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Summary

Dynamic microbial attachment/detachment occurs in subsurface systems in reponse to
changing environmental conditions caused by contaminant movement and degradation.
Understanding the environmental conditions and mechanisms by which anaerobic bacteria
partition between aqueous and solid phases is a critical requirement for designing and evaluating
in situ bioremediation efforts. This interdiscipliary research project, of which we report only the
Purdue contribution, provides fundamental information on the attachment/detachment dynamics
of bacteria in heterogeneous porous media. The multidisciplinary team contributing to the
overall project has evolved from previous collaborations between DOE and various universities.
Co-investigators include Drs. Ginn, Murphy and Fletcher as well as numerous students and post
docs.

Fundamental results resulting from the Purdue collaboration are:

(1) Development of a matched-index method for obtaining 3-D Lagrangian trajectories of
microbial sized particles transporting within porous media or microflow cells.

(ii) The application of advanced numerical methods to optimally design a microflow cell
for studying anaerobic bacterial attachment/detachment phenomena.

(iii) Development of two types of models for simulating bacterial movement and
attachment/detachment in microflow cells and natural porous media.

(iv) The application of stochastic analysis to upscale pore scale microbial
attachment/detachment models to natural heterogeneous porous media.

(v) Evaluation of the role nonlocality plays in microbial dynamics in heterogeneous

porous media.
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I. Introduction
1.  Purpose

In "Estimating the Cold War Mortgage: The 1995 Baseline Environmental Management
Report" (BEMR), uncertainty in estimating cleanup cost is associated with the lack of remedial
approaches for contamination problems, as well as the lack of knowledge on the effectiveness of
the remedies that are available (DOE, 1995a). These difficulties highlight the need for the
development of technologies for subsurface contaminant plume containment and remediation
(DOE, 1995b). The central challenge of in situ remediation strategies is the control of the
transient spatial distribution of contaminants and remediation reagents (e.g., nutrients or
microorganisms) in the presence of natural physical and chemical heterogeneities. Currently
available predictive tools rely almost exclusively on the representation of passive
attachment/detachment processes (e.g., filtration, sedimentation) with the bacterium treated as an
inert biocolloid. One of the most intractable aspects of bioreactive transport, however, is active
microbial partitioning (e.g., attachment/detachment) under growth and transport in physically
and chemically heterogeneous systems (Sturman et al., 1995). Active attachment/detachment is
associated with microbial physiologic response to changes in local aqueous concentrations of
nutrients and electron-acceptors: this process is treated rarely in field-scale bacterial transport
theories, and not at all in available predictive tools.

Understanding coupled contaminant and bacterial transport in real media is critical to the
success of potential future bioremediation/biobarrier strategies at DOE sites. Disposal of
chlorinated hydrocarbons has generated extensive contaminant plumes in sand/gravel aquifers at
DOE's Savannah River Site (SRS) in South Carolina and Paducah Gaseous Diffusion Plant

(PGDP) in Kentucky, and such organic solutes interact with natural environments in coupled
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complex ways that have serious ramifications for remediation. For example, during the SRS in
situ bioremediation demonstration, 90% of the increase in methanotroph biomass arising from
degradation of trichloroethylene (TCE) partitioned into the aqueous phase (DOE, 1993).
Initially, this methanotroph population was primarily attached to solid surfaces. If this
partitioning behavior during bioremediation were understood and could be predicted, the
knowledge could be exploited to effectively distribute the biomass across a contaminated area
and to plan an injection network so as to minimize costly well construction and dampen or
eliminate microbially-induced reductions in hydraulic conductivity. This basic knowledge on the
transport response of microorganisms is required for any subsurface remediation involving
microbes, including staged approaches that sequentially degrade and immobilize multiple
contaminants. Staged approaches (temporal or spatial) can exploit the different transport
properties of distinct microbial populations and are especially well suited to DOE mixed
contaminant problems.

Factors affecting microbial partitioning behavior are complex and not well-defined. In
oligotrophic environments, some microorganisms partition onto the solid phase as nutrients
become limiting (Fletcher and Marshall, 1982; Kjelleberg et al., 1985), while the opposite
response can occur in a nutrient-rich environment or contaminant plume (Bengtsson, 1989;
Murphy et al, submitted). Complicating this scenario is the involvement of active
microbiological survival mechanisms that are not well understood at a basic science level. Some
microorganisms have displayed active attachment/detachment processes that are transient under
changing growth and starvation conditions (Dawson et al., 1981; Kjelleberg and Hermansson,
1984; van Loosdrecht et al.,, 1987, 1990). It is not yet clear how wide-spread "active

attachment/detachment processes" are among microorganisms, but they may be highly
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significant in natural environments, where there appears to be appreciable exchange between
attached and mobile populations. While some microorganisms use transport as a survival
mechanism (to move to a better environment), other microorganisms appear to use attachment as
a survival mechanism, as they appear to be less susceptible to potentially lethal environmental
effects (Chen et al., 1993) and predation (Leff et al., 1994). Further, nutrients associated with the
solid phase and with heterogeneous chemical reactions may be more accessible to attached
microorganisms. Although anaerobic bacteria play a significant role in microbial destruction of
chlorinated solvents and transformation of metals, very few studies have been reported on the
transport of bacteria in porous media under anaerobic conditions (Clement et al., in press).
Further, little information is available on the dynamic attachment/detachment of active
microorganisms in natural media—information that is critical for designing cost-effective in situ
bioremediation strategies for mixed contaminants. Without a fundamental understanding of
these processes, field efforts can be severely compromised or even wasted by unexpected
consequences, such as biological plugging of the aquifer near injection zones (Cunningham et
al., 1991; Semprini et al., 1991). The study of bacterial transport must also account for coupling
between microbial partitioning and transport in heterogeneous media. Our ability to control any
subsurface manipulation involving transport is severely challenged by the occurrence of natural
physical and chemical heterogeneities in, for instance, reactive surface area and hydraulic
conductivity. Specifically, the coupled distributions of microbes and aqueous-phase nutrients,
and how these distributions change in time under particular pumping and nutrient addition
strategies, will depend on the spatial variability (heterogeneity) in the controlling chemical and

physical properties.




The purpose of the proposed research is to address the limitations in understanding
reactive contaminant transport and dynamic bacterial attachment/detachment under growth and
growth-limiting conditions in natural porous media. This research will assess the coupled
degradation and transport processes involving biological agents, with focus on the active and
passive attachment/detachment and transport processes of anaerobic microorganisms involved in
TCE degradation, including their persistence under transient variations in substrate and electron-
acceptor availability. The goals of the research are to develop basic knowledge of the
fundamental relationship between contaminant transport and active bacterial transport and
attachment/detachment under transient local chemical conditions. This knowledge will afford a
quantitative understanding of the transient spatial distribution of contaminants and microbial
populations during contaminant degradation and microbial growth in physically and chemically
heterogeneous media. To accomplish this end, the research includes an integrated effort toward
the development of predictive models of contaminant transport and degradation in heterogeneous

media, through a combined multi-scale experimental and theoretical approach.

2.  Background

Movement of bacteria through porous media, including sediments and fractured rock, is
largely determined by the opposing processes of convective transport and the attachment of
bacteria to solid surfaces. The different processes involved are understood to disparate levels of
sophistication and have been examined in various scientific disciplines varying from soil science
to colloid transport to microbial physiology. The purpose of this section is to chart the current
state of the sciences involved, in order to identify the foundations for the proposed
multidisciplinary research. The section begins with conceptualizations of biomass structure in

porous media and proceeds through subsections on active and passive microbial




attachment/detachment (e.g., phase partitioning) processes, to a review of modeling such
processes combined with convective-dispersive transport in heterogeneous porous media. The
broad scope represents the nature of field contamination problems faced by OEM and reflects the
scope of research covered. The following literature review is necessarily comprehensive in order
to provide the complete background required by the multidisciplinary nature of the hypotheses

put forth.

2.1. Biomass Structures in Porous Media

The proper model representation of the biological phase in porous media is a matter
without consensus as noted in the exchanges of Widdowson (1991), Baveye et al. (1992) and
Jaffee and Taylor (1992). However in natural contaminated media associated with OEM sites,
the rates of contaminant degradation as well as the rates of biomass attachment/detachment are
closely linked to the structural form of biomass in natural media, and so any quantitative study of
the relevant processes must examine and account for the structures involved. Biomass in the
subsurface is represented alternately as 1) a continuous biofilm on the solid surfaces (Taylor and
Jaffee, 1990a; Taylor et al., 1990; Dykaar and Kitanidis, 1996); 2) a discontinuous patchy film
(e.g., Vandevivere and Baveye, 1992ab; Rittmann, 1993) or microcolony with specified
geometric structure (e.g., Molz et al., 1986; Widdowson et al., 1988); and 3) no assumptions on
biomass structure (unstructured models; e.g., MacQuarrie et al., 1990; Sudicky et al., 1990;
Zysset et al., 1994; Wood et al., 1994; Murphy et al., submitted). Structured biofilm models are
often associated with a focus on pore clogging and permeability changes, which limit transport
and hence degradation (Cunningham et al., 1991; Rittman, 1993). Mathematically, the
continuous biofilm and microcolony models are often associated with a diffusion limitation on

the transport of solutes from aqueous phase to biomass phase where they can be degraded (Wood




et al., 1994). The diffusive transport of substrate into the biomass is typically represented by an
"effectiveness factor" (e.g., Williamson and McCarty, 1976; Dykaar and Kitanidis, 1996) which
is a parameter that reflects the rate limitations on the transport and degradation of solutes within
the biomass structure. The "effectiveness factor” encompasses microscopic features of the
subsurface biomass system such as biofilm or colony thickness, biofilm density, and colony
radius. These quantities are defined at scales well below the scales of quantities used to express
mass fluxes in groundwater (e.g., porosity, conductivity), and rigorous linking of representative
parameter values across these scales is generally lacking. One exception is the scaling in Dykaar
and Kitanidis (1996) of a single pore biofilm model (via the assumption of a periodic media) to
derive equations that describe degradation and biofilm growth at the continuum (e.g., centimeter)
scale in bulk porous media. However, in addition to requiring a continuous and uniform biofilm
of known density, this approach is subject to assumptions that specify an idealized pore
geometry, limiting its extension to heterogeneous media. Moreover, biofilm density, a critical
parameter in biofilm-based models, is difficult to quantify, particularly in porous media.
Literature values of biofilm density range from 10 to 130 kg dry mass/m’ (Peyton and
Characklis, 1993) and depend on several factors such as vicinity to the aqueous phase, type of
bacteria, history of substrate supply, and shear force.

Wood et al. (1994) showed that when the mass transfer coefficient across a biofilm is large,
as in the case of a relatively thin biofilm or rapid diffusion through the biofilm, the structured
model reduces mathematically to an unstructured model. Use of an unstructured approach
involves no assumption on biomass structure, which is treated as a volumeless aqueous species
that may or may not undergo a partitioning with the solid phase (MacQuarrie et al., 1990;

Sudicky et al., 1990; Zysset et al., 1994; Wood et al.,, 1994). Therefore, the unstructured
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approach is more commonly adopted in investigations that focus on kinetic transport in

oligotrophic groundwater environments and will be used in this study.

2.2. Microbial Attachment/Detachment Processes in Porous Media

Both conceptual and quantitative representations of biomass partitioning
(attachment/detachment processes) in porous media depend strongly on the underlying
assumptions made about the structure of the microbial community, as noted above. For instance,
in model formulation for both numerical studies and simulation of column experiments,
MacQuarrie et al. (1990) and Sudicky et al. (1990) represent attachment/detachment through
equilibrium partitioning. Zysset et al. (1994) use a similar approach but represent the
attachment/detachment as a kinetically-controlled process. In fact, attachment/detachment is
nonexistent in several recently developed models, including those that treat active microbes as an
exclusively aqueous-phase component (e.g., MacQuarrie et al., 1990) and those that treat
biomass as an exclusively solid-phase (attached) component (e.g., Bower and Cobb, 1986; Molz
et al., 1986; Widdowson et al., 1988; Kindred and Celia, 1989; Wood et al., 1994; Dykaar and
Kitanidis, 1996). The multiple and conflicting ways in which biomss partitioning has been
represented in porous media arise partly from the absence of basic scientific information
regarding the structure of microbial distribution and dynamics of active attachment/detachment
processes in porous media. Active processes have received less attention, while a representation
of passive bacterial partitioning, through analogy to colloid transport, has been the focus of many
studies. The physical processes involved in passive microbial partitioning are well-documented

and are summarized here.

Passive Attachment/Detachment. Several researchers have experimentally investigated

passive attachment processes that influence the transport of non-growing bacterial cells in one-
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dimensional porous media columns. A large segment of the literature is dedicated to the
development and application of filtration theory-based representations of attachment processes
examined in such laboratory experiments, and we focus briefly on these studies. Straining and
physical filtration represent the removal of microbes from solution by physical (geometric and
electrostatic) forces, as opposed to active biological binding. Straining is the trapping of
microbes in pore throats that are too small to allow passage and is exclusively a result of pore
geometry (Corapcioglu and Haridas, 1984). Prediction of mass removal by straining, based on
purely geometric relations between the effective diameter of biocolloids and the diameter and
packing (coordination number) of grains forming the porous media, is detailed by Herzig et al.
(1970) and experimentally by Sakthivadivel (1966, 1969). An important result of these analyses
for microbial transport is the finding that straining is not significant in idealized packed beds
(porous media made up of identical spherical grains) where the colloid diameter is less than 5%
of the porous media grain diameter (Herzig et al., 1970; Corapicoglu and Haridas, 1984;

McDowell-Boyer et al., 1986; Harvey and Garabedian, 1991).

Physical Filtration. Physical filtration is the removal of particle mass from solution via
collision with and deposition on the porous media. Physical forces involved are gravity, partice-
particle and particle-solvent collisions (Brownian forces), electrostatic interaction potentials
between the particle and the porous media, van der Waals attractive potentials, biocolloid
(microbe) inertia, and pore-water hydrodynamic forces (Yao et al., 1971; McDowell-Boyer et al.,
1986). Filtration due to gravity is termed sedimentation (McDowell-Boyer et al., 1986;
Corapcioglu and Haridas, 1984) and depends on particle buoyancy. Many bacteria and viruses

are neutrally buoyant, in which case sedimentation is negligible.
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Filtration due to the remaining physical forces (Brownian, electrostatic, van der Waals,
and pore-water hydrodynamic) is the dominant mechanism for removal of biocolloids and has
received enormous attention, partly as a result of its quantitative tractability (cf. Review by
McDowell-Boyer et al., 1986). Physical filtration terminology is often used inconsistently
between disciplines; while the term "physical filtration" is used in the engineering literature,
"adsorption" is used in chemistry, and "attachment" in the microbiological literature.

Previous research has demonstrated that physical filtration is influence by solute ionic
strength due to its effect on electrostatic interactions (Sharma et al., 1985; van Loosdrecht et al.,
1989; Scholl et al., 1990; McDowell-Boyer, 1992; Tan et al., 1994), pH (McEldowney and
Fletcher, 1988), and mineralogy (Fletcher and Loeb, 1979; Scholl et al., 1990). Shonnard et al.
(1994) found significant increases in adsorption of a TCE-degrading bacterium as a result of
increased ionic strength of solution in coarse sands. Scholl et al. (1990) and Mills et al. (1994)
found that iron hydroxide-coated sands filtered more bacteria than clean sand, which was
expected given the effect of iron hydroxide coatings on the interaction potential. Quartzitic
materials are predominantly negatively charged, as are most bacteria; thus, the hydrodynamic
and attractive (van der Waals) forces must overcome the repulsive electrostatic force for
bacterial immobilization to occur. Iron hydroxide-coated sand grains have positive surface
charges, thus reversing the electrostatic force from repulsive to attractive and increasing the
likelihood of microbial attachment. Hydrophobic interactions can also result in sorption of
microorganisms (Fletcher and Loeb, 1979; van Loosdrecht et al., 1987; Fletcher, 1991) and has
been investigated by measuring the hydrophobicity of microorganisms and determining their
sorption on porous media coated with organic matter (McCaulou et al., 1994). Even small

amounts of organic matter on porous media may result in complete retention of microorganisms
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on the particle surfaces (Ryan and Gschwend, 1990) which may also be related to active
microbial adhesion.

