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summary

Dynamic microbial attachment/detachment occurs in subsurface systems inreponse to

changing environmental conditions caused by contaminant movement and degradation.

Understanding the environmental conditions and mechanisms by which anaerobic bacteria

partition between aqueous and solid phases is a critical requirement for designing and evaluating

in situ bioremediation efforts. This interdisciplinaryresearch project, of which we report only the

Purdue contribution, provides fundamental itiormation on the attachmentidetachment dynamics

of bacteria in heterogeneous porous media. The multidisciplinary team contributing to the

overall project has evolved from previous collaborations between DOE and various universities.

Co-investigators include Drs. Ginn, Murphy and Fletcher as well as numerous students and post

dots.

Fundamental results resulting from the Purdue collaboration are:

(i) Development of a matched-index method for obtaining 3-D Lagrangian trajectories of

microbial sized particles transporting within porous media or microflow cells.

(ii) The application of advanced numerical methods to optimally design a microflow cell

for studying anaerobic bacterial attachment/detachment phenomena.

(iii) Development of two types of models for simulating bacterial movement and

attachmentidetachrnent in rnicroflow cells and natural porous media.

(iv) The application of stochastic analysis to upscale pore scale microbial

attachrnent/detachrnent models to natural heterogeneous porous media.

(v) Evaluation of the role nonlocality plays in microbial dynamics in heterogeneous

porous media.
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I. Introduction

1. Purpose

In “Estimating the Cold War Mortgage: The 1995 Baseline Environmental Management

Report” (BEMR), uncertainty in estimating cleanup cost is associated with the lack of remedial

approaches for contamination problems, as well as the lack of knowledge on the effectiveness of

the remedies that are available (DOE, 1995a). These difficulties highlight the need for the

development of technologies for subsurface contaminant plume containment and remediation

distribution of contaminants and remediation reagents (e.g., nutrients or

in the presence of natural physical and chemical heterogeneities. Currently

(DOE, 1995b). The central challenge of in situ remediation strategies is the control of the

transient spatial

microorganisms)

available predictive tools rely almost exclusively on the representation of passive

attachment/detachment processes (e.g., filtration, sedimentation) with the bacterium treated as an

inert biocolloid. One of the most intractable aspects of bioreactive transport, however, is active

microbial partitioning (e.g., attachmentidetachment) under growth and transport in physically

and chemically heterogeneous systems (Sturman et al., 1995). Active attachment/detachment is

associated with microbial physiologic response to changes in local aqueous concentrations of

nutrients and electron-acceptors: this process is treated rarely in field-scale bacterial transport

theories, and not at all in available predictive tools.

Understanding coupled contaminant and bacterial transport in real media is critical to the

success of potential fiture bioremediation/biobarrier strategies at DOE sites. Disposal of

chlorinated hydrocarbons has generated extensive contaminant plumes in sand/gravel aquifers at

DOE’s Savannah River Site (SRS) in South Carolina and Paducah Gaseous Dillbsion Plant

(PGDP) in Kentucky, and such organic solutes interact with natural environments in coupled

5
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complex ways that have serious ramifications for remediation. For example, during the SRS in

situ bioremediation demonstration, 90°/0of the increase in methanotroph biomass arising from

degradation of trichloroethylene (TCE) partitioned into the aqueous phase (DOE, 1993).

Initially, this methanotroph population was

partitioning behavior during bioremediation

primarily attached to solid surfaces. If this

were understood and could be predicted, the

knowledge could be exploited to effectively distribute the biomass across a contaminated area

and to plan an injection network so as to minimize costly well construction and dampen or

eliminate microbially-induced reductions in hydraulic conductivity. This basic knowledge on the

transport response of microorganisms is required for any subsurface remediation involving

microbes, including staged approaches that sequentially degrade and immobilize multiple

contaminants. Staged approaches (temporal or spatial) can exploit

properties of distinct microbial populations and are especially well

contaminant problems.

the different transport

suited to DOE mixed

Factors affecting microbial partitioning behavior are complex and not well-defined. In

oligotrophic environments, some microorganisms partition onto the solid phase as nutrients

become limiting (Fletcher and Marshall, 1982; Kjelleberg et al., 1985), while the opposite

response can occur in a nutrient-rich environment or contaminant plume (Bengtsson, 1989;

Murphy et al., submitted). Complicating this scenario is the involvement of active

microbiological survival mechanisms that are not well understood at a basic science level. Some

microorganisms have displayed active attachmentidetachment processes that are transient under

changing growth and starvation conditions (Dawson et al., 1981; Kjelleberg and Hermansson,

1984; van Loosdrecht et al., 1987, 1990). It is not yet clear how wide-spread “active

attachrnentidetachment processes” are among microorganisms, but they may be highly

6
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significant in natural environments, where there appears to be appreciable exchange between

attached and mobile populations. While some microorganisms use transport as a survival

mechanism (to move to a better environment), other microorganisms appear to use attachment as

a survival mechanism, as they appear to be less susceptible to potentially lethal environmental

effects (Chen et al., 1993) and predation (Leff et al., 1994). Further, nutrients associated with the

solid phase and with heterogeneous chemical reactions may be more accessible to attached

microorganisms. Although anaerobic bacteria play a significant role in microbial destruction of

chlorinated solvents and transformation of metals, very few studies have been reported on the

transport of bacteria in porous media under anaerobic conditions (Clement et al., in press).

Further, little information is available on the dynamic attachment/detachment of active

microorganisms in natural media—information that is critical for designing cost-effective in situ

bioremediation strategies for mixed contaminants. Without a fimdamental understanding of

these processes, field efforts can be severely compromised or even wasted by unexpected

consequences, such as biological plugging of the aquifer near injection zones (Cunningham et

al., 1991; Semprini et al., 1991). The study of bacterial transport must also account for coupling

between microbial partitioning and transport in heterogeneous media. Our ability to control any

subsurface manipulation involving transport is severely challenged by the occurrence of natural

physical and chemical heterogeneities in, for instance, reactive surface area and hydraulic

conductivity. Specifically, the coupled distributions of microbes and aqueous-phase nutrients,

and how these distributions change in time under particular pumping and nutrient addition

strategies, will depend on the spatial variability (heterogeneity) in the controlling chemical and

physical properties.



The purpose of the proposed research is to address the limitations in understanding

reactive contaminant transport and dynamic bacterial attachmentidetachment under growth and

growth-limiting conditions in natural porous media. This research will assess the coupled

degradation and transport processes involving biological agents, with focus on the active and

passive attachment/detachment and transport processes of anaerobic microorganisms involved in

TCE degradation, including their persistence under transient variations in substrate and electron-

acceptor availability. The goals of the research are to develop basic knowledge of the

fundamental relationship between contaminant transport and active bacterial transport and

attachmentidetachment under transient local chemical conditions. This knowledge will afford a

quantitative understanding of the transient spatial distribution of contaminants and microbial

populations during contaminant degradation and microbial growth in physically and chemically

heterogeneous media. To accomplish this end, the research includes an integrated effort toward

the development of predictive models of contaminant transport and degradation in heterogeneous

media, through a combined multi-scale experimental and theoretical approach.

2. Background

Movement of bacteria through porous media, including sediments and fractured rock, is

largely determined by the opposing processes of convective transport and the attachment of

bacteria to solid surfaces. The different processes involved are understood to disparate levels of

sophistication and have been examined in various scientific disciplines varying fi-omsoil science

to colloid transport to microbial physiology. The purpose of this section is to chart the current

state of the sciences involved, in order to identi~ the foundations for the proposed

multidisciplinary research. The section begins with conceptualizations of biomass structure in

porous media and proceeds through subsections on active and passive microbial
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attachrnentidetachment (e.g., phase partitioning) processes, to a review of modeling such

processes combined with convective-dispersive transport in heterogeneous porous media. The

broad scope represents the nature of field contamination problems faced by OEM and reflects the

scope of research covered. The following literature review is necessarily comprehensive in order

to provide the complete background required by the multidisciplinary nature of the hypotheses

put forth.

2.1. Biomass Structures in Porous Media

The proper model representation of the biological phase in porous media is a matter

without consensus as noted in the exchanges of Widdowson (1991), Baveye et al. (1992) and

Jaffee and Taylor (1992). However in natural contaminated media associated with OEM sites,

the rates of contaminant degradation as well as the rates of biomass attachmentidetachment are

closely linked to the structural form of biomass in natural media, and so any quantitative study of

the relevant processes must examine and account for the structures involved. Biomass in the

subsurface is represented alternately as 1) a continuous biofilm on the solid stiaces (Taylor and

Jaffee, 1990a; Taylor et al., 1990; Dykaar and Kitanidis, 1996); 2) a discontinuous patchy film

(e.g., Vandevivere and Baveye, 1992a,b; Rittmann, 1993) or microcolony with specified

geometric structure (e.g., Molz et al., 1986; Widdowson et al., 1988); and 3) no assumptions on

biomass structure (unstructured models; e.g., MacQuarrie et al., 1990; Sudicky et al., 1990;

Zysset et al., 1994; Wood et al., 1994; Murphy et al., submitted). Structured biofilm models are

often associated with a focus on pore clogging and permeability changes, which limit transport

and hence degradation (Cunningham et al., 1991; Rittrnan, 1993). Mathematically, the

continuous biofilm and microcolony models are often associated with a diffhsion limitation on

the transport of solutes from aqueous phase to biomass phase where they can be degraded (Wood

9



et al., 1994). The diffusive transport of substrate into the biomass is typically represented by an

“effectiveness factor” (e.g., Williamson and McCarty, 1976; Dykaar and Kitanidis, 1996) which

is a parameter that reflects the rate limitations on the transport and

the biomass structure. The “effectiveness factor” encompasses

subsurface biomass system such as biofilm or colony thickness,

degradation of solutes within

microscopic features of the

biofilm density, and colony

radius. These quantities are defined at scales well below the scales of quantities used to express

mass fluxes in groundwater (e.g., porosity, conductivity), and rigorous linking of representative

parameter values across these scales is generally lacking. One exception is the scaling in Dykaar

and Kitanidis (1996) of a single pore biofilm model (via the assumption of a periodic media) to

derive equations that describe degradation and biofilm growth at the continuum (e.g., centimeter)

scale in bulk porous media. However,

of known density, this approach is

in addition to requiring a continuous and uniform biofilm

subject to assumptions that specify an idealized pore

geometry,

parameter

Literature

limiting its extension to heterogeneous media. Moreover, biofilm density, a critical

in biofilm-based models, is difficult to quanti~, particularly in porous media.

values of biofilm density range from 10 to 130 kg dry mass/m3 (Peyton and

Characklis, 1993) and depend on several factors such as vicinity to the aqueous phase, type of

bacteria, history of substrate supply, and shear force.

Wood et al. (1994) showed that when the mass transfer coefficient across a biofilm is large,

as in the case of a relatively thin biofilm or rapid diffusion through the biofilm, the structured

model reduces mathematically to an unstructured model. Use of an unstructured approach

involves no assumption on biomass structure, which is treated as a volumeless aqueous species

that may or may not undergo a partitioning with the solid phase (MacQuarrie et al., 1990;

Sudicky et al., 1990; Zysset et al., 1994; Wood et al., 1994). Therefore, the unstructured

10

---



approach is more commonly adopted in investigations that focus on kinetic transport in

oligotrophic groundwater environments and will be used in this study.

2.2. Microbial Attachment/Detachment Processes in Porous Media

Both conceptual and quantitative representations of biomass partitioning

(attachment/detachment processes) in porous media depend strongly on the underlying

assumptions made about the structure of the microbial community, as noted above.

in model formulation for both numerical studies and simulation of column

For instance,

experiments,

MacQuarrie et al. (1990) and Sudicky et al. (1990) represent attachmentidetachment through

equilibrium partitioning. Zysset et al. (1994) use a similar approach but represent the

attachmentldetachment as a kinetically-controlled process. In fact, attachment/detachment is

nonexistent in several recently developed models, including those that treat active microbes as an

exclusively aqueous-phase component (e.g., MacQuarrie et al., 1990) and those that treat

biomass as an exclusively solid-phase (attached) component (e.g., Bower and Cobb, 1986; Molz

et al., 1986; Widdowson et al., 1988; Kindred and Celi~ 1989; Wood et al., 1994; Dykaar and

Kitanidis, 1996). The multiple and conflicting ways in which biomss partitioning has been

represented in porous media arise partly from the absence of basic scient@c information

regarding the structure of microbial distribution and dynamics of active attachment/detachment

processes in porous media. Active processes have received less attention, while a representation

of passive bacterial partitioning, through analogy to colloid transport, has been the focus of many

studies. The physical processes involved in passive microbial partitioning are well-documented

and are summarized here.

Passive Attachment/Detachment. Several researchers have experimentally investigated

passive attachment processes that influence the transport of non-growing bacterial cells in one-

11
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dimensional porous media columns. A large segment of the literature is dedicated to the

development andapplication of filtration theory-based representations ofattachment processes

examined in such laboratory experiments, and we focus briefly on these studies. Straining and

physical filtration represent the removal of microbes from solution by physical (geometric and

electrostatic) forces, as opposed to active biological binding. Straining is the trapping of

microbes in pore throats that are too small to allow passage and is exclusively a result of pore

geometry (Corapcioglu and Haridas, 1984). Prediction of mass removal by straining, based on

purely geometric relations between the effective diameter of biocolloids and the diameter and

packing (coordination number) of grains forming the porous media, is detailed by Herzig et al.

(1970) and experimentally by Sakthivadivel (1966, 1969). An important result of these analyses

for microbial transport is the finding that straining is not significant in idealized packed beds

(porous media made up of identical spherical grains) where the colloid diameter is less than 5%

of the porous media grain diameter (Herzig et al., 1970; Corapicoglu and Haridas, 1984;

McDowell-Boyer et al., 1986; Harvey and Garabedian, 1991).

Physical Filtration. Physical filtration is the removal of particle mass from solution via

collision with and deposition on the porous media. Physical forces involved are gravity, partice-

particle and particle-solvent collisions (13rownian forces), electrostatic interaction potentials

between the particle and the porous media, van der Waals attractive potentials, biocolloid

(microbe) inertia, and pore-water hydrodynamic forces (Yao et al., 1971; McDowell-Boyer et al.,

1986). Filtration due to gravity is termed sedimentation (McDowell-Boyer et al., 1986;

Corapcioglu and Haridas, 1984) and depends on particle buoyancy. Many bacteria and viruses

are neutrally buoyant, in which case sedimentation is negligible.



Filtration due to the remaining physical forces (Brownian, electrostatic, van der Waals,

and pore-water hydrodynamic) is the dominant mechanism for removal of biocolloids and has

received enormous attention, partly as a result of its quantitative tractability (cf. Review by

McDowell-Boyer et al., 1986). Physical filtration terminology is often used inconsistently

between disciplines; while the term “physical filtration” is used in the engineering literature,

“adsorption” is used in chemistry, and “attachment” in the microbiological literature.

Previous research has demonstrated that physical filtration is influence by solute ionic

strength due to its effect on electrostatic interactions (Sharma et al., 1985; van Loosdrecht et al.,

1989; Scholl et al., 1990; McDowell-Boyer, 1992; Tan et al., 1994), pH (McEldowney and

Fletcher, 1988), and mineralogy (Fletcher and Loeb, 1979; Scholl et al., 1990). Shonnard et al.

(1994) found significant increases in adsorption of a TCE-degrading bacterium as a result of

increased ionic strength of solution in coarse sands. Scholl et al. (1990) and Mills et al. (1994)

found that iron hydroxide-coated sands filtered more bacteria than clean sand, which was

expected given the effect of iron hydroxide coatings on the interaction potential. Quartzitic

materials are predominantly negatively charged, as are most bacteria; thus, the hydrodynamic

and attractive (van der Waals) forces must overcome the repulsive electrostatic force for

bacterial immobilization to occur. Iron hydroxide-coated sand grains have positive surface

charges, thus reversing the electrostatic force from repulsive to attractive and increasing the

likelihood of microbial attachment. Hydrophobic interactions can also result in sorption of

microorganisms (Fletcher and Loeb, 1979; van Loosdrecht et al., 1987; Fletcher, 1991) and has

been investigated by measuring the hydrophobicity of microorganisms and determining their

sorption on porous media coated with organic matter (McCaulou et al., 1994). Even small

amounts of organic matter on porous media may result in complete retention of microorganisms

13
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on the particle surfaces (Ryan and

microbial adhesion.

The effect of these physical

Gschwend, 1990) which may also be related to active

forces on microbial attachment is quantified in models

through averaging the interaction potentials and hydrodynamic forces in the pore-scale behavior

of an idealized microbe moving through an idealized porous media. Namely, rates of attachment

are derived for a chemically inert spherical particle being transported through a uniformly

packed homogeneous bed of spherical grains (Herzig et al., 1970; Shaw, 1976; Tien et al., 1979).

The microbial mass removal from the aqueous phase is cast in terms of pore-water velocity,

viscosity, and density; media grain size; and media porosity. The resulting relations are well-

known (cf. DeMarsily, 1986) and have been widely applied to microbial transport (cf. Harvey et

al., 1989; Harvey and Garabedian, 1991). The reversibility of physical filtration (via reduction in

solute ionic strength; Scholl et al., 1990; McDowell-Boyer, 1992; Bales et al., 1995), as well as

the reversibility incurred by changing the pore-water velocity direction (Sakthivadivel, 1966), is

not inherent in filtration theory-based models because the filtration models represent irreversible

deposition only under conditions of uniform flow direction and fixed solution chemistry. Thus

treatment of detachment is entirely absent in several filtration theory analyses of microbial

transport (e.g., Jewett et al., 1995). The evidential significance of detachment processes in

experimental studies, however, has led to increased reliance on a (more or less empirical)

detachment term in addition to the attachment terms. The resulting “two-site” reactive transport

model utilizes irreversible kinetic reactions for attachment at one type of reaction site (in

accordance with filtration theory), and either equilibrium or kinetic-reversible terms for

attachment and detachment at a second type of reaction site. Examples are given by Harvey and

Garabedian (1991), Fontes et al. (1991), Bales et al. (1991), Lindqvist and Bengtsson (1991),

14
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Mills et al. (1991), Kinoshita et al. (1993), Homberger et al. (1992), and McCaulou et al. (1994).

This recent reliance on kinetic detachment is not actually new; dual attachment/detachment

mechanisms were modeled similarly in an early study on particulate “clogging/declogging”

(Sakthivadivel and Irrnay, 1966; Herzig et al., 1970), as noted by Corapcioglu and Haridas

(1984). Tan et al. (1994), and Lindqvist et al. (1994) augment the first-order kinetic attachment

model with a nonlinear governing factor intended to represent the attachment-limiting effect of

site-saturation, while maintaining a linear detachment kinetic. An identical model is recently

proposed for colloid transport in Saiers et al. (1994).

Prediction of effective first-order kinetic attachment coefficients via filtration theory has

met with mixed success, partly because of the non-ideal and distributed characteristics of natural

granular media, and partly due to inherent limitations of the theory (e.g., original filtration

theory-based attachment is unlimited and irreversible). The capabilities and shortcomings of the

theory in field application are well documented by Harvey and Garabedian (1991).

Size Exclusion. In addition to filtration, size exclusion results in differential bacterial and

ion tracer breakthrough times in column (Homberger et al., 1992; Mayotte et al., 1996) and field

(Wood and Ehrlich, 1978; Pyle and Thorpe, 1981; Harvey et al., 1989) experiments. Size

exclusion is the phenomenon of transported particles moving faster than the pore water, or at

least faster than the average pore-water velocity (as indicated by the breakthrough of a salt

tracer). The process is similar to hydrodynamic chromatography (e.g., DeMarsily, 1986). Pore-

water velocity within a capillary or pore throat is generally parabolically distributed, with the

maximum velocity occurring at the centerline and that at the pore walls equal to zero

(DeMarsily, 1986).

thoroughly sample the

Conventional transport theory assumes that molecular-scale solutes

fill distribution of velocities in convecting pores of all significant sizes.
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Microbes and large colloids, by virtue of their size, preferentially experience the higher

velocities near pore centerlines, yielding an average velocity that is higher than that of a

molecular (salt) tracer. Thus microbes can precede the tracers down gradient. Results from

hydrodynamic chromatography (Dodds, 1982; DeMarsily, 1986) indicate that in idealized porous

media, the ratio between bacterial and water average velocities is quite small, usually between

1.0 and 1.1, and that the occurrence of exclusion requires the bacterial diameter be <1% of the

media grain diameter, which is common for transport in sandy aquifers. The velocity ratio can

be amplified in the presence of ionic forces (this is anion-exclusion, as opposed to size-

exclusion). When the electrostatic forces between the media and colloid are repulsive, as is the

case with negatively charged microbes in negatively charged quartzitic media, the force field

tends to channel the microbes closer to the pore throat centerlines and away from the walls (and

the slower velocities; DeMarsily, 1986). Thus the effect maybe drastically more pronounced at

larger observation scales in natural media, as has been reported in some experiments (Pyle, 1979;

Engfield and Bengtsson, 1988; Harvey et al., 1989; Harvey, 1993; Shonnard et al., 1994).

Active Attachment/Detachment. Active attachmentidetachment processes are much less

well described and understood than passive processes, and efforts to capture the effects of active

processes on transport in bulk porous media have just begun (e.g., active detachment, Peyton et

al., 1995). Active attachment is often referred to as adhesion and for clarity is treated separately

in our discussion from passive electrostatic adsorption which may occur during physical

filtration. Several studies have reported that microorganisms exhibit active

attachment/detachment processes, which may be a response to local nutrient availability

(Dawson et al., 1981; Kjelleberg and Herrnansson, 1984; van Loosdrecht et al., 1990), survival

mechanisms (Dawson et al., 1981; Wrangstadh et al., 1990; Gilbert and Brown, 1995), and/or

,. —--- —
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growth (Jenneman et al., 1985, 1986; Reynolds et al., 1989; Sharma et al., 1993). The distinction

between a microorganism’s response to nutrient availability, survival stress, and growth are not

necessarily separable nor independent processes. Furthermore, in contrast to the passive

attachment/detachment processes discussed above, numerical representations of these active

processes are totally lacking in predictive reactive transport models.

There is considerable variability in the strength and duration of bacterial attachment to

surfaces. Many attached bacteria are firmly bound to surfaces and resist strong shear forces.

Others are only loosely associated, and are easily removed by shear stresses (Marshall et al.,

1971) or may move over surfaces by gliding motility or “rolling” motions (Lawrence and

Caldwell, 1987). Moreover, with time the adhesive association may alter and cells may detach.

Release of attached bacteria can occur due to enzymatic degradation of adhesive polymers (Boyd

and Chakrabarty, 1994), chemical alterations (Marshall et al., 1989), or alterations in the

bacterial surface due to changing nutritional conditions (Rosenberg et al., 1983; Vandevivere and

Kirchman, 1993; Wrangstadh et al., 1990). Thus, the transport of microorganisms through

porous media is strongly dependent not only on their inherent active adhesive properties, but also

on their environment and their metabolic activities.

Response to Nutrient Availability. The ability of bacteria to associate with surfaces

enables them to utilize surface-adsorbed nutrients that may not be accessible to cells in the

aqueous phase. The bacteria may be strongly attached or they may associate only temporarily

with the surface to graze nutrients. Both leptospires (Leptospira bzj7exapatoc 1) (Kefford et al.,

1982) and vibrios (Vibrio MH3) (Hermansson and Marshall, 1985) were found to attach

reversibly to surfaces and utilize 14C-labeled stetic acid that was adsorbed to the surface. In

contrast, some substrates partition onto surfaces and are accessible only to organisms that can
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attach or graze. For example, Serratia marcescens EF 190 irreversibly attached to surfaces and

rapidly scavenged 14C-labeled stearic acid on the surface. Little label was found in free-living

cells (Keffort et al., 1982). Similarly, 14C-labeledbovine serum albumin, which adsorbed rapidly

onto particles, was utilized by attached Pseudomonas sp. NCIMB 2021, but was essentially

inaccessible to bacteria in the liquid phase (Griffith and Fletcher, 1991). Furthermore, the ability

to alternate between aqueous and solid phases allows the organism to access nutrients in both

phases.

