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ABSTRACT

Hidden Markov models (HMMs) of speech acoustics are the current state-of-the-art in speech
recognition, but these models bear little resemblance to the processes underlying speech production
(Lee, 1989). In this respect, using an HMM to model speech acoustics is like using a Gaussian
distribution to model data generated by a Poisson process — to the extent that the model is not an
accurate representation of generating process, the accuracy of the model, and the meaning of the
inferred parameters, is limited. Of This model mismatch likely contributes to the fact that state-of-
the-art recognition performance (word accuracy) on recorded telephone conversations is only
around 60-65%.

There have been recent attempts to create stochastic models of speech acoustics make more realistic
assumptions about the mechanisms underlying speech production (Bakis, 1991; Deng, 1998;
‘Hogden, 1998; Picone et al., 1999). In this paper we describe two stochastic models of speech
production Conditional Observable Maximum Likelihood Mapping (CO-MALCOM) and its
predecessor, Maximum Likelihood Continuity Mapping (MALCOM). The main component of
both of these models is a stochastic mapping between speech acoustics and speech articulation.

A counter-intuitive aspect of the stochastic mapping is that the parameters of the mapping can be
found using only acoustic data. While most speech researchers are familiar with the fact that HMM
parameters can be estimated from acoustics alone, many still find it surprising that the mapping
between speech acoustics and speech articulator positions (positions of the tongue, jaw, lips ...) can
be found without articulator position measurements. Nonetheless, there are theoretical and
experimental reasons to believe that MALCOM and it’s allies learn a stochastic mapping between
articulator positions and speech acoustics. Furthermore, CO-MALCOM can be combined with
standard speech recognition algorithms to form a speech recognition approach based on a
production model. Results of experiments related to MALCOM are summarized, and the CO-
MALCOM extension is described.

BACKGROUND: STATE-OF-THE-ART SPEECH RECOGNITION

In many realistic domains, automatic speech recognition performance is inadequate. To be
concrete, at the National Institute of Standards and Technology 1998 HUB-5 Speech Recognition
Evaluation, state-of-the-art systems had about a 60%-65% word recognition rate on “casual
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speech”, i.e., telephone conversations in the Switchboard database (Martin, Fiscus, Przybocki &
Fisher, 1998). Since speaking rates of 200 words per minute are not uncommon in casual speech, a
60% word recognition accuracy implies approximately 80 errors per minute -- an unacceptable rate
for many applications. Furthermore, recognition performance is not improving rapidly.

Recognition rates of the best systems on the Switchboard data were between 64.9% and 61.2% for
1996, 1997, and 1998, although they have improved from only 52% recognition in the 1995
evaluation'. These recognition results should prompt us to look for alternatives to the current
approach.

The primary tools used in speech recognition are hidden Markov models (HMMs) -- they are used
to estimate the probability of an acoustic sequence given the model parameters (Jelinek, 1997). A
nice feature of HMMs is that maximum likelihood techniques allow the model parameters to be
automatically determined from training data. The automatic parameter estimation, and the
stochastic nature of the HMMs are presumably the features that allow them to cope with the
amazing amount of variability in speech.

While HMMs have been useful, it has been noted that “[the HMM] is a very inaccurate model of
the speech production process” (Lee, 1989). The problems with HMMs have prompted many
researchers to propose alternatives (a good review is given in Ostendorf, Digalakis & Kimball,
1996). Most of the alternatives add parameters to HMM:s to allow greater ability to model signals.
Adding parameters has the disadvantage that more data is needed to train the models, and training
data sets are already very large. In our opinion, making the acoustic models more general by
adding parameters is the wrong way to go. In fact, like other researchers in the field (Bakis, 1991;
Deng, 1998; Picone et al., 1999), we are interested in making the acoustic models more specific to
speech, i.e., retain the stochastic nature of the model and the automatic parameter estimation, but
change the underlying model to more accurately represent speech production.