The effect of these physical forces on microbial attachment is quantified in models
through averaging the interaction potentials and hydrodynamic forces in the pore-scale behavior
of an idealized microbe moving through an idealized porous media. Namely, rates of attachment
are derived for a chemically inert spherical particle being transported through a uniformly
packed homogeneous bed of spherical grains (Herzig et al., 1970; Shaw, 1976; Tien et al., 1979).
The microbial mass removal from the aqueous phase is cast in terms of pore-water velocity,
viscosity, and density; media grain size; and media porosity. The resulting relations are well-
known (cf. DeMarsily, 1986) and have been widely applied to microbial transport (cf. Harvey et
al., 1989; Harvey and Garabedian, 1991). The reversibility of physical filtration (via reduction in
solute ionic strength; Scholl et al., 1990; McDowell-Boyer, 1992; Bales et al., 1995), as well as
the reversibility incurred by changing the pore-water velocity direction (Sakthivadivel, 1966), is
not inherent in filtration theory-based models because the filtration models represent irreversible
deposition only under conditions of uniform flow direction and fixed solution chemistry. Thus
treatment of detachment is entirely absent in several filtration theory analyses of microbial
transport (e.g., Jewett et al., 1995). The evidential significance of detachment processes in
experimental studies, however, has led to increased reliance on a (more or less empirical)
detachment term in addition to the attachment terms. The resulting "two-site" reactive transport
model utilizes irreversible kinetic reactions for attachment at one type of reaction site (in
accordance with filtration theory), and either equilibrium or Kkinetic-reversible terms for
attachment and detachment at a second type of reaction site. Examples are given by Harvey and

Garabedian (1991), Fontes et al. (1991), Bales et al. (1991), Lindqvist and Bengtsson (1991),
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Mills et al. (1991), Kinoshita et al. (1993), Hornberger et al. (1992), and McCaulou et al. (1994).
This recent reliance on kinetic detachment is not actually new; dual attachment/detachment
mechanisms were modeled similarly in an early study on particulate "clogging/declogging”
(Sakthivadivel and Irmay, 1966; Herzig et al., 1970), as noted by Corapcioglu and Haridas
(1984). Tan et al. (1994), and Lindqvist et al. (1994) augment the first-order kinetic attachment
model with a nonlinear governing factor intended to represent the attachment-limiting effect of
site-saturation, while maintaining a linear detachment kinetic. An identical model is recently
proposed for colloid transport in Saiers et al. (1994).

Prediction of effective first-order kinetic attachment coefficients via filtration theory has
met with mixed success, partly because of the non-ideal and distributed characteristics of natural
granular media, and partly due to inherent limitations of the theory (e.g., original filtration
theory-based attachment is unlimited and irreversible). The capabilities and shortcomings of the

theory in field application are well documented by Harvey and Garabedian (1991).

Size Exclusion. In addition to filtration, size exclusion results in differential bacterial and
ion tracer breakthrough times in column (Hornberger et al., 1992; Mayotte et al., 1996) and field
(Wood and Ehrlich, 1978; Pyle and Thorpe, 1981; Harvey et al., 1989) experiments. Size
exclusion is the phenomenon of transported particles moving faster than the pore water, or at
least faster than the average pore-water velocity (as indicated by the breakthrough of a salt
tracer). The process is similar to hydrodynamic chromatography (e.g., DeMarsily, 1986). Pore-
water velocity within a capillary or pore throat is generally parabolically distributed, with the
maximum velocity occurring at the centerline and that at the pore walls equal to zero
(DeMarsily, 1986). Conventional transport theory assumes that molecular-scale solutes

thoroughly sample the full distribution of velocities in convecting pores of all significant sizes.
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Microbes and large colloids, by virtue of their size, preferentially experience the higher
velocities near pore centerlines, yielding an average velocity that is higher than that of a
molecular (salt) tracer. Thus microbes can precede the tracers down gradient. Results from
hydrodynamic chromatography (Dodds, 1982; DeMarsily, 1986) indicate that in idealized porous
media, the ratio between bacterial and water average velocities is quite small, usually between
1.0 and 1.1, and that the occurrence of exclusion requires the bacterial diameter be <1% of the
media grain diameter, which is common for transport in sandy aquifers. The velocity ratio can
be amplified in the presence of ionic forces (this is anion-exclusion, as opposed to size-
exclusion). When the electrostatic forces between the media and colloid are repulsive, as is the
case with negatively charged microbes in negatively charged quartzitic media, the force field
tends to channel the microbes closer to the pore throat centerlines and away from the walls (and
the slower velocities; DeMarsily, 1986). Thus the effect may be drastically more pronounced at
larger observation scales in natural media, as has been reported in some experiments (Pyle, 1979;

Engfield and Bengtsson, 1988; Harvey et al., 1989; Harvey, 1993; Shonnard et al., 1994).

Active Attachment/Detachment. Active attachment/detachment processes are much less
well described and understood than passive processes, and efforts to capture the effects of active
processes on transport in bulk porous media have just begun (e.g., active detachment, Peyton et
al., 1995). Active attachment is often referred to as adhesion and for clarity is treated separately
in our discussion from passive electrostatic adsorption which may occur during physical
filtration. Several studies have reported that microorganisms exhibit active
attachment/detachment processes, which may be a response to local nutrient availability
(Dawson et al., 1981; Kjelleberg and Hermansson, 1984; van Loosdrecht et al., 1990), survival

mechanisms (Dawson et al., 1981; Wrangstadh et al., 1990; Gilbert and Brown, 1995), and/or
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growth (Jenneman et al., 1985, 1986; Reynolds et al., 1989; Sharma et al., 1993). The distinction
between a microorganism's response to nutrient availability, survival stress, and growth are not
necessarily separable nor independent processes. Furthermore, in contrast to the passive
attachment/detachment processes discussed above, numerical representations of these active
processes are totally lacking in predictive reactive transport models.

There is considerable variability in the strength and duration of bacterial attachment to
surfaces. Many attached bacteria are firmly bound to surfaces and resist strong shear forces.
Others are only loosely associated, and are easily removed by shear stresses (Marshall et al.,
1971) or may move over surfaces by gliding motility or "rolling" motions (Lawrence and
Caldwell, 1987). Moreover, with time the adhesive association may alter and cells may detach.
Release of attached bacteria can occur due to enzymatic degradation of adhesive polymers (Boyd
and Chakrabarty, 1994), chemical alterations (Marshall et al., 1989), or alterations in the
bacterial surface due to changing nutritional conditions (Rosenberg et al., 1983; Vandevivere and
Kirchman, 1993; Wrangstadh et al., 1990). Thus, the transport of microorganisms through
porous media is strongly dependent not only on their inherent active adhesive properties, but also

on their environment and their metabolic activities.

Response to Nutrient Availability. The ability of bacteria to associate with surfaces
enables them to utilize surface-adsorbed nutrients that may not be accessible to cells in the
aqueous phase. The bacteria may be strongly attached or they may associate only temporarily
with the surface to graze nutrients. Both leptospires (Leptospira biflexa patoc 1) (Kefford et al.,
1982) and vibrios (Vibrio MH3) (Hermansson and Marshall, 1985) were found to attach
reversibly to surfaces and utilize *C-labeled stearic acid that was adsorbed to the surface. In

contrast, some substrates partition onto surfaces and are accessible only to organisms that can
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attach or graze. For example, Serratia marcescens EF190 irreversibly attached to surfaces and
rapidly scavenged '*C-labeled stearic acid on the surface. Little label was found in free-living
cells (Keffort et al., 1982). Similarly, '“C-labeled bovine serum albumin, which adsorbed rapidly
onto particles, was utilized by attached Pseudomonas sp. NCIMB 2021, but was essentially
inaccessible to bacteria in the liquid phase (Griffith and Fletcher, 1991). Furthermore, the ability
to alternate between aqueous and solid phases allows the organism to access nutrients in both
phases.

Utilization of surface adsorbed nutrients is influenced by the physico-chemical properties
of the surface, which in turn influence strength of binding and adsorption of adsorbed molecules.
In some cases, bacterial utilization is enhanced; for example, the degradation of nitrilotriacetate
by bacteria attached to sand had a shorter lag time and higher specific activity than with bacteria
in the aqueous phase (McFeters et al., 1990). In the case of degradation of tritium-labeled
ribulose-1,5-bisphosphate carboxylase (RuBPCase) by the marine Pseudomonas sp. S9, the
percent degraded decreased with increasing hydrophobicity of the surface (Samuelsson and
Kirchman, 1990). Growth rates were higher on a hydrophilic glass surface than on a
hydrophobic polyethylene surface initially, but after six hours, rates increased on the
hydrophobic surface because of increased adsorption of the RuBPCase. The effects of surface
adsorption on substrate accessibility are particularly significant with macromolecules, which
tend to bind with high affinity through multiple adsorption sites.

In some cases, adsorption of macromolecules inhibit their utilization by bacteria,
presumably because of conformational changes that alter or obscure enzyme binding sites. There
are numerous examples of reduced degradation of substrates in the presence of particles (Gordon

and Millero, 1985; Ogram et al., 1985). Reduced degradation of naphthalene has been observed
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in some soils (Guerin and Boyd, 1992), and there was almost total inhibition of degradation of
bromobenzene in simulated groundwater when sand was present (Mills and Eaton, 1984).

There is also evidence that bacterial behavior and/or physiology can be influenced by
association with surfaces, and that may indirectly influence their utilization of substrate. Genes
may be induced or derepressed (Dagostino et al., 1991; Davies et al., 1993), leading to alterations
such as the production of exopolymers (Vandevivere and Kirchman, 1993). There are many
parameters that may be altered in the surface microenvironment, compared to the liquid phase,
that could influence gene expression; these include not only substrate concentration and type, but

also pH, osmolarity, and cell density.

Responses Associated with Survival. There have been numerous observations of
enhanced survival of microorganisms on surfaces. This advantage appears to be most
pronounced when bacteria are in biofilms, that is they are embedded in a highly hydrated
polymeric matrix. There are three possible explanations for this enhanced survival: 1) the
intercellular polymer protects against toxic substances by providing a reactive barrier to
diffusion, 2) the bacteria in the biofilm have a reduced growth rate because of reduced diffusion
of key nutrients, making them less susceptible to toxic substances, and 3) the surface
environment results in the derepression or induction of genes associated with survival (Gilbert
and Brown, 1995). It is possible that bacteria have evolved mechanisms to induce attachment in
situations where association with a surface provides a strong selection pressure. With the marine
Vibrio DW1, starved cells became more adhesive than unstarved bacteria (Dawson et al., 1981).
This observation has led to the speculation that adhesion may be a response to starvation,
enabling the organisms to associate with a surface where nutrients may be more accessible. In

contrast, starvation of a marine Pseudomonas species resulted in synthesis of polymers that
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resulted in cell detachment (Wrangstadh et al., 1990). Thus, it is impossible to generalize about
the effects of starvation on adhesion, except to say that nutrient deficiency may alter the
adhesiveness of the cell in either a positive or negative direction. Moreover, the alterations in
surface adhesiveness vary and are characteristics of the particular type of nutrient limitation, e.g.
carbon, nitrogen, phosphorus (Brown and Melling, 1969; Ellwood and Tempest, 1972; Holme,
1972; Lambert, 1988).

Once attached to a surface, the "fitness" or survival of the organism may be influenced by
alterations in gene expression. As mentioned above, there are many parameters, which may be
altered at the surface microenvironment, that can influence gene expression. These include
oxygen tension (Smith and Neidhardt, 1983; Clark, 1984), pH, cell density and metabolite
concentration, osmolarity, and inorganic ions (Goodman and Marshall, 1995). Attachment to a
surface allows for the establishment of stable communities that rely on transfer of metabolites, an
activity that is much more important for anaerobes than for aerobes. Also the surface
microenvironment may facilitate the establishment and maintenance of anoxic sites, and

precipitated metal sulfides may provide additional protection.

Response to Growth. The process of growth has been recognized as a mechanism by
which bacteria penetrate porous media under static or flowing conditions (Jenneman et al., 1985,
1986; Reynolds et al., 1989; Sharma et al., 1993). Reynolds et al. (1989) suggested that as
nonmotile cells grow, they fill the locally available pore space and new cells are physically
displaced into the next portion of the porous media. For cells that are attached to porous media,
the physical displacement may occur simply from cell division, ejecting the cell into the pore
space. Under flowing conditions, as encountered in groundwater systems, the progeny may be

transported until straining or attachment to the porous media occurs. The process of cell
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division-mediated transport can be represented numerically by assuming an initial distribution of
cells with all growth partitioning to the aqueous phase.

Peyton and Characklis (1993) reported that active detachment rates were strongly growth
rate dependent and were not significantly affected by shear stress. Peyton et al. (1995) used an
advection-dispersion model to analyze data from Lundman (1992) and observed the effective
detachment coefficient to increase with increasing substrate concentration (and hence the growth
rate). Clement et al. (1996) used first-order detachment and attachment models to analyze
Jenning's (1994) experimental data. The detachment coefficient values estimated for the
actively-growing, denitrifying population was observed to be higher than the non-growing
bacterial detachment rates reported in the literature. Thus, growth not only results in increased

numbers of cells, but may also result in dispersal by facilitating cell detachment.

2.3. Modeling Biological Reactions in Porous Media

Assessment of subsurface biological activity and contaminant biodegradation requires
knowledge of rates of utilization of both nutrient and electron acceptors by the microorganisms,
the corresponding rates of growth of the microorganisms, and their levels of activity. During
subsurface bioremediation, new cells are produced by the actively growing ambient microbial
cells that metabolize supplied nutrients and contaminants. Growth of microorganisms in natural
subsurface environments will depend on changes in environmental variables such as pH,
temperature, presence of inhibitory toxic materials, presence of competing populations, and
availability of nutrients and substrates required for cell growth.

These processes are usually quantified through the use of descriptive mathematical
models that either incorporate the structure of the metabolism process, or represent the

degradation through unstructured process models. Advanced structured models may be used to
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describe the effects of variables such as pH, temperature, etc., on cell-level metabolic processes
(Williams, 1967). However, in environmental applications, the difficulty or impossibility of
measuring each of the many parameters associated with structured models has often led to the
use of simpler semi-empirical, unstructured models (cf. Wood et al., 1994). If the metabolic
reaction is jointly limited by the availability of a required substrate and the electron-acceptor, the
reaction rate can be modeled by a dual-Monod form of kinetic model. Molz et al. (1986),
Widdowson et al. (1988), Kindred and Celia (1989), Taylor and Jaffe (1990b), Kinzelbach et al.
(1991), Zysset et al. (1994), Wood et al. (1994), Ginn et al. (1995), Clement et al. (1996) all
describe several forms of Monod-based kinetic equations used for modeling different types of
microbial metabolisms. These studies account for biomass growth through a simple linear
conversion of mass of nutrient degraded to biomass increase. On the contrary, some field studies
have assumed subsurface microbial metabolic reactions as instantaneous reactions that are
independent of microbial concentrations (Rifai et al., 1987; Chiang et al., 1989; Wiedemeier et
al., 1995). These studies assumed oxygen (an electron acceptor) to react instantaneously with
hydrocarbon plumes, leading to complete mineralization of a stoichiometric equivalent of
hydrocarbon (electron donor). Subsurface aerobic bacteria were assumed to mediate the
instantaneous reaction; however, their presence was not explicitly considered. Rifai and Bedient
(1990) compared an instantaneous reaction model to a double-Monod kinetic model and
concluded that the instantaneous model was adequate when reaction rates are large. Even though
the study assumed the existence of constant amount and uniform distribution of bacterial cells
throughout the subsurface, the kinetic model ignored cell growth, decay, and transport.