Utilization of surface adsorbed nutrients is influenced by the physico-chemical properties

of the surface, which in turn influence strength of binding and adsorption of adsorbed molecules.

In some cases, bacterial utilization is enhanced; for example, the degradation of nitrilotriacetate

by bacteria attached to sand had a shorter lag time and higher specific activity than with bacteria

in the aqueous phase (McFeters et al., 1990). In the case of degradation of tritium-labeled

ribulose-1 ,5-bisphosphate carboxylase (RuBPCase) by the marine Pseudomonas sp. S9, the

percent degraded decreased with increasing hydrophobicity of the surface (Samuelsson and

Kirchrnan, 1990). Growth rates were higher on a hydrophilic glass surface than on a

hydrophobic polyethylene surface initially, but after six hours, rates increased on the

hydrophobic surface because of increased adsorption of the RuBPCase. The effects of surface

adsorption on substrate accessibility are particularly significant

tend to bind with high affhity through multiple adsorption sites.

In some cases, adsorption of macromolecules inhibit

with

their

macromolecules, which

utilization by bacteria,

presumably because of confirmational changes that alter or obscure enzyme binding sites. There

are numerous examples of reduced degradation of substrates in the presence of particles (Gordon

and Millero, 1985; Ogram et al., 1985). Reduced degradation of naphthalene has been observed
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in some soils (Guerin and Boyd, 1992), and there was almost total inhibition of degradation of

bromobenzene in simulated groundwater when sand was present (Mills and Eaton, 1984).

There is also evidence that bacterial behavior and/or physiology can be influenced by

association with surfaces, and that may indirectly influence their utilization of substrate. Genes

may be induced or derepressed (Dagostino et al., 1991; Davies et al., 1993), leading to alterations

such as the production of exopolymers (Vandevivere and Kirchman, 1993). There are many

parameters that may be altered in the surface microenvironment, compared to the liquid phase,

that could influence gene expression; these include not only substrate concentration and type, but

also pH, osmolarity, and cell density.

Responses Associated with Survival. There have been numerous observations of

enhanced survival of microorganisms on surfaces. This advantage appears to be most

pronounced when bacteria are in biofilms, that is they are embedded in a highly hydrated

polymeric matrix. There are three possible

intercellular polymer protects against toxic

explanations for this enhanced survival: 1) the

substances by providing a reactive barrier to

difision, 2) the bacteria in the biofilm have a reduced growth rate because of reduced difision

of key nutrients, making them less susceptible to toxic substances, and 3) the surface

environment results in the derepression or induction of genes associated with survival (Gilbert

and Brown, 1995). It is possible that bacteria have evolved mechanisms to induce attachment in

situations where association with a surface provides a strong selection pressure. With the marine

Vibrio DW1, starved cells became more adhesive than unstarved bacteria (Dawson et al., 1981).

This observation has led to the speculation that adhesion may be a response to starvation,

enabling

contrast,

the organisms to associate with a surface where nutrients may be more accessible. In

starvation of a marine Pseudomonas species resulted in synthesis of polymers that
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resulted in cell detachment (Wrangstadh et al., 1990). Thus, it is impossible to generalize about

the effects of starvation on adhesion, except to say that nutrient deficiency may alter the

adhesiveness of the cell in either a positive or negative direction. Moreover, the alterations in

surface adhesiveness vary and are characteristics of the particular type of nutrient limitation, e.g.

carbon, nitrogen, phosphorus (Brown and Melling, 1969; Ellwood and Tempest, 1972; Holme,

1972; Lambert, 1988).

Once attached to a surface, the “fitness” or survival of the organism maybe influenced by

alterations in gene expression. As mentioned above, there are many parameters, which may be

altered at the surface microenvironment, that can influence gene expression. These include

oxygen tension (Smith and Neidhardt, 1983; Clark, 1984), pH, cell density and metabolize

concentration, osmolarity, and inorganic ions (Goodman and Marshall, 1995). Attachment to a

surface allows for the establishment of stable communities that rely on transfer of metabolizes, an

activity that is much more important for anaerobes than for aerobes.

microenvironment may facilitate the establishment and maintenance of

precipitated metal sulfides may provide additional protection.

Also the surface

anoxic sites, and

Response to Growth. The process of growth has been recognized as a mechanism by

which bacteria penetrate porous media under static or flowing conditions (Jenneman et al., 1985,

1986; Reynolds et al., 1989; Sharma et al., 1993).

nonmotile cells grow, they fill the locally available

Reynolds et al. (1989) suggested that as

pore space and new cells are physically

displaced into the next portion of the porous media. For cells that are attached to porous media,

the physical displacement may occur simply from cell division, ejecting the cell into the pore

space. Under flowing conditions, as encountered in groundwater systems, the progeny may be

transported until straining or attachment to the porous media occurs. The process of cell
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division-mediated transport can be represented numerically by assuming an initial distribution of

cells with all growth partitioning to the aqueous phase.

Peyton and Characklis (1993) reported that active detachment rates were strongly growth

rate dependent and were not significantly affected by shear stress. Peyton et al. (1995) used an

advection-dispersion model to analyze data from Lundman (1992) and observed the effective

detachment coefficient to increase with increasing substrate concentration (and hence the growth

rate). Clement et al. (1996) used first-order detachment and attachment models to analyze

Jenning’s (1994) experimental data. The detachment coefficient values estimated for the

actively-growing, denitri$ing population was observed to be higher than the non-growing

bacterial detachment rates reported in the literature. Thus, growth not only results in increased

numbers of cells, but may also result in dispersal by facilitating cell detachment.

2.3. Modeling Biological Reactions in Porous Media

Assessment of subsurface biological activity and contaminant biodegradation requires

knowledge of rates of utilization of both nutrient and electron acceptors by the microorganisms,

the corresponding rates of growth of the microorganisms, and their levels of activity. During

subsurface bioremediation, new cells are produced by the actively growing ambient microbial

cells that metabolize supplied nutrients and contaminants. Growth of microorganisms in natural

subsurface environments will depend on changes in environmental variables such as pH,

temperature, presence of inhibitory toxic materials, presence of competing populations, and

availability of nutrients and substrates required for cell growth.

These processes are usually quantified through the use of descriptive mathematical

models that either incorporate the structure of the metabolism process, or represent the

degradation through unstructured process models. Advanced structured models may be used to



describe the effects of variables such as pH, temperature, etc., on cell-level metabolic processes

(Williams, 1967). However, in environmental applications, the difficulty or impossibility of

measuring each of the many parameters associated with structured models has often led to the

use of simpler semi-empirical, unstructured models (cf. Wood et al., 1994). If the metabolic

reaction is jointly limited by the availability of a required substrate and the electron-acceptor, the

reaction rate can be modeled by a dual-Monod form of kinetic model. Molz et al. (1986),

Widdowson et al. (1988), Kindred and Celia (1989), Taylor and Jaffe (1990b), Kinzelbach et al.

(1991), Zysset et al. (1994), Wood et al. (1994), Ginn et al. (1995), Clement et al. (1996) all

describe several forms of Monod-based kinetic equations used for modeling different types of

microbial metabolisms. These studies account for biomass growth through a simple linear

conversion of mass of nutrient degraded to biomass increase. On the contrary, some field studies

have assumed subsurface microbial metabolic reactions as instantaneous reactions that are

independent of microbial concentrations (Rifai et al., 1987; Chiang et al., 1989; Wiedemeier et

al,, 1995). These studies assumed oxygen (an electron acceptor) to react instantaneously with

hydrocarbon plumes, leading to complete mineralization of a stoichiometric equivalent of

hydrocarbon (electron donor). Subsurface aerobic bacteria were assumed to mediate the

instantaneous reaction; however, their presence was not explicitly considered. Rifti and Bedient

(1990) compared an instantaneous reaction model to a double-Monod kinetic model and

concluded that the instantaneous model was adequate when reaction rates are large. Even though

the study assumed the existence of constant amount and uniform distribution of bacterial cells

throughout the subsurface, the kinetic model ignored cell growth, decay, and transport.

Several modeling studies have ignored the explicit presence of bacteria in both aqueous

and attached phases and their dual role in contaminant removal (MoIz et al., 1986; MacQuarrie et
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al., 1990; Chen et al., 1992). A few studies have considered the presence of cells at various

phases, but they have also assumed microbial reaction kinetics to be independent of the phase in

which cells reside (Taylor et al., 1990c; Zysset et al., 1994; Clement et al., 1996; Murphy et al.,

submitted). This may not be an adequate assumption because, as noted above, cells attached to

the solid phase may behave differently from the cells suspended in the aqueous phase. Van

Loosdrecht et al. (1990) reviewed the influence of solid surfaces on microbial activity and

concluded that the presence of solid surfaces may or may not affect microbial substrate

utilization rates and growth yields. The effect would depend on the nature of the organism, type

and concentration of substrate, and nature of solid stiace. In addition to microbial growth,

solute sorption effects could also influence microbial reaction at various phases (Brusseau and

Rae, 1989). Degradation rates in natural media may also reflect different levels of microbial

metabolic activity, which depend on the history of nutrient availability to the microorganism and

the history of the growth of the microorganism (e.g., Wood et al., 1994). A method for

accounting for the resulting lag in microbial degradation capability under a change from nutrient-

limiting to nutrient-rich conditions is described in Wood et al. (1994, 1995). In Wood et al.

(1995) a model incorporating metabolic lag, in addition to Monod-type degradation kinetics, is

applied to the data of Chen et al. (1992). Further modeling studies supported by experimental

evidence are needed before general conclusions can be made about

reactions in porous media.

phase-dependent microbial

2.4. Heterogeneity, Transport, and Scaling Issues

Because the processes governing the transport of contaminants and bacteria in the

saturated subsurface often are subject to significant natural heterogeneity, any attempt at

characterizing the processes at the field scale must, at some level, account for the effects of the
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heterogeneities on the processes of contaminant and microbial convection/dispersion,

contaminant degradation, microbial growth, and microbial attachmentidetachment. The most

direct deterministic approach of fill characterization of physical and chemical aquifer properties

that

that

vary with space is impossible because of the inaccessibility of the subsurface. The result is

simulation model components representing coupled reactive contaminant and microbial

transport that are developed and validated under laboratory conditions (with controlled single-

scale heterogeneities at most) may not reflect field processes accurately. In fact, such models

may not even serve for prioritizing governing processes in the field.

Spatial variability (heterogeneity) in aquifer physical or chemical properties naturally

occurs on multiple scales as a result of geologic processes involved (cf. Cushman, 1990).

Heterogeneities in physical/chemical properties occur on scales at and below the observation

scale (e.g., the field scale for OEM needs). Generally speaking, the heterogeneities that occur on

the observation scale (such as imperfectly layered hydrofacies structures that may extend 10-100

meters horizontally) must be characterized in the field, e.g., via borehole sampling or hydraulic

or geophysical tests. Effects of heterogeneities at lower scales, which are unresolvable because

of their

through

inaccessibility or small scale or both, must be incorporated in model components

upscaling approaches. Such approaches usually involve mathematical/statistical

averaging of mass balance equations that represent heterogeneity through parameters that are

space random functions with known correlation properties. Models averaged in this way allow

use of laboratory-validated processes in determination of field-scale measures, such as plume

dimensions. However, they do not typically allow prediction of small scale measures (such as

contaminant ardor bacterial arrival at an observation well), nor can such approaches handle

nonlinear ador strongly coupled reactions, which severely complicate the averaging. One
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alternative that can handle these complications is the streamtube-ensemble approach (e.g., Ginn

et al., 1995), which represents the transport as through an ensemble of one-dimensional

streamtubes, thus separating the effects of physical heterogeneity on flow from the potentially

coupled and nonlinear reactions. For certain processes the upscaled model may simply be the

same as the small-scale model with averaged or effective parameter values. Alternatively, an

upscaled process such as dispersion, which is conventionally represented through the convection-

dispersion equation (CDE) with constant parameters, in general requires a new form altogether

(e.g., nonlocal dispersion; Cushrnan and Ginn, 1993; Cushman, 1996). When the transported

solute is degraded by an attached or aqueous phase biomass, the present of physical

heterogeneities can render the CDE approach inaccurate (Ginn et al., 1995).

Similar difficulties afflict the accuracy of microbial transport models in the presence of

heterogeneities. Although the “two-site” models that are almost universally used to describe

microbial attachmentidetachment appear to be relatively usefhl for transport in column

experiments with homogeneous media, laboratory-determined reaction rate parameters may not

be indicative of field conditions (Harvey et al., 1987, 1989, 1993). Whereas column studies

often involve injection of prepared bacteria into pristine media; conditions in

field typically involve active consortia of microbes in the aqueous and/or

the contaminated

attached phases,

possibly as an actively growing biofilm. Moreover, mechanisms of bacterial transport at the

field scale differ from those characterized in batch or column studies as a result of heterogeneity

and the dependence of hydraulic and chemical properties on scale. Examples include

heterogeneity and the dependence of hydraulic and chemical properties on scale. Examples

include heterogeneity in grain size (affects passive attachment and size exclusion), heterogeneity

in grain surface chemistry (affects active and passive attachment); and heterogeneity in hydraulic
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conductivity (affects convection and macrodispersion). Complexities from any one of these

factors can significantly complicate transport: for instance, Harvey et al. (1993) report on an in

situ multitracer experiment in which the relative order of breakthroughs of bacteria,

microsphere, and salt differed for three sample locations within one vertical meter of a single

sampling well. In that study, significantly different retardation factors were required to explain

the effects of depth within the well. The ramifications of chemical and physical heterogeneities

on active microbial attachmentidetachment and convective transport under growth conditions are

generally unknown. Under this condition, and in recognizance of the nonlinear coupling among

the attachment, transport, and growth processes, carefid upscaling is necessarily an integral and

active part of the proposed research.

Upscaling Approaches. Upscaling is the accounting of the influence of heterogeneities

on intermediate scales from the laboratory to the field, and thus links measurements on small

scales to observations on large scales. Some progress has been made on upscaling the processes

of inactive bacterial transport (i.e., convection-macrodispersion and passive attachment). The

effect of groundwater convective velocity fluctuations that arise fi-om heterogeneous hydraulic

conductivity is known as macrodispersion and is upscaled through modification of coefficients of

the convective-dispersive transport models to incorporate dependencies on time or space (e.g.,

Dagan, 1989), or most generally on increments of time and space (Cushman and Ginn, 1993; Hu

et al., 1995; Cushman, 1996).

Treatment of the effect of heterogeneities on coupled bioreactive contaminant and

bacterial transport requires scaling of the interactions between the bacteria and solute nutrients

and electron-acceptors, and between the bacteria and the solid phase. Linear interactions that are

kinetically-controlled and nonlinear equilibrium interactions recently have been incorporated
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into stochastic macrodispersive models. Studies typically involve perturbation approaches to

scaling of uncoupled reaction and transport processes in porous media exhibiting simple patterns

of physical and/or chemical heterogenities. In the perturbation approach, the parameters

appearing in the equations that govern the fate and transport of the solute and microbial

component are expressed in terms of the sum of a deterministic or average part and a stochastic

or random part, and various statistical assumptions are applied to the random part to develop

usefil models from the “perturbed” equations. Some recent applications include i) the extension

of the low-order perturbation method (Dagan, 1989; Kitanidis, 1988) in Chrysikopoulos et al.

(1992), Benin et al. (1993), Quinodoz and Valocchi (1993), Selroos and Cvetkovic (1994), and

Cvetkovic and Dagan (1994); ii) the averaging of from one to many simulations of the reactive

transport system (Sudicky et al., 1990; Bosma et al., 1993), and iii) the averaging of higher-order

perturbation forms of the equations of reactive transport (Hu et al., 1995). Under these

approaches, the chemical and physical heterogeneities are represented as random fields

(specifically, the constitutive model parameters have been represented as random fields with

specific spatial correlation structures), and the effect of physical heterogeneities is represented

through an effective mixing parameter termed the “macrodispersivity” tensor, for use in

equivalent field-scale convection-dispersion-reaction (CDR) models. Many of these studies have

indicated that the macrodispersivity tensor depends on the presumed statistics of the reaction

properties (e.g., Quinodoz and Valocchi, 1993; Cvetkovic and Dagan, 1994; Hu et al., 1995). In

a numerical study of aerobic degradation in physically heterogeneous media, Sudicky et al.

(1990) demonstrate that while the effective dispersion parameter (“macrodispersivity”, derived

from low-order perturbation approaches) may be useful for describing the behavior of a
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conservative solute, it inherently predicts excessive mixing between nutrient and oxygen rich

pore waters and thus overestimates aerobic degradation.

In all of these studies, with the exception of the non-local model of Hu et al. (1995), the

heterogeneities are idealized in that they occur on a single scale that is small relative to the

model scale, and they are most often represented as second-order stationary spatial random fields

(e.g., Cressie, 1991) with known probability distribution and finite spatial correlation structure.

Thus, these results may be limited in field application if these assumptions are violated, such as

when multiple scales of heterogeneity occur, or when heterogeneity patterns are better

represented by more complex probability distribution functions @dfs) and/or correlation

structures (e.g., Scheibe and Cole, 1994). The low-order perturbation approach requires that

nonlinearities in the reactions be of minimal importance, and that the transformation of different

components be uncoupled. However, nutrient-limited degradation is strongly nonlinear as

reflected in the relatively simple dual-Monod kinetics model, and contaminant concentrations are

filly coupled to both aqueous and attached phase microorganism concentrations through

microbial growth. Couplings associated with transience in the reactive capacity of the solid or

microbial phases (e.g., due to sorption site limits or to microbial growth, respectively) have been

untreated with the exception of the streamtube-ensemble approach of Ginn et al. (1995), which

allows the fully nonlinear and coupled problem to be specific in terms of streamtube (one-

dimensional) reactive transport. This can, in turn, be averaged to predict contaminant arrivals at

a well or control plane.
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II. Goals (Purdue Component)

1. Develop matched-index methods for obtaining 3-D Lagrangian trajectories of microbes in

porous media and microflow cells.

2. Use advanced numerical methods to optimally design a microflow cell and model microbial

transport in such a system. Apply sticky Brownian motion with motility and chemotaxis to

study microbes in the flow cell.

3. Develop methods, based on stochastic perturbation approaches, for upscaling to natural

geologic formations and examine the role played by uncertainty in B.C.S.

4. Evaluate the role of nonlocality in the transport of chemicals and microbes.



III. Accomplishments

1. A Method for Reconstructing Microbial Trajectories in Microflow Cells

1.1. Introduction

Microflow cells have played a large role in phase I of this project. Specifically movies of

the evolution of microbes in flow cells have been obtained which show the diffi.rs.ive-convective

transport of the microflora as well as the microbes sticking to the pore walls. To analyze this

data for modeling purposes it is expedient to obtain the particle trajectories in 3-D. This is not a

trivial problem, especially if the microflow cell contains a porous medium.

We have pioneered the development and use of three-dimensional particle tracking

velocimetry for this purpose (Moroni and Cushman, 2000a,b,c) and we have used these

experimental tools to obtain relevant data on several test problems. Specifically, these test

problems involve matched-index porous formations and both classical stochastic models and

more modern statistical mechanical approaches. We describe these in the remainder of this

section.

1.2. 3-DPTV Method

A porous medium homogeneous at the bench scale (Fig. 1) has been constructed by

filling a parallelepipeds tank (30x30x50 cm3) with 1.9 cm Pyrex spheres. The spheres are packed

randomly but distribute homogeneously on the bench scale. The porosity is 42 O/O. Glycerol is

used as fluid phase because at the appropriate temperature it has the same refractive index as the

spheres. Thus the Pyrex solid matrix and glycerol combined are transparent to the appropriate

wavelength light. A pump is used to fill the test section and later to extract the fluid phase.

The choice of tracers depends on the information one wants to gather. Because we are

studying dispersion of a passive tracer carried by the mean flow, the dimension of the tracer has
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to be small compared to the grain size. The ratio between its specific weight and that of the

liquid has to be such that buoyancy effects are minimal. Furthermore, since the flow field is

reconstructed using an image analysis technique, the tracer has to be highly reflective.

Appropriately sized air bubbles satisfi our requirements. A bubble diffuser fed with a

compressor has been used to inject the tracer particles.

The air does not wet the solid, the bubbles are small (O. 1 mm) compared to the grain size

(1.9 cm), and because of the high viscosity of glycerol, the small bubbles remain trapped inside

the fluid phase and flow passively. The noise caused by minimal deposition of the bubbles on the

sphere surfaces has been avoided by filtering the acquired images.

The test section is lighted using a high power lamp (1OOOW).In order to assure a uniform

lighting of the medium and to avoid the direct interaction among the light and the cameras, a

mirror has been used to create a light beam from the top of the test section.

The acquisition and storage system consists of two CCD high-resolution cameras

(1024x1024-pixels), two-camera unit controls and a workstation to manage the acquisition

process, image digitalization and storage. Each CCD camera has been positioned on an optical

bench. The benches are arranged on a rigid cube so the optical axes are orthogonal. A He-Ne

laser has been used to guarantee the benches are parallel to the two faces of the test section. The

distance between the cameras and the test section (2 meters) has been chosen so as to maintain

parallel optical rays. Further, this distance minimises distortion errors. The diaphragm opening

has been chosen, for this light intensity to obtain a field depth of about 22-cm. Each field (planes

X1X3and X2X3)has dimension 22x22 cm2.
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Figure 1. Experimental set-up

At start up, 3D-PTV experiments must be calibrated. By placing a 2D grid on the faces of

the parallelepipeds test section, acquiring two coupled images (one for the nearest faces and one

for the farther ones) and comparing them, it is possible to determine the precision of the device.

This procedure allows us to determine the tolerances that can be used during the 3D-trajectory

reconstruction.

The grids, acquired respectively from the nearest and farthest faces, can be overlapped

with an error = 0.5 O/O.Comparison between images acquired from the same direction in the
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nearest and farthest faces gives us an error of at most 10°/0in the deviation of the optical rays

from parallel. Four cm-wide dark screen is placed around the tank cross-section and this coupled

with the diaphragm opening and light intensity gives a field of view only in the midsection of the

chamber. This reduces our error to below 10YO.Furthermore, an algorithm for correcting the

errors caused by an incorrect positioning of the tracer particles has been developed. For more

details see Moroni and Cushrnan (1999a).

Figure 2 displays the steps used to obtain reliable images.

Thresholding of the image during the acquisition phase is used to separate the foreground

from the background. A binary image is obtained. In this way each pixel has a value equal to Oif

it belongs to the background or non zero if belongs to a tracer particle. An average of 70 images

is acquired for each run of the experiment. The superposition of the images can be carried out

without loss of information. Each image is digitised in a 1024x1024-element, 256 gray level

matrix. One megabyte of memory and 1.5 sec are necessary for storage. To improve the

acquisition rate and reduce the amount of memory required for each experiment, the

superposition of the single images acquired has be~n carried out. An increasing threshold has

been applied to the images acquired in order to maintain information about the acquisition time.
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Figure 2. 3D-PTV steps

The stored images are then analyzed to determine particle barycenters and their area. A

complicated algorithm to determine the barycenter of connected sarne-grey level pixels (spots)

has been developed for barycenters reconstruction (see Moroni and Cushman, 1999a for details).