INTRODUCING MO-MALCOM

Maximum Likelihood Continuity Mapping (MO-MALCOM) learns a stochastic model of
sequences of categorical data values, e.g., vector quantization (VQ) codes representing speech
acoustics. MALCOM assumes that 1) that data sequences are produced by objects moving
smoothly through an abstract space called a continuity map (CM) and 2) the probability of
observing a particular data value at time t is dependent on the position, x(t), of the object at time t.
These assumptions model the facts that 1) speech sounds are produced by motions of the speech
articulators and 2) the sound output at time t can be determined from the positions of the articulators
at time t.

For pedagogical purposes, it is useful to think of the CM used by MALCOM as a mapping between
acoustics and articulator positions. However, it is not necessary to believe that there is a one-to-one
mapping between acoustics and articulator positions to believe that MALCOM can be useful. This
is important because the extent to which articulator positions can be determine from a short-time
window of speech acoustics is the subject of continuing debate (Atal, Chang, Mathews & Tukey,
1978; Hogden et al., 1993). Computer models and mathematical analyses have been used to argue
that different vocal tract shapes can be used to produce the same acoustic signals. However, these
theoretical analyses make many assumptions about speech production, as evidenced by the fact that
the range of articulator positions that produce a given acoustic signal for one model may be an order
of magnitude greater than the range of articulator positions that produce the same signal in a

! There was no 1999 evaluation and I have not yet been able to obtain results of the 2000 evaluation




different model. Furthermore, while the computer models may show that articulator positions can
change by centimeters while still producing the same acoustic signal, relatively simple methods of
recovering articulator positions from acoustics have errors of only around 1 or 2 millimeters.
Regardless, for any acoustic speech signal, there must be some probability density function (PDF)
quantifying the probability that articulator configuration x was used to create the speech signal.
MALCOM approximates this fact using a parameterized distribution to indicate the probability of
an articulator position at time t, X(t), conditioned on an observable representation of the acoustic
signal, the VQ code at t, c(t), where x(t) is a vector and c(t) is a scalor. This density function is
denoted p[xlc,,¢], Where @ is the set of parameters of the PDF (e.g. means and covariance matrices).
Note that the density function is not necessarily unimodal, but that all the work described herein
makes the simplifying assumption that the p[x|c,,¢] is Gaussian.

While it may or may not be possible to invert a deterministic mapping from articulation to
acoustics, Bayes’ law makes it easy to invert MO-MALCOM’s probabilistic mapping to get the

probability of a VQ code given a continuity map position, -
ol o] o
Plcix, 0| = ————— .
el =

Note that we are making an implicit conditional independence assumption here: the probability of
outputting a VQ code is determined by the current articulator positions alone. The previous and
subsequent articulator positions give no further information about the probability of the VQ code.
This assumption is used to get the probability of a sequence of VQ codes, ¢ = [c(1), ¢(2), ... c(n)]
from a path through the CM, X:

HefX.0] = [TPlexn, 0] EQ2
=0

Clearly, if we had enough measurements of articulator positions and the resulting acoustics, a
stochastic map like the continuity map could be made. However, articulator measurements are
difficult to collect, so as a matter of practicality, the articulatory paths must be treated as
unobservable. As discussed below, this does not preclude inferring parameters of the map,
however. In the same way that HMM parameters can be inferred despite the fact that the state
sequence is unobservable, the CM parameters can be inferred without being able to observe
articulatory paths. However, to do so, we must put some constraints on the paths. The constraint
that we have chosen is that only paths with no energy above some cut-off frequency are possible.
This constraint is not only reasonable, since real articulator trajectories have nearly all their energy
in low frequency components, but is particularly easy to implement.

