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Relativistic quantum dynamics requires a unitary representation of the Poincaré
group on the Hilbert space of states. The Dynamics of many-body systems must
satisfy cluster separability requirements. In this paper we formulate an abstract
framework of four-dimensional Euclidean Green functions that can be used to con-
struct relativistic quantum dynamics of N-particle systems consistent with these
requirements. This approach should be useful in bridging the gap between few-
body dynamics based on phenomenological mass operators and on quantum feld
theory.

1 Introduction

The superposition principle and the space-time symmetry are realized in relativis-
tic quantum mechanics by a Hilbert space of states with a unitary representation
of the inhomogeneous Lorentz group (Poincaré group).! Various representations of
single particle states are well known.? Since the components of the four-momentum
p are constrained by the mass, p? = —m?, there is a choice of convenient inde-
pendent momentum variables in the wave function: For instance the components p
orthogonal to some fixed time-like vector, or the components p™.p, orthogonal to
some null-vector. For particles with spin the functions representing state vectors
are functions of spin variables undergoing Wigner rotations. All these representa-
tions are equivalent. States of noninteracting particles are represented by tensor
products of single particle states.

In quantum mechanics the Hilbert space of state vectors is the same for free
and interacting particles. The interactions are implemented by modifications of
the Poincaré generators. Following Bakamjian and Thomas® this has been done
modifying the mass operator, leaving the spin operator independent of interac-
tions. The Poincaré generators obtain as functions of kinematic components of
the four momentum operator and canonically conjugate positions, the mass oper-
ator, the spin operator. The choice of these kinematic components determines the
“form of dynamics”.? The principal difficulty in this approach is the realization of
cluster separability.® The properties of any isolated cluster of particles should not
depénd on the presence or absence of other clusters. The solution involves the re-
cursive construction of appropriate many-body interactions in the many-body mass
operators.® There are no theorems defining minimal many-body interactions.

Alternatively, single-particle states can be represented by equivalence classes
of covariant functions of the four-momentum with the positive semi-definite inner
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product measure du(p) := d*pd(p* + m?)6(p°). For particles with spin the functions
representing state vectors are Lorentz covariant functions of spinor indices with a
semi-definite inner product measure. Starting from kinematically covariant func-
tions representing multi-particle states, interactions can be introduced modifving
the semi-definite inner product measure.”

For free fields (free particles) Poincaré generators obtain by integration of
the energy-momentum tensor over a three-dimensional manrifold in the Minkowski
space.® Interactions in the energy-momentum tensor require local commutation
relations and infinitely many degrees of freedom. The action of these Poincaré
generators on Fock-space vectors produces linear functionals over the Fock space.
not vectors in Fock-space. The Hilbert spaces of free and interacting fields are
necessarily inequivalent.

Minkowski-Green functions are defined by vacuum expectation values of time-
ordered products of local renormalized Heisenberg fields. Using assumed spectral
properties of the intermediate states and the asymptotic properties of the field
operators there are simple relations to observable bound-state masses, scattering
amplitudes and form factors. The principal problem is to establish a quantitative
relation of “approximations” to a theory local operators.

A central feature in the formulation of relativistic quantum theory is the ab-
sence of finite-dimensional unitary representations of the Lorentz group, O(1.3).
This is the reason the representation of states by Lorentz covariant functions re-
quires a semidefinite inner product measure. However, the Lorentz group is related.
by complexification, to the orthogonal group in four dimensions, O(4) which does
have finite dimensional unitary representations. The unitary representations of
the real Euclidean group E(4) together with invariant Green operators are use-
ful in the formulation of Poincaré invariant dynamics. This connection has been
exploited extensively in quantum field theory. The equivalence of the Wightman
axioms with the Osterwalder-Schrader axioms® establishes that Euclidean Green
functions (Schwinger functions) satisfying the Osterwalder-Schrader axioms imply
the existence of field operators. In the context of Lagrangean field theory the
Schwinger functions obtain as moments of the functional measure defined by the
Lagrangean. In the Euclidean formulation the locality axiom is independent of the
axioms which establish unitary Poincaré representations with the appropriate spec-
tral properties. This feature is essential for the formulation of Poincaré covariant
dynamics dynamics finite many-body systems.