Several modeling studies have ignored the explicit presence of bacteria in both aqueous

and attached phases and their dual role in contaminant removal (Molz et al., 1986; MacQuarrie et
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al., 1990; Chen et al., 1992). A few studies have considered the presence of cells at various
phases, but they have also assumed microbial reaction kinetics to be independent of the phase in
which cells reside (Taylor et al., 1990c; Zysset et al., 1994; Clement et al., 1996; Murphy et al.,
submitted). This may not be an adequate assumption because, as noted above, cells attached to
the solid phase may behave differently from the cells suspended in the aqueous phase. Van
Loosdrecht et al. (1990) reviewed the influence of solid surfaces on microbial activity and
concluded that the presence of solid surfaces may or may not affect microbial substrate
utilization rates and growth yields. The effect would depend on the nature of the organism, type
and concentration of substrate, and nature of solid surface. In addition to microbial growth,
solute sorption effects could also influence microbial reaction at various phases (Brusseau and
Rao, 1989). Degradation rates in natural media may also reflect different levels of microbial
metabolic activity, which depend on the history of nutrient availability to the microorganism and
the history of the growth of the microorganism (e.g., Wood et al., 1994). A method for
accounting for the resulting lag in microbial degradation capability under a change from nutrient-
limiting to nutrient-rich conditions is described in Wood et al. (1994, 1995). In Wood et al.
(1995) a model incorporating metabolic lag, in addition to Monod-type degradation kinetics, is
applied to the data of Chen et al. (1992). Further modeling studies supported by experimental
evidence are needed before general conclusions can be made about phase-dependent microbial

reactions in porous media.

2.4. Heterogeneity, Transport, and Scaling Issues
Because the processes governing the transport of contaminants and bacteria in the
saturated subsurface often are subject to significant natural heterogeneity, any attempt at

characterizing the processes at the field scale must, at some level, account for the effects of the
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heterogeneities on the processes of contaminant and microbial convection/dispersion,
contaminant degradation, microbial growth, and microbial attachment/detachment. The most
direct deterministic approach of full characterization of physical and chemical aquifer properties
that vary with space is impossible because of the inaccessibility of the subsurface. The result is
that simulation model components representing coupled reactive contaminant and microbial
transport that are developed and validated under laboratory conditions (with controlled single-
scale heterogeneities at most) may not reflect field processes accurately. In fact, such models
may not even serve for prioritizing governing processes in the field.

Spatial variability (heterogeneity) in aquifer physical or chemical properties naturally
occurs on multiple scales as a result of geologic processes involved (cf. Cushman, 1990).
Heterogeneities in physical/chemical properties occur on scales at and below the observation
scale (e.g., the field scale for OEM needs). Generally speaking, the heterogeneities that occur on
the observation scale (such as imperfectly layered hydrofacies structures that may extend 10-100
meters horizontally) must be characterized in the field, e.g., via borehole sampling or hydraulic
or geophysical tests. Effects of heterogeneities at lower scales, which are unresolvable because
of their inaccessibility or small scale or both, must be imcorporated in model components
through upscaling approaches. Such approaches usually involve mathematical/statistical
averaging of mass balance equations that represent heterogeneity through parameters that are
space random functions with known correlation properties. Models averaged in this way allow
use of laboratory-validated processes in determination of field-scale measures, such as plume
dimensions. However, they do not typically allow prediction of small scale measures (such as
contaminant and/or bacterial arrival at an observation well), nor can such approaches handle

nonlinear and/or strongly coupled reactions, which severely complicate the averaging. One
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alternative that can handle these complications is the streamtube-ensemble approach (e.g., Ginn
et al,, 1995), which represents the transport as through an ensemble of one-dimensional
streamtubes, thus separating the effects of physical heterogeneity on flow from the potentially
coupled and nonlinear reactions. For certain processes the upscaled model may simply be the
same as the small-scale model with averaged or effective parameter values. Alternatively, an
upscaled process such as dispersion, which is conventionally represented through the convection-
dispersion equation (CDE) with constant parameters, in general requires a new form altogether
(e.g., nonlocal dispersion; Cushman and Ginn, 1993; Cushman, 1996). When the transported
solute is degraded by an attached or aqueous phase biomass, the present of physical
heterogeneities can render the CDE approach inaccurate (Ginn et al., 1995).

Similar difficulties afflict the accuracy of microbial transport models in the presence of
heterogeneities. Although the "two-site" models that are almost universally used to describe
microbial attachment/detachment appear to be relatively useful for transport in column
experiments with homogeneous media, laboratory-determined reaction rate parameters may not
be indicative of field conditions (Harvey et al., 1987, 1989, 1993). Whereas column studies
often involve injection of prepared bacteria into pristine media; conditions in the contaminated
field typically involve active consortia of microbes in the aqueous and/or attached phases,
possibly as an actively growing biofilm. Moreover, mechanisms of bacterial transport at the
field scale differ from those characterized in batch or column studies as a result of heterogeneity
and the dependence of hydraulic and chemical properties on scale. Examples include
heterogeneity and the dependence of hydraulic and chemical properties on scale. Examples
include heterogeneity in grain size (affects passive attachment and size exclusion), heterogeneity

in grain surface chemistry (affects active and passive attachment); and heterogeneity in hydraulic
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conductivity (affects convection and macrodispersion). Complexities from any one of these
factors can significantly complicate transport: for instance, Harvey et al. (1993) report on an in
situ multitracer experiment in which the relative order of breakthroughs of bacteria,
microspheres, and salt differed for three sample locations within one vertical meter of a single
sampling well. In that study, significantly different retardation factors were required to explain
the effects of depth within the well. The ramifications of chemical and physical heterogeneities
on active microbial attachment/detachment and convective transport under growth conditions are
generally unknown. Under this condition, and in recognizance of the nonlinear coupling among
the attachment, transport, and growth processes, careful upscaling is necessarily an integral and

active part of the proposed research.

Upscaling Approaches. Upscaling is the accounting of the influence of heterogeneities
on intermediate scales from the laboratory to the field, and thus links measurements on small
scales to observations on large scales. Some progress has been made on upscaling the processes
of inactive bacterial transport (i.e., convection-macrodispersion and passive attachment). The
effect of groundwater convective velocity fluctuations that arise from heterogeneous hydraulic
conductivity is known as macrodispersion and is upscaled through modification of coefficients of
the convective-dispersive transport models to incorporate dependencies on time or space (e.g.,
Dagan, 1989), or most generally on increments of time and space (Cushman and Ginn, 1993; Hu
et al., 1995; Cushman, 1996).

Treatment of the effect of heterogeneities on coupled bioreactive contaminant and
bacterial transport requires scaling of the interactions between the bacteria and solute nutrients
and electron-acceptors, and between the bacteria and the solid phase. Linear interactions that are

kinetically-controlled and nonlinear equilibrium interactions recently have been incorporated
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into stochastic macrodispersive models. Studies typically involve perturbation approaches to
scaling of uncoupled reaction and transport processes in porous media exhibiting simple patterns
of physical and/or chemical heterogenities. In the perturbation approach, the parameters
appearing in the equations that govern the fate and transport of the solute and microbial
component are expressed in terms of the sum of a deterministic or average part and a stochastic
or random part, and various statistical assumptions are applied to the random part to develop
useful models from the "perturbed" equations. Some recent applications include i) the extension
of the low-order perturbation method (Dagan, 1989; Kitanidis, 1988) in Chrysikopoulos et al.
(1992), Bellin et al. (1993), Quinodoz and Valocchi (1993), Selroos and Cvetkovic (1994), and
Cvetkovic and Dagan (1994); ii) the averaging of from one to many simulations of the reactive
transport system (Sudicky et al., 1990; Bosma et al., 1993), and iii) the averaging of higher-order
perturbation forms of the equations of reactive transport (Hu et al., 1995). Under these
approaches, the chemical and physical heterogeneities are represented as random fields
(specifically, the constitutive model parameters have been represented as random fields with
specific spatial correlation structures), and the effect of physical heterogeneities is represented
through an effective mixing parameter termed the "macrodispersivity" tensor, for use in
equivalent field-scale convection-dispersion-reaction (CDR) models. Many of these studies have
indicated that the macrodispersivity tensor depends on the presumed statistics of the reaction
properties (e.g., Quinodoz and Valocchi, 1993; Cvetkovic and Dagan, 1994; Hu et al., 1995). In
a numerical study of aerobic degradation in physically heterogeneous media, Sudicky et al.
(1990) demonstrate that while the effective dispersion parameter ("macrodispersivity", derived

from low-order perturbation approaches) may be useful for describing the behavior of a
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conservative solute, it inherently predicts excessive mixing between nutrient and oxygen rich
pore waters and thus overestimates aerobic degradation.

In all of these studies, with the exception of the non-local model of Hu et al. (1995), the
heterogeneities are idealized in that they occur on a single scale that is small relative to the
model scale, and they are most often represented as second-order stationary spatial random fields
(e.g., Cressie, 1991) with known probability distribution and finite spatial correlation structure.
Thus, these results may be limited in field application if these assumptions are violated, such as
when multiple scales of heterogeneity occur, or when heterogeneity patterns are better
represented by more complex probability distribution functions (pdfs) and/or correlation
structures (e.g., Scheibe and Cole, 1994). The low-order perturbation approach requires that
nonlinearities in the reactions be of minimal importance, and that the transformation of different
components be uncoupled. However, nutrient-limited degradation is strongly nonlinear as
reflected in the relatively simple dual-Monod kinetics model, and contaminant concentrations are
fully coupled to both aqueous and attached phase microorganism concentrations through
microbial growth. Couplings associated with transience in the reactive capacity of the solid or
microbial phases (e.g., due to sorption site limits or to microbial growth, respectively) have been
untreated with the exception of the streamtube-ensemble approach of Ginn et al. (1995), which
allows the fully nonlinear and coupled problem to be specific in terms of streamtube (one-
dimensional) reactive transport. This can, in turn, be averaged to predict contaminant arrivals at

a well or control plane.

28




II. Goals (Purdue Component)

. Develop matched-index methods for obtaining 3-D Lagrangian trajectories of microbes in
porous media and microflow cells.

. Use advanced numerical methods to optimally design a microflow cell and model microbial
transport in such a system. Apply sticky Brownian motion with motility and chemotaxis to
study microbes in the flow cell.

. Develop methods, based on stochastic perturbation approaches, for upscaling to natural
geologic formations and examine the role played by uncertainty in B.C.s.

. Evaluate the role of nonlocality in the transport of chemicals and microbes.
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III. Accomplishments

1. A Method for Reconstructing Microbial Trajectories in Microflow Cells
1.1. Introduction

Microflow cells have played a large role in phase I of this project. Specifically movies of
the evolution of microbes in flow cells have been obtained which show the diffusive-convective
transport of the microflora as well as the microbes sticking to the pore walls. To analyze this
data for modeling purposes it is expedient to obtain the particle trajectories in 3-D. This is not a
trivial problem, especially if the microflow cell contains a porous medium.

We have pioneered the development and use of three-dimensional particle tracking
velocimetry for this purpose (Moroni and Cushman, 2000a,b,c) and we have used these
experimental tools to obtain relevant data on several test problems. Specifically, these test
problems involve matched-index porous formations and both classical stochastic models and
more modern statistical mechanical approaches. We describe these in the remainder of this

section.

1.2. 3-DPTV Method

A porous medium homogeneous at the bench scale (Fig. 1) has been constructed by
filling a parallelepiped tank (30x30x50 cm®) with 1.9 cm Pyrex spheres. The spheres are packed
randomly but distribute homogeneously on the bench scale. The porosity is 42 %. Glycerol is
used as fluid phase because at the appropriate temperature it has the same refractive index as the
spheres. Thus the Pyrex solid matrix and glycerol combined are transparent to the appropriate
wavelength light. A pump is used to fill the test section and later to extract the fluid phase.

The choice of tracers depends on the information one wants to gather. Because we are

studying dispersion of a passive tracer carried by the mean flow, the dimension of the tracer has
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to be small compared to the grain size. The ratio between its specific weight and that of the
liquid has to be such that buoyancy effects are minimal. Furthermore, since the flow field is
reconstructed using an image analysis technique, the tracer has to be highly reflective.
Appropriately sized air bubbles satisfy our requirements. A bubble diffuser fed with a
compressor has been used to inject the tracer particles.

The air does not wet the solid, the bubbles are small (0. 1 mm) compared to the grain size
(1.9 cm), and because of the high viscosity of glycerol, the small bubbles remain trapped inside
the fluid phase and flow passively. The noise caused by minimal deposition of the bubbles on the
sphere surfaces has been avoided by filtering the acquired images.

The test section is lighted using a high power lamp (1000W). In order to assure a uniform
lighting of the medium and to avoid the direct interaction among the light and the cameras, a
mirror has been used to create a light beam from the top of the test section.

The acquisition and storage system consists of two CCD high-resolution cameras
(1024x1024-pixels), two-camera unit controls and a workstation to manage the acquisition
process, image digitalization and storage. Each CCD camera has been positioned on an optical
bench. The benches are arranged on a rigid cube so the optical axes are orthogonal. A He-Ne
laser has been used to guarantee the benches are parallel to the two faces of the test section. The
distance between the cameras and the test section (2 meters) has been chosen so as to maintain
parallel optical rays. Further, this distance minimises distortion errors. The diaphragm opening
has been chosen, for this light intensity to obtain a field depth of about 22-cm. Each field (planes

X1X3 and X,x3) has dimension 22x22 cm®.
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Figure 1. Experimental set-up
At start up, 3D-PTV experiments must be calibrated. By placing a 2D grid on the faces of
the parallelepiped test section, acquiring two coupled images (one for the nearest faces and one
for the farther ones) and comparing them, it is possible to determine the precision of the device.
This procedure allows us to determine the tolerances that can be used during the 3D-trajectory
reconstruction.
The grids, acquired respectively from the nearest and farthest faces, can be overlapped

with an error = 0.5 %. Comparison between images acquired from the same direction in the
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nearest and farthest faces gives us an error of at most 10% in the deviation of the optical rays
from parallel. Four cm-wide dark screen is placed around the tank cross-section and this coupled
with the diaphragm opening and light intensity gives a field of view only in the midsection of the
chamber. This reduces our error to below 10%. Furthermore, an algorithm for correcting the
errors caused by an incorrect positioning of the tracer particles has been developed. For more
details see Moroni and Cushman (1999a).

Figure 2 displays the steps used to obtain reliable images.

Thresholding of the image during the acquisition phase is used to separate the foreground
from the background. A binary image is obtained. In this way each pixel has a value equal to 0 if
it belongs to the background or non zero if belongs to a tracer particle. An average of 70 images
is acquired for each run of the experiment. The superposition of the images can be carried out
without loss of information. Each image is digitised in a 1024x1024-element, 256 gray level
matrix. One megabyte of memory and 1.5 sec are necessary for storage. To improve the
acquisition rate and reduce the amount of memory required for each experiment, the
superposition of the single images acquired has been carried out. An increasing threshold has

been applied to the images acquired in order to maintain information about the acquisition time.
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Figure 2. 3D-PTV steps

The stored images are then analyzed to determine particle barycenters and their area. A
complicated algorithm to determine the barycenter of connected same-grey level pixels (spots)
has been developed for barycenters reconstruction (see Moroni and Cushman, 1999a for details).