To better understand the role of the smoothness constraint, consider the relationship between a
smoothness constraint and a Markov constraint. Suppose that instead of the smoothness constraint,
we had simply limited the time derivative of the articulatory trajectory. This would have been
analogous to imposing a first-order Markov constraint in that we could look at any two sequential
articulatory path positions to determine whether the trajectory was possible. So, with a constraint
on the first derivative, given a starting articulator position, the probability of making a transition to




any position within some distance (determined by the derivative and the time between observations)
would be some non-zero constant, but the probability of a transition to an articulator position
outside that distance would be zero. In fact, the smoothness constraint does place limits on the
derivative of the trajectory, since the derivative of the trajectory can not have any energy above the
cut-off frequency. However, the smoothness constraint places limits on second derivatives, third
derivatives, etc. Thus, imposing a smoothness constraint is more similar to using a high-order
Markov model. Noting that the smoothness constraint only requires one parameter (the cut-off
frequency), whereas the number of transition probabilities goes up exponentially for higher-order
Markov models. So the smoothness constraint is not capable of representing the variety of
phenomena that 2 Markov model can be used to model. Perhaps the smoothness constraint should
be thought of as a high-order Markov constraint in which many of the transitions probabilities are
tied. In any case, since real articulator trajectories are bandwidth limited, using a smoothness
constraint instead of a Markov constraint provides a realistic and parsimonious way to limit
articulatory trajectories.

As described below, the parameters are learned using maximum likelihood fechniques. Statistical
theory tells us that maximum likelihood estimates of mixture density parameters are consistent
under relatively general conditions (McLachlan & Basford, 1988). That is, if the model reflects the
underlying generating process, maximum likelihood parameter values will approach the actual
parameter values of the system generating the data as the amount of training data gets large. Since
the MO-MALCOM model parameters constitute an estimate of the mapping between articulator
positions and acoustics, we might expect that the MALCOM continuity map will approximate the
actual stochastic mapping between acoustics and articulation given enough data. As discussed
below, this appears to be the case.

MALCOM TRAINING

Signal Processing

Before applying MALCOM to continuous valued data, short time-windows of the data should be
processed into vectors that contain information about vocal-tract shape and as little information as
possible about the vocal-tract excitation. (e.g. cepstra, LPC coefficients, mel-cepstra). This signal
processing must be done to meet the MALCOM assumption that the signals are produced by slowly
moving objects, such as the articulators, not quickly moving objects such as the vocal chords. The
resulting sequences of vectors are then converted to sequences of categorical data values using VQ.

MALCOM Training

As with HMMs, the MO-MALCOM parameters need to be trained on a large corpus of training
data. Two learning steps are iteratively repeated to calculate the parameters of the PDFs. Note that
the two learning steps (given below) used to calculate the CM parameters are analogous to the 1)
Viterbi algorithm as used to calculate the path through a HMM state space, 2) the HMM parameter
re-estimation algorithm.

1) Given some initial set of PDF parameters, and many different examples of ¢, VQ data sequences,
find the smooth paths (i.e. paths that have no Fourier components above some cut-off frequency)
through the CM that maximize the likelihood of the code sequences. That is,




X = argmax P[c[X, @] EQ.3
X

2) Find the values of the PDF parameters that maximize the probability of the data sequence given
the path estimates found in step 1. That is,

@ = argmax P[clf(, (p] EQ. 4
0 ]

There are a variety of standard algorithms for performing the maximizations required above. We
have found conjugate gradient ascent methods useful.

Optimizing Other MO-MALCOM Parameters

We also need to know the number of dimensions to use in the continuity map, and the cut-off
frequency of the smooth paths. Trying many combinations of parameters te determine which
combination works best for the problem being studied is the way to get the best performance.
However, in many cases, determining the performance of the model on a task is much more time
consuming than using MALCOM to estimate the probability of a cross-validation sample of
sequences. In such a case, cross-validation is preferable. However, note that estimating
MALCOM paths from the cross-validation set, and then determining the probability of the data
given the paths, will result in a biased estimate of the generalization performance. Instead, a
MALCOM path should be estimated without using one of VQ codes in a sequence, then the
probability of the left out VQ code should be calculated using the estimated path, and the process
should be repeated leaving out successive data values.