The purpose of this paper is to explore the formulation of relativistic quan-
tum dynamics based on Fuclidean invariant Green functions. Ordinary quantum
mechanics provides some heuristic indications. The Hilbert space, H of states of
N particles is independent of the dynamics. It is the same for free and interact-
ing particles. The dynamics is specified by the invariant Casimir Hamiltonian.
h := H — P%?/2M or the resolvent operator G(E) := 1/(h — iE). Interactions
are introduced by invariant additions to the Casimir Hamiltonian h = hy + V. or
G(E)™! = Go(E)~! + V. While the approach explored here should be applicable to
many qualitatively different physical systems and illuminate relations to quantum
field theory the focus of this exploratory study is limited systems with a fixed num-
ber of particles, for instance nucleons. The abstract framework of the dynamics
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to be explored is formulated in Section 2. Section 3 provides a realization for sin-
gle particles. Two-body interactions are formulated in Section 4. The many-body
dynamics with the realization of cluster separability is discussed in Sec. 5.

2 The Abstract Framework

2.1 The Auziliary Hilbert Space.

Since there are no finite dimensional unitary representations of the Lorentz group
S0(1,3) we assume the representatives of physical states to be a subset of a larger
space, subject to the following assumptions.

H1. Physical states are a linear subset of vectors ¥ in an auxiliary Hilbert space
H, with the norm || |2 = (T, ¥).

H2. There is a unitary representation U(R,a) of the Euclidean group E(4) with
R € O(4) on the Hilbert space H,. The self-adjoint generators of E(4) are
denoted by P# and J¥¥ = —J¥#,

H3. There is a self-adjoint, unitary operator ©, on H,, which is invariant under
the 3-dimensional Euclidean subgroup

[0,P¥ =0, [0.J*%1=0 (1)
and satisfies

oP° =P, @JF=-)%g (2)

The two Casimir operators j2 of O(4) are functions of the generators J#¥,10

-k 1 Sty v g G
ik = 7 (Z Ohuw Jo iJO") (3)

u<v

The spectra of the Casimir operators are a(ﬁ) = s4(s+ + 1) with non-negative
integer or half-odd integer values of s4.
The operators

PO :=iP%,  Pki=pPk g0k .0k ik ik ()

satisfy the Poincaré Lie algebra, and the spectrum of P2 is the real line.
—00 < 0(P?) < 00. The operators

exp(iP%t) = exp(—P%%) and exp(iJ%x) = exp(—1%y) (5)

are self-adjoint. Together with the unitary representations of the 3-dimensional
Euclidean group they define a non-unitary representation of the Poincaré group.
The inner product (¥, ¥) := (0T, ¥) = (¥, OF) defines a pseudo-Hilbert spacel!
of the vectors in H,. The inner product (¥, ¥) of the pseudo-Hilbert space is
Poincaré invariant, (U(A,e)¥,U(A,a)¥) = (T, 7).
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2.2 Green Operators and the Physical Hilbert Space.

The representation of physical states and the dynamical properties of the system
are specified by a Green operator, G, with the following properties.

G1. The Green operator G is a bounded normal operator on H, with an inverse
defined on a dense set.

G2. The Green operator G commutes with P* and J# and hence with P#. J#¥.
G3. The operator OG is Hermitean, OG = G'O.