The trajectory reconstruction algorithm arranges the barycenters with increasing

acquisition times and forms the trajectories. Roughly, the reconstruction algorithm works as

follows. Successive spots are studied inside a circle of radius “toll” (which takes into account the

local acceleration) with center positioned on the end of the extension of the distance between the

last two points belonging to the examined trajectory (Fig. 3).
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Figure 3. Trajectories reconstruction

Barycenters belonging to a possible trajectory are considered for fi,u-therexploration, and the

algorithm disregards trajectories with more than one displacement in common and with more

than 50 1% of spots in common. Among the retained trajectories starting from the same spot, the

longest one is chosen.

By matching the 2D trajectory projections the 3D displacements can be obtained

(Guezennec et al., 1994) (Fig. 4). Each trajectory is Iabelled at the beginning of the

reconstruction procedure. The algorithm compares each trajectory found on the X3X2plane with

all those reconstructed on the x1x3plane.
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Figure 4. 2-D trajectories matching

The matching procedure is carried out by introducing a tolerance, s, (determined as a

result of the calibration procedure) for the difference between the X3coordinates of two spots

recorded at the same acquisition time and belonging to the pair of examined trajectories.

Matching conditions in the X3direction have to be satisfied with at least three points belonging to

the examined trajectories. When more than one trajectory satisfies this criterion, the mean

longitudinal velocities are computed and the trajectory with the velocity closest to the track is

chosen.

1.3. Preliminary Results

Four different mean flow rates were studied (Table 1) and characterized by their

respective Reynolds numbers. An average of 40 images were acquired for each flow rate, and

averages were obtained using all the images acquired under the same experimental conditions.

,
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A typical representation of the reconstructed trajectories is presented in Fig. 5.

Henceforth we only study one mean-velocity. More extensive results can be found in Moroni and

Cushman (1999aj b). The trajectories were truncated when statistics were not adequate for the

computation

covariances,

of averages associated with the mean-square displacements, normalized velocity

the self part of the intermediate scattering iimction, the classical dispersion tensor,

the generalized dispersion tensor and velocity distributions.

Table 1. Mean velocities and Reynolds numbers

Veil Ve12 Ve13 Ve14

Re 0.049 0.085 0.105 0.129

Mean
Velocity 0.211 0.366 0.450 0.551
(cdsec)

‘
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Figure 5. Reconstructed trajectories (Image 7, ->=(O, 0,0.21 1))
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Theprobability density functions (pdfj forthetransverse and longitudinal components of the

fluctuation velocity have been evaluated and are shown in Fig. 6. The velocity data have been

normalized by the square root of the fluctuating-velocity variance for comparison to a

normalized gaussian distribution.

There is a good agreement between the pdf for the transverse components (u, v) and the

gaussian distribution. This result is quite different from Cenedese and Viotti (1996) and

Cenedese et al. (1997) who using analogous analysis found a symmetrical shape that is not

gaussian. More details can be found in Moroni and Cushman (1999a).

-5-4-3-2-10123 45678 9 10
(u-<u>)/au, (v-<v>)/Gw(w-<w>)&
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Figure 6. Normalized velocity probability densities

The pdf of the longitudinal component of the velocity fluctuation (w) does not appear

gaussian. The velocity distribution is asymmetrical much like that of Kutsovsky et al. (1996).

The percent of negative velocity in this experiment is very low, as there is little recirculation in

this system.

Figure 7 displays the normalized lagrangian velocity covariances:



c,,,(’T)
pti(~) =

6,.0,,
JJ

(1)

The averages are taken over all trajectories.

1

0.8

0.6
S
Q 0.4
5
: 0.2
:

0

-0.2

-0.4
Temporal lags (see)

Figure 7. Normalized longitudinal and transversal velocity covariances

The lagrangian integral scales, in the various directions, as given by the integral of pii, are

TXX=1.41 see, TYY=1.44 see, T== 3.25 sec.

The mean-square displacements are presented as log-log plots in Fig. 8. It is known fi-om

classical analysis that such plots are linear when the classical Fickian limit is obtained. The

longitudinal component appears to reach a Fickian limit, but it is not clear from the data whether

the transverse components do so.
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Figure 8. Mean-square displacements

1.4. summary

Three dimensional particle tracking velocimetry (3-DPTV) methodologies were

developed and tested on a match-index porous system. The test medium consisted of Pirex and

glycerol with air bubbles used to simulate microbes

reconstructed and analyzed to obtain lagrangian

(- 0.1 mm). 3D trajectories were

velocity distributions, mean-square

displacements, velocity covariances, time integral scales and the classical dispersion tensor. In

subsequent phases of this work the trajectory reconstruction technique can be used with actual

microflow cell experiments involving sticky anerobial microbes.

~
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2. Hydrodynamic Aspects of Pore Scale Microbial Dynamics

2.1 Introduction

Bacterial motility is of importance to a wide spectrum of applied scientific disciplines,

including human health, food science, and bioremediation. Understanding the mechanisms of

bacterial motility involves knowledge from several scientific disciplines: anatomy, genetics,

chemistry, and physics (Berg, 2000). Emphasis to explain bacterial movement has been given to

flagellated organisms, like E. coli. The behavior of motile cells near a solid surface has been

extensively studied in the absence of bulk flow, but relatively little is known about motile cell

behavior in advective flow fields (Carmesano and Logan, 1998). The present work addresses the

movement of single-cell, non-flagellated organisms subject to an advective flow. It also includes

attachment and detachment from walls. The movement of single-cells can be described in terms

of run lengths, run times (runs), turn angles (tumbles), and index of directional persistence of a

cell. The trajectory of a single-cell resembles that of a Brownian particle, continuously

alternating runs and tumbles. The ~acroscopic behavior can be characterized by a motility

coefficient, analogous to a diffusion or dispersion coefficient. The relationship between single-

cell description and bulk behavior is of interest.

Biondi et al. (1998) studied swimming bacteria (E. Coli) in restricted geometries,

measuring cell velocity, tumbling probability and turn angle of single cells in micro channels.

They concluded that only when capillaries are smaller than three times the diameter of the

bacteria, there exists a visible change in the bacteria’s motility with respect to their motility in

unrestricted media. The macroscopic motility in unrestricted geometry according to their result is

increased by a factor proportional to the size of the system. Sticking to the glass surfaces did not

occur in their experiments.

!
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Hydrodynamic drag is believed to reduce the difision coefficient of a particle moving in

a restricted geometry (enhanced drag in restricted channels). Berg and Turner (1990) have

previously hypothesized that as the size of the cell becomes comparable to the size of the pore,

there exist an increase in motility coefilcient due to the restriction of the movement in the axial

direction. They observed random motility coefficients of wild-type E. coli increased by a factor

in excess of 2 when the micro capillary in which they move was reduced from 50 pm to 10 pm .

The later investigators results were conducted observing cell-population dynamics, in contrast to

Biondi et al. (1998) who observed individual cells.

Carmesano and Logan (1998) studied the effect of fluid velocity on the transport of

motile and nonmotile bacteria. They observed that the collision efficiency, a (defined as the ratio

of particles that attach to soil grains to particles that collide with the soil) decreases as the mean

velocity decreases. Testing against nonmotile bacteri~ they hypothesized that swimming cells

were able to avoid sticking to soil grains at low fluid velocities, while at high fluid velocities

bacteria could not reduce attachment. They also suggested that previous deposited cells provide a

more favorable surface for adhesion than a native soil. Since their results were obtained using

sand columns, they merit a fbrther investigation at the pore scale to confirm or correct some of

their claims. Main discrepancies with filtration theory were checked for consistency using

nonmotile cells, but in the procedure, the attaching mechanisms may be altered. Nonetheless

differences were observed and other researchers results (Camper et al., 1993) are consistent in

the hypothesis that is, beyond a velocity threshold, single cell motility will not affect cell

retention in the media.

Phillips et al. (1994) measured in separate experiments the motility of E. coli. They

determined the distribution of cell velocities was slightly skewed from normal, and the run
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length time distributions were exponential. They were unable to measure turn angles between

consecutive runs because cells would not remain in the focal plane long enough. The values of

the variables that could not be measured were taken for their analysis from Berg and Brown,

(1972). They also found the macroscopic behavior of population motility can be predicted from

microscopic observations. In particular the expressions proposed by Othmer et al., 1988, and

Rivero et al., 1989 were suitable for the conditions tested.

The need for cost effective ways of dealing with subsurface contaminant plumes either by

cleanup or by containment is a well documented (DOE, 1995a) problem with no ready solutions.

One promising technique for the remediation of polluted sites is the use of microorganisms

which degrade organic toxins if sui%cient nutrients, usually in the form of electron acceptors, are

provided. An important factor in the engineering of biobarriers/bioremediation is the microbial

partitioning that takes place between the aqueous and solid phases. Factors that affect such

partitioning are numerous, but include such things as growth and starvation conditions (Dawson

et al. 1981, van Loosdrecht et al. 1987,1990), limiting of nutrients (Fletcher and Marshall, 1982),

potential toxicity in the aqueous phase (Chen et al. 1994) as well as local surface properties of

the porous medium. The importance of the biomass in a porous medium cannot be

underestimated, since it plays a crucial role in the degradation rates of contaminants (as nutrients

necessary for the process may not be available in the solid phase).

Here we present a model for the dynamics of a microorganism undergoing random forces

in addition to a convective transport. Since the proper representation of the biological phase is a

matter without consensus (as noted in the exchanges of Widdowson, 1991 and Jafle and Taylor

1992), and since we do not want to restrict ourselves to clogging and permeability changes which

are the focus of continuous biofilm models, we present a model which will serve as a basis for an
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unstructured biological population. We focus on the individual dynamics of a single microbe, or

a system of such particles in a relatively low concentration so that they have little effect on the

surrounding environment and each other. One may think of this as the initial stage before a type

of colonization of the surface occurs. The random forces can be thought of as a sum of Brownian

forces together with random swimming forces generated by a bacteria in a homogeneous liquid.

We assume the random forces are normally distributed and independent. The normality

assumption is an averaging over different particle trajectories. We comment that the model can

be extended to include chemotactic forces if one assumes they are of the same order as either the

molecular Brownian forces, in which case one replaces the normality of the random walk

assumption with anon-symmetric random walk; or on the same order as the convective forces, in

which case one can superimpose the vector fields arising fi-omthe chemotaxis and convection to

obtain a net vector field for the average movement. In particular the run and tumble behavior of

certain types of bacteria (Berg and Brown, 1972) can be taken into account.

In addition to the random forces in the liquid phase our model introduces a stickiness

parameter which relates the attachmentidetachment process or physico-chemical interactions

between microbes and the solid matrix. It is crucial to incorporate time lags due to interaction

with the soil matrix, if one hopes to understand the effects a microbial population would have on

a contaminant convecting through the matrix.

This model describes bacterial motility using three components. The first solves for the

larninar flow field in a specified geometry. The second incorporates single-cell movement by this

convective flow subject to drag, inertial, and Brownian forces caused by the fluid flow (drag and

inertial) and the bacteria motility (Brownian: modeled as random). And thirdly a probabilistic

model for attachment and detachment is proposed.
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2.2. Model

Laminar jlow in a micro~ow cell. To isolate and observe bacterial motility under

convective fluid transport, a flow cell was designed that can be placed under the microscope and

images of individual bacteria taken. Similar methodologies have been developed earlier (e.g.,

Berg and Turner, 1990; Phillips et al., 1994; Barton and Ford, 1997; Biondi et al., 1998) to

observe single-cell movement. Three designs were tested (see Fig. 9) which included filly three

dimensional flow features (Fig. 9a,b,c), and two-dimensional features (Fig. 9d). Pore size

distribution in natural systems is variable. Fine pores in fine sands range from 2 to 20 pm. The

smallest dimension (thickness) considered in the flow cells is 20 ym. It is constant for flow cells

a and d, and variable for flow cell b,c. The flow rates used correspond to those typical of

groundwater flow velocities; 104 to 10-6m/s.

Analytical solutions for creeping (laminar) flows are available with certain geometries

(e.g., parallel plates, cylindrical tubes, etc.) but in general, once geometrical features differ from

these regular geometries one must resort to numerical solutions. The commercially distributed

CFD code FLUENT was used to solve for the laminar flow field.

The first geometry analyzed corresponds to a rectilinear box (as depicted in Fig. 9a)

connected to inlet and outlet conduits. The inlet and outlet tubes have smaller cross sectional area

than the flow cell’s body. Figure 10 shows a cross sectional view of the velocity field (lOa), total

pressure (lOb) at z = d/2, with d = 0.2 mm the flow cell thickness, and wall shear stress (1OC).

The abrupt expansion between the inlet conduit and the flow cell body causes stagnation zones

and curvature in the flow streamlines (Fig. 10d).

To avoid large stagnation zones which can trap bacteria and affect breakthrough (or

introduce an unknown retardation), the design shown in Fig. 9bc was devised. The thickness of
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Figure 9a. Parallelepipeds box with constant thickness.
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Figure 9c. Parallelepipeds box with constant thickness.
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Figure 9d.
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this cell is variable. In the inlet and outlet funnel-shaped regions the thickness is 130 pm, and in

the center region of the flow cell body the thickness of 30 pm. This introduces, in a simplified

way, a geometric feature that is present in real pores, i.e., change in the flow cross sectional area.

Figure 11 shows the velocity, pressure, and wall shear stress along defined cross sections. The

three dimensional character of the flow creates zones where particle collisions with walls are

more likely, therefore one prefers to analyze bacterial motility and attachment characteristics in

flow cells where these three dimensional features are not present.

Finally, Fig. 12 corresponds to Fig. 9c, where thickness is constant. Wall shear stress is

maximum at the flow cell inlet pipe and decrease as the cross sectional area (normal to flow

direction) increases. This offers an opportunity to study the effect of wall shear forces on

attachment characteristics and bacterial motility.

Bacteria as a discrete phase. Once the flow field is obtained, microbes are released and

tracked. A sufficient number of particles are released to obtain representative statistics of the

cell transit time through the pore. Particles are released from different points at the entrance, and

followed across the domain, allowing them to stick to the flow cell wall when they collide with

it. The probabilistic model describing the attachment/detachment will be discussed in the next

section. Many bacteria of interest for groundwater bioremediation have sizes between 1 and 10

pm. At this size, Brownian forces may be negligible compared to drag forces for the

characteristic groundwater velocities. However, given that the single cell motility occurs

randomly, the forces generated by the cells in their swimming are modeled with a fictitious

Brownian force.
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FLUENT allows one to trace a particle using a Lagrangian reference frame. The particle

( )velocity, u = UPX,UPY,UP=, with (x,y,z) denoting a three dimensional coordinate system, is

related to the drag and Brownian forces through the equation

du
)~= F~(ui–upi ‘FBi+gi

(~P-4

dt P,
(2)

where Ui represents the fluid velocity in direction i, FDrepresents the drag coefllcient, and FBiis

the Brownian force.

differences between

given by

The term involving gravity, g, accounts for buoyancy forces due to density

the fluid p and the discrete phase p,. The drag force, F~ (ui – Upi), is

18P CDRe
F~ =—— (3)

ppD; 24

with p the fluid’s molecular viscosity, DP the particle’s diameter, and Re the relative Reynolds

number defined as

Re_pDp UP–U

P

(4)

The bacteria modeled in this study, Desulfomonile tiedjei, is far from spherical and therefore it is

better to use a drag force model for non-spherical particles, as provided by Haider and

Levenspiel (1989). In this case

C~=~(l+b Re~’)+
b~Re

bd+Re
(5)

where the coefficients bl, b2, and b3 (Equations given in Appendix A) are fimctions of the shape

factor @= s/S’ which is the ratio of the surface areas of a sphere having the same volume as the

‘
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particle, s, to the actual stiace area of the particle, S. If we consider Desulfomonile tiedjei to be

of cylindrical shape, of height five times the diameter of the circular face, then @= 0.7.

The Brownian force, FB, is intended to represent the single cell motility, characterized as

a random process with measurable parameters. In a strict sense, Brownian forces are caused by

bombardment of the fluid (or solvent) around the particles (cells), and their relative magnitude

with respect to inertial or drag forces decreases as the particles increase in size. For a thermal

non turbulent environment the Brownian force may be characterized by a white noise process

with spectral distribution &i and Ahmadi, 1992)

(6)

where dti is the Kronecker delta fimction, and

s.=
216vk~T

. (7)
“

where k~ is the Boltzman constant, v

temperature of the fluid. Brownian forces

()
..

#pD; + ‘cc

is the kinematic viscosity, and T is the absolute

are more important for sub-micron particles, and in a

convective flow environment like the one studied here, as a particle decreases in size, the drag

and inertial forces decrease relative to the Brownian force.

In the context of this work, we

tumble and run random mechanism of

must scale Brownian forces so that they represent

bacterial motility. Since equation (7) is the model

the

for

Brownian forces included in FLUENT, we must scale either temperature T, or particle diameter

DP until the overall random bacterial motility matches the modeled particles tracked. As seen in

relationship (7), a change in scale of one order of magnitude in the particle diameter causes a

change of five orders of magnitude in

temperature T.

the Brownian force, while F’ is linearly dependent on the

(

1
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We modify the particle diameter for the Brownian forces, but not for the drag and inertial

forces, since motility does not affect these. FLUENT provides a way to maintain dynamical

similarity by modifying the particle density as to keep the ratio of inertial to drag forces constant,

while changing the ratio of Brownian to drag forces.

Most knowledge of single cell motility has been gathered using flagellated organisms like

E. Coli. Little is known about motility of non flagellated bacteria. From the particle/hydro-

dynamic point of view, a number conjectured mechanisms for bacteria motility have been

suggested. These conjectures have yet to be proven with direct observation.

Changing direction of resultant drag force. By changing orientation and shape (S-shape)

the bacteria have some control over the direction they move within a convective field. This is

observed under the microscope as the cells flex and curl. This swimming mechanism will change

the direction in which the resultant drag force is being applied from the fluid to the individual

bacteria, generating self-displacement. This component of bacteria motility is modeled using

Brownian dynamics as described above. If the bacteria are looking for attachment sites, this

activity will increase the probability of collision against a wall and reduce the mean free path

compared to an inert particle of the same size. It is important to note that adhesion and

swimming mechanisms will effect each other and the overall bacteria motility.

Particle rotation and vorticity. It is known that particles traveling in convective flows

through capillaries are subject to rotation. This effect increases with particle diameter

(proportional to cubed diameter) and has an observable effect on the particle dynamics (with

vorticities typical of a pore Iaminar flow). In a classic experiment by Segre and Silberberg

(1961), particle migration across streamlines was observed. In a capillary tube, rotating particles

are subject to Magnus forces, and the balance between such a force and the drag force occurs in
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an annular region around which particles travel. If there exist a motility mechanism to limit cell

rotation, then they will follow the fluid streamlines.

Electromagnetic eflects. As found by Schie and Fletcher (1999), negatively charged cell

stiaces effect bacteria adhesion to surfaces. As a consequence transport in the aqueous phase

will be influenced. Fast (as in anion exclusion) and slow transport (as in diffusion close to a wall)

may also occur. Only the appropriate experiments and measurements can provide the necessary

characteristics to include in the biotransport model.

Modeling bacterial pore wall attachment/detachment.

experimental work by collaborators is to measure single-cell

One of the objectives of the

attachment and detachment to

develop a probabilistic model that better describes the process in aggregated scales (Darcy scale

and larger). Preliminarily, we present two hypothetical models that remain to be tested and

calibrated against measurements. In the first, once a single cell collides with a pore wall, it sticks

for a time, t,,.This sticking time is assumed to have an exponential distribution (in addition, a

log-normal time distribution has been modeled). The second model accounts for a phenomenon

qualitatively observed for bacteria attachment. If the microbe finds suitable conditions for life at

the attachment site, it may remain there for a long time. In fact, the attachment may be

irreversible. It is reasonable therefore to consider that the attachment time, t,,, is bimodal. That

is, attachment always occur, but there will be a fast time scale detachment if conditions are not

suitable, or a slow time scale or irreversible attachment. If we define Pf as the probability of

finding one fast time attachment, the simplest model we could imagine is that probability being

constant. In reality,

competing bacterial

the value of Pf is associated with factors like distribution of nutrients and

species, and if a coupled model for those is available, a more sophisticated
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I“ with a space dependent probability can be modeled. If the attachmentidetachment of bacteria

occurs kinetically, then P, will be time dependent. For the sake of this report we will explore the

simplest case in which P, is constant. The probability of a slow attachment time occurring will

be P, =1- Pf.

2.3. Results

In this section emphasis is given to the flow cell design shown in Fig. 9d because the

current experiments are being petiormed on it. Extensive results however exist for the three

geometries and are available upon request. During the following discussion, references to the

coordinate system (x,y,z) are frequent, and so the system is defined as follows: (i) x is the main

direction of flow, aligned with the inlet and outlet pipes longitudinal axis, 0<x<60.4 mm; (ii) y is

direction of the flow cell’s width, -5.35<y<5.35 mm; and (iii) z is direction of the flow cell

thickness.

Cell design 1. In absence of random motility (absence of random Brownian force), the

particles will follow stream lines and only a few collisions will occur at the wall between the

flow cell body and the outlet pipe. These collisions are mainly due to the deceleration of the flow

in the main flow direction (x direction) nearing the mentioned wall. Inertial forces cause the

particles to decelerate at a slower rate (balance between drag forces and inertial forces) in the x

direction, therefore they may collide against the wall.

Cell design 2. Figure 11 displays variables for the flow cell geometry shown in Fig. 9b,c.

The thickness or z dimension of the flow cell is variable. The flow cell was operated with a flow

rate of q=l 00 pm=2.777 10-11m3/s. The pressure drop (27 Pa in 70.4 mm, or 384 Pa/m) is

equivalent to a 0.384 m head loss in 1 km of mean flow length. The funnel shaped inlet
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expansion and outlet contraction generate a y component of the velocity, and the variable

thickness generates a z component of the velocity.

A number of particles (N=l 600) of diameter 1 pm are released from the cross section at

x=O.005 m and tracked through the flow cell. In absence of Brownian motion, Fig. 13a shows the

exit time distribution at the cross section x=0.0554 m. A number of particles (around 400 out of

the 1600) exhibit delayed times (long tail) due to physical retardation occurring at locations

where sudden contraction in the cross sectional area occurs. Allowing diffusion to occur

reinforces this point. Figure 13b shows this condition. The exit time distribution does not have

the long tail as before, although the mean arrival time in the two situations is the approximately

the same ~ = 2700s. If a Gaussian curve is fitted to the early breakthrough (no tail) of Fig. 13a,

the corresponding standard deviation is c,. = 360 s. For Fig. 13b, the standard deviation is

O-,e= 1030 s. It can be concluded that the pore scale geometry and biochemistry have a strong

synergism. Its consequences must be analyzed in detail when a macroscale averaged model is

used in porous media.

Cell design 3. The following analysis corresponds to the flow cell geometry shown in

Fig. 9d.

Flow jiezd. The flow cell was operated with a flow rate of q=2.777 10-11m3/s. The

pressure contours are shown in Fig. 12b. The pressure drop of 350 Pain 70.4 mm, 4972 Pa/m, is

greater (around five fold) than a selected typical value for geologic medium (1000 Palm, that is

equivalent to a 1 m head loss in 1 km of flow length). Figure 12a shows the total velocity at a xy

plane, Z=10-5m=10 pm.
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After passing the entrance, the flow decelerates. There exits an important y component to

the velocity field, as shown in Fig. 14a,b,c. The angled, funnel-like shape of the expansion

renders a smooth transition and eliminates stagnation zones. Figures 14a,b,c shows details of the

velocity at z=l 0-5m. There are zones of low and high velocity near the sharp angled corners of

the flow cell. Figure 14b,c displays the magnitude of the velocity at the section z=2x1 0-6.