MALCOM EXPERIMENTS

Two studies showing that MALCOM accurately finds a mapping between acoustics and articulator
positions will be reviewed (Hogden, 1995; Nix, 1998). Articulator data was not used for training
MALOCM in either of these studies, although articulator measurements were used to calculate the
extent to which MALCOM estimated articulator trajectories mimic actual articulator trajectories.
Despite the fact that articulator positions were not used for training, correlations between estimated
and actual articulator positions were in the 0.9 to 0.97 range for several important articulatory
parameters.

MALCOM SPEECH RECOGNITION

For speech recognition, the task is to determine the probability of one sequence of categorical data
values (e.g. phonemes) conditioned on an observable sequence of categorical data values. One
modification of MALCOM, which we call Conditional Observable MALCOM (CO-MALCOM) is
applicable to these types of tasks.

In CO-MALCOM, we start with the assumption that the articulator positions do not just tell us
about the acoustics being output, but also tell us which phonemes are being produced. The process
of recovering a phoneme sequence from a sequence of VQ codes is taken to be: 1) using a
continuity map, find the articulator trajectory for a given sequence.; 2) given an articulator
trajectory, find the probability of each phoneme at each time; 3) combine this information with
word and language models to get the probability of a word given a VQ code sequence.




Estimating the probability of a phoneme sequence given an articulator trajectory is done using the
same techniques used to estimate the probability of a VQ code sequence given an articulatory
trajectory: 1) PDFs quantifying the probability of an articulator position conditioned on a phoneme
are estimated; 2) Bayes’ law is used to get the probability of a phoneme conditioned on an
articulator position; 3) the probability for a whole sequence of phonemes conditioned on a
trajectory is calculated using a conditional independence assumption.

‘Finding the path given the VQ code sequence is done slightly differently than described previously.
Instead of finding the X that maximizes P(c]X, (p), we maximize p(ch,(p) The justifications for

this is pragmatic: there is an analytic solution to the problem of maximizing P(Xlc) so we can
quickly calculate the path, X(c, qo); 2) it is relatively easy to get the gradient of X(c,(p)with respect

-to ¢ and @. These are important considerations, because they considerably reduce the complexity of
finding the training process. The reduction in complexity is due to the fact that CO-MALCOM
parameters should maximize P[f IX(c,(p),y], where f is the sequence of phonemes, and 7 is the set
of parameters giving the mapping between phonemes and articulation. Since this maximization
requires using the chain rule to get the derivative of the probability with respect to @, it is a

tremendous savings to be able to calculate the derivative of X with respect to ¢.

Combining CO-MALCOM with Word Models

In standard speech recognition algorithms, the probability of a phoneme sequence given a
word, [ (s) = fjw]. is estimated using a lattice model, and is then used to get the probability of a

word given the observable data. Since a variety of standard techniques can be used to create a
lattice model, we will not discuss the problem of estimating lattice model structures or parameters
here. However, in this section, we discuss one way to combine a lattice structure with MO-
MALCOM processing to achieve speech recognition.

Define variables reminiscent of the HMM forward algorithm:

a; = PL£(t) = f|f(t-1) = £, W] EQ. S
b,(1) = P£(0) = fix(1)] EQ.6
mo=Pf()=filw] EQ.7

a,(1) = P[£(8) = f]w, x(e), x( ~ D)., x(1)] EQ. 8

Assuming conditional independence, the reader can confirm that
ai(l) =b, (1)751' EQ. 9

o, (1) =bi(t)zaijaj(t_1) EQ. 10

Using these recursively calculated probabilities we can find
PlwX]= P[w|x(t),x(t - l),...,x(l)]
= Za,-(t)P(W)

EQ. 11




The basic idea, then, is to start by finding the smooth path through the continuity map that
maximizes the probability of the VQ code sequence. Then use that path to get the probability of
each phoneme for each acoustic window. Then combine the probabilities of each phoneme given
the path, with the phoneme probabilities given the word, and the prior word probability, to get an
estimate of the posterior probability of the word.