G4. There is a Poincaré invariant linear manifold S of vectors ¥ € H, that all
¥ ¢ S satisfy the inequalities

0 < (e=P°7F,Ge~ P TT) = (¥,Ge~ 2P’ ") < (L.GT). V7r>0 (6)
By assumption G4 the inner product (¥, G¥) of vectors in this manifold is semi-

definite. Physical states are represented by equivalence classes of vectors. Two
vectors ¥, and ¥, are equivalent, ¥, ~ U iff

12 = @|1? == ([T — Ts), G[¥a ~ Tp)]) = 0 (M
The physical Hilbert space H is equipped with a unitary representation of the
Poincaré group. Single-particle states ¥y of mass M, elementary or composite.
satisfy (P2 + .ZVIZ)‘I/M ~ 0.
2.8  Perturbations of Green Operators
A perturbation Go — G may be defined by
G l=Gsl+U (8)

where U is an E(4) invariant, pseudo-Hermitean operator with domain
D(U) D D(Gg') By assumption U is bounded reldtive to Gg!,

[UT]le < allG5 Tl + bl| o , (9)

with 0 < a < 1 and 0 < b. The operators UGy, Gold and are bounded with a
bound less than 1. It follows that G~!Gy, and GoG~! are bounded operators with
bounded inverses.

3 Realization for Single Particles

8.1 Single Particles with Spin 0

The auxiliary Hilbert space H, of a spin-zero single particle is realized by square
integrable functions ¥(x) with x := {x%,x,x?,x3} with the inner product

(U,T) = / d*x|T(x)|? (10)
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Schwartz functions f{x) are dense in this Hilbert space. The involution operator ©
is defined by

OY(x) := ¥(~x°,%) (11)
The self-adjoint generators of the real Euclidean group E(4) are
10 1 7] 0

e __" L r— B eV 2

PH: ioxe’ . i(x oxv Xt")x”) (12)

The associated Poincaré generators are then defined by eq. (4). The Green operator
is represented by the Green function G(x — x’)

4 ) /
)= () [ oo e
B (if f i (#(3 - #) - w)® - ) .
i %(p)
where w(p) := \/m Schwartz functions f(x) with support restricted to

positive values of x? represent a linear manifold of vectors in H, which satisfies the
the requirement G4. With the support restriction it follows that

—~ 3 ~ -
(1.60) = (F.fy = [ 5Bl FP = [axiFeor (1

(13)

where

@) = (2n)"3 / dhreFE P ()
f(x) = (2m)~3 / d3pePE-=e7 (0 F(p) (15)

The Hilbert space H is constructed by the usual procedure of moding out zero-
norm vectors and adding Cauchy sequences. The equivalence classes of Schwartz
functions are dense in H. Two functions fj and f» are equivalent, fi ~ fo iff

lfi~fall=0. (16)
It follows that two functions f1 and f> are in the same equivalence class, f; ~ fa.
iff f1= fa.
Since

—(p) (¢O+x0) i (&~ F)

6(<")OG(X —x)6() = 6(x°)8(x") (iy / d*p* 2(p)

it follows that the inner product (fe, G f») of functions satisfying the support con-
dition is manifestly Lorentz invariant,

3 - -
(G )= | j—(—;fb(m*fa(ﬁ) = [ @867 +m) 060 A0 5l) (19

with

(17)

@) = / dixexp (=i X — 1) F(x) (19)
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The time evolution evolution f,(t) := e~*F °tf, is given explicitly by
(F Ge™ P fo) = (fo: fal®)) (20)
with f,(¢,p) := e~ @2 f (7).

3.2 Single Particles with Spin &

For a single spin 1/2 particle the Green function is

G(x—y) = (271,)4 / dtpe ) (——ppl:lm> : (21)
where the spinor matrices 7, := i3, 8& with & := 757 satisfy
3 {Vews Tev} = =00 (22)
The involution operator © must also act on the spinor indices,
(0)(x) = BF(—X,%). (23)

As in the case of spin 0 it is easy to verify positivity of the inner product (f.Gf)
for Schwartz functions with support restricted to positive values of x°.