The trajectory reconstruction algorithm arranges the barycenters with increasing
acquisition times and forms the trajectories. Roughly, the reconstruction algorithm works as
follows. Successive spots are studied inside a circle of radius “toll” (which takes into account the
local acceleration) with center positioned on the end of the extension of the distance between the

last two points belonging to the examined trajectory (Fig. 3).
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Figure 3. Trajectories reconstruction

Barycenters belonging to a possible trajectory are considered for further exploration, and the
algorithm disregards trajectories with more than one displacement in common and with more
than 50 % of spots in common. Among the retained trajectories starting from the same spot, the
longest one is chosen.

By matching the 2D trajectory projections the 3D displacements can be obtained
(Guezennec ef al., 1994) (Fig. 4). Each trajectory is labelled at the beginning of the
reconstruction procedure. The algorithm compares each trajectory found on the x3x, plane with

all those reconstructed on the x;x3 plane.
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Figure 4. 2-D trajectories matching
The matching procedure is carried out by introducing a tolerance, €, (determined as a
result of the calibration procedure) for the difference between the x3 coordinates of two spots
recorded at the same acquisition time and belonging to the pair of examined trajectories.
Matching conditions in the x5 direction have to be satisfied with at least three points belonging to
the examined trajectories. When more than one trajectory satisfies this criterion, the mean
longitudinal velocities are computed and the trajectory with the velocity closest to the track is

chosen.

1.3. Preliminary Results
Four different mean flow rates were studied (Table 1) and characterized by their
respective Reynolds numbers. An average of 40 images were acquired for each flow rate, and

averages were obtained using all the images acquired under the same experimental conditions.
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A typical representation of the reconstructed trajectories is presented in Fig. 5.
Henceforth we only study one mean-velocity. More extensive results can be found in Moroni and
Cushman (1999a, b). The trajectories were truncated when statistics were not adequate for the
computation of averages associated with the mean-square displacements, normalized velocity
covariances, the self part of the intermediate scattering function, the classical dispersion tensor,
the generalized dispersion tensor and velocity distributions.

Table 1. Mean velocities and Reynolds numbers

Vell Vel2 Vel3 Veld4
Re 0.049 0.085 0.105 0.129
Mean
Velocity 0.211 0.366 0.450 0.551
(cm/sec)

Figure 5. Reconstructed trajectories (Image 7, <v>=(0, 0, 0.211))

37

4

[y PASE SCab ) SRR Il A I e N SO S  W Y S UL A




The probability density functions (pdf) for the transverse and longitudinal components of the
fluctuation velocity have been evaluated and are shown in Fig. 6. The velocity data have been
normalized by the square root of the fluctuating-velocity variance for comparison to a
normalized gaussian distribution.

There is a good agreement between the pdf for the transverse components (u, v) and the
gaussian distribution. This result is quite different from Cenedese and Viotti (1996) and
Cenedese et al. (1997) who using analogous analysis found a symmetrical shape that is not

gaussian, More details can be found in Moroni and Cushman (1999a).

0.5

— Norm gaussian pdf
e updf
= v pdf

—a—w pdf

-5 4 3 2 -1 0 1 2 3 4 5 6 17

<0y (V<YYo (H-<W>)ls,,

Figure 6. Normalized velocity probability densities
The pdf of the longitudinal component of the velocity fluctuation (w) does not appear
gaussian. The velocity distribution is asymmetrical much like that of Kutsovsky et al. (1996).
The percent of negative velocity in this experiment is very low, as there is little recirculation in
this system.

Figure 7 displays the normalized lagrangian velocity covariances:
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Pij(T) =—1 1
[oJNR ¢}

The averages are taken over all trajectories.

0.8 |
—e— vel X covariance

0.6 | i
. —m— vel y covariance
Cé 04 . —a— vel z covariance
Q.
5 0.2 |
Q

0
20
-0.2 | Temporal lags (sec)
-04 |

Figure 7. Normalized longitudinal and transversal velocity covariances
The lagrangian integral scales, in the various directions, as given by the integral of py;, are
Tx= 1.41 sec, Tyy=1.44 sec, T= 3.25 sec.
The mean-square displacements are presented as log-log plots in Fig. 8. It is known from
classical analysis that such plots are linear when the classical Fickian limit is obtained. The
longitudinal component appears to reach a Fickian limit, but it is not clear from the data whether

the transverse components do so.
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Figure 8. Mean-square displacements

1.4, Summary

Three dimensional particle tracking velocimetry (3-DPTV) methodologies were
developed and tested on a match-index porous system. The test medium consisted of Pirex and
glycerol with air bubbles used to simulate microbes (~ 0.1 mm). 3D trajectories were
reconstructed and analyzed to obtain lagrangian velocity distributions, mean-square
displacements, velocity covariances, time integral scales and the classical dispersion tensor. In
subsequent phases of this work the trajectory reconstruction technique can be used with actual

microflow cell experiments involving sticky anerobial microbes.

40

JEREY i v AT



2.  Hydrodynamic Aspects of Pore Scale Microbial Dynamics
2.1 Introduction

Bacterial motility is of importance to a wide spectrum of applied scientific disciplines,
including human health, food science, and bioremediation. Understanding the mechanisms of
bacterial motility involves knowledge from several scientific disciplines: anatomy, genetics,
chemistry, and physics (Berg, 2000). Emphasis to explain bacterial movement has been given to
flagellated organisms, like E. coli. The behavior of motile cells near a solid surface has been
extensively studied in the absence of bulk flow, but relatively little is known about motile cell
behavior in advective flow fields (Carmesano and Logan, 1998). The present work addresses the
movement of single-cell, non-flagellated organisms subject to an advective flow. It also includes
attachment and detachment from walls. The movement of single-cells can be described in terms
of run lengths, run times (runs), turn angles (tumbles), and index of directional persistence of a
cell. The trajectory of a single-cell resembles that of a Brownian particle, continuously
alternating runs and tumbles. The rﬁacroscopic behavior can be characterized by a motility
coefficient, analogous to a diffusion or dispersion coefficient. The relationship between single-
cell description and bulk behavior is of interest.

Biondi et al. (1998) studied swimming bacteria (E. Coli) in restricted geometries,
measuring cell velocity, tumbling probability and turn angle of single cells in micro channels.
They concluded that only when capillaries are smaller than three times the diameter of the
bacteria, there exists a visible change in the bacteria's motility with respect to their motility in
unrestricted media. The macroscopic motility in unrestricted geometry according to their result is
increased by a factor proportional to the size of the system. Sticking to the glass surfaces did not

occur in their experiments.
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Hydrodynamic drag is believed to reduce the diffusion coefficient of a particle moving in
a restricted geometry (enhanced drag in restricted channels). Berg and Turner (1990) have
previously hypothesized that as the size of the cell becomes comparable to the size of the pore,
there exist an increase in motility coefficient due to the restriction of the movement in the axial
direction. They observed random motility coefficients of wild-type E. coli increased by a factor
in excess of 2 when the micro capillary in which they move was reduced from 50 pm to 10 pm .
The later investigators results were conducted observing cell-population dynamics, in contrast to
Biondi et al. (1998) who observed individual cells.

Carmesano and Logan (1998) studied the effect of fluid velocity on the transport of
motile and nonmotile bacteria. They observed that the collision efficiency, a (defined as the ratio
of particles that attach to soil grains to particles that collide with the soil) decreases as the mean
velocity decreases. Testing against nonmotile bacteria, they hypothesized that swimming cells
were able to avoid sticking to soil grains at low fluid velocities, while at high fluid velocities
bacteria could not reduce attachment. They also suggested that previous deposited cells provide a
more favorable surface for adhesion than a native soil. Since their results were obtained using
sand columns, they merit a further investigation at the pore scale to confirm or correct some of
their claims. Main discrepancies with filtration theory were checked for consistency using
nonmotile cells, but in the procedure, the attaching mechanisms may be altered. Nonetheless
differences were observed and other researchers results (Camper et al., 1993) are consistent in
the hypothesis that is, beyond a velocity threshold, single cell motility will not affect cell
retention in the media.

Phillips et al. (1994) measured in separate experiments the motility of E. coli. They

determined the distribution of cell velocities was slightly skewed from normal, and the run
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length time distributions were exponential. They were unable to measure turn angles between
consecutive runs because cells would not remain in the focal plane long enough. The values of
the variables that could not be measured were taken for their analysis from Berg and Brown,
(1972). They also found the macroscopic behavior of population motility can be predicted from
microscopic observations. In particular the expressions proposed by Othmer et al., 1988, and
Rivero et al., 1989 were suitable for the conditions tested.

The need for cost effective ways of dealing with subsurface contaminant plumes either by
cleanup or by containment is a well documented (DOE, 1995a) problem with no ready solutions.
One promising technique for the remediation of polluted sites is the use of microorganisms
which degrade organic toxins if sufficient nutrients, usually in the form of electron acceptors, are
provided. An important factor in the engineering of biobarriers/bioremediation is the microbial
partitioning that takes place between the aqueous and solid phases. Factors that affect such
partitioning are numerous, but include such things as growth and starvation conditions (Dawson
et al. 1981, van Loosdrecht et al. 1987,1990), limiting of nutrients (Fletcher and Marshall, 1982),
potential toxicity in the aqueous phase (Chen et al. 1994) as well as local surface properties of
the porous medium. The importance of the biomass in a porous medium cannot be
underestimated, since it plays a crucial role in the degradation rates of contaminants (as nutrients
necessary for the process may not be available in the solid phase).

Here we present a model for the dynamics of a microorganism undergoing random forces
in addition to a convective transport. Since the proper representation of the biological phase is a
matter without consensus (as noted in the exchanges of Widdowson, 1991 and Jaffe and Taylor
1992), and since we do not want to restrict ourselves to clogging and permeability changes which

are the focus of continuous biofilm models, we present a model which will serve as a basis for an
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unstructured biological population. We focus on the individual dynamics of a single microbe, or
a system of such particles in a relatively low concentration so that they have little effect on the
surrounding environment and each other. One may think of this as the initial stage before a type
of colonization of the surface occurs. The random forces can be thought of as a sum of Brownian
forces together with random swimming forces generated by a bacteria in a homogeneous liquid.
We assume the random forces are normally distributed and independent. The normality
assumption is an averaging over different particle trajectories. We comment that the model can
be extended to include chemotactic forces if one assumes they are of the same order as either the
molecular Brownian forces, in which case one replaces the normality of the random walk
assumption with a non-symmetric random walk; or on the same order as the convective forces, in
which case one can superimpose the vector fields arising from the chemotaxis and convection to
obtain a net vector field for the average movement. In particular the run and tumble behavior of
certain types of bacteria (Berg and Brown, 1972) can be taken into account.

In addition to the random forces in the liquid phase our model introduces a stickiness
parameter which relates the attachment/detachment process or physico-chemical interactions
between microbes and the solid matrix. It is crucial to incorporate time lags due to interaction
with the soil matrix, if one hopes to understand the effects a microbial population would have on
a contaminant convecting through the matrix.

This model describes bacterial motility using three components. The first solves for the
laminar flow field in a specified geometry. The second incorporates single-cell movement by this
convective flow subject to drag, inertial, and Brownian forces caused by the fluid flow (drag and
inertial) and the bacteria motility (Brownian: modeled as random). And thirdly a probabilistic

model for attachment and detachment is proposed.
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2.2. Model

Laminar flow in a microflow cell. To isolate and observe bacterial motility under
convective fluid transport, a flow cell was designed that can be placed under the microscope and
images of individual bacteria taken. Similar methodologies have been developed earlier (e.g.,
Berg and Turner, 1990; Phillips et al., 1994; Barton and Ford, 1997; Biondi et al., 1998) to
observe single-cell movement. Three designs were tested (see Fig. 9) which included fully three
dimensional flow features (Fig. 9a,b,c), and two-dimensional features (Fig. 9d). Pore size
distribution in natural systems is variable. Fine pores in fine sands range from 2 to 20 pm. The
smallest dimension (thickness) considered in the flow cells is 20 pm. It is constant for flow cells
a and d, and variable for flow cell b,c. The flow rates used correspond to those typical of
groundwater flow velocities; 10 to 10 m/s.

Analytical solutions for creeping (laminar) flows are available with certain geometries
(e.g., parallel plates, cylindrical tubes, etc.) but in general, once geometrical features differ from
these regular geometries one must resort to numerical solutions. The commercially distributed
CFD code FLUENT was used to solve for the laminar flow field.

The first geometry analyzed corresponds to a rectilinear box (as depicted in Fig. 9a)
connected to inlet and outlet conduits. The inlet and outlet tubes have smaller cross sectional area
than the flow cell's body. Figure 10 shows a cross sectional view of the velocity field (102), total
pressure (10b) at z = d/2, with d = 0.2 mm the flow cell thickness, and wall shear stress (10c).
The abrupt expansion between the inlet conduit and the flow cell body causes stagnation zones
and curvature in the flow streamlines (Fig. 10d).

To avoid large stagnation zones which can trap bacteria and affect breakthrough (or

introduce an unknown retardation), the design shown in Fig. 9bc was devised. The thickness of
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this cell is variable. In the inlet and outlet funnel-shaped regions the thickness is 130 pm, and in
the center region of the flow cell body the thickness of 30 pm. This introduces, in a simplified
way, a geometric feature that is present in real pores, i.e., change in the flow cross sectional area.
Figure 11 shows the velocity, pressure, and wall shear stress along defined cross sections. The
three dimensional character of the flow creates zones where particle collisions with walls are
more likely, therefore one prefers to analyze bacterial motility and attachment characteristics in
flow cells where these three dimensional features are not present.

Finally, Fig. 12 corresponds to Fig. 9c, where thickness is constant. Wall shear stress is
maximum at the flow cell inlet pipe and decrease as the cross sectional area (normal to flow
direction) increases. This offers an opportunity to study the effect of wall shear forces on
attachment characteristics and bacterial motility.

Bacteria as a discrete phase. Once the flow field is obtained, microbes are released and
tracked. A sufficient number of particles are released to obtain representative statistics of the
cell transit time through the pore. Particles are released from different points at the entrance, and
followed across the domain, allowing them to stick to the flow cell wall when they collide with
it. The probabilistic model describing the attachment/detachment will be discussed in the next
section. Many bacteria of interest for groundwater bioremediation have sizes between 1 and 10
um. At this size, Brownian forces may be negligible compared to drag forces for the
characteristic groundwater velocities. However, given that the single cell motility occurs
randomly, the forces generated by the cells in their swimming are modeled with a fictitious

Brownian force.
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FLUENT allows one to trace a particle using a Lagrangian reference frame. The particle

velocity, u =(u u, ,u ), with (x,y,z) denoting a three dimensional coordinate system, is

px>7py> 7 pz

related to the drag and Brownian forces through the equation

du _
;l;l =FD(ui—'upi)+FBi+gi'(pp—pp) @

where u; represents the fluid velocity in direction i, Fp represents the drag coefficient, and Fp; is

the Brownian force. The term involving gravity, g, accounts for buoyancy forces due to density
differences between the fluid p and the discrete phase p,. The drag force, F, (u,. —up,.), is
given by

Fo 18u C,Re

- Zp ¢ 3
° p,D: 24 ®)

with p the fluid's molecular viscosity, D, the particle's diameter, and Re the relative Reynolds
number defined as

— pD, ”un _u"
y7;

Re ©)

The bacteria modeled in this study, Desulfomonile tiedjei, is far from spherical and therefore it is
better to use a drag force model for non-spherical particles, as provided by Haider and
Levenspiel (1989). In this case

C, =%(1+b Re”2)+

b;Re
b, +Re

®)

where the coefficients by, by, and b; (Equations given in Appendix A) are functions of the shape

factor ¢ =s/S which is the ratio of the surface areas of a sphere having the same volume as the
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particle, s, to the actual surface area of the particle, S. If we consider Desulfomonile tiedjei to be
of cylindrical shape, of height five times the diameter of the circular face, then ¢ =0.7.