Through most of the domain the velocity profile in the z direction is nearly parabolic, like

pressure driven flow between two infinite plates.

Rotation of the bacterial cells coupled with wall shear stress may play a role in the

motility mechanisms developed by the bacteria. For instance, if the bacteria can stop the rotation

the flow field is transferring to it, it will travel along streamlines, otherwise free rotation causes

the particle to move between streamlines. It is not known if bacteria posses such sophisticated

motility. Figure 14d shows the vorticity nearing the flow cell’s wall, z=O or z=2x1 0-5m. Higher

vorticity is associated with larger velocity changes, and the flow cell walls may be thought of as

sources of vorticity. Nearing the center of the flow cell, z=l 0-5m, the vorticity decreases

considerably (14e), when approaching the wall, a particle will spin faster. Figure 14g shows the

wall shear stress. The bacteria may experience adverse conditions in zones of greater shear stress

like the narrow inlet and outlet pipes.

Figure 15a,b displays particle (1 pm) paths, for the flow cell shown in Fig. 9d. In absence

of random motility (absence of random Brownian force), the particles will follow streamlines

and collisions will not occur within the domain. Magnus forces (resulting from particle rotation)

have not been considered here, although the significant velocity gradients in the z direction

(aligned with the microscope optical axis) and the relative size of the particle (1 pm) with respect

to the smallest flow domain dimension (20 to 35 pm) indicate they may have an observable
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effect. At the pore scale we may see an aggregated effect of Magnus forces, but in a porous

medium in which the particles will jump from pore to pore in a complex geometry, this effect

may be averaged out and possibly can be modeled in mechanical dispersion. A sample of 360

particles was injected at the zy cross section X=5X10-3m, uniformly (Fig. 16a shows the arrival

time in a zy cross section X=55.4X10-3)through the cross section. The particles do not interact

with each other or with the flow field. Particles traveling in streamlines close to the walls z=O

and z=2x1 0-5 have greater breakthrough times (by a factor of around 3) than those traveling

along the center plane’s z=l 0-5streamlines. This Taylor dispersion of the particles within the cell

can be characterized by the mean and variance of arrival times to the zy section x=55.4x10-3,

which is the end of the fimnel shaped contraction. The mean arrival time is ~ = 409 s and the

standard deviation is c,= = 206 s. The arrival times are not Gaussian (as can be seen in Fig. 16a)

but have an asymmetric distribution tailing towards longer times than the mean arrival time. This

distribution depends on the flow cell geometry.

Next consider 1 pm particles with Brownian motion. Figure 16b shows this case. First

assume there is no attachment at the wall, but a particle bounces elastically when it collides

against a wall. The Taylor dispersion indicated above for the non-Brownian particle changes,

with new mean arrival time ~ = 371 s and standard deviation c,. = 55 s. The slight reduction in

average time and the important reduction in the standard deviation are due to the particles

jumping between streamlines, consequently each particle samples more velocity zones in the z

direction than in the previous case and the arrival times are less disperse. More important, the

distribution is Gaussian as shown in Fig. 16b. This shows how aggregating the effects of

Brownian motion on a convective flow changes the character of the larger scale observations.
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We turn our attention now to the nature and location of the collisions of the particles

against the flow cell walls, as it forms part of the attachmentidetachment process. h average of

1.04 collisions/particle/mm traveled in the x direction occur, mainly with the faces parallel to the

xy plane, z=O, and z=20 pm (85.8°/0collisions occur at those planes). Another significant number

of the collisions occur at the narrowing stretch of the main cell (12.9°/0) at the inclined planes

that form the fhnnel shaped contraction. These collisions result from the particle inertia and

hence the particles decelerate at lower rates than the flow, crossing streamlines in the process. In

contrast, only 1.25°A of the total collisions occur at the entrance expansion, which is both

smoother and located opposite to the particles main flow direction. The Brownian force increases

the probability of the particles colliding against the wall.

After a collision with the wall, a particle attaches to the wall for some time (models

discussed in section 2.3), then detaches and returns to the flow. The particle can return into the

flow with no momentum, or bounce elastically (i.e. to recover the momentum it had before

attachment). The latter scenario is plausible when the bacteria have electrostatic forces to detach

from the wall and gain velocity into the liquid phase (as reported by Busscher et al., 1998).

Consider a three dimensional random walk, and look at the exit time distributions the

main direction of flow, x in this case. Figure 17 shows one single particle’s x coordinate in time

for the three situations, (a) elastic bouncing at the wall, (b) attaching and detaching fi-omthe wall

at each collision with a log-normal(O,1) attachment time, and (c) attaching and detaching from

wall with a bimodal time with PS=O.1, fast time attaching distribution log-normal(O, 1), and slow

time attaching distribution normal(100,50).

To obtain a statistically significant sample, consider 360 particles released at the flow cell

inlet. Figure 18b shows the x coordinates of such particles as a function of time, for the bimodal
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attachrnentldetachment with PS=O.1. (Figure 18a shows the corresponding plot for elastically

rebounding particles.) Figure 18Cdepicts a histogram (equivalent to a brea.kthough curve or exit

times pdf) of the arrival times at an exit cross section located at x=O.0554 m. The histogram has

been normalized as a pdf, and three analytical models, Gaussian, hyperbolic cosine, and

exponential-fractal have been adjusted to fit the curve (least squares method). The exponential-

fiactal model best fits this pdf.

Increasing bacterial motility. Consider the case when Brownian forces dominate inertial

forces. This case is studied by changing DP. We take DP ‘0.1 pm. Changing the size of the

particles does not have any impact on their trajectories when no Brownian motion is present

(Magnus forces not considered). The smaller particles follow the streamlines with identical

times. In this case the time arrival of the 360 particles at x=55.4x10-3 m has mean ~ = 384.5 s

and standard deviation c,. = 145 s (Brownian force acting). Compared with Dp=l pm particles,

the mean arrival time is slightly greater, accounting for a longer pathline, and the standard

deviation is significantly smaller (by a factor of 3), indicating that particles sample the velocity

field more thoroughly and Taylor dispersion will therefore be smaller.

This results from the random force allowing the particles to wander in both the z and y

directions and sample more of the velocity field (xy projection of pathlines for the later differ

considerably from xy projection of streamlines). The distribution of exit times is Gaussian.

The number of collisions with the wall that a particle experiences (on average) per unit

length traveled in the main direction of flow is 3.2 collisions/particle/mm (in the x direction).

Using the same bimodal attachment model as before, with P,=O.05, attachment and detachment

are modeled with log-normally distributed short and normally distributed long attachment times.

Figure 19 shows breakthrough curves for three cases. Case (a) has P,=O.05, short attachment
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times re log-normal (1.5,2), and long times are normal(100,50). The dark blue curve in Fig. 19 is

the result of simulation for this case (a), resulting in a two-peaked breakthrough. A Gaussian

curve (~= 6263 s, c,. = 2261 s), has been fit to the earlier peak, which embodies most of the

mass. This fit by no means implies the process is Gaussian but gives an idea about symmetry and

basic statistics of the breakthrough curve. Case (b) is the earliest breakthrough, with P,=O.05,

short times are log-normal (O,1), and long times are normal (100,50) (time units: seconds). A

Gaussian model reasonably fits the breakthrough curve, with mean ~= 1680 s, and standard

deviation c,, = 549 s. Case (c) uses PS=O.1, that is, the probability of attaching for a longer time

after a collision is 10°/0instead of 5°/0.

f
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2.4. Recommendations

1. Study the effect of shear wall stress by locating coverslips in the entrance and exit

regions.

2. Study the effect of wall collision

attachment (Important for pore clogging).

frequency by comparing inlet and outlet funnel

3. Obtaining several images per second and developing a computer algorithm to follow

the bacteria and compute the statistics. It is necessary to find the ratio of number of collisions to

successful attachments, and the statistics of the attachment times.

4. Consider the effect of vorticity and bacteria rotation.

vorticities can be performed in the current flow cell by locating

exit funnels.

The observations for different

coverslips in the entrance and

Warning. The low velocities in the inlet and outlet pipes change add another length scale

affecting breakthrough. When breakthrough is simulated at a section at the end of the outlet pipe,

the time statistics (mean and variance) are significantly different. It is recommended that

concentrations samples are taken as close as possible to the flow cell’s exit section at x=60.4

mm. Also an optical method to measure concentrations at the exit sections may be considered if

possible.

2.5. Appendix A

Haider andLevenspiel(1989) provide a drag force model for non-spherical particles

‘.

(M)
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(Al)C. =~(l+blRe’2)+ b3Re
b,+ Re

where the coefilcients bl, b2, b3,and b4 are defined through the empirical relationships

b,= 2.3288–6.45814+ 2.4486~2



b,= 0.0964+ 0.5565~ (A3)

b,= 4.905 -13.8944~ +18.4222+2 -10.26$3 (A4)

b,= 1.4681-12.2584~ -20.7322@2 +15.8855$3 (A5)

where + is the factor shape, defined as the ratio of the surface area of a sphere having the same

volume as the particle (s), to the actual surface area of the particle (S), @= ~
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3. Application of Sticky Brownian Motion to Microbial Dynamics in a Microflow Cell

3.1. Introduction

An important factor in the engineering of biobamiers/bioremediation is the microbial

partitioning that goes on between the aqueous and solid phase of the porous media. The factors

which affect such partitioning are numerous, but include such things as growth and starvation

conditions (Dawson et al. 1981; van Loosdrecht et al. 1987, 1990), limiting of nutrients (Fletcher

and Marshall, 1982), potential toxicity in the aqueous phase (Chen et al., 1993) as well as local

stiace properties of the porous medium. The importance of the representation of the biomass in

a porous medium cannot be underestimated since it plays an important role in the degradation

rates of contaminants as important nutrients necessary for the process may not be available in the

solid phase.

Here we present an alternative model for the dynamics of a microorganism undergoing

random forces in addition to a convective transport. Since the proper representation of the

biological phase is a matter without consensus as noted in the exchanges of Widdowson (1991)

and Jaffee and Taylor (1992), and since we do not want to restrict ourselves to clogging and

permeability changes which are the focus of continuous biofilm models, we give a model which

will also serve as a basis for an unstructured biological population. We will focus on the

individual dynamics of a single microbe, or perhaps a system of such particles in a relatively low

concentration so that they have little effect on the surrounding environment and each other. One

may think of this as the initial stage before a type of colonization of the surface occurs. The

random forces can be thought of as a sum of Brownian forces together with random swimming

forces generated by a bacteria in a homogeneous liquid. We assume the random forces are

normally distributed and independent. The normality assumption is an averaging of sorts over
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different particle trajectories, but we comment that the model can be extended to include

chemotactic behavior if one assumes that it is of the same order as either the molecular Brownian

forces, in which case one replaces the normality of the random walk assumption with a non-

symmetric random walk or on the same order as the convective forces, in which case one can

superimpose the vector fields arising from the chemotaxis and convection to get a net vector

field for the average movement. In particular the run and tumble behavior of certain types of

bacteria (Berg and Brown, 1972) can be taken into effect. In addition to the random forces in the

liquid phase our model introduces a stickiness parameter which relates tie

attachmentidetachment process resulting from physico-chemical interactions between microbes

and the solid matrix. The need for incorporation of time lags due to interaction with the soil

matrix is crucial if one hopes to understand

contaminant convecting through the matrix.

the effects a microbial population would have on a

Model. Here we discuss the mathematical model for the transport of bacteria which react

with the boundary of a domain. The movement of bacteria is well documented (Berg and

Brown, 1972) and is best described by a run and tumble (or twiddle) behavior. Basically put this

behavior consists of a sequence of runs, that is a linear movement in a particular direction,

followed by tumbles which are random changes of direction following some distribution. The

mechanism by which bacteria responds to a

increase/decrease run times between tumbles.

chemical gradient or chemotaxis is to

The actual tumbling distribution appears

unaffected by the environment.

containing bacteria, receptors on

If a chemical potential a (X, t) is introduced into a medium

the microbial surface can detect the change up to a saturation

point at which all receptors are activated.

can be made for the concentration in

In a large population of bacteria a statistical average

the presence of a 1 dimensional gradient. This
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homogenization performed in Rivero et al. (1989) leads in one dimension to an equation of the

form

(8)

where p is a coefficient of motility and YCis a coefficient of chemotactic velocity given by the

following formulas

‘=cv’exp(’%)sech(a’a
where v is the running speed of a bacteria, a is the chemical

(9)

(lo)

potential, a is a measure of

saturation which tends to zero as a gets large. If a is constant or if saturation occurs then P is a

constant multiple of v’ and 7= equals zero, as it should since there is no chemotactic behavior at

this point.

If we think of C (x,t) as a probability density p (t, x) we can rewrite (8) as

(11)

which corresponds to a forward-Kolmogorov or Fokker-Planck equation. We may now associate

a stochastic process X,, with p as its transition density. Another way of describing the behavior

is to think of it as the solution of a stochastic differential equation, which is the continuous time

version of a random walk. The SDE that it satisfies can be written

dXt = ~md~ +~ (X,,t)dt (12)
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starting from some initial point XO. Here W is a Brownian motion, which means that if one

takes an ensemble of particles starting from XOat time zero and advects them according to the

scheme

(13)

where Z is a normal random variable with mean zero and variance At, or an approximation by Z

with a uniform distribution as is commonly done in particle tracking methods and justified by the

central limit theorem, then the distribution of the ensemble follows the transition densities

satisfying (11). In a capillary assuming constant flow we can simply add measures of advection

and dispersion to get a general motion for bacteria following a stochastic differential equation of

the form

fl, =cr(X,)d~+$(X,)dt (14)

where now a takes into account the dispersive terms and b is the advective term. The

associated Fokker-Planck equation which is the transition density of X, denoted by p (t, x)

solves

(15)

If we consider a higher dimensional domain as a set of one dimensional tubes then this equation

is generalized to

ap:x)=:z&(”JP(ty ’))-z&(~i(~yt)P)
r J

(16)

where a~ is a dispersion matrix and ~ is an advection vector. Up to this point we have assumed

that the motion of the bacteria is not confined, that is there has been no boundary effects. To

study the movement in a capillary tube or porous medium we need to augment (1O)or (12) by
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some boundary conditions. In the random walk we want to impose physically meaningfid

boundary conditions which capture the attachment and detachment behavior of microbes. This

boundary behavior is crucial in understanding the transport biological agents in porous media. In

Boyd and Chakrabarty (1994) the attachmentidetachment process is shown to occur regularly in

the presence of enzymatic degradation. At each point x e r of the boundary we assign a

measure of “stickiness” p(x). This measure ranges from O,reflecting, through infinity at which

point a microbe is adsorbed to the surface irreversibly. A similar model has been proposed for

the flow of a chemical pushed by an inert gas through a tube with liquid state on the boundary

(Graham 1988). On a domain E, with a boundary r, the stochastic differential equations

representing the motion of a sticky bacteria are given by

dKt =lr(X, )dK,,XO =x,X, eE (17)

(N’,N’)=[t-@)dKs] (18)

cix,=a(x,)div, +~(X, )(dt-p(qdK,)+y(xJdK, (19)

where X, is the microbes position, lr = 1 if x is on r and O otherwise, K, is a measure of the

time the bacteria is near to, but not on the boundary. N, is a random directional motion which

only changes when X, is not on the boundary, equation (11), y is a directional vector which

keeps the microbe inside the domain, and the square bracket process (N, N) is a measure of the

amount of time a particle has spent inside the domain up to time t. With these interpretations (8)

says that K, only increases when X, is near (at) the boundary and the last equation states that

inside the domain X, acts as a classical Brownian motion. In this model the rate of adsorption

and resorption happen relatively quickly and what is important is the ratio of the rates of
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adsorption when the microbe is near the boundary and attachment time once on the boundary.

This assumption, while rather restrictive leads to numerical schemes which have the appropriate

limiting behavior for fast reactions, and which can themselves be modified in case of slower

reactions. Moreover, in the above mathematical model the “local time” satisfies the equation

(

K, = ~+~jo<~(x,,r)<. (X~)ds
o

(20)

Here we assume that the expected time on the boundary and its variance are both finite.

Otherwise the boundary behavior corresponds to adsorption and a scale up or homogenization

would only lead to transport with decay. The appropriate boundary conditions for the Fokker-

Planck equation (11) is known in one dimension (see Borodin-Salamin 1996) and can be

immediately extended to more dimensions. Together with (15) which can be rewritten as

M-) =Q(l,X)

at

where L is a linear operator. We require that at the boundary p (t, x) satisfies

ap ap
~+pz=o

(21)

(22)

where ~ is the normal derivative of p and the value of p ~ is taken to be the limit as one

approaches the boundary from inside. This is a form of mass balance. Since no concentration is

permanently adsorbed, the outflow at the boundary ~ is determined by the loss with respect to

time of the concentration near the boundary p%. The usual no flow conditions correspond to

p = O, which says nothing is even temporarily stored at the boundary.

Formally, we can also write (22)

ap
~+pLp=O (23)
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The Fokker-Planck equation with these boundary conditions seems not to be well studied,

but there is some work for the SDE approach. One of the most fi.mdamentally usefi.d results

concerning the sticky boundary conditions is the relationship between solutions of SDE which

are the same except for the boundary stickiness. Specifically Graham, 1988 showed [theorem

1.7] that if one has two measures p, ~, and one is subordinate to the other, that is one has

p < ~ then solving the SDE for p immediately gives a solution for j5, but run with a different

“clock” or “time change”. More precisely the theorem states that if (X,, K,, p) is the solution of

(10-19) and we let ~=,

~, = X4., and ~, = K4-,

+10(P – P) (Xs ) dK, be MIincreasing function

solves the SDE for ~. A particular example is

with inverse ~-1 then

taken by letting p = O

which is subordinate to any measure of stickiness. Practically this means that solving the

reflecting boundary condition and keeping track of the local time allows one to study the sticky

boundary problem. This “time change” is important also from a numerical point of view in that

it says to approximate the SDE with a random walk model one needs to generate a reflected

random walk but with a random insertion of time when it hits the boundary. The reflecting

boundary condition has been numerically studied in the case of the half plane by Lepingle (1996)

where an Euler scheme with good convergence rate is given. We generalize to other domains

this scheme by considering them as approximately polygonal. The distribution for the inserted

time can be freely set, but necessarily depends on the time step involved due to the rapidly

fluctuating behavior of a Brownian motion (the local time is not differentiable).

In particular the complex behavior remarked upon by McCaulou (1994)

if the inserted time is a mixture of a highly probable small time and a less likely

can be produced

large time. This

type of behavior is homogenized at large times and an average or expected residence time is

necessary to use when upscaling. Another important characteristic of stickiness is that it depends
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on location and time so that by modeling it as depending on local chemistry one can produce a

behavior for microbes which mimics active “attachment./detachment”, something not previously

recoverable. A possible model for an initial distribution of the stickiness as a function on the

boundary could be given as random function in which a covariance structure is given. This then

gives rise to a stochastic partial differential equation for evolution problems which have been the

subject of much recent investigation (see e.g. Cushman 1997), the situation which first interested

us was modeling of bacterial attachment through a flow chamber, the upper part of which is

formed by a treated slipcover (McEldowney and Fletcher 1998), so in this case a constant on this

part of the boundary and a smaller constant on the rest of the boundary.

3.2. The Stickiness

We collect here some analytic results which are usefhl in determining how to

pararneterize p, as well as some of the limiting behavior of random walks.

We first show that for a time discretized process to have a positive amount of time on the

boundary that

(1:.)’ ‘%

where s is the probability of staying on the boundary.

(24)

From the central limit theorem or the

basic properties of Brownian Motion (Protter 1992) the time-scale versus displacement scale is

B$,= ~B,. This means that if one discretizes the random walk in time and space and time steps

are divided as At then the corresponding space discretization should be on the order of dAt, so

for example if dividing time into intervals of length 0.01 one should divide space into intervals

{
of length 0.1. Now if a random walk on the points O,At,2& ...} is at Oat time zero and stays
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at zero with probability s and if not at zero goes up or down &

then one can ask how much time is the random walk at

{0, A~,2At,...,&A} that is on [O,n] wheren is some large time.

amount with probability 0.5,

zero on the time interval

The first question of interest is what is the distribution of the time that it takes for a

bacteria executing a Brownian motion to first attach to a flow tubes’ boundary. If we assume that

the flow is slow relative to the length of the flow tube then the answer is given by integrating the

transition density. That is if we let P (r >t) denote the probability that a microbe entering a

flow cell has not hit the wall by time t,then with D as the cross-sectional area of the flow cell

one has

P(r > t) = jp(t,O,y)dy = J~e-4’@,, (0)$,, (y)d”
D D n=l

(25)

where +,, are Bessel finctions, A,, are zeroes of Bessel functions and c,, are the integrals of the

Bessel functions all of which have been well tabulated. Notice that the long time asymptotic are

determined by the leading order term in t.

If we don’t assume that the velocity is slow relative to the length of the flow cell then

there is a chance that a microbe might never hit the boundary before exiting. The probability of

this event happening is approximately given (again letting D be the cross section)

P(r>t)=P(rD >t or z.,l~<t)

= P(ZD >t) +P(q,id <t)
(26)

The first of these is calculated as before and the latter can be approximated by a volume

averaged one-dimensional stochastic process.
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Another question of interest is the expected amount of time a microbe spends on the wall.

This is given by

(~~~li)=(~K,)the localtimeoftheprocess

an
=P(K,)” Py(~)

~~ length=p(K,)z P#~

(27)

Here T is the time inside the flow cell.

The final question we are interested in is what is the distribution of the time on the wall

for a microbe in a flow chamber given that it stars on a wall. This is an important question since

if one is interested in introducing genetic information into a microbial community the transfer of

genes takes place when microbes come into contact, a process most likely to occur on

boundaries. With 7 representing the amount of time on the boundary we want

[1P(; +>O)=P K~>~
P

(1
=P K,.&

Tp

(28)

This last quantity is finally calculated (using equation 32) as the square root of an

exponential distribution.

3.3. Numerical Considerations

At this point we would like to discuss how to numerically implement random walk

models to solve transport problems with sticky boundaries. In the homogenized version where

the boundaries are not visible, this is essentially a convection-diffision-reaction (CDR) equation.

Traditionally this is solved by a particle tracking scheme (Valocchi 1989) which in each instant

calculates probabilities of adsorption/desorption, measures the amount of time (random) in each
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phase (sorbed or desorbed) and then performs the random walk only on that portion of time in

the desorbed phase. For fast reactions the constant generation of random variables (for small

time steps) becomes prohibitive and Valocchi proposes to assume that on any fi-action of time a

fixed proportion is spent in either phase and then performs a random

in the desorbed phase. Unfortunately this just has the effect of

walk on the relative portion

retarding the flow, that is

changing its clock. A more uniform approach suggested by the above analysis of sticky

diffusion as a basis for CDR suggests not only should a random displacement take place at each

step, but also a random amount of time should be inserted into the clock.

There is not a lot of work for random walks with nonadsorbing boundaries in general and

the added condition of wanting to keep track of the local time for a reflecting boundary (to be

used for the random time insertion) leaves even fewer. In a paper of Lepingle an Euler Scheme

for reflected SDE is proposed which is not based on projecting an escaped particle back into a

domain, but is instead based on generating random variable with the same distribution as the

local time of the process and using these extra variables to keep the process inside.

