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Abstract

The magnetized target fusion (MTF) concept is an approach to thermonuclear
fusion which is intermediate between the two extremes of inertial and magnetic
confinement fusion. A magnetic field is used to suppress electron thermal conduction, but
the fusion plasma is heated by compression and inertially confined during the fusion burn
phase by an imploding liner or shell. Because the major energy loss mechanisms are
suppressed, the work rate required to achieve fusion ignition is greatly reduced, which
translates to a greatly reduced requirement for power input to the target. This allows
electrical pulsed power machines (and possibly other devices) to be used as drivers. The
potential advantages that such a relaxation of driver requirements may offer need to be
explored. Thio proposed to dynamically form an MTF target plasma and compress it with
a dynamically formed spherical liner, which compresses and heats the target plasma to
fusion ignition conditions. This paper will discuss the fundamentals of MTF and the
feasibility and technical challenges of Thio's novel approach to advanced space propulsion.

Theoretical Basis for MTF

MTF is intermediate between two very different mainline approaches to fusion:
inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Electron
thermal conduction is the major energy loss mechanism for the wall confined,
unmagnetized plasmas produced in most designs for ignition targets for inertial
confinement fusion (ICF) [1]. MTF is based on the fact that a magnetic field suppresses
electron thermal conduction in a sufficiently hot plasma. However, simply imposing a
magnetic field on existing ICF ignition target designs does little to suppress electron
thermal conduction, because the density is so high that the mean collision time in the
plasma is short, leading to a small magnetization parameter, the cyclotron frequency -
collision time product @t. This means that MTF must operate at a much lower density
than ICF. Also, in the absence of conduction loss, bremsstrahlung would become the
dominant ICF energy loss mechanism, which is another reason that MTF must operate in a
lower density regime than ICF. By reducing the operating density and imposing a
sufficiently high magnetic field, both conduction and radiation losses are reduced. For
given fusion plasma mass, this leads to a larger target containing a gaseous deuterium and
tritium (DT) fusion fuel at about 0.01 to 1 mg/cc.

The required level of magnetic field for insulation of the fusion fuel from loss to
the surrounding wall is sufficiently low that the synchrotron radiation and the magnetic
field energy are only small perturbations on the fusion fuel dynamics. If initially the
plasma has a high ratio of thermal energy to magnetic energy B = 2cvpT/u0B, then if the
plasma is compressed in all three dimensions, its § will increase during compression. With




sufficiently reduced energy loss rates the plasma can be compressed relatively adiabatically
to fusion temperatures by squeezing it with the confining shell or liner [2,3]. Then the rate
of compression as determined by the implosion velocity and geometry of the confining
vessel can be much lower than needed for ICF. In ICF the confining vessel is a spherical
shell that is symmetrically and rapidly imploded to a very small final radius. One
embodiment of MTF would be similar, except the implosion velocity could be more than
an order of magnitude lower. Figure 1 illustrates the MTF concept.

Fusion Ignition

Fusion ignition, the transition to self-sustaining fusion burn, is not required for all
fusion energy schemes, but ignition is what makes ICF a viable fusion energy concept.
Fusion ignition relies on "self-heating”, which means that the fusion energy release in the
form of energetic reaction products (neutrons alpha particles for DT fusion) is at least
partially deposited in the fusion plasma as these particles pass through it. For ICF the
critical parameter that determines whether the fusion self-heating overbalances the energy
losses from the fusion plasma is the areal density pR. The areal density must exceed
approximately 0.3 gm/cc for fusion ignition to occur. Because much higher areal density
is required for significant energy deposition by neutrons, they deposit very little energy,
and the DT alpha particles are the major source of self-heating for ICF and MTF. The
efficiency of the burn that follows depends on the sum of the areal densities of the
imploding parts of the target (fusion fuel plus imploded confining shell). Therefore, the
target gain depends on the pR as well.