The Brownian force, Fp, is intended to represent the single cell motility, characterized as
a random process with measurable parameters. In a strict sense, Brownian forces are caused by
bombardment of the fluid (or solvent) around the particles (cells), and their relative magnitude
with respect to inertial or drag forces decreases as the particles increase in size. For a thermal
non turbulent environment the Brownian force may be characterized by a white noise process

with spectral distribution (Li and Ahmadi, 1992)
S; =8, 6)

o%ij

where & is the Kronecker delta function, and

o o 216vk,T

" 2 pD} (%”)2 C v

4

where k; is the Boltzman constant, v is the kinematic viscosity, and T is the absolute
temperature of the fluid. Brownian forces are more important for sub-micron particles, and in a
convective flow environment like the one studied here, as a particle decreases in size, the drag
and inertial forces decrease relative to the Brownian force.

In the context of this work, we must scale Brownian forces so that they represent the
tumble and run random mechanism of bacterial motility. Since equation (7) is the model for
Brownian forces included in FLUENT, we must scale either temperature T, or particle diameter
D, until the overall random bacterial motility matches the modeled particles tracked. As seen in
relationship (7), a change in scale of one order of magnitude in the particle diameter causes a
change of five orders of magnitude in the Brownian force, while F, is linearly dependent on the

temperature T.
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We modify the particle diameter for the Brownian forces, but not for the drag and inertial
forces, since motility does not affect these. FLUENT provides a way to maintain dynamical
similarity by modifying the particle density as to keep the ratio of inertial to drag forces constant,
while changing the ratio of Brownian to drag forces.

Most knowledge of single cell motility has been gathered using flagellated organisms like
E. Coli. Little is known about motility of non flagellated bacteria. From the particle/hydro-
dynamic point of view, a number conjectured mechanisms for bacteria motility have been

suggested. These conjectures have yet to be proven with direct observation.

Changing direction of resultant drag force. By changing orientation and shape (S-shape)
the bacteria have some control over the direction they move within a convective field. This is
observed under the microscope as the cells flex and curl. This swimming mechanism will change
the direction in which the resultant drag force is being applied from the fluid to the individual
bacteria, generating self-displacement. This component of bacteria motility is modeled using
Brownian dynamics as described above. If the bacteria are looking for attachment sites, this
activity will increase the probability of collision against a wall and reduce the mean free path
compared to an inert particle of the same size. It is important to note that adhesion and

swimming mechanisms will effect each other and the overall bacteria motility.

Particle rotation and vorticity. It is known that particles traveling in convective flows
through capillaries are subject to rotation. This effect increases with particle diameter
(proportional to cubed diameter) and has an observable effect on the particle dynamics (with
vorticities typical of a pore laminar flow). In a classic experiment by Segre and Silberberg
(1961), particle migration across streamlines was observed. In a capillary tube, rotating particles

are subject to Magnus forces, and the balance between such a force and the drag force occurs in

65




an annular region around which particles travel. If there exist a motility mechanism to limit cell

rotation, then they will follow the fluid streamlines.

Electromagnetic effects. As found by Schie and Fletcher (1999), negatively charged cell
surfaces effect bacteria adhesion to surfaces. As a consequence transport in the aqueous phase
will be influenced. Fast (as in anion exclusion) and slow transport (as in diffusion close to a wall)
may also occur. Only the appropriate experiments and measurements can provide the necessary

characteristics to include in the biotransport model.

Modeling bacterial pore wall attachment/detachment. One of the objectives of the
experimental work by collaborators is to measure single-cell attachment and detachment to
develop a probabilistic model that better describes the process in aggregated scales (Darcy scale
and larger). Preliminarily, we present two hypothetical models that remain to be tested and
calibrated against measurements. In the first, once a single cell collides with a pore wall, it sticks
for a time, #,,. This sticking time is assumed to have an exponential distribution (in addition, a
log-normal time distribution has been modeled). The second model accounts for a phenomenon

qualitatively observed for bacteria attachment. If the microbe finds suitable conditions for life at

the attachment site, it may remain there for a long time. In fact, the attachment may be

irreversible. It is reasonable therefore to consider that the attachment time, ¢, is bimodal. That

is, attachment always occur, but there will be a fast time scale detachment if conditions are not
suitable, or a slow time scale or irreversible attachment. If we define P, as the probability of
finding one fast time attachment, the simplest model we could imagine is that probability being

constant. In reality, the value of Py is associated with factors like distribution of nutrients and

competing bacterial species, and if a coupled model for those is available, a more sophisticated
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P, with a space dependent probability can be modeled. If the attachment/detachment of bacteria
occurs kinetically, then P, will be time dependent. For the sake of this report we will explore the

simplest case in which P, is constant. The probability of a slow attachment time occurring will

be Ps=1- Py.

2.3. Results

In this section emphasis is given to the flow cell design shown in Fig. 9d because the
current experiments are being performed on it. Extensive results however exist for the three
geometries and are available upon request. During the following discussion, references to the
coordinate system (X,y,z) are frequent, and so the system is defined as follows: (i) x is the main
direction of flow, aligned with the inlet and outlet pipes longitudinal axis, 0<x<60.4 mm; (ii) y is
direction of the flow cell's width, -5.35<y<5.35 mm; and (iii) z is direction of the flow cell
thickness.

Cell design 1. In absence of random motility (absence of random Brownian force), the
particles will follow stream lines and only a few collisions will occur at the wall between the
flow cell body and the outlet pipe. These collisions are mainly due to the deceleration of the flow
in the main flow direction (x direction) nearing the mentioned wall. Inertial forces cause the
particles to decelerate at a slower rate (balance between drag forces and inertial forces) in the x
direction, therefore they may collide against the wall.

Cell design 2. Figure 11 displays variables for the flow cell geometry shown in Fig. 9b,c.
The thickness or z dimension of the flow cell is variable. The flow cell was operated with a flow
rate of =100 pm=2.777 10" m%s. The pressure drop (27 Pa in 70.4 mm, or 384 Pa/m) is

equivalent to a 0.384 m head loss in 1 km of mean flow length. The funnel shaped inlet
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expansion and outlet contraction generate a y component of the velocity, and the variable
thickness generates a z component of the velocity.

A number of particles (N=1600) of diameter 1 um are released from the cross section at
x=0.005 m and tracked through the flow cell. In absence of Brownian motion, Fig. 13a shows the
exit time distribution at the cross section x=0.0554 m. A number of particles (around 400 out of
the 1600) exhibit delayed times (long tail) due to physical retardation occurring at locations
where sudden contraction in the cross sectional area occurs. Allowing diffusion to occur
reinforces this point. Figure 13b shows this condition. The exit time distribution does not have

the long tail as before, although the mean arrival time in the two situations is the approximately

the same £, =2700s. If a Gaussian curve is fitted to the early breakthrough (no tail) of Fig. 13a,

the corresponding standard deviation iso,, =360 s. For Fig. 13b, the standard deviation is
o,, =1030 s. It can be concluded that the pore scale geometry and biochemistry have a strong
synergism. Its consequences must be analyzed in detail when a macroscale averaged model is

used in porous media.

Cell design 3. The following analysis corresponds to the flow cell geometry shown in

Fig. 9d.

Flow field. The flow cell was operated with a flow rate of q=2.777 10! m%/s. The
pressure contours are shown in Fig. 12b. The pressure drop of 350 Pa in 70.4 mm, 4972 Pa/m, is
greater (around five fold) than a selected typical value for geologic medium (1000 Pa/m, that is
equivalent to a 1 m head loss in 1 km of flow length). Figure 12a shows the total velocity at a xy

plane, z=10” m=10 pm.
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After passing the entrance, the flow decelerates. There exits an important y component to
the velocity field, as shown in Fig. 14a,b,c. The angled, funnel-like shape of the expansion
renders a smooth transition and eliminates stagnation zones. Figures 14a,b,c shows details of the
velocity at z=10 m. There are zones of low and high velocity near the sharp angled corners of
the flow cell. Figure 14b,c displays the magnitude of the velocity at the section 7=2x10°.
Through most of the domain the velocity profile in the z direction is nearly parabolic, like
pressure driven flow between two infinite plates.

Rotation of the bacterial cells coupled with wall shear stress may play a role in the
motility mechanisms developed by the bacteria. For instance, if the bacteria can stop the rotation
the flow field is transferring to it, it will travel along streamlines, otherwise free rotation causes
the particle to move between streamlines. It is not known if bacteria posses such sophisticated
motility. Figure 14d shows the vorticity nearing the flow cell's wall, z=0 or z=2x10" m. Higher
vorticity is associated with larger velocity changes, and the flow cell walls may be thought of as
sources of vorticity. Nearing the center of the flow cell, z=10"m, the vorticity decreases
considerably (14€), when approaching the wall, a particle will spin faster. Figure 14g shows the
wall shear stress. The bacteria may experience adverse conditions in zones of greater shear stress
like the narrow inlet and outlet pipes.

Figure 15a,b displays particle (1 um) paths, for the flow cell shown in Fig. 9d. In absence
of random motility (absence of random Brownian force), the particles will follow streamlines
and collisions will not occur within the domain. Magnus forces (resulting from particle rotation)
have not been considered here, although the significant velocity gradients in the z direction
(aligned with the microscope optical axis) and the relative size of the particle (1 pm) with respect

to the smallest flow domain dimension (20 to 35 pm) indicate they may have an observable
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effect. At the pore scale we may see an aggregated effect of Magnus forces, but in a porous
medium in which the particles will jump from pore to pore in a complex geometry, this effect
may be averaged out and possibly can be modeled in mechanical dispersion. A sample of 360
particles was injected at the zy cross section x=5x10? m, uniformly (Fig. 16a shows the arrival
time in a zy cross section x=55.4x10") through the cross section. The particles do not interact
with each other or with the flow field. Particles traveling in streamlines close to the walls z=0
and z=2x10" have greater breakthrough times (by a factor of around 3) than those traveling
along the center plane's z=10" streamlines. This Taylor dispersion of the particles within the cell

can be characterized by the mean and variance of arrival times to the zy section x=55.4x107,

which is the end of the funnel shaped contraction. The mean arrival time is ¢, =409 s and the

standard deviation is o,, =206 s. The arrival times are not Gaussian (as can be seen in Fig. 16a)
but have an asymmetric distribution tailing towards longer times than the mean arrival time. This
distribution depends on the flow cell geometry.

Next consider 1 pm particles with Brownian motion. Figure 16b shows this case. First
assume there is no attachment at the wall, but a particle bounces elastically when it collides

against a wall. The Taylor dispersion indicated above for the non-Brownian particle changes,

with new mean arrival time ¢, =371 s and standard deviation o, =55 s. The slight reduction in
average time and the important reduction in the standard deviation are due to the particles
jumping between streamlines, consequently each particle samples more velocity zones in the z
direction than in the previous case and the arrival times are less disperse. More important, the
distribution is Gaussian as shown in Fig. 16b. This shows how aggregating the effects of

Brownian motion on a convective flow changes the character of the larger scale observations.
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We turn our attention now to the nature and location of the collisions of the particles
against the flow cell walls, as it forms part of the attachment/detachment process. An average of
1.04 collisions/particle/mm traveled in the x direction occur, mainly with the faces parallel to the
Xy plane, z=0, and z=20 pm (85.8% collisions occur at those planes). Another significant number
of the collisions occur at the narrowing stretch of the main cell (12.9%) at the inclined planes
that form the funnel shaped contraction. These collisions result from the particle inertia and
hence the particles decelerate at lower rates than the flow, crossing streamlines in the process. In
contrast, only 1.25% of the total collisions occur at the entrance expansion, which is both
smoother and located opposite to the particles main flow direction. The Brownian force increases
the probability of the particles colliding against the wall.

After a collision with the wall, a particle attaches to the wall for some time (models
discussed in section 2.3), then detaches and returns to the flow. The particle can return into the
flow with no momentum, or bounce elastically (i.e. to recover the momentum it had before
attachment). The latter scenario is plausible when the bacteria have electrostatic forces to detach
from the wall and gain velocity into the liquid phase (as reported by Busscher et al., 1998).

Consider a three dimensional random walk, and look at the exit time distributions the
main direction of flow, x in this case. Figure 17 shows one single particle's x coordinate in time
for the three situations, (a) elastic bouncing at the wall, (b) attaching and detaching from the wall
at each collision with a log-normal(0,1) attachment time, and (c) attaching and detaching from
wall with a bimodal time with Ps=0.1, fast time attaching distribution log-normal(0,1), and slow
time attaching distribution normal(100,50).

To obtain a statistically significant sample, consider 360 particles released at the flow cell

inlet. Figure 18b shows the x coordinates of such particles as a function of time, for the bimodal
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attachment/detachment with Ps=0.1. (Figure 18a shows the corresponding plot for elastically
rebounding particles.) Figure 18c depicts a histogram (equivalent to a breakthough curve or exit
times pdf) of the arrival times at an exit cross section located at x=0.0554 m. The histogram has
been normalized as a pdf, and three analytical models, Gaussian, hyperbolic cosine, and
exponential-fractal have been adjusted to fit the curve (least squares method). The exponential-
fractal model best fits this pdf.

Increasing bacterial motility. Consider the case when Brownian forces dominate inertial
forces. This case is studied by changing D,. We take D, =0.1 pm. Changing the size of the
particles does not have any impact on their trajectories when no Brownian motion is present

(Magnus forces not considered). The smaller particles follow the streamlines with identical

times. In this case the time arrival of the 360 particles at x=55.4x10> m has mean 7, =3845 s

and standard deviation o,, =145 s (Brownian force acting). Compared with D=1 pm particles,
the mean arrival time is slightly greater, accounting for a longer pathline, and the standard
deviation is significantly smaller (by a factor of 3), indicating that particles sample the velocity
field more thoroughly and Taylor dispersion will therefore be smaller.

This results from the random force allowing the particles to wander in both the z and y
directions and sample more of the velocity field (xy projection of pathlines for the later differ
considerably from xy projection of streamlines). The distribution of exit times is Gaussian.

The number of collisions with the wall that a particle experiences (on average) per unit
length traveled in the main direction of flow is 3.2 collisions/particle/mm (in the x direction).
Using the same bimodal attachment model as before, with P=0.05, attachment and detachment
are modeled with log-normally distributed short and normally distributed long attachment times.

Figure 19 shows breakthrough curves for three cases. Case (a) has Ps=0.05, short attachment
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times re log-normal (1.5,2), and long times are normal(100,50). The dark blue curve in Fig. 19 is

the result of simulation for this case (a), resulting in a two-peaked breakthrough. A Gaussian

curve (Z = 6263 s, 0,, =2261 s), has been fit to the earlier peak, which embodies most of the

mass. This fit by no means implies the process is Gaussian but gives an idea about symmetry and
basic statistics of the breakthrough curve. Case (b) is the earliest breakthrough, with Ps=0.05,

short times are log-normal (0,1), and long times are normal (100,50) (time units: seconds). A

Gaussian model reasonably fits the breakthrough curve, with mean Zz 1680 s, and standard

deviation o, =549 s. Case (c) uses Ps=0.1, that is, the probability of attaching for a longer time

after a collision is 10% instead of 5%.
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2.4. Recommendations

1. Study the effect of shear wall stress by locating coverslips in the entrance and exit
regions.

2. Study the effect of wall collision frequency by comparing inlet and outlet funnel
attachment (Important for pore clogging).

3. Obtaining several images per second and developing a computer algorithm to follow
the bacteria and compute the statistics. It is necessary to find the ratio of humber of collisions to
successful attachments, and the statistics of the attachment times.

4. Consider the effect of vorticity and bacteria rotation. The observations for different
vorticities can be performed in the current flow cell by locating coverslips in the entrance and

exit funnels.