The basic scheme of approximating the reflecting SDE on (O,m) with a continuous

random walk, is

fir =c7(X,)d~+j(X,) dt+dK, on (O,CO) (29)

or in a half space

X. =X. (30)

Y+M‘~(x, )A~+o(x, )W& (31)

/ .

K

[

,+&= K, +max O,–X, + Jfm)’v+r-y
2

J

(32)
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x I+AI =x, +y+&+y(K,+N-K,) (33)

Here I?(Mis a Gaussian random variable with mean zero and variance At and Vis distributed as

an exponential with mean 2At. The reason that this scheme approximates correctly a reflected

diffusion is that reflection in a line is a simple matter of taking any continuous function and

adding another fi.mction which together always stays positive (the Skorohod problem see

Lepingle 1989). This so called Shorohod problem in the case of random walk Brownian motion

is determined by the infhmm of the process which in turn is given as an exponential random

variable of the type discussed. In a half space each component has a covariance matrix for the

dispersion, but this does not change the scheme much. A way of simulating flow through a two

dimensional tube with reflecting boundaries is to make the time step small enough so that one

cannot during that interval hit both boundaries, then treat the problem only locally, that is one

can keep track of a separate local time at each boundary and adjust the random walk accordingly.

An obvious problem with this scheme is that it cannot be readily extended to other types of

bounded domains in 2 dimensions, much less to a circular capillary in 3 dimensions which are of

interest.

The simulation of a sticky process follows the above scheme except that the sets of points

making up the trajectories for one realization (t,X, ) are replaced with (t+ ~ p(X,)dK,, X. ).

If one is interested in the position of a particle at a particular time ~ it can be had by

finding the time t for which ~ = r. One usually knows in advance the times of interest and can

simply calculate the time t when if first surpasses r. First passage times are especially easy

since one knows the position the particle is at when the time is reached and hence one need only

keep track of ~.
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An alternative to this approach, which has “time marching”, that is a stick discretization

of time is used to construct a simple random walk, which upon hitting the boundary sticks, and

then desorbs from the boundary with a probability say s. However, to capture the bound~

behavior of continuous diffusions, which have infhite variation, with a discrete process requires

a dependence of ~ on the time step. It can be shown that the appropriate order for s takes the

form of

(l:ey “ &
(34)

That is as At+ O, s --+1. So that a large effort is made in calculating almost certain events.

Moreover it is well known that a Poisson random variable is the limit of appropriately scaled

binomial random variables (see DeGroot 1980) and so the first exit from a wall is given by the

distribution of the interarrival times of a Poisson which has an exponentially decaying

distribution. This means that upon averaging the two approaches are equivalent.

For a circular domain with no drift one can write the Laplacian in polar coordinates, that

is the Euclidian process X,, ~ can be thought of as the product of a radial process R, and

angular process 0,. This corresponds to a skew product decomposition of Brownian motion

where the radial process satisfies the stochastic differential equation

together with reflection on the boundary. While the angular process of interest satisfies

d@, =~dB,
/

(35)

(36)

where B( is a Brownian motion on the line (1 dimensional random walk), and B, is a Brownian

motion on the unit circle. One can now apply Lepingle’s ideas to the radial process without
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much trouble. The angular process can be thought of as taking place on the real number line and

then mapped onto the circle. The coefficient of its dispersion, ~, can be integrated

approximately by taking the average of ~ and ~
& “

In more complicated polygonal like domains one can petiorm a decomposition of the

domain into overlapping wedges (cones), keep track of the particles position relative to the

decomposition and near the boundary reflect the angular part alone. The transition probabilities

for random walks in such domains are symbolically given by (35) and (36) but have been studied

in the context of heat conduction for decades, e.g. (Carslaw and Jaeger 1959). The actual

displacement in euclidean coordinates is not transferred easily into polar coordinates. Instead a

random displacement radically is first generated by (35) and then a random angular displacement

generated by (36) where however the variance of the angular change necessarily depends on the

radial distance. In a general bounded domain one can approximate the boundary polygonally

and allow the number of sides to increase.

3.4. Discussion and Summary

We have presented an analytic model for the transport of microbial populations in a

porous medium which incorporates the attachment behavior. The stochastic differential equation

model assumes fast attachment./detachment for the microbes but the numerical implementation

outlined allows a general probability distribution to be chosen as a time scale and hence one can

use interpolation. The model can be easily used in situations where porous media are modeled as

collections of tubes, e.g. networked models or stream-tube ensembles as in Ginn et al. (1995).

The numerical scheme discussed extends the work of Lepingle on simulation of normally

reflected processes, in two directions. First “sticky or slowly reflected” conditions are added to

allow one to add microbial-boundary interactions as parameters in the transport problem and
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second one can model reflections in nonrectangular domains such as capillary tubes. Using this

scheme one can also study the small and intermediate time behavior of transport in capillary

tubes which has been previously studied for large times using various forms of homogenization

(13hattacharya and Gupta 1984).
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4. Fractional Dispersion of Microbes

4.1. Introduction

Quantitative research in fate and transport processes occurring in the natural subsurface

commonly deals with transformations associated with complex chemical and/or microbiological

reaction networks (cf. Murphy et al., 1997; Chilakapati et al., 1998; Lichtner et al., 1996; and

Transport in Porous Media, Vol. 38, Nos. 1-2, 2000), in the presence of multiscale

heterogeneities in physical, chemical, and microbiological properties. Yet even the simple

setting wherein a conservative tracer is transported in a physically heterogeneous environment is

not well quantified from a theoretical perspective, and sophisticated analyses of the phenomenon

continue to proliferate in the physics and hydrology literature. Much attention has been and

continues to be focused on the development of governing integro-differential equations for the

expectation of conservative solute concentration undergoing advective-dispersive transport in

flow fields that are nonuniform on multiple scales. Recently, researchers have developed a

fractional advection-dispersion equation approach to describe this phenomenon (e.g.,

Meerschaert et al., 1999; Benson et al., 2000). This approach shows promise in its ability to

represent so-called anomalous, or non-Fickian, dispersive fluxes that may describe expected

concentration plume evolution in natural media. Here we relate the fractional ADE to the

nonlocal dispersive constitutive theory (Cushman and Ginn, 1993), by demonstrating that the

fractional ADE is obtained as a well-defined special case of the convolution-Fickian form of the

nonlocal dispersion equation, which is itself a special case of the general form presented in

Cushman and Ginn (1993].
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4.2. A Hierarchy in Complexity of Fluxes

The nonlocal dependency of flux on constitutive properties is described by Cushman

(Cushman, 1990, Introduction) as a manifestation of the occurrence of a continuum of scales of

heterogeneity and its effect on velocity. In constitutive models nonlocality is manifest in one of

two forms: fluxes which are given as integrals on space/ time (integral theories), or fluxes which

involve derivatives higher than the first (gradient theories). Simmons and Kincaid (1987)

provide one of the first examples of gradient theory representations of transport in hydrology,

writing a Lagrangian transport equation involving an infhite series of spatial derivatives of the

Lagrangian velocity distribution function. Because our interest here is in fractional dispersion,

we restrict our discussion to the integral theories. The conventional Fickian (local) constitutive

theory maintains that the dispersive flux at a point in space is proportional to the gradient of the

expected tracer concentration at that point. That is,

q= D”VC (37)

where D is a positive-definite tensor.

The generalization to nonlocal constitutive theory holds that the difisive/dispersive flux

at a point in space depends on the conditions in some larger neighborhood of the point in space-

time. In this formulation the flux at a point (xjt) is given as a weighted average of concentration

gradients in this larger neighborhood. Cushman (1991) first developed a general nonlocal theory

of difision in media with evolving heterogeneity using an equilibrium statistical mechanical

approach. The resultant difisive flux is of convolution form

q(x,t)=-’fjD(y, r)vX_yC(x-y,t-+&dr
O R3

(38)
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In a subsequent article Cushman and Ginn (1993) generalized this result to provide a nonlocal

constitutive theory for dispersive flux in a local-equilibrium statistical mechanical setting. The

flux in this case takes the form

q(x,t)= (v) C-~~D(y,~,t). VX_YC(x–y,t–~)dydz (39)
OR3

In a later article (Cushman et al., 1994), a more general fully non-equilibrium flux was derived

using nonequilibrium statistical mechanical arguments. In this general case the resultant flux is

q(x,t)= ~~D1(y,z)C(x-y, t-r)@d~+(v)C
ofi3

-’j jD, (y>~;~).vx.,c(x-y, t-r)+dr
OR]

In these two general forms the nonlocal dependence of the dispersive flux appears in an integral

form that is not a convolution on time, but it is always a convolution on space. However under

(40)

certain constraints the integral form (e.g.

39 becomes

q(x,t)=(v)c-’J

in Eq. 39) is a convolution on time,

[D(y>~)vx_Yc(x-y,t-r)@dr

in which case Eq.

(41)

In this form the dispersion tensor arises as a fimction of the spatial and temporal lag intervals

only, and the resulting dispersive flux is a convolution integral. Nonlocality in the dispersive

flux of Eq. 41 is manifest as a convolution of a generalized

concentration gradient and so it is called “convolution-Fickian”.

dispersion tensor with the

In this case the dispersion

tensor is a weight fimction conveying the spatiotemporal “memory effect”

gradients in a possibly ini7nite neighborhood to the dispersive flux at the local

dispersion tensor is known as the memory kernel.

of concentration

point (x,t). This
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A more detailed discussion of these fluxes is summarized in Chapter 2 of Cushman

(1997).

4.3. The Fractional ADE

Over the last decade there has been considerable effort directed to the study of anomalous

diffhsion and dispersion in transport domains exhibiting power law scaling rules. One route that

has received particular attention involves generalizing the classical advection dispersion

equation, which involves classical integer spatial derivatives, to an equation involving fi-actional

derivatives, i.e., derivatives of noninteger power ct. The resulting solute mass balance equation

can be written as

ac
—=–VW+V. (D, W;-*+D,.V~_;))C
at

(42)

where a (1 < a <2) is the order of the fractional derivative, and where it is common to write D1

=pD and D2 = (1 –p)D with 0< ps 1. The right-hand side of this expression can be written as

the gradient of the total flux q, which is then

q(x,t) = VC– D, .V~-*C–Dz “V;_:)C (43)

The purpose of this note is to show that Eq. 43 is in fact a special case of the convolution-Fickian

flux appearing in Eq. 41, and as such, the fractional ADE is a special case of the nonlocal

transport theory of Cushman and Ginn (1993) or Cushman et al. (1994). We henceforth restrict

our attention to a one-dimensional setting and for simplicity set p = 1. The analysis can be

carried over to arbitrary p and in 3-D, but it adds little to our discussion, so we omit it here (see

Cushman and Ginn, 2000 for a much more detailed discussion).
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Transformation of the Fractional Flux to Convolution Form. In I-D with p = 1 and

1< a <2 the fractional derivative & is defined as

daf(x) 1 d“ ‘f(x-y)dy
&a J= r(n–et) ~ ~ ~“+1-~

with n the smallest integer larger than m In this case n = 2 and so

(44)

~dac d“ ~
J

“(x-~)dy— =—
dx” 6h, r(2-~)y”-* dt

d“ D
J

dqx-Y)dy=—
dtOr(2-~)y”-’ d(x-y)

(45)

d ‘ “ D6(+(y) dC(x-y,t-r)=—
J.f dydr

h ,+r(2-~)y”-’ d(x-y)

where d(z), Os r < t, is the Direct Delta and H(y) is the Heaviside fimction on (O,co).

Finally, define D (y, r) by

so that

(46)

(47)

Thus Eq. 43 is equivalent to Eq. 41 with D (y, r) defined by Eq. 46 in the 1-D case. That is, in

the fractional dispersion case, the flux q, is given by

q(x,t)=–’jjD(y, r). VX_YC(x-y,t-z)dydr+ (v)C
o-co

‘ “ Dd(r)H(y)=—
J.1 VX_YC(x–y,t –r) dydr +(v)C
o+r(2-~)y”-’

(48)

108

..----- .,,., . ,...bz,~,~-, ,,..: nT?7=77?-.,. -..s., ....,... ,T?.w. .,,,....~ . ......, .-....-+...?.—+-T—--.--—--- - ..-



Thus the fractional ADE is a particular form of the nonlocal ADE, when the memory kernel of

the nonlocal form is given by Eq. 46. Some particular aspects of this kernel are physically

meaningful. Firstly, the Dirac-delta fiction serves to localize the flux in time (i.e. it makes the

flux Markovian), so that the ADE is only spatially nonlocal. Secondly, the Heaviside serves to

restrict the nordocality in space to positive values of y, which corresponds to an upstream

nonlocal domain, x - y, appearing in the integer-ordered space derivative on C. Thus in this case

the ADE is nonlocal in the upstream sense. Finally, aside from these two generalized fictions,

the kernel is inversely proportional to y raised to a power below unity. This weighs the

contributions (to the local dispersive flux) of the nonlocal C-gradient, in inverse proportion to the

contribution to the dispersive flux. Finally note that in the limiting case where a + 1 this

particular nonlocal form reduces to the local first-order derivative (by the Ii.mdarnental theorem

applied to the last term in Eq. 45).

4.4. summary

The quantitative representation of anomalous dispersion continues to be an unresolved research

question in a number of fields, and the explanation of anomalous dispersion is an active field of

study in physics, fluid mechanics, and hydrology. Recent results on fractional dispersion are

special cases of earlier representations of anomalous dispersion using the convolution-Fickian

constitutive theory, which itself is a particular case of nonlocal transport theory. This

mathematical equivalence between the fractional derivative and a special nonlocal form implies

the physics underlying the former constitutive theory are embedded in the more general nonlocal

transport theories. In both cases researchers are investigating the role played by long-range

correlations in hydraulic properties.

!
I

1
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5. The Effect of System Boundaries on the Upscaling the Flow Problem

5.1. Introduction

Predicting the evolution of microbes in the subsurface and understanding various

degradation scenarios associated with their movement, requires knowledge of the role

macroscopic system boundaries play in the process. Uncertainty in this boundary data is the rule

rather than the exception (as for example the role of rainfall time series). To begin to understand

these sinergies we have analysed a stochastic upscaling method for the flow problem with

uncertain boundary conditions. Specifically we have studied steady flow through a

heterogeneous medium in a bounded domain using a recursive perturbation scheme. Details of

this study are found in Bonilla and Cushman (2000a) and the appendix to this report.

We have analyzed the head and velocity moments for a two-dimensional bounded

domain (rectangular) in heterogeneous media. Boundary conditions were modeled as the sum of

deterministic and stochastic components. This allows for a scheme that permits more elaborate

computations than previously studied. We studied the effects of two sets of boundary conditions,

deterministic and stochastic, on the fluctuating head which drives the random flow process. The

major conclusions are:

1. Randomness (or lack of) of hydraulic controls at domain boundaries significantly affects

head and velocity moments. Effects of processes at boundaries are not confhed to boundary

layers; the head and velocity moments are perturbed everywhere in the domain.

(a) The head variance function is most sensitive to this effect, with differences of up to one order

of magnitude. That the effect is not cofilned to differences within boundary layers can be

observed by comparing the central regions which differ by factors vzuying from 3 in the

110

z-c- -r— —-- —



longitudinal direction to 10 inthe transverse direction. A consequence of “’” “ “ “

problem may be ill posed if boundary conditions are modeled inadequately.

(b) Velocity variances are less sensitive to stochastic boundary conditions

t.ms 1s, the reverse

yet differences are

present. When comparing longitudinal velocity variances there are differences of a factor of 2 in

regions of small zero order-gradient (center of domain), and of a factor of 1.2 to 1.5 within

boundary layers. For transverse velocity variances, differences are more important along the

boundaries y = Handy = 0. The term mostly accountable for this difference is the variance in

the fluctuating-head gradient.

The mean head and mean head gradient in both cases differ very little from their zero

order counterparts (both cases have the same zero order solution).

2. Perturbation schemes are formally valid for o; <<1. However numerical experiments

show more robust behavior (convergence with c; 21). Here we show convergence of

perturbation schemes relies also on the magnitude of the kernels describing the problem. While

the magnitude of heterogeneity plays a role in convergence, the dynamics of each problem, and

in particular the boundary conditions will determine the convergence limits for the problem. The

milder the gradients present, the larger o-, can be within the scheme. Dirichlet boundary

conditions for the fluctuation 4 improve convergence, while Neumann boundary conditions (for

~) decrease the degree of allowable heterogeneity.

3. Generally there is a boundary layer from 3 to 4 integral scales for Dirichlet boundary

conditions, and at least 7 to 8 integral scales for mixed

conditions. Mean velocity differs up to 30 percent from

Dirichlet and Neumann boundary

the zero order velocity within the

boundary layers, a phenomena that should induce greater mixing when a contaminant is entering

through the boundary.
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4. Inhomogeneity in head and velocity second moments arises for two reasons:

boundary type, and spatially varying zero-order gradients. Both affect the value of the moments

across the domain. The first gives rises to a boundary layer. The second manifests itself in

inhomogeneity everywhere in the domain. This is of particular relevance when recharge is

present at one of the boundaries. For a flow with constant zero order head

Dirichlet boundary conditions render approximately homogeneous head and

fimctions beyond 3 to 4 integral scales away from the boundaries.

gradient, first order

velocity covariance

Under the same

circumstances, first order Neumann boundary conditions

integral scales. However gradients applied in the direction

not induce inhomogeneity in that direction.

cause inhomogeneity over 3 to 8

normal to a Neumann boundary do

5. Nordocality acts in different ways according to the type of boundary condition. For

the head variance, effects of nonlocality for Neumann boundary conditions are more important

and localization renders large errors. Nonlocality for Dirichlet boundary

smaller distances than for the Neumann case. Localization is a more

former case.

conditions acts within

suitable option in the

Finite difference schemes (Tartakovsky and Mitkov preprint) have been found to be more

elllcient in computing head and velocity moments than integral evaluation. However, the

integral evaluation is usefbl for analyzing the various directional contributions of the physics to

the moments and gives more insight into the problem of fully two and three dimensional flow

and nonconstant gradients.

Carefi,d determination of the nature of processes occurring at boundaries is important to

an adequate interpretation of laboratory and field flow and transport problems. Randomness in

observed variables is due to both the media’s heterogeneity and the surrounding environment
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fluctuations (or lack of). The former cannot be reliably estimated without a reasonable model for

the later in the context of inverse problems. Nonstationary analysis of the transport problem

based on the results presented here for the flow problem is especially relevant for natural

gradient experiments where mixing is different within boundary layers, or in presence of vertical

and or transverse head gradients.
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6. The Role Played by Various Macroscopic Length Scales on Flow and Transport

6.1. Introduction

For steady flow in a nondeformable heterogeneous aquifer where o-j (the fluctuating

log-conductivity standard deviation) is ofien used as a perturbation parameter, a closed form for

the head can be obtained to O(a-~). Mathematically, the expansion appears to require o-~<1 for

convergence of the expansion. Yet the schemes often work for o-; E 1 (cf. Dagan, 1989;

Cushman, 1990;

size, anisotropic

scheme.

Gelhar, 1993; Cushman, 1997). In this case, disparate length scales (domain

integral scales, etc.) might explain the robust character of the perturbation

There exists extensive research on perturbation solutions to the stochastic flow problem

(see references above). But it is not known how large O-J can be and yet have a convergent

expansion. For example, Hassan et al. (1998) have reported that small integral scales generate

very slow convergence and sometimes instability in the solution to stochastic flow via Monte

Carlo simulations, even using small values of of. Other researchers (e.g., Hsu et al., 1996;

Zhang and Winter, 1999) have shown this to hold for o-~= 4.38. The work presented below

addresses, convergence, and clarifies a commonly misunderstood issue.

bounds provided here offer a quick way to assess the magnitude of

Because the processes ~ and V~ can often be considered independent,

Further, the parameter

terms of higher order.

fhrther assumptions on

V’ are necessary. In particular, when the two point correlation fi.mction for the conductivity is

assumed to be exponential or Gaussian, it is possible to estimate the magnitude of Ovf in terms

of O, and various other length scales. The ratio, p, of the integral scale in the main direction of
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flow, 1, to the total domain length, L, plays an important role in the convergence of the

perturbation scheme. For p z pC, s = c, /p3 is the most appropriate for 2-D flow. Here pC is

a critical length scale. In addition, the shape of the log-conductivity fluctuation covariance, and

boundary conditions influence the convergence of the scheme.

6.2. Example: 2D-F1ow

The one dimensional analysis of the previous section sets the stage for the two

dimensional problem. We concentrate on bounding the head variance using L* convergence.

Therefore all the norms below are L2, that is read II II* where III is found.

The balance law in 2-D is

The primed notation x’= (x;, x;) (the x: has length tits)

so that after scaling, a non-primed system, x, is obtained.

X=(X, ~) with x=* and Y=j& where 2X and IY

directions of the unscaled system ((%%)=(X’,Y’)), and

(49)

has been introduced for convenience,

Introduce the dimensionless system

denote the integral scales in the two

LX and LY are the side lengths of a

[
rectangular domain Q’ = (O,LX) (O,LY)]. As in the one dimensional case, the goal is to obtain a

dimensionless head that is independent of the length scales of the problem. To make a judicious

scaling, it is important to consider gradients in both directions, x, and y. However, for

environmental applications it is common to study the case for which mean flow occurs in one

direction (say x direction). General mean head gradients with non zero components in both

directions and space dependence have been analyzed by Bonilla and Cushman (1999) for steady
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saturated flow and by Zhang (1999) for transient unsaturated flow. From their analysis the most

convenient scaling for the hydraulic head is h = ~ where x is the dominant direction of flow.

With this scaling, (49) becomes

~a2h a2h
< — ‘=-

2 af ah af ah
&2 +02 ~ ~~–$$

where <2 = ~ is the square of a modified anisotropy ratio, <.

Then ~ can be written as ~ = ~. Equation (50) must be

(50)

Define p~=$,and P~=~.

supplemented with boundary

conditions (BC’S), and they may be stochastic or deterministic. These may be Dirichlet,

Neumann or mixed. We consider stochastic Dirichlet and Neumann:

h=hD x~r~ (51)

-K ah
%“q

X&rN (52)

where hD is random dimensionless head on Dirichlet boundary rD, hD =~, and q is random

scaled recharge through Neumann boundary r~ with outward unit normal q, q = x or q = y for

the rectangular domain being considered. q = q’px if q = x, and q = q’pX~ if q = y.

After this scaling, the two point conductivity fluctuation (multi-Gaussian) is

( (y-w)’Rfi (x–u) =a~ exp –-–7
)

(53)

with points x =(x, y), and u = (u, w). The above Poisson equation (50) involves an ‘anisotropic’

Laplace operator in the left hand side and a non-zero fluctuation in the right hand side. We use

two parameters for the perturbation expansion,

af Jz,
— = ~vfx =
ax P.

(54)
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(55)

Consider the case in which the mean flow is in the x direction, and suppose Ov. = crvfi.

By substituting the expansion h = ~ +~ +~ +... . with h,,= 0 (a#j ) into equations (51) and

(52), and separating terms of order n= 0,1,2,... we obtain the hierarchy of equations

o(1) : (56a)

(56b)

with associated hierarchical boundary conditions

n~() h,, = h,: x&rD (57a)

o(1) : -K. ::—=qo Xsq (57b)

n>l O(a#. ):
-KG$=qn+KG[Mf’%9 x ‘ ‘N

(57C)

where the random boundary functions hD and q have the expansions hD = ~D+~D~D+... and

‘= ’cl+q~+q*+”””as a result of the expansion for h. The zeroth order, deterministic problem by

equations (56a), (57a), and (57b) has solution

[[

aG(x,y X“,y”)
~ (X,y) = J ~D X“,y” J,, 111.X-SD‘rD

x“&r~

++ ~ [qo(~’’,Y”)G(~, Yl~”,Y”)]l.*rMdr.