For DT alpha transport in MTF an additional parameter is important. The pR is
augmented by a field times radius product BR for the magnetized plasma. Because the
energetic charged particles in a magnetized plasma are turned in the field, their path in the
fusion fuel is lengthened. In a hot plasma the magnetic field is essentially frozen in place
relative to the plasma, so that the compression of the plasma by the imploded confining
shell also compresses the field, which can reach many megagauss. The critical parameter is
the gyroradius. Ifit is much smaller than the fusion plasma radius, then a significant part
of the energy of charged fusion products will be deposited to self-heat the plasma. The
critical value corresponds to a field times radius product (BR) of 0.3 MG-cm, but the
higher the better. The very low pR typical of MTF is significantly augmented by the high
BR, so that fusion ignition can occur for MTF. In one study a particle tracking code was
used to calculate the fraction of DT alpha particle energy deposited in spherical volume of
homogeneous magnetized plasma with a pure azimuthal field (where B(r) = B(R)) [4]. -
Some results for that study are shown in Figure 2. Figure 3 for the case of a field
produced by a uniform current density (for which B(r) = rB(R)/R) shows that the
fractional deposition also depends on the distribution of the field.

Figure 4 shows a Lindl-Widner diagram (energy rate contours in the temperature-
areal density phase space) for MTF. The region of ICF fusion is in the extreme upper left
of the diagram. MTF extends the region available for self-sustaining fusion burn to much
lower values of areal density (pR).




Previous MTF-related Experiments

Previous MTF research included the Sandia National Laboratory "Phi-target"
experiments [5, 6], the only series of experiments documented in available scientific
literature in which a plasma known to be magnetized was compressed sufficiently to
produce thermonuclear neutrons. This target resembled the Greek character ® (see
Figure 5). Despite the very interesting results from that series of experiments, the research
was not pursued, and other embodiments of MTF concept such as the Fast Liner [2] were
unable to attract the support needed for a firm proof of principle. A mapping of the
parameter space for MTF [7] showed the significant features of this approach, which have
steadily attracted more attention. Since the All-Russia Scientific Institute for
Experimental Physics (VNIIEF) revealed their on-going interest in this approach to
thermonuclear fusion, Los Alamos National Laboratory (LANL) and VNIIEF have done
joint target plasma generation experiments relevant to MTF referred to as MAGO
(transliteration of the Russian acronym for magnetic compression) [8]. The MAGO II
experiment appears to have achieved on the order of 200 eV and over 100 kG, so that
adiabatic compression with a relatively small convergence (10 to 15 in cylindrical
geometry) could bring the plasma to fusion temperatures. ‘

Reduced Driver Requirements

MTF promises a significant advance in fusion technology. Because in principle
MTF targets are larger and can'be imploded slower than is needed for an ICF target, the
power and intensity required to drive an MTF target to fusion ignition are potentially
orders of magnitude lower. However, for the same mass of fusion fuel the energy
required for ignition is about the same. This is because the same thermal energy must be
supplied to the fusion fuel to raise it to the ignition temperature [3]. Ignition of a
particular fusion target requires that the fusion driver (laser, particle beam, or otherwise)
simultaneously supply sufficient energy, power, and intensity to the target. For example, it
is thought that at this time lasers are sufficiently powerful and intense to drive appropriate
designs of ICF targets to ignition, but are not sufficiently energetic. The anticipated
National Ignition Facility (NIF) at Livermore, California, is intended to provide all three,
that is, sufficient energy, power, and intensity on target. The attractiveness of MTF is that
the reduced power and intensity requirements needed for MTF targets could be provided
by energetic pulsed power machines. Direct pulsed power has never been a contender as
an ICF driver, because of an inability to supply the necessary power and intensity on
target. However, some existing pulsed power machines can easily supply sufficient
energy, power, and intensity for MTF experiments and are more efficient overall than laser
or other beam drivers. For higher efficiency drivers, the lower gain targets expected for
MTF should still be adequate for a viable fusion power system.