Warning. The low velocities in the inlet and outlet pipes change add another length scale
affecting breakthrough. When breakthrough is simulated at a section at the end of the outlet pipe,
the time statistics (mean and variance) are significantly different. It is recommended that
concentrations samples are taken as close as possible to the flow cell’s exit section at x=60.4
mm. Also an optical method to measure concentrations at the exit sections may be considered if

possible.

2.5. Appendix A

Haider and Levenspiel (1989) provide a drag force model for non-spherical particles

24 b, Re
C,=—(+bRe>)+=2—" Al
D Re( ; Re™) b+ Re (A1)

where the coefficients by, by, b3, and b4 are defined through the empirical relationships

b, =2.3288-6.4581¢ +2.4486¢* (A2)
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b, =0.0964 + 0.5565¢ (A3)
b, =4.905—13.89444 +18.4222¢* —10.264° (A4)

b, =1.4681-12.2584¢ —20.7322¢" +15.88554° (A5)

where ¢ is the factor shape, defined as the ratio of the surface area of a sphere having the same

volume as the particle (s), to the actual surface area of the particle (S), ¢ = %
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3. Application of Sticky Brownian Motion to Microbial Dynamics in a Microflow Cell
3.1. Introduction

An important factor in the engineering of biobarriers/bioremediation is the microbial
partitioning that goes on between the aqueous and solid phase of the porous media. The factors
which affect such partitioning are numerous, but include such things as growth and starvation
conditions (Dawson et al. 1981; van Loosdrecht et al. 1987, 1990), limiting of nutrients (Fletcher
and Marshall, 1982), potential toxicity in the aqueous phase (Chen et al., 1993) as well as local
surface properties of the porous medium. The importance of the representation of the biomass in
a porous medium cannot be underestimated since it plays an important role in the degradation
rates of contaminants as important nutrients necessary for the process may not be available in the
solid phase.

Here we present an alternative model for the dynamics of a microorganism undergoing
random forces in addition to a convective transport. Since the proper representation of the
biological phase is a matter without consensus as noted in the exchanges of Widdowson (1991)
and Jaffee and Taylor (1992), and since we do not want to restrict ourselves to clogging and
permeability changes which are the focus of continuous biofilm models, we give a model which
will also serve as a basis for an unstructured biological population. We will focus on the
individual dynamics of a single microbe, or perhaps a system of such particles in a relatively low
concentration so that they have little effect on the surrounding environment and each other. One
may think of this as the initial stage before a type of colonization of the surface occurs. The
random forces can be thought of as a sum of Brownian forces together with random swimming
forces generated by a bacteria in a homogeneous liquid. We assume the random forces are

normally distributed and independent. The normality assumption is an averaging of sorts over
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different particle trajectories, but we comment that the model can be extended to include
chemotactic behavior if one assumes that it is of the same order as either the molecular Brownian
forces, in which case one replaces the normality of the random walk assumption with a non-
symmetric random walk or on the same order as the convective forces, in which case one can
superimpose the vector fields arising from the chemotaxis and convection to get a net vector
field for the average movement. In particular the run and tumble behavior of certain types of
bacteria (Berg and Brown, 1972) can be taken into effect. In addition to the random forces in the
liquid phase our model introduces a stickiness parameter which relates the
attachment/detachment process resulting from physico-chemical interactions between microbes
and the solid matrix. The need for incorporation of time lags due to interaction with the soil
matrix is crucial if one hopes to understand the effects a microbial population would have on a

contaminant convecting through the matrix.

Model. Here we discuss the mathematical model for the transport of bacteria which react
with the boundary of a domain. The movement of bacteria is well documented (Berg and
Brown, 1972) and is best described by a run and tumble (or twiddle) behavior. Basically put this
behavior consists of a sequence of runs, that is a linear movement in a particular direction,
followed by tumbles which are random changes of direction following some distribution. The
mechanism by which bacteria responds to a chemical gradient or chemotaxis is to

increase/decrease run times between tumbles. The actual tumbling distribution appears
unaffected by the environment. If a chemical potential a(X,¢) is introduced into a medium

containing bacteria, receptors on the microbial surface can detect the change up to a saturation
point at which all receptors are activated. In a large population of bacteria a statistical average

can be made for the concentration in the presence of a 1 dimensional gradient. This
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homogenization performed in Rivero et al. (1989) leads in one dimension to an equation of the

form

(®)

L _ye
o axl” ¢

ac_a( aC )
ox

where y is a coefficient of motility and ¥, is a coefficient of chemotactic velocity given by the

following formulas

V. =vtanh av% €))
¢ oz
u=Cv exp(a g—f) sech(av%j—) (10)

where v is the running speed of a bacteria, a is the chemical potential, & is a measure of
saturation which tends to zero as a gets large. If a is constant or if saturation occurs then z isa
constant multiple of v* and ¥, equals zero, as it should since there is no chemotactic behavior at
this point.

If we think of C(x,) as a probability density p(¢,x) we can rewrite (8) as

2 2w Z)-2 (7, () ) an
which corresponds to a forward-Kolmogorov or Fokker-Planck equation. We may now associate
a stochastic process X, , with p as its transition density. Another way of describing the behavior
is to think of it as the solution of a stochastic differential equation, which is the continuous time

version of a random walk. The SDE that it satisfies can be written

dX, = \|u(X,,t)dw, +V (X,t)dt (12)
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starting from some initial point x,. Here W, is a Brownian motion, which means that if one
takes an ensemble of particles starting from x, at time zero and advects them according to the

scheme

X =X, + [ (X, 0)Z+V, (X, 1) At (13)
where Z is a normal random variable with mean zero and variance At, or an approximation by Z
with a uniform distribution as is commonly done in particle tracking methods and justified by the
central limit theorem, then the distribution of the ensemble follows the transition densities
satisfying (11). In a capillary assuming constant flow we can simply add measures of advection
and dispersion to get a general motion for bacteria following a stochastic differential equation of

the form

dX,=o(X,)dW,+b(X,)dt (14)
where now o takes into account the dispersive terms and b is the advective term. The
associated Fokker-Planck equation which is the transition density of X, denoted by p(t,x)
solves

op 18, , 0
a—};=5§2—(0 (x,t)p)—a(b(x,t)p) (15)

If we consider a higher dimensional domain as a set of one dimensional tubes then this equation

is generalized to

Bl iy S o) o) oo

where a; is a dispersion matrix and 4 is an advection vector. Up to this point we have assumed

that the motion of the bacteria is not confined, that is there has been no boundary effects. To

study the movement in a capillary tube or porous medium we need to augment (10) or (12) by
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some boundary conditions. In the random walk we want to impose physically meaningful
boundary conditions which capture the attachment and detachment behavior of microbes. This
boundary behavior is crucial in understanding the transport biological agents in porous media. In
Boyd and Chakrabarty (1994) the attachment/detachment process is shown to occur regularly in

the presence of enzymatic degradation. At each point xeI' of the boundary we assign a
measure of "stickiness" p(x) . This measure ranges from 0, reflecting, through infinity at which

point a microbe is adsorbed to the surface irreversibly. A similar model has been proposed for
the flow of a chemical pushed by an inert gas through a tube with liquid state on the boundary
(Graham 1988). On a domain E, with a boundary I', the stochastic differential equations

representing the motion of a sticky bacteria are given by

dK, =1.(X,)dK,, X, =x,X, € E 17)

(N',N") =[t— ;fp(Xs)sz} (18)

dX, =o(X,)dN, +b(X,)(dt- p(X,)dK,)+7(X,)dK, (19)
where X, is the microbes position, 1. =1 ifxison I" and 0 otherwise, K, is a measure of the
time the bacteria is near to, but not on the boundary. N, is a random directional motion which
only changes when X, is not on the boundary, equation (11), » is a directional vector which
keeps the microbe inside the domain, and the square bracket process (N ,N ) is a measure of the

amount of time a particle has spent inside the domain up to time #. With these interpretations (8)

says that K, only increases when X, is near (at) the boundary and the last equation states that

inside the domain X, acts as a classical Brownian motion. In this model the rate of adsorption

and desorption happen relatively quickly and what is important is the ratio of the rates of

93

Seomes N RN, 7T XN (Y kS Mg, S T R S 3 Ey T T COAIR) T
D O A S e A N ATy T o S A TR T T S T R T T TR TR T A




adsorption when the microbe is near the boundary and attachment time once on the boundary.
This assumption, while rather restrictive leads to numerical schemes which have the appropriate
limiting behavior for fast reactions, and which can themselves be modified in case of slower

reactions. Moreover, in the above mathematical model the "local time" satisfies the equation

4
K, = 151-13(1) 6[10<d(X, T)<e (X s ) ds (20

Here we assume that the expected time on the boundary and its variance are both finite.
Otherwise the boundary behavior corresponds to adsorption and a scale up or homogenization
would only lead to transport with decay. The appropriate boundary conditions for the Fokker-
Planck equation (11) is known in one dimension (see Borodin-Salamin 1996) and can be

immediately extended to more dimensions. Together with (15) which can be rewritten as

ap(t,x) _

P Lp(t,x) @D

where L is a linear operator. We require that at the boundary p(,x) satisfies

op, Op
on C o 22)

where % is the normal derivative of p and the value of pg—’,’ is taken to be the limit as one

approaches the boundary from inside. This is a form of mass balance. Since no concentration is
permanently adsorbed, the outflow at the boundary % is determined by the loss with respect to
time of the concentration near the boundary p‘;—‘,’. The usual no flow conditions correspond to
p =0, which says nothing is even temporarily stored at the boundary.

Formally, we can also write (22)

6_p+ pLp=0 23)
On
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The Fokker-Planck equation with these boundary conditions seems not to be well studied,
but there is some work for the SDE approach. One of the most fundamentally useful results
concerning the sticky boundary conditions is the relationship between solutions of SDE which
are the same except for the boundary stickiness. Specifically Graham, 1988 showed [theorem

1.7] that if one has two measures p, p, and one is subordinate to the other, that is one has

p < p then solving the SDE for p immediately gives a solution for p, but run with a different

"clock" or "time change". More precisely the theorem states that if (X,,X,, p) is the solution of
(10-19) and we let 4, =t+[,(p—p)(X,)dK, be an increasing function with inverse 4 then
X=X o and K=K 1 Solves the SDE for 5. A particular example is taken by letting p =0

which is subordinate to any measure of stickiness. Practically this means that solving the
reflecting boundary condition and keeping track of the local time allows one to study the sticky
boundary problem. This "time change" is important also from a numerical point of view in that
it says to approximate the SDE with a random walk model one needs to generate a reflected
random walk but with a random insertion of time when it hits the boundary. The reflecting
boundary condition has been numerically studied in the case of the half plane by Lepingle (1996)
where an Euler scheme with good convergence rate is given. We generalize to other domains
this scheme by considering them as approximately polygonal. The distribution for the inserted
time can be freely set, but necessarily depends on the time step involved due to the rapidly
fluctuating behavior of a Brownian motion (the local time is not differentiable).

In particular the complex behavior remarked upon by McCaulou (1994) can be produced
if the inserted time is a mixture of a highly probable small time and a less likely large time. This
type of behavior is homogenized at large times and an average or expected residence time is

necessary to use when upscaling. Another important characteristic of stickiness is that it depends
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on location and time so that by modeling it as depending on local chemistry one can produce a
behavior for microbes which mimics active "attachment/detachment", something not previously
recoverable. A possible model for an initial distribution of the stickiness as a function on the
boundary could be given as random function in which a covariance structure is given. This then
gives rise to a stochastic partial differential equation for evolution problems which have been the
subject of much recent investigation (see e.g. Cushman 1997), the situation which first interested
us was modeling of bacterial attachment through a flow chamber, the upper part of which is
formed by a treated slipcover (McEldowney and Fletcher 1998), so in this case a constant on this

part of the boundary and a smaller constant on the rest of the boundary.

3.2. The Stickiness

We collect here some analytic results which are useful in determining how to
parameterize p, as well as some of the limiting behavior of random walks.
We first show that for a time discretized process to have a positive amount of time on the

boundary that

P (24)

£
(1- 3)2 ~JAr
where ¢ is the probability of staying on the boundary. From the central limit theorem or the

basic properties of Brownian Motion (Protter 1992) the time-scale versus displacement scale is

B, = \/.;B, . This means that if one discretizes the random walk in time and space and time steps

are divided as At then the corresponding space discretization should be on the order of JAz, so

for example if dividing time into intervals of length 0.01 one should divide space into intervals

of length 0.1. Now if a random walk on the points {0, At, 2JAr } is at 0 at time zero and stays
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at zero with probability & and if not at zero goes up or down JAr amount with probability 0.5,

then one can ask how much time is the random walk at zero on the time interval
{0,A1,2At,..., 2 A} that is on [0,r] where 7 is some large time.
The first question of interest is what is the distribution of the time that it takes for a

bacteria executing a Brownian motion to first attach to a flow tubes' boundary. If we assume that

the flow is slow relative to the length of the flow tube then the answer is given by integrating the
transition density. That is if we let P(z >¢) denote the probability that a microbe entering a

flow cell has not hit the wall by time ¢, then with D as the cross-sectional area of the flow cell
one has

P(e>1)= [p(60,y)dy = [S e, (0), (y)dy
5 b (25)

=>e™4,(0) [8,(») =D c,e™
n=1 D n=1
where ¢, are Bessel functions, 4, are zeroes of Bessel functions and ¢, are the integrals of the
Bessel functions all of which have been well tabulated. Notice that the long time asymptotics are
determined by the leading order term in 7.

If we don't assume that the velocity is slow relative to the length of the flow cell then

there is a chance that a microbe might never hit the boundary before exiting. The probability of

this event happening is approximately given (again letting D be the cross section)

P(r>t)=P(rp, >t or7,,<t)

26
~ P(t, >t)+ P (7,4 <t) (26)

The first of these is calculated as before and the latter can be approximated by a volume

averaged one-dimensional stochastic process.
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Another question of interest is the expected amount of time a microbe spends on the wall.
This is given by
(rwa,,> = ( PK, )the local time of the process
o2

= p(K,)~ p*—X(T) @27
]

_ () pl 2 Leneth
[ ()
Here T is the time inside the flow cell.

The final question we are interested in is what is the distribution of the time on the wall
for a microbe in a flow chamber given that it stars on a wall. This is an important question since
if one is interested in introducing genetic information into a microbial community the transfer of
genes takes place when microbes come into contact, a process most likely to occur on
boundaries. With 7 representing the amount of time on the boundary we want

P(f>t|r”>0)zP(KT >LJ
P

= P(K,m > i}
T

This last quantity is finally calculated (using equation 32) as the square root of an

28)

exponential distribution.

3.3. Numerical Considerations

At this point we would like to discuss how to numerically implement random walk
models to solve transport problems with sticky boundaries. In the homogenized version where
the boundaries are not visible, this is essentially a convection-diffusion-reaction (CDR) equation.
Traditionally this is solved by a particle tracking scheme (Valocchi 1989) which in each instant

calculates probabilities of adsorption/desorption, measures the amount of time (random) in each
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phase (sorbed or desorbed) and then performs the random walk only on that portion of time in
the desorbed phase. For fast reactions the constant generation of random variables (for small
time steps) becomes prohibitive and Valocchi proposes to assume that on any fraction of time a
fixed proportion is spent in either phase and then performs a random walk on the relative portion
in the desorbed phase. Unfortunately this just has the effect of retarding the flow, that is
changing its clock. A more uniform approach suggested by the above analysis of sticky
diffusion as a basis for CDR suggests not only should a random displacement take place at each
step, but also a random amount of time should be inserted into the clock.