(f,Gf) = / dixdiy 1 ()OG(x ~ y) f(y) = / dixdy T ()BG(—x° —y°.% ~ ) £(y)

_ s w@ +a&-pF+Pm - SN F

= [#of @ BRI fy) = [afiofm =0, ey
where

f(x) = (2,”)—% /dap eiﬁ-i‘—w(p)x09(x0) w(p) +25('pp;+ Bm f(ﬁ} ) (25)

4 Two-Body Dynamics

The auxiliary Hilbert space H, is the tensor product of the single-particle auxiliary
Hilbert spaces. The involution operator © is the tensor product of single particle
involution operators. Schwartz functions f(x1,x%2) = f(X,x) with X := %(xl + X2)
and x := x; — X2 are dense in this Hilbert space. For spin 1/2 particles these
functions depend on spinor variables as well. The E(4) generators are additive.

1 9

1 @ 8
Pr = = Z E JHv — - Z (xnﬂ—é-XT -~ x;-BT’,i + i['y#efy;e]) . (26)
n=1 n=1 n
In general Green operators are realized by E(4) invariant tempered distributions
G(x1,%2; X5, X1 ). For free particles the Green function is the product of single particle
Green functions, Interactions are added according to eq. (8). A simple example of
a nucleon-nucleon interaction is of the form

UE(X,%) = {Vs( +129EVe() + 30 D 1DV ()
n,v
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Scattering wave functions obtain by the weak time limits

(Z5,Gsz) = lim (5, Ge™ T, (1)) (28)

where T () := T(t) x TP (t) is the tensor product of single particle states. !*
The S-matrix obtains in the limit

Spa = lim lim (\i/,,(t’),Ge"P"(‘-")\iva(t)) (29)

t'=+o0 t=—0cc

5 Many-Body Dynamics

The auxiliary Hilbert space H, is the N-fold tensor product of the single-particle
auxiliary Hilbert spaces. The involution operator © is the outer product of single
particle involution operators. Schwartz functions, f(xi,...,%y), of Npoints and N
spinor indices are dense in this Hilbert space. The E(4) generators are additive.

1. @ 1< ) ]
ARSI SY (xﬁax—z ~xigm Hiatd) - G0
n= n=

In general Green operators are realized by E(4) invariant tempered distributions
Gn(X1y..-XN3 YN, - .-, ¥1). The cluster properties can be conveniently realized using
formal annihilation operators a(x), b(x) and creation operators af(x), b7(x) which
satisfy the commutation relations!?

{a(,a"y)} =69 (x—y),  {6(x).67(y)} = 6D (x—y)

{a(x),b(y)} = {a(x),b' ()} = 0. (31)

The cluster structure of the general N-particle Green functions is realized by the
expressionl4

GN(X1y - s XN3YN, «- -5 Y1) = (Ola(x1) - - - a(xw)b(yn) - - - by1) exp (Z Sn) |0} .

(32)
where |0) is the cyclic vector that is annihilated by a(x), b(x), and

1
Sn = ?/d‘lxl.../d“yl...
n:

X af(xn)---af(xl)bf(yl)---bf(yn)Sn(xl, e XniYns eee s Y1) (33)

The functions S, vanish for separation of the points into widely separated clusters.
Representations of the inverse Green operators have the same cluster structure.

Gl =exp [/ d4x/d4yaf(x)bf(y)5'1(x -y)+ Z U, (34)

n>2
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A many-body Green operator can be completely determined by two-body interac-
tions, U, =0 for n > 2,

o= [ @b [at [dn [ diyaal (ol ()b (1206 ()0 G xzsve ) (39

6 Conclusions

Kinematic Poincaré covariance of state vectors of many-body systems requires a dy-
namically determined semi-definite inner product measure. An effective realization
is based on an auxiliary Hilbert space endowed with a unitary representation of the
four-dimensional Euclidean group. A self-adjoint unitary involution operator pro-
vides a Poincaré invariant indefinite inner product. The Euclidean invariant Green
operator specifies the Poincaré invariant semi-definite inner product of the sub-
space of physical states. In this framework two-body Green operators are sufficient
to determine many-body Green functions satisfying cluster separability.
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