G x%i_N

(58)
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where x“ denotes an integration variable in the scaled system (not to confise it with unscaled

system previously denoted x’), and the Greens function G (x, x“) is obtained by solving the

problem

G(x,x”) = O for XS17D (59)

where 3(x – x“) is the two-dimensional delta function.

Problems of order n 21 are prescribed by equations (56b), (57a), and (57c). The right

hand side of the Poisson equation (56b) is a random forcing term. Using Greens fictions the

solution is

( )h,, = - jjG,l (x, ~lx”, j’) 42 -&#+$% dx”dy”+h,,bc
D

(60)

where h),berepresents the boundary integrals incorporating the conditions given by equations

(57a) with n21, and (57c). These are completely analogous to the boundary integrals presented

in equation (58). When higher order (n21) problems have homogeneous boundary conditions

then h,,,== O. The Greens fknction G. (x, yl x“,y“) maybe different for each n depending on the

model for processes occurring at the boundaries.

Consider the case of flow in a rectangular scaled domain xd2 = [( O,/X)(O,/Y)], with all

boundaries Dirichlet. Here 1X= & and lY = ~. To simplifi the analysis, consider deterministic

boundary conditions, that is, ~D# O, and h,?= O for n 21. The zero order problem for the head

is
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(61a)

h&=o,y)=J (61b)

h&=/x,y)=o (61c)

h&,y=o)=J(l-pxx) (61d)

(61e)h(~>Y=ly)=J(l-@

so that the flow is in the x direction, with constant gradient ~ = –JpX. Equations (56b) with

homogeneous boundary conditions h,: = O for n 21 complete the statement of the problem. The

Greens fbnction for Dirichlet BC’Smay be represented as

(62)
cosinh(y,,x”)sinh (7,, [~. ‘~]) sin(~,,Y)sin(~.Y”) ZYy. < y ~ ~X

G(x,ylx’’,y”) =;~
tl- n sinh (y,llX)

where a,, = ~ and y,, = $L. The above Greens fhnction includes the nonlocal anisotropy, that

without scaling is manifest only in the two point correlation

fluctuations, Rti. After the scaling, both the Greens fimction

different anisotropy ratio, as shown by equation (53).

functions for log conductivity

and Rfl are anisotropic with a

A solution is obtained for the 0 (c&) head covariance. First use an exponential two

point correlation function (also named separated exponential in the literature)

[ $?-%Rfl(x-u)=cr~exp – (63)
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The resulting expression is computed using numerical integration techniques including

Gaussian quadrature, Romberg integration, and importance sampling. Importance sampling is

used to decrease the number of sample points. For instance, equations (63) and (53) suggest that

if one integrates first over u(w), for a fixed x(y), one can restrict the sampling points to a

region (interval in u) where exp (-~)(exp(-k#)) is not negligible (exponential case).

Likewise, Greens fhnction (62) has a singularity when y + y“, and x + x“. To address this

singularity, when integrating over x“(y”) for x(y) fixed, it is usefi.d to divide the integration

interval [O,lX]([O,lY]) in two subintervals [o,x] and [X,lX]([O,y] and [y,/Y]). The

subintervals are best handled using Romberg integration excluding the right and left points

respectively, where the singularity is found. Once it has been integrated over x“ and y“, a

smoother fimction of x and y is obtained, and it is expensive and unnecessary to use Romberg

integration anymore, so a Gaussian quadrature rule is used. A further refinement can be

achieved by approximating the Greens fiction (62)

[[

G(x,ylx’’,y”) = --&in
cosh(y(x–x”)) -cos(a[y+y”])

cosh(y[x –x”]) - COS(~[y – y“])11
[+hcosh(y[x+x”]) –COS(~ [y– ~“])

cosh(y[x+ x“]) –COS(~[y + ~“]) )

[

cosh(y[lX -(x- x”)]) –cos(cz[y-y”]) ‘
+ln

cosh(y[lx –(x–x’’)]) – CO@ (y+ y“)),

(64)

[

+h cosh(y[lX +(x+ x”)]) –cos(ct(y+ y“))

cosh(y[lX +(x+x”)]) -COS(~(Y–Y”))
)
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where a =~ and y=:. This expression is very accurate (error under 0.05Yo)for LX2 LY. This
Y

however is not a restriction as an equivalent expression maybe found to approximate the Greens

function for the case LY 2 LX.

For this two dimensional case we have four independent parameters to analyze: the log-

Tconductivity fluctuation standard deviation, of, and three scale-related parameters, PX= ~,

rPy= +9 and~=~. The dependence of the perturbation expansion on a, is similar to the

ID case. For

parameter pX.

the effect of pX

the length scale parameters, start the analysis for dependence on the single

Selecting LX= LY, a “square domain” (in the unscaled system) is considered, so

and py can be studied. First, fixing pY at different values, compute the head

covariance norm. The covariance has a maximum at x = y, i.e. the variance. Under the

boundary conditions given, the variance has a maximum at the domain’s center,

x = (x, y) =(qvyp) “

Figure 20 shows the head variance norm Ilhll as a fimction of the parameter pX for

different values of the parameter pY on a log-log scale. An exponential two point correlation

function, equation (63) was used. Two linear regions of different slopes are noted to the left and

right of the point pX= PC (the transition for the exponential case happens at a very well defined

region, unlike the Gaussian case analyzed below), with 0.35 <PC <0.7 for different values of

pY. Let us first analyze the region pX< PC. The straight lines suggest a relationship of the type

(65)
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holds as in the one dimensional analysis, but, C depends on the parameter pY, C= C(pY), and

possibly onthe parameter ~. Petioming regressions to fitrelationstip (65) intiedataplotied

Figure 20, renders the following relationships

py = 0.01

/2, = 0.05

py =0.15

p,= 0.5

p, =1.0

[1J4J 1 12— —
O-JJ ‘42000 pX

[1

11411 1 1 2— =— —
o,J 1700 px

(1114111 1 2— =— —
of J 186 px

[)114111 1 2—= ——
OJJ 19.5 px

[111411 1 2—= ——
OjJ 7.5 /ox

(66a)

(66b)

(66C)

(66d)

(66e)

(669[1114111 1 2—= ——
cr~J 1.37 p,

py = 5.0

Notice that the dependence on ~ is quadratic (n = 2 in equation (65)), unlike the one

dimensional case where 11~II depended linearly on ~. If we are to use the criterion ~ <1 as

discussed for the one dimenisonal case, and rely purely on ~ as the bounding term for setting a

convergence criterion, then several conclusions follow. For the discussion, one can think of this

2D case as a vertical section of a confined aquifer. For the limiting case of a “strongly layered”

formation, equation (66a) (considering y to be the vertical direction, pY C<1, that is, very small y

integral scale, and the mean flow to be aligned with the horizontal direction x), convergence will
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reachieved even with very krge cf. On the other hand, if there exist vertical mean flow, or

local gradients in they direction, a conclusion may be drawn for this “strongly layered” case

from the previous analysis. Consider the case pY= 5.0 and px <e 1, equation (66f). This

corresponds to flow in a “strongly layered” formation in the direction perpendicular to the

layering. The convergence condition for this case is much more restrictive, of c 1.37P:. For

environmental conditions, it is expected the flow will align in the direction of layering, but

recharge and boundary conditions will induce vertical gradients, and the bound on o-, for the

perturbation expansion to be convergent will be reduced. Figure 21 shows the dependence of

11411on p, for fixed ~= 1 and two different values of p,. A fitted relationship for these two
Y

values of pX is

(67a)

(67b)

For pXs PC, a different relationship is observed. If equation (65) is fitted an exponent

n = 3 is obtained, along with a set of coefficients that guarantee convergence for very large

values of OY. This case corresponds to the condition in which the integral scale is of the same

or greater order of magnitude than the domain size we are looking at, Ai= Li. It is intuitively

correct, since the domain of interest will exhibit very smooth change in hydraulic conductivity.

As an example of such a bound, for PY= 0.5, the convergence condition is ~ = ~(&)3 <1,

with pXs 0.35. For example, if PX=0.5, the above convergence condition establishes that the
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Figure 20. Dependence of 11~IIZon the parameter pX for exponential log conductivity two point

correlation fimction, two dimensional (2D) flow.
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solution will be

parameter ~ and

convergent if Uf <30(0.5)3 =3.75. Finally

IlfiII is shown in Figure 22. The dependence is

the relationship between the

also quadratic for large values

of < (small values of pXc PC) and cubic for small values of ~ = ~, and the convergence

condition changes for different values of pY.

If we compute 11~II using a

can see the large impact of this

Gaussian two point correlation function, equation (53), we

correlation function’s shape on the convergence of the

perturbation scheme. Figure 23 shows the dependence of II%II on pX. A fitted relationship to

powers of ~ does not seem suitable except at the limits p, -0 and pX>1 where such fitting

follows a trend (65) with n integer.

parameters in the transition region

Figure 23 shows a complex dependence of 11~IIon the length

Pc/=o.05< px<l.o= pm. For the limiting case pX<0.05,

the following convergence relationships are found

py = 0.05
[1

M 1 1 2
— = 145000 ~OIJ

[1J4J 112py=l.o ——
OIJ = 675 pX

Py [14112=5.0 JJ=— —
o~J 144 px

(68a)

(68b)

(68C)

Notice that convergence occurs for much larger values of of, than for the exponential case,

while keeping all the other parameters constant. For a Gaussian two point correlation function,

large values of the anisotropy ratio and/or vertical gradients will render a scheme with greater

convergence bounds than for the exponential case. For the case pX>1, the dependence is again
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cubic, e.g., for pY ()
=l.(), g_ I L3—z p= 3with pX>l. Figure 24shows thedependenceof 11~11onf

the parameter < for different values of pY.

Further analysis for higher head corrections should be performed before the dependence

of each one of the terms A, ~, ~, ... on the parameters pX, pY, and ~ can be fully assessed.

However, the preliminary results for ~ support the findings of numerical Monte Carlo

techniques, where it has been found that Gaussian two point correlation 17mctionsconverge faster

than the exponential model, e.g., Hassan et al. (1998). It also reinforces the idea that

perturbation schemes for stochastic flow should rely on the gradient of the log conductivity

fluctuation for their expansion. Cv, is the small parameter needed in the perturbation analysis.

However the spatial pattern of the two point correlation is not captured by its value at the

maximum point, Cv,. Additional computations are required to improve knowledge of the ‘shape’

effect on convergence. Hassan et al. (1998) have also analyzed fractal conductivity fluctuation

distributions and have found that convergence is difficult to obtain for that case. The effect of

boundary conditions in two dimensional flow will be presented at a later date.

Since the perturbation expansion for the head and velocity is generally consistent (Deng

and Cushman, 1995; Hsu et al., 1996) (that is, terms of higher order 0 (o$ ) have been computed

and found to be of smaller magnitude as the order increases for parameter values ranging within

values of practical interest), some of the conclusions drawn in this paper for the two dimensional

case have been based on such consistency and computation of higher order will be petiormed in

the fiture to fbrther test the outcome of the present research. This does not constitute a proof of

convergence but, as pointed out in the literature of perturbation methods, one should be satisfied

if the expansion is consistent as fm as we have proceeded (Hinch, 1990). For the one
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dimensional case this consistency is clear, and it is expected that for the two-dimensional case

terms of higher order will reinforce these findings. There are significant differences in

convergence between one- and two-dimensional flow. Convergence limits for Of in tWO

dimensions are greater than those for one dimension. The literature (e.g., Mizell et al. (1982))

suggest convergence for the three dimensional case should be close to the criterion for the two

dimensional case. For instance, observe the slopes of Fig. 2 of Mizell et al. (1982).

6.3. Summary

When constructing a macroscale model of the flow field from small scale data (the

upscaling problem) various length scales naturally appear in the analysis. We have taken a hard

look at this issue from a stochastic perturbation perspective. The goal was to provide a rigorous

setting for developing upscaled models.

When looking at steady flow in a heterogeneous medium the log-conductivity appears

naturally. Often the log-conductivity is represented by the sum of an average plus a stochastic

fluctuation. And to make the problem tractable, the log-conductivity fluctuation, J about the

mean log-conductivity, In KG, is assumed to have finite variance, @. Historically, perturbation

schemes have involved the assumption that c; <1. We have shown that of may not be the

most judicious choice of perturbation parameters for steady flow. Instead, we have examined the

variance of the gradient of the conductivity fluctuation, o;,, is a more appropriate choice. By

solving the problem with this parameter and studying the solution, we have found an even more

appropriate parameter.
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7.

7.1.

The Significance of Porosity Variability to Chemical Transport

Introduction

It is well known that heterogeneity in natural porous formations controls the flow of

liquids and spreading of contaminants in the subsurface. This heterogeneity leads to a

nonhomogeneous velocity field that exhibits excitements or fluctuations on many scales. Much

of the physical heterogeneity of geologic formations is manifest in the hydraulic conductivity

and to a lesser extent in the medium porosity. It is known that conductivity may vary in space by

3-4 orders of magnitude, whereas the porosity changes by at most 1 order of magnitude.

Consequently, studies usually regard the conductivity variability as the main factor controlling

flow and transport processes in heterogeneous medi~ and consider the porosity as a deterministic

constant. The effect of the spatial variability of the medium porosity has been studied to a small

extent as compared to the conductivity variability. Lin (1997) considered transport in porous

media with variable porosity but constant volumetric seepage flow rate. He reported that

transport predictions using an average porosity are within 15% of those using a linear or slightly

nonlinear porosity fimction, but the discrepancy between the two cases becomes very substantial

when the porosity variability is strongly nonlinear. Although this disregards the conductivity

variability, it does show the importance of porosity. Shvidler (1985, 1993) studied purely

convective transport of nonreactive solutes in porous media with random porosity and

conductivity.

rather than a

variability in

variability.

However, he did not report on the significance of assuming a random porosity

deterministic porosity. Warren and Skiba (1964) andNaff(1978) considered the

the porosity field and found it secondary relative to the effect of the conductivity

However, these authors did not allow the porosity to be correlated to the

conductivity field which is to be expected in natural porous media. They also did not study its

132

“-. --.. — —.



effect when combined with a random reactivity field. It should be mentioned that these aspects,

which we try to investigate here, were outside the scope of those studies. To the authors

knowledge, no one has studied the effect of correlations between geochemistry, porosity, and

conductivity.

In this study we use the Monte Carlo method to simulate flow and transport in random

conductivity, porosity, and geochemistry fields. The purpose

porosity variability on contaminant transport in heterogeneous

porosity, and reactivity fields are generated from fractional

is to investigate the effect of

porous media. Conductivity,

Brownian motion (fBm) and

exponential distributions. In some cases we allow cross correlation between these fields. The

flow problem is solved over a two-dimensional horizontal cross section using a block-centered

finite difference scheme. The transport equation is solved by using a particle-tracking, random-

walk method. The solution of the transport equation is then averaged over sufficiently large

number of realizations to obtain the mean concentration. Results are presented in terms of

concentration contours and spatial moments of the mean plume. The nonlocal stochastic

transport theory of Deng et al. (1993) for the conservative case is modified to include a random

porosity that may be correlated to

the case of deterministic porosity.

the conductivity, and the perturbation results are compared to

7,2. Flow and Transport Simulations with Spatially Varying Porosity

Measurements of horizontal distributions of a variety of soil properties, mineral deposits

and other environmental data indicate that they often have fractal character with statistics

similar to a fBm (Burrough 1981; Turcotte, 1985 as quoted by Hewett, 1986). Hewett (1986)

considered a sequence of2189 porosity values taken at intervals of 0.5 feet (0.3048 m) from a

porosity log in a well. The porosity varies between a minimum of 0.05 to a maximum of-0.6.
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The resealed range analysis applied to this sequence revealed a fiactal character in the vertical

porosity distribution with H = 0.85, where H is the so-called Hurst exponent. Hewett also

argued that in the absence of adequate information about the areal (two-dimensional horizontal)

distribution of properties, the value of H determined from well logs also applies to the areal

distribution. This may be justified by recognizing that the statistics of the spatial distribution of

sediments are determined by the statistics of the processes which formed them and that these

processes acted simultaneously over large area influenced by the same changes in weather and

climate (Hewett, 1986). It should be recognized that the two-dimensional fBm distribution of a

property has a fiactal dimension D, which is related to the Hurst exponent D = 3 – H.

In the light of the above discussion, although the variation of porosity is much smaller

than that of the conductivity, the coupled effect of porosity, conductivity and reactivi~ may be

significant. Therefore it is important to investigate the influence of this variability on the

transport and spreading of contaminants in such media. Although the correlation between

porosity and conductivity has not yet been established by field measurements, one may expect

that some degree of correlation exist in certain geologic media. For example, Archie (1950)

suggested a positive correlation between the effective porosity and conductivity. Also, Doyen

(1988) found a positive correlation between porosity and conductivity for a certain type of

sandstone using laboratory measurements and an empirical formula based on the pore skeleton.

Gelhar et al. (1992) compiled conductivity, porosity, and dispersivity data from 59 different field

sites. Among these data, 28 porosity-conductivity pairs could be analyzed. A simple correlation

analysis indicates a correlation coefilcient of-0.259. Removing the lowest four porosity values,

which seemed significantly different than the rest of the 28 pairs, and analyzing the remaining

pairs yields a coefficient of -0.539. Though not very strong, this empirical evidence show that
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porosity could be correlated to the conductivity. Since the type ofcorrelation is not clearly

identified in the field, we examine both cases in this study. The scope of this study may be of

theoretical interest with the lack of field data needed to support any of the correlation models.

However, it indicates the need to consider the porosity variability and its correlation to the

conductivity in a more elaborate manner both theoretically and in field studies.

Consider the transport of a tracer under steady groundwater flow in a two-dimensional

horizontal cross section. The conductivity field is assumed to obey fBm or exponential statistics.

In each case, a spectral method (VOSS,1988) based on the fast Fourier transform (FFT) is used to

generate random realizations of the conductivity field. The method uses the spectral density in

conjunction with a random number generator to create afield in real space having the statistics of

the desired distribution. For a fklm process we use the band-pass-filtered spectrum (Hassan et

al., 1997):

(69)

where~is the fluctuating log-conductivity, in K (x) = F + ~ (x) is the expected value of the log-

conductivity field, o; is the log-conductivity variance, D is the fractal dimension of the two-

dimensional distribution which has a value between 2 and 3, km= is the upper cutoff wave

number which is set proportional to the inverse of the measurements spacing or the grid size, and

k~in is the lower cutoff number that is proportional to the inverse of the domain size. If an

isotropic exponential covariance of the form ~(u)= o-je-u’a is used, the two-dimensional

spectrum (Mantoglou and Wilson, 1982) is
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j?(k)= +A2
(70)

2z(1 +A2k2~’2

where u is the spatial lag at which the correlation is estimated and 2 is the integral scale. For

more details regarding the properties of fBm and the random field generator used here, the reader

is referred to Hassan et al. (1997).

Assuming that the porous medium is incompressible, the Darcy scale steady flow

equation is

V.q(x)=v.[qx)v$ (x)]=o (71)

where q(x) is the specific discharge vector and @(x) is the hydraulic head. The flow velocity

or V is computed using Darcy’s law, Vi = – K/n t?@/i2xi,where n is the effective porosity. To

proceed in the analysis we first discuss the role of the porosity variability in the solution to the

flow and transport equations. Since the flow equation (71) is written in terms of the specific

discharge q and solved for the hydraulic head h, the porosity variability does not affect the

solution of (71) for the head field. It only plays a role in computing the velocity, sometimes

called the seepage velocity, which is obtained by dividing q by the porosity n. Therefore the

velocity field will be influenced by the variations inn. This influence depends on the covariance

structure of n and its cross correlation with the hydraulic conductivity. Unlike the flow equation,

‘the transport equations for both conservative and reactive chemicals explicitly involve n.

~+ V.(nCV)=V. (rid. VC)

~+~+V”(nCV) =V. (rid. VC)

With linear first-order kinetics, the exchange reactions can be described by

(72)

(73)
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:= K, (K~C-S) (74)

where C is the liquid phase concentration, S is the sorbed concentration (defined as sorbed solute

mass per fluid volume), d is the velocity-dependent local dispersion tensor di = aiV, ai is the

local dispersivity, K, is the reaction rate coefficient, K~ is the partition coefficient, which

controls the chemical exchange at the local scale, and Vis the magnitude of the velocity.

The solution of the flow and transport problems starts by solving the flow equation (71)

for the head field. The two-dimensional domain is divided into a uniform grid of square blocks

of length Axl = AX2= A. The values of the spatially varying parameters such as porosity,

conductivity, and distribution coefilcient are assigned to the center of the block but are not

assumed uniform over the block.

equation as will be discussed later.

Interpolation is employed in the solution of the transport

We employ a five-point ftite difference scheme to discretize

(71) over this uniform grid. The result of this discretization is a system of linear equations that

we directly solve by Gaussian elimination to obtain the head field. Darcy’s law is then used to

compute the velocity components at midpoints between block centers. The interlock

conductivity-porosity ratio required

averaging the two adjscent values

to compute the seepage velocity is obtained by harmonic

of K/n. This ensures continuity of the head field and

conservation of mass across block boundaries (Aziz and Settari, 1979).

The transport equations in the conservative and reactive cases are solved by a random-

walk particle-tracking approach. This approach is computationally efficient because it does not

require a grid for the particle-tracking algorithm. It therefore requires little computer storage and

running time relative to finite element, finite difference, and method of characteristics models

(LaBolle et al., 1996). The reason being the fact that the random walk method does not require
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solving large systems of linear equations every time step as do the finite difference and the finite

element methods. Another advantage of the random walk method is that it does not suffer from

numerical dispersion. A disadvantage, however, is that the obtained concentration distribution is

not smooth and usually requires some smoothing. This problem is alleviated to some extent in

our Monte Carlo simulations by averaging the concentration over a large number of realizations.

We use 2500 particles in all simulations which were found sufficient for the mean concentration

and spatial moments we consider here. Any increase in the number of particles does not change

the results presented here. The initial areal solute pulse is represented

such that the total particles mass is equivalent to the injected mass,

f$ni=jnCOdx
icl n

by this number of particles

(75)

where mi is the mass associated with particle i, AT is the number of particles released, COis the

concentration of the initial pulse and Cl is the domain considered. Particles are then traced as

they move within the know velocity field. Therefore the solution of (72) or (73) for any time t

can be approximated as

nC(x,t) = ~ m[X,,P (t), t]q[x-X,,P (t)]
npENP

(76)

where np=l,2,3,..., NP is the particle index, iVP is the total number of particles used to

( ,,P9)simulate the continuous solute mass, m X t is the mass associated with the npth particle that

is located at X,,P(t) at time t and was originally at X,,P(0), and q(x) is a mollifying function

that is used to smooth the concentration distribution. We choose q to be a box of size AXlx AX2

around each grid point and project all particles in this box to that grid point.
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For the conservative case, the random walk equation with the variability

porosity is (Tompson and Gelhar, 1990; Tompson, 1993; LaBolle et al., 1996)

xI+AI
{ }

=X, + V(x,,t)+ V.d[V(x,,t)]+:d[V (x,,t)]. Vn At

+{2d[V(x,,t)]At} l’2.Z

in the medium

(77)

where x is the particle location in space, At is the time step, and Z is a vector of normally

distributed random numbers of zero mean and unit variance. The spatial distribution of these

particles in the limit of small At can be described by a probability density function that satisfies

a Fokker-Plank equation (W1l-dc, 1985; Kinzelbach and Ackerer, 1986) of a form similar to (72).