There is not a lot of work for random walks with nonadsorbing boundaries in general and
the added condition of wanting to keep track of the local time for a reflecting boundary (to be
used for the random time insertion) leaves even fewer. In a paper of Lepingle an Euler Scheme
for reflected SDE is proposed which is not based on projecting an escaped particle back into a
domain, but is instead based on generating random variable with the same distribution as the

local time of the process and using these extra variables to keep the process inside.
The basic scheme of approximating the reflecting SDE on (0,0) with a continuous

random walk, is

dX,=o(X,)dW,+b(X,)dt+dK, on (0,) (29)
or in a half space
X, =x, (30)
Y =b(X)At+0 (X)W, (1)
K, =K, +max| 0,X, + (o (X)'V+7 -1, (32)

2
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X1+At =X1+K+N+7(KI+AI_KI) (33)
Here W,, is a Gaussian random variable with mean zero and variance At and V is distributed as

an exponential with mean 2A¢. The reason that this scheme approximates correctly a reflected
diffusion is that reflection in a line is a simple matter of taking any continuous function and
adding another function which together always stays positive (the Skorohod problem see
Lepingle 1989). This so called Shorohod problem in the case of random walk Brownian motion
is determined by the infinum of the process which in turn is given as an exponential random
variable of the type discussed. In a half space each component has a covariance matrix for the
dispersion, but this does not change the scheme much. A way of simulating flow through a two
dimensional tube with reflecting boundaries is to make the time step small enough so that one
cannot during that interval hit both boundaries, then treat the problem only locally, that is one
can keep track of a separate local time at each boundary and adjust the random walk accordingly.
An obvious problem with this scheme is that it cannot be readily extended to other types of
bounded domains in 2 dimensions, much less to a circular capillary in 3 dimensions which are of
interest.

The simulation of a sticky process follows the above scheme except that the sets of points
making up the trajectories for one realization (¢,.X,) are replaced with (t +[5 p(X,)dK,, X s) .

If one is interested in the position of a particle at a particular time 7 it can be had by
finding the time ¢ for which 4, =7. One usually knows in advance the times of interest and can

simply calculate the time ¢ when if first surpasses = . First passage times are especially easy

since one knows the position the particle is at when the time is reached and hence one need only

keep track of 4,.
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An alternative to this approach, which has "time marching", that is a strick discretization
of time is used to construct a simple random walk, which upon hitting the boundary sticks, and
then desorbs from the boundary with a probability say ¢. However, to capture the boundary
behavior of continuous diffusions, which have infinite variation, with a discrete process requires
a dependence of ¢ on the time step. It can be shown that the appropriate order for ¢ takes the

form of

£ =F (34)

(1- 6‘)2 ) Jar
That is as At >0, € —>1. So that a large effort is made in calculating almost certain events.
Moreover it is well known that a Poisson random variable is the limit of appropriately scaled
binomial random variables (see DeGroot 1980) and so the first exit from a wall is given by the
distribution of the interarrival times of a Poisson which has an exponentially decaying
distribution. This means that upon averaging the two approaches are equivalent.

For a circular domain with no drift one can write the Laplacian in polar coordinates, that

is the Euclidian process X,,Y, can be thought of as the product of a radial process R, and

angular process ®,. This corresponds to a skew product decomposition of Brownian motion

where the radial process satisfies the stochastic differential equation

1
dR, =—-dt+dP, (35)

1

together with reflection on the boundary. While the angular process of interest satisfies

d®, =—dB, (36)

where W, is a Brownian motion on the line (1 dimensional random walk), and B, is a Brownian

motion on the unit circle. One can now apply Lepingle's ideas to the radial process without

101

PECOVINS S S RPN A TSRS N IMELY S IS e G AR S/ ) I RN S A PO ST MRS QSN P TSN ACPNCIMI L v . Ac YO > 7 SR




much trouble. The angular process can be thought of as taking place on the real number line and
then mapped onto the circle. The coefficient of its dispersion, # , can be integrated

1
Rl

approximately by taking the average of # and

In more complicated polygonal like domains one can perform a decomposition of the
domain into overlapping wedges (cones), keep track of the particles position relative to the
decomposition and near the boundary reflect the angular part alone. The transition probabilities
for random walks in such domains are symbolically given by (35) and (36) but have been studied
in the context of heat conduction for decades, e.g. (Carslaw and Jaeger 1959). The actual
displacement in euclidean coordinates is not transferred easily into polar coordinates. Instead a
random displacement radically is first generated by (35) and then a random angular displacement
generated by (36) where however the variance of the angular change necessarily depends on the
radial distance. In a general bounded domain one can approximate the boundary polygonally

and allow the number of sides to increase.

3.4. Discussion and Summary

We have presented an analytic model for the transport of microbial populations in a
porous medium which incorporates the attachment behavior. The stochastic differential equation
model assumes fast attachment/detachment for the microbes but the numerical implementation
outlined allows a general probability distribution to be chosen as a time scale and hence one can
use interpolation. The model can be easily used in situations where porous media are modeled as
collections of tubes, e.g. networked models or stream-tube ensembles as in Ginn et al. (1995).
The numerical scheme discussed extends the work of Lepingle on simulation of normally
reflected processes, in two directions. First "sticky or slowly reflected" conditions are added to

allow one to add microbial-boundary interactions as parameters in the transport problem and
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second one can model reflections in nonrectangular domains such as capillary tubes. Using this
scheme one can also study the small and intermediate time behavior of transport in capillary
tubes which has been previously studied for large times using various forms of homogenization

(Bhattacharya and Gupta 1984).
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4.  Fractional Dispersion of Microbes
4.1. Introduction

Quantitative research in fate and transport processes occurring in the natural subsurface
commonly deals with transformations associated with complex chemical and/or microbiological
reaction networks (cf. Murphy et al., 1997; Chilakapati et al., 1998; Lichtner et al., 1996; and
Transport in Porous Media, Vol. 38, Nos. 1-2, 2000), in the presence of multiscale
heterogeneities in physical, chemical, and microbiological properties. Yet even the simple
setting wherein a conservative tracer is transported in a physically heterogeneous environment is
not well quantified from a theoretical perspective, and sophisticated analyses of the phenomenon
continue to proliferate in the physics and hydrology literature. Much attention has been and
continues to be focused on the development of governing integro-differential equations for the
expectation of conservative solute concentration undergoing advective-dispersive transport in
flow fields that are nonuniform on multiple scales. Recently, researchers have developed a
fractional advection-dispersion equation approach to describe this phenomenon (e.g.,
Meerschaert et al., 1999; Benson et al., 2000). This approach shows promise in its ability to
represent so-called anomalous, or non-Fickian, dispersive fluxes that may describe expected
concentration plume evolution in natural media. Here we relate the fractional ADE to the
nonlocal dispersive constitutive theory (Cushman and Ginn, 1993), by demonstrating that the
fractional ADE is obtained as a well-defined special case of the convolution-Fickian form of the
nonlocal dispersion equation, which is itself a special case of the general form presented in

Cushman and Ginn (1993).
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4.2. A Hierarchy in Complexity of Fluxes

The nonlocal dependency of flux on constitutive properties is described by Cushman
(Cushman, 1990, Introduction) as a manifestation of the occurrence of a continuum of scales of
heterogeneity and its effect on velocity. In constitutive models nonlocality is manifest in one of
two forms: fluxes which are given as integrals on space/ time (integral theories), or fluxes which
involve derivatives higher than the first (gradient theories). Simmons and Kincaid (1987)
provide one of the first examples of gradient theory representations of transport in hydrology,
writing a Lagrangian transport equation involving an infinite series of spatial derivatives of the
Lagrangian velocity distribution function. Because our interest here is in fractional dispersion,
we restrict our discussion to the integral theories. The conventional Fickian (local) constitutive
theory maintains that the dispersive flux at a point in space is proportional to the gradient of the
expected tracer concentration at that point. That is,

q=D.-VC 37N
where D is a positive-definite tensor.

The generalization to nonlocal constitutive theory holds that the diffusive/dispersive flux
at a point in space depends on the conditions in some larger neighborhood of the point in space-
time. In this formulation the flux at a point (x,t) is given as a weighted average of concentration
gradients in this larger neighborhood. Cushman (1991) first developed a general nonlocal theory
of diffusion in media with evolving heterogeneity using an equilibrium statistical mechanical

approach. The resultant diffusive flux is of convolution form
{

q(x,t)=—IID(y,z')-Vx_yC(x—y,t—r)dydz’ (39%)

o R}
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In a subsequent article Cushman and Ginn (1993) generalized this result to provide a nonlocal
constitutive theory for dispersive flux in a local-equilibrium statistical mechanical setting. The

flux in this case takes the form

q(x,1)={v)C- ’_[ ID(y,f,t)-Vx_yC(x—y,t—r) dydr (39)

In a later article (Cushman et al., 1994), a more general fully non-equilibrium flux was derived

using nonequilibrium statistical mechanical arguments. In this general case the resultant flux is

a0 = [ [D, (3,7)C(x-y.t~7)dydr+(v)C
(:Ra (40)
~[ [, (v,530) V.., C(x-y,t~2) dydr

o R
In these two general forms the nonlocal dependence of the dispersive flux appears in an integral
form that is not a convolution on time, but it is always a convolution on space. However under
certain constraints the integral form (e.g. in Eq. 39) is a convolution on time, in which case Eq.

39 becomes

‘

q(x,t)=(v)C—IID(y,r)-Vx_yC(x—y,t—r)dydr 41)

opR
In this form the dispersion tensor arises as a function of the spatial and temporal lag intervals
only, and the resulting dispersive flux is a convolution integral. Nonlocality in the dispersive
flux of Eq. 41 is manifest as a convolution of a generalized dispersion tensor with the
concentration gradient and so it is called "convolution-Fickian". In this case the dispersion
tensor is a weight function conveying the spatiotemporal "memory effect" of concentration

gradients in a possibly infinite neighborhood to the dispersive flux at the local point (x,t). This

dispersion tensor is known as the memory kernel.
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A more detailed discussion of these fluxes is summarized in Chapter 2 of Cushman

(1997).

4.3. The Fractional ADE

Over the last decade there has been considerable effort directed to the study of anomalous
diffusion and dispersion in transport domains exhibiting power law scaling rules. One route that
has received particular attention involves generalizing the classical advection dispersion
equation, which involves classical integer spatial derivatives, to an equation involving fractional
derivatives, i.e., derivatives of noninteger power o.. The resulting solute mass balance equation
can be written as

aC _ a-1 a-1
E_—v-vcdrv-(nl-vx +D,-VEy)C (42)

where o (1 <a< 2) is the order of the fractional derivative, and where it is common to write D;

= pD and D, = (1 — p)D with 0< p <1. The right-hand side of this expression can be written as

the gradient of the total flux g, which is then

q(x.t)=vC-D,-V'C-D,-VEAC 43)

The purpose of this note is to show that Eq. 43 is in fact a special case of the convolution-Fickian
flux appearing in Eq. 41, and as such, the fractional ADE is a special case of the nonlocal
transport theory of Cushman and Ginn (1993) or Cushman et al. (1994). We henceforth restrict
our attention to a one-dimensional setting and for simplicity set p = 1. The analysis can be
carried over to arbitrary p and in 3-D, but it adds little to our discussion, so we omit it here (see

Cushman and Ginn, 2000 for a much more detailed discussion).
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Transformation of the Fractional Flux to Convolution Form. In 1-D with p = 1 and

1< a £2 the fractional derivative ;’x—'f, is defined as

d*f(x)__ 1 a7f(x-y)
dxa I-(n_a) dx" ; ya+l—n

dy (44)

with n the smallest integer larger than .. In this case n=2 and so

d°C _d" D dC(x—y)d
dx*  dx JT(2-a)y*"  dx

d‘]‘ D dC(x-y)

de JT(2-a)y*™ d(x-y)

IID&(T)H(y)dC(x y,t—17)
2T(2-a)y  d(x-y)

dy (45)

dydr

where §(r), 0<z<t, is the Direct Delta and H(y) is the Heaviside function on (0,).

Finally, define D(y,7) by

_D5(z)H(y)
D(y,7)= —I‘(2—a)y""l (46)
so that
- =Vx’I?D(y,T)Vx_yC(x-y,t—r)dydT 47)

Thus Eq. 43 is equivalent to Eq. 41 with D(y,7) defined by Eq. 46 in the 1-D case. That is, in

the fractional dispersion case, the flux g, is given by

g(x,t) =-—]wID(y,r)-Vx_yC(x—y,t—r)dyd1+<v>C
(48)

— J‘ J'fé(z'z;;}g}g Vx_yC(x—J’:t_T) dyd1'+<v>C
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Thus the fractional ADE is a particular form of the nonlocal ADE, when the memory kernel of
the nonlocal form is given by Eq. 46. Some particular aspects of this kernel are physically
meaningful. Firstly, the Dirac-delta function serves to localize the flux in time (i.e. it makes the
flux Markovian), so that the ADE is only spatially nonlocal. Secondly, the Heaviside serves to
restrict the nonlocality in space to positive values of y, which corresponds to an upstream
nonlocal domain, x - y, appearing in the integer-ordered space derivative on C. Thus in this case
the ADE is nonlocal in the upstream sense. Finally, aside from these two generalized functions,
the kernel is inversely proportional to y raised to a power below unity. This weighs the
contributions (to the local dispersive flux) of the nonlocal C-gradient, in inverse proportion to the
contribution to the dispersive flux. Finally note that in the limiting case where o —1 this
particular nonlocal form reduces to the local first-order derivative (by the fundamental theorem

applied to the last term in Eq. 45).

4.4. Summary

The quantitative representation of anomalous dispersion continues to be an unresolved research
question in a number of fields, and the explanation of anomalous dispersion is an active field of
study in physics, fluid mechanics, and hydrology. Recent results on fractional dispersion are
special cases of earlier representations of anomalous dispersion using the convolution-Fickian
constitutive theory, which itself is a particular case of nonlocal transport theory. This
mathematical equivalence between the fractional derivative and a special nonlocal form implies
the physics underlying the former constitutive theory are embedded in the more general nonlocal
transport theories. In both cases researchers are investigating the role played by long-range

correlations in hydraulic properties.
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5.  The Effect of System Boundaries on the Upscaling the Flow Problem

5.1. Introduction

Predicting the evolution of microbes in the subsurface and understanding various
degradation scenarios associated with their movement, requires knowledge of the role
macroscopic system boundaries play in the process. Uncertainty in this boundary data is the rule
rather than the exception (as for example the role of rainfall time series). To begin to understand
these sinergies we have analysed a stochastic upscaling method for the flow problem with
uncertain boundary conditions.  Specifically we have studied steady flow through a
heterogeneous medium in a bounded domain using a recursive perturbation scheme. Details of
this study are found in Bonilla and Cushman (2000a) and the appendix to this report.

We have analyzed the head and velocity moments for a two-dimensional bounded
domain (rectangular) in heterogeneous media. Boundary conditions were modeled as the sum of
deterministic and stochastic components. This allows for a scheme that permits more elaborate
computations than previously studied. We studied the effects of two sets of boundary conditions,
deterministic and stochastic, on the fluctuating head which drives the random flow process. The
major conclusions are:

1. Randomness (or lack of) of hydraulic controls at domain boundaries significantly affects
head and velocity moments. Effects of processes at boundaries are not confined to boundary
layers; the head and velocity moments are perturbed everywhere in the domain.

(a) The head variance function is most sensitive to this effect, with differences of up to one order
of magnitude. That the effect is not confined to differences within boundary layers can be

observed by comparing the central regions which differ by factors varying from 3 in the
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longitudinal direction to 10 in the transverse direction. A consequence of this is, the inverse
problem may be ill posed if boundary conditions are modeled inadequately.
(b) Velocity variances are less sensitive to stochastic boundary conditions yet differences are
present. When comparing longitudinal velocity variances there are differences of a factor of 2 in
regions of small zero order-gradient (center of domain), and of a factor of 1.2 to 1.5 within
boundary layers. For transverse velocity variances, differences are more important along the
boundaries y = H and y = 0. The term mostly accountable for this difference is the variance in
the fluctuating-head gradient.

The mean head and mean head gradient in both cases differ very little from their zero

order counterparts (both cases have the same zero order solution).

