum field theory. The equivalence of the Wightman
axioms with the Osterwalder-Schrader axiomsg establishes that Euclidean Green
functions (Schwinger functions) satisfying the Osterwalder-Schrader axioms imply
the existence of field operators. In the context of Lagrangean field theory the
Schwinger functions obtain as moments of the functional measure defined by the
Lagrangean. In the Euclidean formulation the locality axiom is independent of the
axioms which establish unitary Poincar6 representations with the appropriate spec-
tral properties. This feature is essential for the formulation of Poincar6 covariant
dynamics dynamics finite many-body systems.

The purpose of this paper is to explore the formulation of relativistic quan-
tum dynamics based on Euclidean invariant Green functions. Ordinary quantum
mechanics provides some heuristic indications. The Hilbert space: ‘H of states of
N particles is independent of the dynamics. It is the same for free and interact-
ing particle% The dynamics is specified by the invariant Casimir Hamiltonian.
h := H – P 2/2M or the resolvent operator G(E) := l/(h - iE). Interactions

are introduced by invariant additions to the Casimir Hamiltonian h = ho + V. or
G(E)’1 = GO(E)-l + V. While the approach explored here should be applicable to
many qualitatively different physical systems and illuminate relations to quantum
field theory the focus of this exploratory study is limited systems with a &xed num-
ber of particles, for instance nucleons. The abstract framework of the dynamics
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to be explored is formulated in Section 2. Section 3 provides a realization for sin-
gle part icles. Two-body interactions are formulated in Section 4. The many-bm Iy
dynamics with the realization of cluster separability is discussed in Sec. 5.

2 The Abstract Framework

2.1 The Aw”liaqj Hilbert Space.

. Since there are no finite dimensional unitary representations of the Lorentz group
SO(1, 3) we assume the representatives of physical states to be a subset of a larger
space, subject to the following assumptions.

H1. Physical states are a linear subset of vectors V in an auxiliary Hilbert space
‘H= with the norm IIVII: = (V, T).

H2. There is a unitary representation U(R, a) of the Euclidean group E(4) with
7? c 0(4) on the Hilbert space ?f.. The self-adjoint generators of E(4) are
denoted by P~ and J~” = –J”~.

H3. There is a self-adjoint, unitary operator
the 3-dimensional Euclidean subgroup

p, Pk] = 0,

. .

~, on ‘H=, which is invariant uncler

[~, J’k] = O (1)

and satisfies

The two Casimir operators & of 0(4) are functions of the generators J~”,10

(3)

The spectra of the Casimir operators are a(~~) = S+(SA + 1) with non-negative
integer or half-odd integer values ofs+.

The operators

PO := ipo , pk := pk , ~ok ;= ~Jrk, Jik := Jik (4)

satisfy the Poincar6 Lie algebra, and the spectrum of P2 is the real line.
–00 < C(P2) < co. The operators

exp(iPOt) s exp(–POt) and exp(iJOkX) - exp(–JOkX) (.5)

are self-adjoint. Together with the unitary representations of the 3-dimensional
Euclidean group they define a non-unitary representation of the Poincar6 group.
The inner product (V, !l?) := (~!l, V) s (V, (3V) defines a pseud~Hilbert spacell
of the vectors in H.. The inner product (V, W) of the pseudo-Hilbert space is
Poincar6 invariant, (U(A, a)~, U(A, a)~) = (V, 14).
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2.2 Green Operators and the Physical Hilbert Space.

The representation of physical states and the dynamical properties of the systenl
are specified by a Green operator, G, with the following properties.

G1. The Green operator G is a bounded normal operator on Ha with an inverse
defined on a dense set.

G2. The Green operator’ G commutes with PP and JP” and hence with Pp. .J~”.

G3. The operator @G is Hermitean, 61G = Gt~.