Here C, normalized between zero and one, plays the role of the probability density.

For the reactive transport, the reversible reaction process described by (74) can be

handled in a manner similar to Hassan et al. (1997). They extended the approach of Kinzelbach

(1988) and Valocchi and Quinodoz (1988) for kinetic reactions with deterministic rate

coefilcients and one-dimensional simulations to the case of randomly distributed

and two-dimensional heterogeneous flow field. However, all the previous

reaction rates

studies were

performed assuming constant porosity. Chemical reactions are included in the particle tracking

approach by assigning a state variable to each particle which indicates whether the particle

resides in the aqueous or sorbed phase. At the beginning of each time step, particles in the liquid

phase are moved in space according to the random walk equation, whereas particles sorbed to the

solid matrix are not allowed to move for the entire time step, provided that it is sufficiently

small. At the end of the time step the state of each particle is adjusted by employing a Bernoulli

trial and using the probability of phase transition as given byParzen(1962). For more details the

reader is referred to Kinzelbach (1988), Valocchi and Quinodoz (1988), and Hassan et al. (1997).
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To extend the above procedure to the case of random porosity, the only change that needs

to be made is in the random-walk equation used to advect and difise the particles in the aqueous

phase. Equation (77), which has a term that accounts for the porosity variability, is used. The

concentration distribution at any time can be obtained using (76).

An important factor when using (77) is the computation of the velocity and dispersion

coel%cient at the particles location. As pointed out by LaBolle et al. (1996), the accuracy of the

random walk method in terms of local mass conservation has been traded for computational

efficiency by specifying velocity and dispersion coefficients as block constants in previous

studies (e.g., Tompson and Gelhar, 1990; Tompson, 1993). LaBolle et al.’s (1996) results show

that this approach does not conserve local mass and may significantly affect solute transport

prediction. They also showed that in interpolation scheme to obtain particle velocities is

necessary. Their results indicate that the particle velocity in the advective term is not sensitive to

the interpolation scheme used, but in the dispersion term

Table 2. Input Parameters

Parameter Value

Fractal dimension off D 2.2

Upper cutoff kma 2X

Lower cutoff kmin 2n/128

<ln ~> F 1.0

Initial concentration mass M 4.2 Kg.

Initial concentration box 6.0 x2.Om2

Initial source location (x], X2) (0.0, 0.0) m
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the velocity interpolation technique may affect the results. Schemes that employ bilinear

interpolation for velocities in the dispersion term conserve local mass and disagree with schemes

that use block-constant velocities. Consistent with these results our previous simulations

(Hassan et al., 1997) use bilinear interpolation for the velocity in both the advection and

dispersion terms of the random walk equation. We therefore use the same interpolation scheme

in this

nodes.

study to compute the particles velocities from the values obtained at the computational

Monte Carlo simulations are used by repetitively solving the flow and transport equations

for a large number of conductivity, porosity, and reactivity realizations. Ensemble averaging is

then used to obtain the mean concentration plume and its spatial moments as they evolve in time.

The accuracy of the simulations and the convergence of the ensemble statistics have been

established and are discussed by Hassan et al. (1997). In the following section we present the

effect of the porosity

random K~ and n.

variability for conservative tracers and then study the combined effect of

7.3. Conservative Chemicals

Monte Carlo experiments are performed with and without randomness in the porosity

using the conductivity distributions presented in the previous section. Table 2 lists the flow and

transport parameters that are kept unchanged throughout.

For the purely convective

the porosity is generated from a

mean of porosity, W(X) is a fBm

case, two experiments are performed. In the first experiment

fBm distribution, n(x)= n~e”’(x),where n~ is the geometric

process with variance c;, and r is a scaling factor that is used

to guarantee that the porosity range is physically plausible (e.g., within the rage found in
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Hewett’s sequence) and to adjust the variance of the porosity logarithm, cr~~. Thus, for r = 0.35

and a; =0.15, a:,, = 0.018. The value of r is chosen based on a number of numerical

simulations in which the random porosity is generated from the fBm model. In each simulation,

the parameter r is chosen based on a number of numerical simulations in which the random

porosity is generated from the fBm model. In each simulation, the parameter r is adjusted such

that the porosity values in any single realization are physically reasonable and within the range

mentioned before. Table 3 summarizes the results of these simulations for 600 realizations in

each case. The ranges of K and n in Table 3 are defined using the lowest and highest values in

the 600 realizations. The conductivity is independently generated from a illm distribution with

variance cr~= 0.15 such that it is about one order of magnitude higher than the variance in the

natural logarithm of the porosity. The domain size is chosen as 64 m x 40 m with the longer side

aligned along the mean flow direction. The grid size is taken as 0.5 m, which proved to be

sufficient for the local and global mass balance (Hassan et al., 1997). The mean concentration

obtained with spatially varying porosity and conductivity is compared to the mean concentration

obtained by varying conductivity with fixed porosity. n(x)= n~ = 0.35.

Table 3. Porosity Range and Values of r

0; k Range of K Range of n r

0.15 1.0 0.55-12.5 0.21-0.62 0.37
0.5 1.0 0.13-37 0.22-0.64 0.22
1.0 1.0 0.5-124 0.24-0.59 0.13
0.15 5.0 0.23-24 0.17-0.60 0.3
0.5 5.0 0.03-117 0.19-0.67 0.15
1.0 5.0 0.02-659 0.21-0.65 0.10

Figure 25a shows the superimposed concentration contours for both cases plotted at 10,

25, 40, and 50 days after the tracer was released into the domain. There are small differences
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Figure 25a,b. Mean concentrations for purely convective transport with fBm conductivity and
porosity, and o; = 0.15 and c~,, =0.01 8: (a) Monte Carlo simulation with spatially varying n
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simulation with spatially varying n (solid) which is negatively correlated to K and with
deterministic n (dashed).
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between the two sets of concentration contours in this case. The spatial variability of n has little

effect on the plume dispersion when uncorrelated with K. However, in the second experiment

the result is different. Porosity is generated as before, but in addition it is also assumed to be

positively

a;,, = 0.0:

correlated to the conductivity field, n(x)= n~eti(’), with r = 0.35, a; = 0.15 and

8 as in the first experiment. The

expected since the coarse

conductivity and effective

grained sediments

porosity than fine

positive correlation between K and n is to be

such as sand and gravel tend to have higher

sediments such as clays that have very small

effective porosity. This is also suggested by Archie (1950). Figure 25b compares the

concentration distributions for this case, to the one obtained with constant porosity. Clearly, the

variability of the porosity and its positive correlation to the hydraulic conductivity significantly

decrease the dispersion in the longitudinal direction. This result is more graphically illustrated

by comparing the mean-plume spatial moments. Define these spatial moments as

(78)

(79)

(80)

(81)

where M = ~flzn@dx is the total mass of the solute, s is the skewness and K is the kurtosis.

Figure 26 shows the second longitudinal moments are significantly lower for n positively

correlated with K, than they are for n uncorrelated with K or when n is a deterministic constant.
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Figure 26. Spatial moments for fBm conductivity and porosity; thick lines indicate convective-
dispersive transport, thin lines indicate purely convective transport.
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Also, the uncorrelated case yields higher longitudinal dispersion, but the same transverse

dispersion, as the case with n a deterministic constant. The significant decrease in dispersion

when n is positively correlated to K is due to the fact that the solution of the flow equation with

this type of correlation yields velocities with

considered constant. This decreased velocity

which are the main factor driving dispersion

a smaller variance than when the porosity is

variance implies smaller velocity fluctuations,

and causing this decreased plume spreading.

Should the porosity be negatively correlated to the conductivity, the results would have been

reversed. This can be easily seen if one substitutes n = n~e” in Darcy’s law to get,

V ‘[~x.]e(’-’’)(~,)o Assuming a constant head gradient along the xl direction, J, and using a

first-order analysis yield the variance of the velocity fluctuations as

0; = g[J’.i,(7+-2fi+@+[g)’-2J41(w)~]~] (82)

where @ is the head fluctuation. The positive correlation between ~ and w leads to lower

velocity variance and vice versa. From Fig. 26 it can also be seen that the skewness of the mean

plume is significantly affected by the porosity variability and its correlation to

positively correlated to K, the skewness almost vanishes. The kurtosis is slightly

K. When n is

affected by the

porosity variability.

The same two experiments are performed for

longitudinal and transverse horizontal dispersivities are

the convective-dispersive case. The

taken as 0.5 and 0.05 m, respectively.

These values are chosen in the upper range of values as determined by Klotz et al. (1980). The

results are presented in terms of the spatial moments as shown in Fig. 26 with the thick lines. As

for the purely convective case, the second longitudinal moment and skewness (corresponding to

the correlated case) significantly differ fi-omthe other two cases. The longitudinal moments with
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random uncorrelated porosity and conductivity start to deviate from the deterministic porosity

case only at large times. It is also clear from Fig. 26 that though smaller than the purely

convective transport, the influence of the porosity variability in the convective-dispersive case is

significant.

These experiments are based on a 1 order of magnitude difference between o; and a~,,.

We repeat the same experiments with 2 orders

variances. The results of this case, shown in the

of magnitude difference between the two

right panels of Figure ~ also reveal the

importance of porosity variability when correlated to the conductivity variability. As expected,

the effect is less than the previous case when there is only 1 order of magnitude difference

between the variances. However, even in this current case, the second moments for the

correlated case at 50 days are -20-25°/0 smaller than the deterministic porosity case.

Figure 27 is similar to Fig. 26, except the conductivity is exponential with integral scale,

A = 3.0 m. The simulation domain is -21X x 131 and the grid resolution is kept at 6 points per

integral scale. The same conclusions can be drawn from Fig. 27 as Fig. 26, but with smaller

moments and skewness. Since the case of random n uncorrelated to the conductivity has little

effect on the plume evolution as compared to the correlated case, we restrict out attention to the

latter case in what follows.

We study the effect of porosity with different n – K correlation models. Perfect positive

and negative correlations are considered as well as imperfect correlations. Four correlation

models are studied in

positive correlation

Fig. 28. These models are a perfect positive correlation, n(x)= n~eti(’), a

with noise, n(x) = n~eti(’)+~ , a petiect negative correlation,

-If(x)n(x) = n~e , and a negative correlation with noise, n(x)= n~e-ti(x)+s, where & is a random
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Figure 27. Same as Figure 26 but for the exponential model
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Figure 28. Spatial moments for conservative transport in fBm and exponential conductivity
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number uniformly distributed between -0.05 and 0.05. For cr~=1.0 and r = 0.1, the variance of

the porosity logarithm, o~,,, is 0.01 in the perfect correlation cases and is about 0.017 in the

impetiect correlation cases. The results of Fig. 28 indicate that the perfect and impeflect

correlations yield the same moments except for minor differences in the plume skewness and

kurtosis, especially with the fiactal conductivity distribution. Therefore adding a noise to the

perfect correlation models does not significantly alter the results. The second transverse moment

is least influenced

alluded to earlier,

direction.

As reported

by the porosity variability and its correlation with the conductivity. As

the negative correlation models increase dispersion in the longitudinal

by Hewett (1986), porosity variability in geologic media exhibit long range

correlations. We investigate the effect of the porosity integral scale 1. relative to the

conductivity integral scale 2K = 1,. Conductivity values are generated from the exponential

distribution with integral scale 1~. The same seed for the random number generator is used to

generate the porosity with correlation scale 1,,. The correlation structure between n and K is

maintained and the porosity correlation scale is allowed to be different from that of the

conductivity. Figure 29 compares two deterministic porosity cases, AK=1.0 and 5.0 m and

three random cases with positive correlation to the conductivity, (&= A,,=l.Om),

(AK=1.0 m, A,,= 5.0 m) and (2. =5.0 m, A,,=1.0 m). Changing A,, only slightly affects the

skewness of the plume. The longitudinal second

integral scale.

moment is most influenced by the conductivity

The results presented for the conservative tracer indicate

correlated to the conductivity significantly affects the plume

that porosity variability when

dispersion, especially in the
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longitudinal direction. The effect is more significant for the case of mildly heterogeneous porous

media with porosity variance -1 order of magnitude smaller than C*,, such as encountered at

Cape Cod where a;= 0.24 (Hess et ~., 1992), and the Borden experiment, o; = 0.172

(Woodbury and Sudicky, 1991). These two sites are mildly heterogeneous, and if porosity

variations are considered with variance on the order of 0.1 o;, the simulation results of these

sites can significantly differ from previous simulations with constant porosity.

7.4. Reactive Chemicals

Here we explore the interplay between randomness in the porosity and reactivity fields

when they are correlated to the conductivity field. Our aim is to examine the importance of the

randomness in the medium porosity relative to the randomness in the distribution coefficients,

K~ . For simplicity we assume that K~ is negatively correlated to the conductivity through

Kd = @(-~~) , with K, a deterministic constant. The parameter r~ is used to control the

variance of in K~. The porosity is assumed to be positively correlated to the conductivity with

n~ = 0.35. Higher values of ~(x) imply higher porosity values and lower values of K~. This

means that porosity and the distribution coei%cient are likely to be negatively correlated. This

assumption is realistic based on Karickhoff et al. (1979) who found a strong correlation between

K~ and the organic carbon content of the sediments. We surmise this content increases as the

porosity of the sediments decreases and vice versa. Clay deposits, for instance, have a small

porosity but a very high organic carbon content and therefore provide a rich sorptive

environment for many chemicals passing through the system.
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We consider the four cases: (1) K~ and n both deterministic constant, (2) K~ random and

n deterministic constant, (3) KJ deterministic content and n random, and (4) both K~ and n

random. Conductivity is generated from fBm and exponential models. Local scale dispersion is

considered as before. In the first set of experiments the geometric mean of K~ and the

parameter r~ are set to 1.0 yielding c& = o-~=1.0, the porosity variance is cr~,,= 0.01, and

the reaction rate K, is 0.1. Again, the values of the porosity are checked and found to be within

the range found in Hewett’s sequence. Figure 30 displays the spatial moments for this case using

both heterogeneity models. As is apparent, the second longitudinal moment increases with K~

random and n deterministic and decreases but to a lesser extent for random n and deterministic

K~. When both are random, the second longitudinal moment is closer to that with only K~

random. The second transverse moment exhibits the same behavior, but the skewness and

kurtosis are slightly aflected by

remembered that the variance in

the randomness in the two parameters. It should, however, be

inn is 2 orders of magnitude smaller than in K~. In Figure 31

the same set of experiments is repeated with the only difference being the value of Kj, which is

0.2. In this case the plume is slightly retarded (approximate retardation factor of 1.2), and

therefore the travel distance is larger than in Figure 30 where the retardation factor is -2.0. The

results of Figure 31 show that K~ and n have equal and opposite effects on the plume’s second

moment. When both variabilities are considered, the moment is no different than when both

parameters are deterministic constant. When K: is large and the plume is significantly retarded,

K~ variability is more important than that of n. This is due to the fact that the plume has not

traveled far enough into the domain to sufficiently experience the porosity variability. Because

porosity variability is much smaller than that of the conductivity, the plume has to travel many
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integral scales of the porosity before it is affected. Also, because al~~~= 10Oo~., the effect of

K~ is more significant for such short travel distances. On the other hand, when K: = 0.2, the

plume retardation is smaller, and the traveled distance is larger. In this case the plume has

experienced more of the porosity heterogeneity so that its effect is equivalent to that of KJ,

which has a much larger variance.

When the exchange reactions between the liquid phase and the solid matrix are fast, the

effect of K~ variability is more significant (Hu et al., 1995). We show in Figure 32 the same set

of experiments as in Figure 31, but with a much faster reaction rate, K, = 10. Although the

plume has the same K: as in Figure 31, the effect of K~ variability is more apparent than that of

the porosity, especially for the second longitudinal moment. This, however, agrees with the

findings of Hu et al. (1995) that fix+ reactions enhance the effect of the randomness in the

distribution coefficient, KJ. Figure 32 also indicates that the combined effect of the variability

in KJ and n yields a result significantly different from that when only one field is random. It is

close to that of deterministic K~ and n. Although the inn variance in these cases was taken 2

orders of magnitude smaller than the variance in in K~, the effect of the porosity variability

seems significant.

We consider in Figure 33 a set of experiments with o~~, = a~~ = 0.01, G; =1.0,

K;= 1.0, and K,= 0.1. Figure 33 shows that the randomness in the porosity field affects all

moments much more than does that of K~. However, the overall effect of K~ and n on the

second transverse moment is small. Thus considering the variability in one parameter alone may
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overestimate or underestimate the moments. The combined effect of the random parameters may

lead to a completely different result than if the randomness in one parameter alone is considered.

These results indicate dispersion is markedly affected by the porosity variability,

especially in the longitudinal direction. Therefore the porosity should be considered as a random

space variable in the analysis of flow and transport problems in such media. Thus perturbation

theories should have n random. To this end, we extend

theory to include the variability in the medium porosity.

7.5. Nonlocal Conservative Transport

We start with Darcy’s law at local scale

,i=-~*
ax,

Deng et al.’s (1993) stochastic transport

(83)

where qi is the specific discharge (flow per unit cross-sectional area) component in xi direction.

Following the lead of Deng et al. (1993), it is assumed that a conservative tracer is transported by

advection and dispersion under steady, incompressible groundwater flow in a two-dimensional

nondeformable porous medium of random conductivity and porosity. The Darcy scale transport

equation is

[1ac +a(qic) a ~, ac = ~—— _
‘z axi ax, u axj

where du is a Darcy scale (local scale) dispersion tensor defined as

d, =dll =a~~

dz = dzz = am%

d~= d~~= aw~

(84)
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Figure 29. Spatial moments for conservative transport with exponential conductivity using
different correlations scales for porosity and conductivity.
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Figure 30. Spatial moments for reactive transport with i%m and exponential conductivity, n and

K~ fields with K,= 0.1 and K:= 1.0.
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Figure 31. Same as Figure 30 but with K: = 0.2.
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Figure 32. Same as Figure31 but with K,= 10.0.
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Figure 33. Spatial moments for reactive transport in fBm and exponential conductivity, n and

K~ fields with K,= 0.1, K: =1.0, and &.d = cr~,,= 0.01.
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where dY=O for i#j, and a~, am and aw are the so-called local scale longitudinal,

transverse-horizontal and transverse-vertical dispersivities, respectively. It is also assumed that

the coordinate (Eulerian) system is aligned so that the steady mean flow is in xl direction,

G= const, and ~z = ~q= O. In addition, the hydraulic conductivity is assumed to be a stationary

random field with known covariance structure. It is clear that the randomness in the porosity

field affects the transport equation. Decomposing the spatially varying parameters in the

transport equation into means and fluctuations about the means, n = E+ n, qi = ~. + qi and

C=~+c, onecanwrite(84)as

a(c+c)+ ~ _
(fi+n) ~, ~(qi+qi)(~+C)-d. “(c+c) =()I

1 at;

which upon taking expectations becomes

(85)

with the mean-removed equation

(86)

_ ac _ ac ~,fi=a~+a~ a~ anc aC aqic—— —— ———— ___
‘z+qi axi ‘ 8x, at 8x, n at at ‘i 8X, axi

Taking the space Fourier and the time Laplace transforms of (86) and (87)

[1
——0

ii((.Dp–~O)+i~~~+dik~P =– ~–~ (88)
I

()
[

a;+ a~ aC Ek 1q,a~ aqic 0
E @c” +ik1~c0+dik,2c0 = — —– —–—– —__

at hi n at at ‘ 8X, 8X,
(89)

In driving (89) we assumed that c (x, O)= O. If we define the deterministic function B,

B“(k,co) = [o~+ikl~ +dik~]-’

(87)
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then (88) and (89) become

[1
——o

P =ll”ji~o_ B“ aqick
aXi at

(90)

[-

a;+ a@ aC i%c aC aqicc“ = –BO —— —.—— ___
at ~i n at at ‘i axi &i 1

(91)

Take inverse Fourier and Laplace transforms of (91) to obtain

[

aC aC + a(qic) afi + a(nc) a=
c(x, t)=–B *X,, n— — —–— —–—

at + ‘i aXi aXi aXi at at 1 (92)

Multiply the above equation by qj (x), take expectations and neglect triplet flux terms to yield

—

m(xjt)=-q(B x-y,t-r)qj(x)qi (y)~(y,r)+qj(x) n(y) a=
k

dc(y,r) ~r
(93)

0fiz I

Similarly,

[

—

~(x,t)=–~~ B(x–y,t–r)n(x)qi (y)~(y,r)+n(x)n(y) ar
k

dc(y,r) ~r
(94)

O R2 1

It is clear that these two equations exhibit nonlocality in both space and time. Taking the space-

Fourier and the time-Laplace transforms of (93) and (94), assuming qiq~, nqi , and ~ are
——

stationary yields

~“=-(~][ikiF’(Bo*k~)+(@-eo)(BO*,~)]
Substituting (95) and (96) into (90)

(95)

(96)
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(97)

‘ikJcJBO*a)
Rearranging the above equation gives the final solution for the mean concentration as

This equation can be solved exactly in Fourier-Laplace space, and subsequently inverted to real

space to yield the mean concentrations for random conductivity and porosity. If the porosity is

considered deterministic, (98) reduces to Deng et al.’s (1993) result (equation (90)). Following

this latter study, the FFT is used to obtain numerical estimates of the mean concentrations in (38)

and hence the mean-plume spatial moments. Figure 34 compares the second spatial moments for

purely convective and convective dispersive transport cases obtained with random n positively

correlated to the conductivity, to the case of deterministic n. The effect of porosity variability is

very significant for the longitudinal moment and increases with time. The transverse moment is

slightly affected by the porosity variability which agrees with our Monte Carlo results presented

in the previous section.

These findings indicate the flow and transport analysis that is based on the assumption

that the porosity is a deterministic constant, may be misleading and can cause large errors. It

should be mentioned that the results presented herein cannot be generalized before a detailed

study using different covariance structures for the porosity variability and a sensitivity analysis
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Figure 34. Spatial moments for exponential conductivity and porosity; thick lines indicate
convective-dispersive transport, thin lines indicate purely convective transport.
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are performed. We present here the initial results that indicate the importance of porosity

variability and that its effect may be significant and continuously increasing with time.

7.6. Conclusions

The purpose of this paper was to address the significance of the spatial variability in the

porous mediums porosity to flow and transport in heterogeneous systems. Numerical

simulations were performed using the Monte Carlo method to solve the flow and transport

equations over heterogeneous conductivity, porosity, and reactivity fields generated with a

fractional Brownian or exponential spectrum. The realized concentrations are averaged to obtain

the mean concentration plume and results are presented in terms of concentration contours and/or

spatial moments. It was found that the spatial variability of the medium porosity has a

significant influence on the plume evolution when it is correlated to the conductivity field. To

the authors knowledge, this is the first observation of such an effect. Positive correlation leads to

decreased dispersion as a result of smaller variance in the fluctuating velocity, especially in the

longitudinal direction. Transverse dispersion is slightly affected by the porosity variability.