RELATED EXPERIMENTS

CO-MALCOM is an attempt to improve an earlier algorithm which we called MO-MALCOM, for
Multiple Observable MALCOM. As such, it has not yet been evaluated on test data. Nonetheless,
since CO-MALCOM eliminates flaws in MO-MALCOM, we expect performance to be on par with
MO-MALCOM performance, or slightly better. For this reason, we will describe the results of a
suggestive study MO-MALCOM. Nix (1998) showed that MO-MALCOM positions are excellent
at discriminating phonemes — better than measured articulator positions. Using a jackknife
procedure, Nix used MO-MALCOM to create a CM from training data. Then, on testing data,
smooth paths through the CM were found using only the VQ codes. Fisher’s discriminant analysis
was used to find the axis of the map that best discriminated the phoneme pair. Along this best
dimension, the percentage of area in common between p(xlf;) and p(xlf;) was computed. To the
extent that this is a low value, the CM positions give a lot of information about phoneme identity.

The ability of MO-MALCOM to differentiate between phonemes differing in place of articulation is
demonstrated by two examples: 1) the largest overlap in MO-MALCOM PDFs between phoneme
pairs composed of [p], [t], and [k] is 1%; 2) the largest overlap between phoneme pairs composed of
{b], {d], and [g] is 6%. The ability of MO-MALCOM to discriminate between phonemes with
similar articulation but different acoustics is also evident -- [b] and [p] have an overlap of less than
0.5%, [d] and [t] have an overlap of 2%, [k] and [g] have an overlap of 6%. Even [b] and [w] are
discriminated well by MO-MALCOM positions (the overlap is less than 0.5%). Furthermore, MO-
MALCOM continuity map positions are good at discriminating vowels -- the largest overlap for
MO-MALCOM is 3% and only 6 vowel pairs have overlaps larger that 0.5%. The most difficult
pair of phonemes for MO-MALCOM to discriminate are {r] and [1], which have 19% overlap. The
next most difficult pair is [r] and the glottal stop with a 17% overlap. The vast majority of phoneme
pairs have less than a 0.5% overlap and only 7 phoneme pairs have overlaps of more than 10%.

Despite good phoneme discrimination results, when MO-MALCOM was used to perform speaker-
dependent, isolated-word recognition on data derived from the phonetically labeled portion of the
switchboard data set, the recognition results were not impressive (Hogden, 1998). Even on the
training set, only about 40% recognition accuracy was achieved. However, there were many known
deficiencies in the recognition system that was used (it was created in less than a year), which leads
us to believe that further tests are needed to assess recognition performance. First, the training set
was much smaller than the speaker-independent continuous-speech recognition training sets
commonly used today (we used about 3 minutes of speech as opposed to, say, 65 hours on the
complete Switchboard training set). Second, doing isolated-word recognition prevented the
algorithm from taking advantage of a language model. Third, the model that estimates the
probability of sequences of phonemes given a word was much more simplistic than in state-of-the-
art recognition systems. Fourth, the dictionary contained only canonical pronunciations of words as
opposed to pronunciations that commonly occur in casual speech. This problem is particularly
severe since, in automatically extracting isolated words from continuous speech, phonemes were
often added or deleted from the beginning or the end of the word. Fifth, we did not use cepstral
mean subtraction or variance normalization.




DISCUSSION

The CO-MALCOM and MALCOM theory is still incomplete. Since these techniques involve
estimating mixture density parameters, it is reasonable to expect that CO-MALCOM parameters

will be consistent. Nonetheless, a proof that CO-MALCOM parameters are consistent would be
welcome. Although not described above, simplifications to the MALCOM model are used to speed
up processing. The effects of these simplifications on the results are unknown, and should be

studied. Furthermore, we are currently exploring CO-MALCOM variations, such as building a task
dynamic model (Saltzman & Munhall, 1989) into CO-MALCOM.

We believe that MALCOM and its allies will prove to be valuable tools to add to our speech
processing toolbox, and may well engender significant changes in theories of speech perception and
speech production.
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