G4. There is a Poincar6 invariant linear manifold S of vectors W c W. that all
V G S satisfy the inequalities

By assumption G4 the inner product (W, GV) of vectors in this manifold is semi-
definite. Physical states are represented by equivalence classes of vectors. Two
vectors Ila and ~b are equivalent, Va ~ ~b iff

]]~g - ~b[l’ := ([~. - Wb];G[!J= - ~b)]) = O (7)

The physical Hilbert space H is equipped with a unitary representation of the
Poincar6 group. Single-particle states iJ!M of mass M, elementary or composite.
satisfy (P2 + M2)TM w O.

2.3 Perturbations of Green Operators

A perturbati~n Go d G maybe defined by

G-1 := G;l +U (8)

where U is an E(4) invariant, pseudo-Hermiteafi operator with domain
D(U) > D(G;l) BY assumption U is bounded rekitive to G;l,

IIUVII=s allG;’1411a + 611VII=, (9)

with O s a < 1 and O s b. The operators UGO, GOU and are bounded with a
bound less than 1. It follows that G-l Go, and GoG-l are bounded operators with
bounded inverses.

3 Realization for Single Particles

3.1 Single Particles with Spin O

The auxiliary Hilbert space % of a spin-zero single particle is realized by square
integrable functions V(x) with x:= {x”, X1,X2,X3} with the inner product

(w, v)= Jd’xp(x)y (lo)
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Schwartz functions f(x) are dense in this Hilbert space. The involution operator O
is defined by

WI!(x) := W(–XO,Z) (11)

The self-adjoint generators of the real Euclidean group E(4) are

lap/J:= ._
~~xv ‘ ( aJW := ! #- “a

i &v–x ~
)

The associated Poincar6 generators are then defined by eq. (4). The Green operator
is represented by the Green function G(x – x’)

4

01G(x – X’) := ;
~4P exp[ip(x – x’)]

P2+ m2

0113 exp (i~(~ – 5’) – W(p)lx’” – X“l)

‘%
~3p

2w(p)
(13)

where w(p) := /--- Schwartz functions f(x) with support restricted to
positive values of X“ represent a linear manifold of vectors in 7-L=-which satisfies the
the requirement G4. With the support restriction it follows that

(f>Gf) = (f>.f):=/ ‘lf(~l’ =/~4xlf(x)12 (14)

where

/
f(x) ,= (Zn)-; ~3peiF=-u(P)x”@ (xo)$(~ (15)

The Hilbert space ‘H is constructed by the usual procedure of moding out zero-
norm vectors and adding Cauchy sequences. The equivalence classes of Schwartz
functions are dense in 7-/. Two functions fl and ~z are equivalent, jl - ~z iff

Ilfl -f’11 =0 o (16)

It f~llow~ that two functions ~1 and ~2 are in the same equivalence class, ~1 * f...

iff ~1 = ~2.

Since
3

()/
O(x’O)~G(x’ – X)8(X0) = 6(X’O)e(XO) ;

e—w(p)(x’”+x qeijw-q

d3p
2w(p)

. (17)

it follows that the inner product (~a, G .fb) of functions satisfying the support con-
dition is manifestly Lorentz invariant,

J(fb, Gfa) = -@w(p) fb(~”fa(d = /&W2 + m2) 6(P0) fb(p)”fa(~) (18)

with

f(P):= /d4x=p(-+” ~- POXO)f(x) - (19)
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The time evolution evolution ~=(t) := e- ‘p’)t~= is given explicitly by

(fb, @-iP”t
fa) = (.fb? ~a(t))

(~~)

with ~c(t, p) := e–iWtPlt~a(p7).

3.2 Single Particles with Spin ~

For a single spin 1/2 particle the Green function is

G(x – y) := —
(2:)4 I “’eip”(x-’)(pP~:z)o

where the spinor matrices ~~ := ifl, @ with 6:= -[w? satisfy

*{7w 7.U} = -J.v , (w)

The involution operator @ must also act on the spinor indices,

(Elf)(x) := pf(-xo,q. (23)

As in the case of spin O it is easy to verify positivity of the inner product (j. G~)
for Schwartz functions with support restricted to positive values of X“.