Negative correlation is shown to increase the plume spreading. The porosity variability has the

same effect in both purely convective and convective-dispersive models, but the purely

convective case is influenced more by the porosity variability than the convective-dispersive

case. For reactive transport in physically and chemically heterogeneous media, the porosity

variability, when added to the chemical heterogeneity, significantly affects the results. The

importance of the randomness in the porosity and the distribution coefficient depends to a great

extent on the variances of inn and In K~. With K~ more heterogeneous than n, porosity

variability has an equal and opposite effect on the plume dispersion as the distribution coefficient

for slow exchange reactions. When the reactions are fast, the K~ variability affects dispersion
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more than does that of the porosity. When n is as heterogeneous as K~, the effect of porosity

variability dominates the plume spreading. The numerical results suggest that it is important to

consider the spatial variability in the porosity of a porous medium and analyze the role its

covariance structure plays in flow and transport processes in such media. A first step in this

regard was taken where the nonlocal stochastic transport theory developed by Deng et al. (1993)

was modified to account for the porosity spatial variability and its cross correlation to the

hydraulic conductivity. Results of the modified stochastic theory supported the Monte Carlo

results and showed that longitudinal dispersion is significantly affected by the porosity

variability with the effect increasing as time increases. The importance of these findings and the

implications of the study for dispersion in real aquifers can be assessed when the cross

correlation between porosity and conductivity is established.
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8. Higher-Order Eulerian Solutions to the Stochastic Chemical Transport Problem

8.1. Introduction

It is generally recognized that transport of conservative chemicals in the subsurface is to a

large extent dictated by the velocity profile of the water in which the chemical is dissolved. The

velocity of the water, in turn, is governed by natural geologic heterogeneity and boundary

conditions. Over the last two decades many stochastic approaches have been devised to study

this problem. There are essentially two reference frames adopted, eulerian and lagrangian (see,

Gelhar 1993; Cushman, 1990; 1997; Dagan, 1989). In the eulerian frame one fixes oneself in

space and watches the contaminant pass by. This is in contrast to the lagrangian frame wherein

the observer views the world while riding a contaminant particle. Most eulerian methods are a

modification of that set out by Gelhar and Axness (1983), and most lagrangian methods are

extensions of Simmons’ (1982) and Taylor’s (1921) work. The problem with classical eulerian

perturbation schemes is closure and the degree of accuracy of the closure (Dagan and Neuman,

1991; Hassan et al., 1998). It is generally known that eulerian closure schemes underestimate

higher-order moments (e.g., the forth-order eulerian moment for conservative tracers is 1/3 of

that in the lagrangian approach (Dagan and Neuman, 199l)). From a practical perspective the

eulerian approach can be used to study the effect of local-scale dispersion and nonlocal

macrodispersion.

spatial moments,

can be used to

Further, the eulerian methods can be used to calculate not only the various

but also the mean concentration. The Iagrangian approach on the other hand

calculate the spatial moments, and, with significant difficulty, the mean

concentration. In addition the influence of local dispersion on plume development is commonly

neglected in lagrangian method,

especially in transverse directions

which may lead

(Cushman et al.,

to underestimation of the spatial moments,

1996; Hu and Cushman, 1997), and further it
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may lead to serious errors in dilution (Kapoor and Gelhar, 1994 a,b). However, if analysis is

performed consistently, using either frame, results should be equivalent with the two approaches.

In this study we provide a recursive perturbation solution to the eulerian transport problem for a

conservative chemical in a random conductivity field. The method applied here overcomes the

closure weaknesses in classical eulerian approaches and provides a systematic closure approach

to any arbitrary order.

Recently second-order solutions have been developed to investigate the accuracy of the

first-order solution. Dagan (1994) developed a second-order correction for the second transverse

moment using the lagrangian approach in two dimensions. Although the transport closure was

second-order, the flow closure he employed was only first-order. His results suggested that the

second-order correction to the transport problem had little effect on the transverse moment.

Based on Dagan’s (1994) second-order correction to the transport problem and Deng and

Cushman’s (1995) second-order correction to the flow problem, Hsu et al. (1996) investigated

the combined effects of second-order corrections to both flow and transport on the second

transverse moment for a simplified case in two dimensions. Their results indicate the second-

order correction to the flow problem has a profound effect on transverse transport. These results,

however, are in stark contrast to the Monte Carlo results of Chin and Wang (1992) and Benin et

al. (1992) wherein such an effect on transverse transport was not observed. Based on their

findings, Hsu et al. (1996) questioned the accuracy of the Monte Carlo simulations and suggested

these simulations may only be 0(/$). Employing a classical eulerian perspective,Naff(1994)

developed consistent second-order corrections to both the flow and transport problems for a

special type of heterogeneity. His results suggested second-order corrections to both the flow

and transport problems may lead to a plume evolution with strongly non-Gaussian character at



late time. He also showed that if the eulerian analysis is consistent with lagrangian, the fourth

moments obtained by eulerian and lagrangian methods are same.

In this study we would like to take advantage of the recursive perturbation method to

obtain the 0(0~) correction to the transport equation and apply Deng and Cushman’s (1995)

approach to get the 0 (a;) correction to the flow equation. These IWOcorrections are combined

to investigate their influence on plume evolution. The results are then compared with those

obtained via a classical method (Deng et al., 1993) and Monte Carlo simulation (Hassan et al.,

1997). We begin by following Cushman and Hu (1997) and Deng and Cushman (1995), and

subsequently perform a detailed analysis of mean concentration.

8.2. The Closure Problem Induced by the Classical Eulerian Approach to Chemical Transport

Classically, a conservative chemical in a nondeformable porous medium of constant

porosity with constant local-scale dispersivities satisfies

(99)

in an unbounded domain with diagonal local dispersion tensor. Geologic heterogeneity forces us

to consider the hydraulic conductivity to be a random space fhnction, and this in turn implies that

both the Darcy velocity, ~, and solution concentration, C, are random space fictions.

Following Gelhar and Axness’s [1983] pioneering work one now decomposes the concentration

and velocity into their means and fluctuations about the means:

C=c+ci

q=q+vi

(100a)

(100b)



For simplicity we assume ~ = (Y, O,O) is constant, and then write the equations for the mean

concentration and its fluctuation as

[-

gc = _ ~, x ~avic d%———
‘ (3Xi ai C9Xi1

(101)

(102)

Several approaches can be followed to close (101) using (102) and the Green’s fhnction for H.

Classically, this was done (Gelhar and Axness, 1983) with a spectral decomposition of a weakly

stationary process. Here, however, we follow Deng et al. (1993) using a more transparent

transform approach. With similar assumptions Deng et al.’s (1993) result reduces to Gelhar and

Axness’s (1983).

Let G be the Green’s fi.mction for the deterministic operator ~ with G ~ O as x +. m

and initial data

HG = 6(X, t) (103)

An implicit solution for c is given by

[

X(y>cf’)+ dVj(y)C(y,t’) ‘Vi(y)c(y,t’) @~*, (~o~)
c(x,t)=–j jG(x–y,t–t~ Vi(y) ~

o~3 1 dyi – dyi 1
with

[1(% -m) @z~kt)-1/2G(x,t) = fiexp – Ad ~
k=l k

(105)

To obtain the macroscale dispersive flux, V(X, t), multiply (104) by Vj(x) and take expected

values to obtain
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[

C(X,t)Vj(X)= –~ ~G(x–Y,~ –~’) V~(X)vi (Y) ~, 1ti7(y,t’)+avj(X)vi (Y)c(y,t’) ~~tI ~~06)

o ~3 I @’i

If one next assumes the term involving the triplet correlation is small compared to that involving

the two-point correlation on RHS (106), and in addition if one assumes the velocity covariance is

weakly stationary, then one finally arrives at a convolution-Fickian macroscale flux

—

C(XY‘)vj(x) = “JJ’~ij(x ‘J’,~–t)-~dt’ (107)
OR3 I

where Dti has its obvious definition. If one further assumes the gradient of ~ varies slowly in

comparison to DU then one arrives at a quasi-Fickian flux:

aC(x,t)
C(x,t)vj (x)= –DJ (t) &,

1

with

% (t)=j py (yjt –t’)dydt’
OR3

(108)

(109)

Either (107) or (108) maybe used to close (101).

The reader should note a significant problem with (107) and (108): we do not, a priori,

know the error induced by neglecting the triplet flux. Dagan and Neuman (1991) and others

criticize the eulerian closure schemes presented. They argue that the truncated triplet term may

be of the same order as those retained and further that it will significantly influence the fourth

spatial moments. A numerical study by Hassan et al. (1998) shows that if in K‘s variance is

small and In K‘s correlation structure is chosen to be exponential, the neglected triplet term is

small in comparison to the retained terms. However, in the other cases, such as large variance

andor power law In K correlation structure, this may not be true. In the next section we
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illustrate an alternative perturbation approach that does not rely on

concentration, and fiu-ther does not require a closure scheme for the

the balance for mean

so-called “macro-scale

dispersive flux”, Cvj . That is, we believe there is no need to define a macroscale dispersive

flux, and in fact, such a definition clouds the picture of large scale transport.

8,3. A Systematic Real Space Closure Model for Chemical Transport

Again assume the validity of (99) locally, but do not decompose C into its mean and

fluctuation. The authors believe it is that

associated the eulerian approach. Rather we

decomposition that leads to the closure debate

decompose ~. as before and introduce an infh-ite

series decomposition for C. Normally we set (Cushman and Hu, 1997)

(110)

where Co satisfies the sure problem

(111)HCO= O

subject to Co ,=0= Co, where COis the initial data, and further assume

CJ = 0(0~) j 21 (112)

with (av/ V )2 <1. For simplicity in exposition we further take V = 0(1), so that our previous

assumption requires

0-:<1 (113)

Equating terms of the same order in crv, we find the following recursive hierarchy in an infinite

spatial domain
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(117)

The system (115)-(1 17) is recursive and so a closed form solution for C~ can be obtained in

terms of the initial data, the deterministic Green’s fimction for ~, and the stochastic velocity. It

is given for N 21 by

CN(X,t) = (–l)N

~.!j J (

[

‘-’ aG
G X-X’, t-t’) ~—

e=l~j~
(
Xe –xt+l,tf–tt+’)1~(XN-XN+’,tN) (118)

o //3(N+1) JN

[1fiv,,(xt)Co(XN+])Lix’ ...dxN+’d~’...j~N
/=1

In deriving (67) we have used the assumption ~ = O.

17C1.-vig
1

..

~pJ . _vi ?g

I

with the initial condition CN ~=o= O (N= 1,2,3,...).

Again letting G be the deterministic Green’s fiction for

C“(X,t) = @x-Y J)co(Y)dY
~3

C’(x,t) = –j jG(x– y,t–t’)vi(y)
OR3 dyi

CN(X,t) = -’jjG(x - y,t –t’)vi(y) “~}’t’)dydt’
OR3 I

172

.—-~ ... .,.,,,., ,,,,,,... .. ,....!.. ,.!..,,, ,.,.... .... ,, ...... ,, ...,-7 ..... .....7.. ,--——s— ——-..- . . -----

(114)

~,wefind

(115)

(116)



From here we find the stochastic concentration to O(O: ) is

C(x,t) = jG(x - y,t)CO(y)dy +~(-l)k
k=l

,k-1

L{(

. . . G X-X’,+
o 0 #+1)

[

‘-1 aG

Zax: (
—. 1 ‘+’,tk)Xf _xt+l,t~ –tt+l) :(xk –x

[~v;xt)]co(xk+l)]dx...dxk+,ddtk.dtk

and its mean is

(119)

C(x,t) = @- y,t)co(y)~ +f(-l)k
R’ k=]

j-:j j {G(x-x’,t-t’)
()R3(k+l)

[

‘-1 6’G
~ax (~ Xe– Xt+],te –tt+])

J/
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~(xk - Xk+’,tk)
J!

(120)

[fJvj,(xqco(xk+9}dxL..dxk+w..dtk

points to note in (120). First, to arrive at the mean concentration weThere are several important

never need the mean balance law of the Gelhar and Axness’s (1983) approach (we just use the

mean operator); secondly, we obtain the actual stochastic concentration so that given a

realization of the velocity field, one can use (119) in a Monte Carlo approach without solving the

CDE; third, we have included the effects of local dispersion; and fourth, the solution can be

implemented via fast Fourier Transform (FFT).



8.4. Monte Carlo vs. Perturbation: Numerical Results

For comparison and to shed more light on the significance of flow and transport

corrections, we perform Monte Carlo simulations in two-dimensional horizontal domains and

compare ensemble mean concentrations and spatial moments from the two solutions. Monte

Carlo analysis is petiormed in a manner similar to Hassan et al. (1997, 1998). For completeness

we briefly review the numerical approach employed, and for more details the reader is referred

to Hassan et al. (1998).

Conductivity realizations are generated based on a Gaussian through an FFT-based

approach. A uniform mean head gradient is imposed on the domain along the xl-direction by

fixing the heads at the two boundaries normal to xl. The other two boundaries are assumed to be

impervious. The flow equation, subject to these boundary conditions, is solved via a finite

difference method which yields the head values at the grid points of the modeled domain.

Darcy’s law is then applied to obtain the pore velocities based on the generated conductivity, the

obtained head, and the assumed constant effective porosity. The transport equation is solved for

each individual realization using a random walk particle tracking approach discussed earlier.

The transport solutions are ensemble averaged to obtain the mean concentrations and the spatial

moments.

The FFT method developed by Deng et al. (1993), and subsequently elaborated on in

Deng and Cushman (1995) and Hu et al. (1995, 1997), is adapted here and used to obtain

numerical estimates of the mean concentrations given in Eq. (106). We compute the mean

concentrations and spatial moments using the deterministic solution, Co, the first-order flow and

transport solution, C[l, 11,the first-order flow and second-order transport, C[l,21,the second-order
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flow and first-order transport solution, C[z,11,thesecond-orderflOWand @UXSPOrLC[2,21,and

the convolution Fickian solution, CNL,of Deng et al. (1993).

Previous studies that deal with second-order solutions to the flow and transport problems

usually assume that the velocity distribution is Gaussian (e.g., Dagan, 1994; Deng and Cushman,

1995, 1998; Hsu et al., 1996), and as such the three-point velocity correlations are dropped from

the analysis. We present in this study the general solution that does not require the Gaussian

assumption. This leads to additional terms in the second-order solution. However, for simplicity

and to permit direct comparison between our results and previous studies we drop these terms in

our numerical computations. In our first case we set O; = 0.4. Figure 35 shows fow

comparisons of mean-concentration distributions. In each case, the Monte Carlo results (solid

contours) are superimposed on the theoretical solution (dashed-dotted contours) for two

dimensionless times. In the first panel of Fig. 35 we compare Monte Carlo results to the

deterministic solution, ~0. Figure 35B compares Monte Carlo results to ~~1,~1. The solution

with transport correction, ~[1,21is presented in Fig. 35C, the solution with the corrections to the

flow, ~12 ~1is shown in Fig. 35D, and the correction to both flow and transport is in Fig. 35E.,

For the purpose of comparison, the convolution Fickian result, ~~L, is calculated and shown in

Fig. 35F. As can be seen from these comparisons, the deterministic solution significantly

underestimates the dispersion whereas the first-order solution leads to an increased dispersion as

compared to the Monte Carlo results. The convolution Fickian solution, on the other hand, leads

to a slightly more dispersed plume than the Monte Carlo results. The solution with transport

corrections gives the closest results to the Monte Carlo simulations. When the velocity

corrections are added, dispersion slightly changes in the longitudinal direction, but significantly

increases in the transverse direction. This is due to the significant increase of transverse velocity
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covariance, VZV2, resulting from the second-order correction to flow equation. However, the

second-order correction to flow will not significantly change Vlvl (Deng and Cushman, 1998).

These comparisons become more transparent using the spatial moments (Fig. 36). As expected,

the first spatial moment is not influenced by the order of the solution. The second longitudinal

moment shows that ~[z, ~1is consistent wit almost produces the Monte Carlo results. The first-

order solution, ~[1 ~1,and the convolution Fickian solution lead to a higher second longitudinal,

moment. This result is consistent with Hsu et al. (1996) and Benin et al. (1992) where the

longitudinal second moment obtained using a Monte Carlo approach was significantly below the

predictions of first-order Lagrangian transport (advection only) theories. The second transverse

moment presented in Fig. 36 reveals a different picture. It indicates that the first-order and the

convolution Fickian solutions are the closest to the Monte Carlo results, whereas the second-

order solution, ~[z ~1, leads to substantially higher moments. This result is also similar to the>

findings of Hsu et al. (1996) whose second-order flow and advective transport solution give

significantly higher transverse moments than the Monte Carlo results. The Monte Carlo

simulations underestimate the second-order predictions of transverse moments to a greater extent

than do the first-order predictions (HSUet al., 1996). The theoretical results for the skewness

show a pattern that is consistent with the Monte Carlo solution, though more negative. These

results also indicate that including the second-order flow correction reduces the magnitude of the

skewness, leading to closer results to the Monte Carlo simulations. Figure 37 is similar to Fig.

36, but with a log-conductivity variance of 1.0. Qualitatively, the results are similar to Fig. 36

and same conclusions can be drawn.

It should be noted that the above results are based on a specific form of the Gaussian covariance

function. Several previous studies of second-order corrections to flow and transport (Deng and
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Cushman, 1995; Dagan, 1994; Naff, 1994; Hsu et al., 1996) are also based on the Gaussian

covariance of log-conductivity. We next would like to investigate the influence of the second-

order corrections to spatial moments based on a different log-conductivity structure. The

conductivity model we choose here qualitatively behaves like the spectrum inferred from

measurements (Kapoor and Kitanidis, 1998). The two-dimensional version of the spectrum is

(121)

where li is a characteristic length, which can be thought of as the correlation length. Figure 38

shows the spatial moments with for this log-conductivity structure and with a; of 1.0.

Comparing Fig. 38 with Fig. 37 we see no significant differences for the second moments.

However, the skewness results are different. Velocity corrections lead to a significant deviation

from Monte Carlo results. The plume is strongly negatively distributed at early time and

approaches the Monte Carlo results at late time.

It is important to note that our theoretical derivation does not assume any distribution for

the velocity field. We simplified the solution and dropped the three-point velocity correlation to

allow a direct comparison with the studies that have a Gaussian distribution assumption for the

triplet correlation terms (HSUet al., 1996; Dagan, 1994; Naff, 1994). In a subsequent article we

intend to investigate the influence of this assumption on transport behavior. In this regard it was

shown in Benin et al. (1992) that the velocity distribution is not necessarily Gaussian even if the

underlying conductivity distribution is. This is not a surprise since the transformation relating

the two is nonlinear.

The key question that arises from the previous results is why the solution with both flow

and transport corrections deviates more from Monte Carlo results than does the first-order
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solution, especially for the transverse moment. As mentioned earlier, the higher-order corrections

to the velocity covariance significantly increase transverse covariance, and slightly increase the

longitudinal. For example, Hsu et al. (1996) found that second-order flow corrections in two

dimensions increase longitudinal velocity variance by 8% whereas transverse velocity variance is

increased by 34°/0. Deng and Cushman (1995, 1998) reported even stronger effects for three-

dimension case. By increasing the transverse velocity variability through higher covariance

values, one would expect enhanced dispersion normal to mean flow direction. Numerical studies

also showed that the transverse covariance obtained through Monte Carlo is higher than that

predicted by first-order flow theories (Benin et al., 1992; Chin and Wang, 1992; Hassan et al.,

1998). However, it can be seen from these studies that the deviations between Monte Carlo

results and the first-order predictions are not as large

For example, the Monte Carlo results of Hassan et

as predicted by the second-order theory.

al. (1998, Fig. 38) predict a transverse

velocity variance that is only 2°A higher than the first-order prediction for a; = 0.15 ~d about

14% higher for C; = 0.95. In addition, the same study showed that the deviations of the first-

order prediction from the Monte Carlo solution diminish considerably tier one conductivity

correlation length. In a similar study, Benin et al. (1992, Fig. 39) reports a Monte Carlo estimate

of V2V2(0) that is about 10°/0higher than first-order prediction for a; = 0.8 ~d about 28°/0

higher for o; = 1.6. Therefore, it is clear that although the effects of second-order corrections to

the velocity covariance seem to be consistent with the fact the Monte Carlo predictions are

higher than the first-order results, these corrections increase the covariances to a much larger

extent than what is indicated by Monte Carlo simulations.

In order to clarify and elaborate on this aspect, we use our transport theory (both first-

and second-order) to predict mean-concentration spatial moments, but utilizing velocity
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covariances generated numerically by Monte Carlo simulations of the flow problem. The two-

dimensional velocity covariances are generated numerically for the Gaussian log-conductivity

distribution at the same two heterogeneity levels employed before. These covariances are used

in the transport solution instead of using the analytical velocity covariances. The results of this

case and the comparison with the Monte Carlo spatial moments are presented in Figure 39. The

results with the numerical velocity, labeled as C~C, 1] and C~C, 2], are for the first-order

transport model with numerical velocity covariance and the second-order transport model with

same covariances.

corrections shown

second-order flow

It is clear that these new cases are very similar to the solutions without flow

in Figures 36 and 37. The results in Figure 39 supports our argument that

corrections contribute to the transverse velocity covariance. From these

results, one can conclude that either the second-order corrections are not sufficient, and even

higher corrections are needed. Or the Monte Carlo simulations are limited to an accuracy to

between first and

8.5. Summary

second order. Future efforts should be devoted to explore the issue.

In this study we have presented systematic closures to the eulerkm flow and transport problems

for conservative tracers in heterogeneous media. The transport solution is N*-order accurate in

G~, and it includes the effects of local-scale dispersion. General closed form expressions were

presented for the mean concentration to arbitrary order of ISV. The solution combines the best

attributes of classical eulerian and lagrangian approaches to transport. A more detailed form of

mean concentration is derived to G$. The algorithm followed lays a path to general closure

schemes of arbitrary order, and overcomes the closure weakness of classical eulerian methods

(Dagan and Neuman, 1991). The analysis can be extended in a straight-
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Figure 35. Comparison between Monte Carlo solution (solid contours) and theoretical
predictions (dash-dotted contours) for (a) deterministic ~, (b) first-order ~, (c) first-order flow
and second-order transport ~, (d) second-order flow and first-order transport ~, (e) second-

order ~, where o-; = 0.4, and (f) nonlocal prediction of ~.
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Figure 36. Comparison between spatial moments obtained via the Monte Carlo solution and

theoretical predictions for ~~ = 0.4.
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Figure 38. Same as Figure 37 but using the log conductivity spectrum of (53) instead of (51).
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numerical velocity covariance.



forward fashion to handle linear reactions and to examine the concentration variance (dilution

problems).

Two spatial correlation structures of log hydraulic conductivity shown in (50) and (52)

were chosen for this study. The triplet velocity correlation is assumed to be zero. Based on

these assumptions we have the following conclusions:

1.

2.

3.

4.

5.

From the spatial moments in Figs. 36, 37 and 38, it appears C[l,ll is comparable to Deng et

al’s (1993) nonlocal theory. This shows the low-order method provided here is equivalent to

the nonlocal model.

Corrections to the transport equation do not significantly impact the second spatial moments.

Higher-order moments may be impacted but evaluating this impact is fraught with numerical

difficulties.

Corrections to flow equation may significantly affect the transport behavior. Second-order

corrections only significantly influence the second spatial moments in transverse directions,

not in longitudinal direction, which is consistent with previous studies (HSU et al., 1996;

Dagan, 1994; Naff, 1994).

The skewness obtained by the Monte Carlo

via the perturbation methods. However, the

simulation is less negative than those obtained

influence of second-order correction to flow or

transport on skewness is not obvious, which may be attributed to the accuracy of the

numerical method applied in this study. In addition, the influence of corrections to skewness

also depends on the chosen conductivity structure.

The significant difference between the second transverse moments obtained through second-

order corrections and Monte Carlo simulation suggests that a more accurate Monte Carlo

simulator is needed or an analysis of the order of the Monte Carlo method. This point stems
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from the fact that transport solutions with velocity covariances generated via Monte Carlo

simulations agree very closely with transport solutions based on first-order flow models,

which in turn are close to Monte Carlo simulations.

,

i
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