MTF Development Path

Magnetized target fusion (MTF) provides a development path for fusion energy
that is mid-way between the two dominant approaches to fusion energy. We desire a




scientific proof of principle which demonstrates that compression of a magnetized plasma
heats it in accord with MTF theory. Previous MTF studies [3,7] have emphasized that
existing pulsed power technology is adequate for a scientific proof of principle, and
probably sufficient for experimental exploration beyond. This would allow an economical
and significant advance of fusion science and technology. The reasons for this assertion
were summarized above.
It should be noted that MTF is a concept that may have many diverse

- embodiments, some purely for experimental investigation of MTF, and others for
applications such as fusion power production and space propulsion. We have taken the
position that the most important first task for research on any fusion concept is to provide
a proof of principle. Once that is done, the concept becomes a candidate for consideration
as a possible approach to fusion propulsion or fusion energy production. However, it is
necessary to motivate continued support of MTF research by pointing out its potential
practical applications. For this reason, we use our current understanding of MTF to
explore its potential application to space propulsion in the next few sections of this paper.

MTF for Propulsion

There are two ways to harness MTF for propulsion. One is to directly use the
momentum of the expanding fusion-heated target material for thrust, and the other is to
use MTF to provide fusion energy to power a thrust producing plasma jet or neutralized
ion beam. Both of these approaches have advantages. The chief advantage of the indirect
approach is that it decouples development of the energy supply from that of the rocket or
thruster, which allows two independent development paths that can be merged at a later
phase of system development. We will describe below only a direct system concept, but
many of the components of such a system are similar to an indirect system. By pursuing
one approach the other should also progress. More detailed analysis concurrent with early
development of a direct system should form the basis for choosing the most attractive
approach at a later date.

Since MTF is a relatively new concept in fusion, a thorough study of its potential
for space propulsion has never been undertaken. As a prelude to systematically exploring
how MTF can be packaged for space propulsion we have chosen to discuss a system
based on Thio's standoff driver concept.

Standoff Driver Concept for MTF

One of the chief problems with many pulsed fusion concepts is that the burning
fusion plasma would subject an unprotected driver to intense, potentially damaging
radiation. Another is that a fabricated target of the required precision might be very
expensive, even with mass production techniques. The standoff driver concept addresses
both of these issues. Thio proposed to dynamically form a target plasma is by merging
two oppositely directed spheromaks [9, 10]. The target plasma would then be -
compressed and heated by a dynamically formed gaseous shell formed by simultaneously
directing dozens high velocity jets at the target plasma. For sufficient compression to,
occur, it is necessary to merge the jets into a relatively smooth shell and to keep the




convergence needed to reach fusion conditions as low as possible. The latter requires that
the target plasma have a high temperature just before compression begins. The basic
concept is illustrated in Figure 6. ,

Thio used simplified physical models to analyze this stand-off target and driver
concept. The colliding compact toroids (CTs) must be launched first, followed by the
faster gas jets. The several radial gas jets are timed to merge into a contiguous shell
shortly after the two compact toroids have formed the target plasma. Knapp did some
preliminary modeling in 2 and 3 dimensions of the dynamics of the merging multiple gas
jets to form a contiguous liner, and the merging appears to be feasible [11]. Knapp's
calculations were Thio's justification for using a 1-D spherically symmetric quasi-steady-
state gasdynamic model for the modeling the performance of this stand-off concept. The
collision of the plasma liner with the target plasma launches shocks which travel inward
through the target plasma and outward through the plasma shell. These provide
preliminary heating of the target plasma and inner aspect of the liner. The contact velocity
is determined by pressure continuity. The in-going shock is reflected at the center, but
additional shocks are weak by comparison, so that the implosion is approximately an
acoustic compression. By maintaining a radial convergence ratio less than 10, the
development of Rayleigh-Taylor instabilities is minimized. Reaching fusion temperatures
with a radial convergence of only 10 depends on achieving a temperature of about 100 eV
in the target plasma before compression begins.

Various methods have been proposed to protect the plasma and gas guns from the
intense, potentially damaging radiation emitted by the burning fusion plasma. One would
method use less precise, but well-timed gas jets to shield the otherwise exposed guns.
This would potentially reduce the level of robustness below that which the guns would
otherwise have to meet. As a fusion energy reactor many of the ideas for utilizing the
neutron energy and breeding tritium are similar to other pulsed fusion concepts such as
ICF, but for space propulsion many of these ideas must be discarded.