(~, G~) := ~d4xd4y~t(x)@G(x - y)j(y) = ~d’xd4y~t(x)OG(-x0 - y“.~ - ~~(y)

where

4 Two-Body Dynamics

The auxiliary Hilbert space ‘?-f=is the tensor product of the single-particle awciliary
HHbert spaces. The involution operator Cl is the tensor product of single particle
involution operators. Schwartz functions ~(xl, X2) s ~(X, x) with X := ~(xl + Xz)
and x := x1 – X2 are dense in this Hilbert space. For spin 1/2 particles these
functions depend on spinor variables as well. The E(4) generators are additive.

In general Green operators are realized by -E(4) invariant tempered d~tributions
G(xl, x2; x;, xi). For free particles the Green function is the product of single particle
Green functions, Interactions are added according to eq. (8). A simple example of
a nucleon-nucleon interaction is of the form

p,v
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Scattering wave functions obtain by the weak time limits

(il~, Gfla*) = ,~~=(~~, GeipOt~.(t)) (2s)

- (1)
where V=(t) := 14a (t) x @!2)(t) is the tensor product of single particle states. *Z
The S-matrix obtains in the limit

(
& = l~hlm &llIl ~b(t’), Ge iP”(&t’)&@

(29)

5 Many-Body Dynamics

The auxiliary Hilbert space ?& is the N-fold tensor product of the single-particle
auxiliary Hilbert spaces. The involution operator (3 is the outer product of single
particle involution operators. Schwartz functions, j(xl,..., x~), of Npoints and X
spinor indices are dense in this Hilbert space. The -E(4) generators are additive.

In general Green operators are realized by E(4) invariant tempered distributions
GN(x1,.. .XN; yN,. ... yl ). The cluster properties can be conveniently realized using
formal annihilation operators a(x), b(x) and creation operators at(x), bt(x) which
satisfi the commutation relations13

{a(x), at(y)} = 6(4)(x -y), {b(x): t$(y)} = fw(x - y)

{a(x), b(y)} = {a(x), bt(y)} = 0. (31)

The cluster structure of the general N-particle Green functions is realized by the
expression14

GN(x1, . . . ,xN; yN, . . . ,y~) = (I)la(xl) . . .U(X1~)b(yjv) ()-.. b(yl)exp ~Sn 10) .
n

(q

where 10) is the cyclic vector that is annihilated by a(x), b(x), and “

‘n’=51d4xlld4yl
x at(xn). --at(xl)bt(yl) .. .bt(yn)Sn(xl, . . . 9xn; Yn9 . . . !Yl) (33)

The functions Sn vanish for separation of the points into widely separated clusters.
Representations of the inverse Green operators have the same cluster structure.

G-l = exp
[1 I

d4x d4yat(x)bt(y)S-l(x – y) + ~ U. 1 (34)
n~z
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A many-body Green operator can be completely determined by two-bocly interac-
tions, U* c O for n >2,

‘2=+’’/’4’’/’4”/
d~y~at(xl)at(xz) bt(yz)bt (yl)U(xl. xz: yz. yl) (35)

6 Conclusions

Kinematic Poincar6 covariance of state vectors of many-body systems requires a dy-
namically determined semi-definite inner product measure. An effective realization
is based on an awxiliary Hilbert space endowed with a unitary representation of the
four-dimensional Euclidean group. A self-adjoint unitary involution operator pr-
ovidesa Poincar6 invariant indefinite inner product. The Euclidean invariant Greeu
operator specifies the Poincar6 invariant semi-definite inner product of the sub-
space of physical states. In this framework two-body Green operators are sufficient
to determine many-body Green functions satiswlng cluster separability.
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