Fusion Propulsion Embodiment of the Standoff Driver Concept

Many complications associated with terrestrial fusion experiments are eliminated
by operation in space. For example, operation in the vacuum of space eliminates the need
for the pumps and plumbing of a vacuum system. However, operation in space can also
complicate other requirements, such as system cooling. Therefore, the tradeoffs for fusion
based propulsion differ significantly from those for terrestrial fusion reactors intended for -
electrical power generation.

A conceptual study explored the feasibility of the stand-off driver MTF concept
described above for space propulsion [12]. In the simplest configuration a single
hemispherical "chamber" would allow the momentum of the target plasma explosion to be
directed toward the open side of the hemisphere (see Figure 7).

Starting with the basic concept, it was possible to make several improvements.
First, the merging multiple gas jets can carry additional cold fusion fuel, which is ignited
by the central fusion burn. Second, the merging multiple gas jets can carry hydrogenous
moderating material that is compressed with the liner so that it can absorb most of the 14




MeV neutron energy. Third, in principle, shielding material can also be carried in and
compressed around the target. Fourth, a magnetic nozzle can be created, which is slightly
compressed in reaction to the exploding target, and thereby induces a current for direct
conversion to supply the circulating power. Fifth, by off-setting the aiming points and
adjusting the CT and gas jet velocities, it is possible to create a moving center of mass, so
that the target explodes in an optimum place in magnetic nozzle.

This concept proved to have very attractive features:

a) It provides for a very dense hydrogenous liner capable of
converting more than 97% of the neutron energy into charged
particle energy. '

b) The fusion yield per pulse can be maintained at an
attractively low level ( < 1GJ ) with a gain in excess of 70.

c¢) The magnetic nozzle can operate as a magnetic flux compression
generator to provide the necessary circulating power for continued
operation, yet still maintain a high nozzle efficiency.

d) The electrical energy from flux compression can recharge
a capacitor bank or other energy storage without using a high
“voltage power supply.

e) The electrical circuit is comprised mainly of inductors,
capacitors and plasma guns, without any intermediate equipment
which allows a high rep-rate.

f) All fusion related components are within the current state
of the art for pulsed power technology.

g) The scheme does not require any prefabricated target or

liner hardware. All necessary fuel and liner material are
introduced into the engine in a gaseous form and delivered to the
fusion reaction region in a completely stand-off manner.

Conclusion

The standoff driver concept for MTF is being explored as the basis for an
advanced space propulsion system. There are many advantages such a system appears to
have. However, the progress of the underlying research has been slow due to restricted
resources. Most urgent is the need for a firm proof of principle for MTF. An experiment
is underway at Los Alamos to create a target plasma for injection into a metal liner for
subsequent compression, but compression experiments at the US Air Force Research
Center in Albuquerque, as constrained by current funding levels, are at least a year or two




away. In addition, the underlying concepts and technology for the standoff driver concept
need to be tested. Some standoff driver work is under way at NASA Marshall Space
Flight Center, but currently at a low level.

Because most of the required pulsed power technology needed to test many of the
basic concepts for MTF and the standoff driver concept is currently available, the cost of
pursuing this approach to advanced space propulsion should be much less than many other
approaches. Also, the progress could be rapid, which is an important factor when
considering overall cost. The logical first step, that of obtaining a firm proof of principle
for MTF, could proceed much more rapidly if adequate resources were available. While
some theoretical work has been done, much more is needed. Also, more modeling with
computationally efficient and improved MHD codes is needed. Support for the theoretical
and computational work has of necessity taken a back seat to the more urgent
experimental effort to provide a firm proof of principle. However, it is very desirable to
coordinate the theoretical and computational work with the experimental effort in order to
avoid meandering trails along the MTF development path.
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Figure 1. The MTF concept involves two steps, creation of a warm, magnetized
plasma and compression by an imploding liner or shell.
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Figure 2. Some results for the fraction of DT alpha particle energy deposited in spherical
volume for the case of a uniform current density ( B(r) = rB(R)/R ).
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Lindl-Widner Diagram for MTF
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Figure 4. Lindl-Widner diagram (energy rate contours in the temperature-
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