2. Perturbation schemes are formally valid for cr} <« 1. However numerical experiments

show more robust behavior (convergence with 0'} 21) . Here we show convergence of

perturbation schemes relies also on the magnitude of the kernels describing the problem. While
the magnitude of heterogeneity plays a role in convergence, the dynamics of each problem, and

in particular the boundary conditions will determine the convergence limits for the problem. The

milder the gradients present, the larger o, can be within the scheme. Dirichlet boundary

conditions for the fluctuation % improve convergence, while Neumann boundary conditions (for

h, ) decrease the degree of allowable heterogeneity.

3. Generally there is a boundary layer from 3 to 4 integral scales for Dirichlet boundary
conditions, and at least 7 to 8 integral scales for mixed Dirichlet and Neumann boundary
conditions. Mean velocity differs up to 30 percent from the zero order velocity within the
boundary layers, a phenomena that should induce greater mixing when a contaminant is entering

through the boundary.
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4. Inhomogeneity in head and velocity second moments arises for two reasons:
boundary type, and spatially varying zero-order gradients. Both affect the value of the moments
across the domain. The first gives rises to a boundary layer. The second manifests itself in
inhomogeneity everywhere in the domain. This is of particular relevance when recharge is
present at one of the boundaries. For a flow with constant zero order head gradient, first order
Dirichlet boundary conditions render approximately homogeneous head and velocity covariance
functions beyond 3 to 4 integral scales away from the boundaries. Under the same
circumstances, first order Neumann boundary conditions cause inhomogeneity over 3 to 8
integral scales. However gradients applied in the direction normal to a Neumann boundary do
not induce inhomogeneity in that direction.

5. Nonlocality acts in different ways according to the type of boundary condition. For
the head variance, effects of nonlocality for Neumann boundary conditions are more important
and localization renders large errors. Nonlocality for Dirichlet boundary conditions acts within
smaller distances than for the Neumann case. Localization is a more suitable option in the
former case.

Finite difference schemes (Tartakovsky and Mitkov preprint) have been found to be more
efficient in computing head and velocity moments than integral evaluation. However, the
integral evaluation is useful for analyzing the various directional contributions of the physics to
the moments and gives more insight into the problem of fully two and three dimensional flow
and nonconstant gradients.

Careful determination of the nature of processes occurring at boundaries is important to
an adequate interpretation of laboratory and field flow and transport problems. Randomness in

observed variables is due to both the media's heterogeneity and the surrounding environment
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fluctuations (or lack of). The former cannot be reliably estimated without a reasonable model for
the later in the context of inverse problems. Nonstationary analysis of the transport problem
based on the results presented here for the flow problem is especially relevant for natural
gradient experiments where mixing is different within boundary layers, or in presence of vertical

and or transverse head gradients.
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6. The Role Played by Various Macroscopic Length Scales on Flow and Transport

6.1. Introduction
For steady flow in a nondeformable heterogeneous aquifer where o, (the fluctuating

log-conductivity standard deviation) is often used as a perturbation parameter, a closed form for

the head can be obtained to 0(0'}). Mathematically, the expansion appears to require aﬁ <1 for

convergence of the expansion. Yet the schemes often work for o"} >1 (cf. Dagan, 1989;

Cushman, 1990; Gelhar, 1993; Cushman, 1997). In this case, disparate length scales (domain
size, anisotropic integral scales, etc.) might explain the robust character of the perturbation

scheme.

There exists extensive research on perturbation solutions to the stochastic flow problem
(see references above). But it is not known how large o, can be and yet have a convergent

expansion. For example, Hassan et al. (1998) have reported that small integral scales generate

very slow convergence and sometimes instability in the solution to stochastic flow via Monte

Carlo simulations, even using small values of o,. Other researchers (e.g., Hsu et al., 1996;

Zhang and Winter, 1999) have shown this to hold for 0'} =4.38. The work presented below

addresses, convergence, and clarifies a commonly misunderstood issue. Further, the parameter

bounds provided here offer a quick way to assess the magnitude of terms of higher order.
Because the processes f and Vf can often be considered independent, further assumptions on
Vf are necessary. In particular, when the two point correlation function for the conductivity is

assumed to be exponential or Gaussian, it is possible to estimate the magnitude of oy, in terms

of o, and various other length scales. The ratio, p, of the integral scale in the main direction of
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flow, A1, to the total domain length, L, plays an important role in the convergence of the
perturbation scheme. For p>p,, e=0, / P’ is the most appropriate for 2-D flow. Here p, is

a critical length scale. In addition, the shape of the log-conductivity fluctuation covariance, and

boundary conditions influence the convergence of the scheme.

6.2. Example: 2D-Flow

The one dimensional analysis of the previous section sets the stage for the two
dimensional problem. We concentrate on bounding the head variance using I’ convergence.
Therefore all the norms below are I*, that is read || ||, where | || is found.

The balance law in 2-D is

! 2717
FOH oW _yo (49)
ox, ox,  oxlox,

The primed notation x'=(x{,x;) (the x/ has length units) has been introduced for convenience,

so that after scaling, a non-primed system, X, is obtained. Introduce the dimensionless system

x=(x,y) with x= ;,;L, and y= \[::Ty where A, and A, denote the integral scales in the two

directions of the unscaled system ((x{,x;)=(x',)')), and L, and L, are the side lengths of a

rectangular domain Q' = [(O, Lx)(O, L, )] . As in the one dimensional case, the goal is to obtain a

dimensionless head that is independent of the length scales of the problem. To make a judicious
scaling, it is important to consider gradients in both directions, x, and y. However, for
environmental applications it is common to study the case for which mean flow occurs in one
direction (say x direction). General mean head gradients with non zero components in both

directions and space dependence have been analyzed by Bonilla and Cushman (1999) for steady
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saturated flow and by Zhang (1999) for transient unsaturated flow. From their analysis the most

convenient scaling for the hydraulic head is 2= E where x is the dominant direction of flow.

With this scaling, (49) becomes

Fh Oh__ o O o

> > = (50)
ox* oy Ox Ox 0Oy oy

52

where &2 = Xﬁ’ is the square of a modified anisotropy ratio, £&. Define p? =j’—y ,and P =

Then & can be written as & =2—2. Equation (50) must be supplemented with boundary

conditions (BC's), and they may be stochastic or deterministic. These may be Dirichlet,

Neumann or mixed. We consider stochastic Dirichlet and Neumann:

h=h" x ¢, 62))
oh
—Ka=q x ¢ I (52)

where 4° is random dimensionless head on Dirichlet boundary T, K = ’L , and g is random

scaled recharge through Neumann boundary I, with outward unit normal 77, 7=xor =y for
the rectangular domain being considered. g=¢'p, if n=x,and g=¢'p,£ if n=1y.

After this scaling, the two point conductivity fluctuation (multi-Gaussian) is

Ry (x—u) =0 exp- L - = (53)

Py
with points x = (x, y) ,and u= (u, w) . The above Poisson equation (50) involves an 'anisotropic'
Laplace operator in the left hand side and a non-zero fluctuation in the right hand side. We use

two parameters for the perturbation expansion, oy, and oy

CL))

2o
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o5

(55)

Consider the case in which the mean flow is in the x direction, and suppose oy, = 0.

By substituting the expansion hA=h,+h+h, +...,

(52), and separating terms of order n=0,1,2,... we obtain the hierarchy of equations

2 2
o(1): 526}:"+a}:°=
ox" Oy
2 2
n=1 0(o%): gaﬁ 5%=5ﬂ%6“ of oh,_,
o dc & dy oy
with associated hierarchical boundary conditions
nZO h":hnD X E I‘D
%)
0(1): —Kcﬁzqo X 8 I"N
n21 0(oy): Ko == o~ 9+ Kq i fj x & T,
677 =i 377

where the random boundary functions #° and g have the expansions 4” =4 +hPh +...

q=q,+q,+4q,

equations (56a), (57a), and (57b) has solution

G(x,ylx”ay”)]

)= 5 - v, A0
By (%,7) = i{ { ™ > LD
1 "no_n 3,

+K_ I I:qo(x>y )G(x’y|x 4 )] v, @y

G X'CrN

with 4, =0(0'$,) into equations (51) and

(562)

(56b)

(572)

(57b)

(57¢)

and

+... as aresult of the expansion for 4. The zeroth order, deterministic problem by

(58)
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where x" denotes an integration variable in the scaled system (not to confuse it with unscaled

system previously denoted x'), and the Greens function G(x, x”) is obtained by solving the

problem
L. 8G &G )
AG(x,x")=¢& ¥+ % =6(x-x") xeQ
G(x,x")=0 for xel), (59)
Mz 0 forxe,,
on

where &(x~ x”) is the two-dimensional delta function.

Problems of order n>1 are prescribed by equations (56b), (57a), and (57c). The right
hand side of the Poisson equation (56b) is a random forcing term. Using Greens functions the

solution is

2y ) & L Lot Ot g, (60)
axr/ axn ay" ay" lhe

hn == IIG” (x’y
D
where h, represents the boundary integrals incorporating the conditions given by equations

(57a) with n>1, and (57c). These are completely analogous to the boundary integrals presented

in equation (58). When higher order (n > 1) problems have homogeneous boundary conditions

then , =0. The Greens function G, (x, y| x", y”) may be different for each » depending on the
model for processes occurring at the boundaries.

Consider the case of flow in a rectangular scaled domain x&Q = [(O,Zx)(O,E y)] , with all

boundaries Dirichlet. Here £, =-- and {, = pLy. To simplify the analysis, consider deterministic
boundary conditions, that is, 4 # 0, and 4° =0 for n>1. The zero order problem for the head

is
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& ix’? + aazyh; =0 x£Q (61a)
h(x=0,y)=J (61b)
h(x=2,,)=0 (61c)
Py (x,y=0)=J(1- p,x) (61d)
h(xy=2,)=J(1-px) (61€)

so that the flow is in the x direction, with constant gradient % =-Jp,. Equations (56b) with

homogeneous boundary conditions #° =0 for n>1 complete the statement of the problem. The

Greens function for Dirichlet BC's may be represented as

.o 2-&sinh(y,x)sinh(y,[€, —x"])sin(e,y") | )
G(x,yx,J’)=;Z=l: ns(inh(yé) ) if 0<y<y
(62)
" " 2 < Sinh(y,,x”)sinh 7}1 [ex_x] Sin(any)Sin(any”) . n
G(xy|x"y )=;Z=1: (nsmh(yz ) ify'<y<t,

where «, = and 7, =%. The above Greens function includes the nonlocal anisotropy, that

without scaling is manifest only in the two point correlation functions for log conductivity
fluctuations, R, . After the scaling, both the Greens function and R, are anisotropic with a
different anisotropy ratio, as shown by equation (53).

A solution is obtained for the O(aéf) head covariance. First use an exponential two

point correlation function (also named separated exponential in the literature)

R (x-u)=clex —M—M} 63
g ( )=07 P( o 2, (63)
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The resulting expression is computed using numerical integration techniques including
Gaussian quadrature, Romberg integration, and importance sampling. Importance sampling is

used to decrease the number of sample points. For instance, equations (63) and (53) suggest that

if one integrates first over u(w), for a fixed x(y), one can restrict the sampling points to a
region (interval in u) where exp( b "I)(exp( %)) is not negligible (exponential case).

Likewise, Greens function (62) has a singularity when y — y", and x — x". To address this

singularity, when integrating over x"(y") for x(y) fixed, it is useful to divide the integration

interval [O,£X]([O,£ y:l) in two subintervals [0,x] and [x,Ex]([O, y] and I:y,f y]) The
subintervals are best handled using Romberg integration excluding the right and left points
respectively, where the singularity is found. Once it has been integrated over x" and )", a
smoother function of x and y is obtained, and it is expensive and unnecessary to use Romberg
integration anymore, so a Gaussian quadrature rule is used. A further refinement can be
achieved by approximating the Greens function (62)

)= {m(cosh(r(xﬂ”))—COS(a[y+y”])J]

T 4rn cosh(y[x—x”])—cos(a[y—y”])

G(x,yx",y

I cosh( [x+x"] ) cos(a[y_yn])J
cosh( x+x]) cos(a[y+J’"])
o cosh(;/[Z —(x- x)]) cos(a[y-y"]) (64)
cosh(}/[l? —(x- x)]) cos(a(y+y" )))
i cosh( [£x+(x+x")]) cos(a(y+y"))
| cosh(y[ £, +(x+x")])—cos(a(y-»")) )
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where o = % and y =% . This expression is very accurate (error under 0.05%) for L, > L,. This

however is not a restriction as an equivalent expression may be found to approximate the Greens
function for the case L, 2L, .

For this two dimensional case we have four independent parameters to analyze: the log-

conductivity fluctuation standard deviation, o, and three scale-related parameters, p, = \/% R

p, = \/% ,and &= fgi—f. The dependence of the perturbation expansion on o, is similar to the
1D case. For the length scale parameters, start the analysis for dependence on the single
parameter p,. Selecting L, = L,, a "square domain" (in the unscaled system) is considered, so

the effect of p, and p, can be studied. First, fixing p, at different values, compute the head

covariance norm. The covariance has a maximum at x = y, i.e. the variance. Under the

boundary conditions given, the variance has a maximum at the domain's center,

x=(x,y)=(£x/2,€y/2).
Figure 20 shows the head variance norm "h" as a function of the parameter p, for
different values of the parameter p, on a log-log scale. An exponential two point correlation

function, equation (63) was used. Two linear regions of different slopes are noted to the left and

right of the point p, = p, (the transition for the exponential case happens at a very well defined
region, unlike the Gaussian case analyzed below), with 0.35< p, <0.7 for different values of

p, - Let us first analyze the region p, < p,. The straight lines suggest a relationship of the type

M )L
Ja, =C(p,)= (65)

X
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holds as in the one dimensional analysis, but, C depends on the parameter p,, C=C ( py) , and

possibly on the parameter £. Performing regressions to fit relationship (65) in the data plotted

Figure 20, renders the following relationships

p. =001 M=_.1._(Lf (662
o,J 42000\ p,

p, =005 %:ﬁ pij (66b)

p =015 Mé[ﬂ (660

p. =05 M&(ﬂ (660

p =10 giﬂ;_s[%) (660

5y =50 @%&) (669

Notice that the dependence on —- is quadratic (n = 2 in equation (65)), unlike the one

dimensional case where ||l3]] depended linearly on L. If we are to use the criterion £l <1 as

discussed for the one dimenisonal case, and rely purely on ||hl|| as the bounding term for setting a

convergence criterion, then several conclusions follow. For the discussion, one can think of this

2D case as a vertical section of a confined aquifer. For the limiting case of a "strongly layered"
formation, equation (66a) (considering y to be the vertical direction, p, <<1, that is, very small y

integral scale, and the mean flow to be aligned with the horizontal direction x), convergence will
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be achieved even with very large o,. On the other hand, if there exist vertical mean flow, or
local gradients in the y direction, a conclusion may be drawn for this "strongly layered" case
from the previous analysis. Consider the case p,=5.0 and p, <<1, equation (66f). This
corresponds to flow in a "strongly layered" formation in the direction perpendicular to the
layering. The convergence condition for this case is much more restrictive, o, <1.37 pl. For
environmental conditions, it is expected the flow will align in the direction of layering, but
recharge and boundary conditions will induce vertical gradients, and the bound on o, for the

perturbation expansion to be convergent will be reduced. Figure 21 shows the dependence of

"hl" on p, for fixed ,{"—y=1 and two different values of p,. A fitted relationship for these two

values of p, is

h
p, =0.018 CHT,_" = 6267 (672)
_ Wl _, ., -
p, =028 i 2727 (67b)

For p, > p,, a different relationship is observed. If equation (65) is fitted an exponent
n=3 is obtained, along with a set of coefficients that guarantee convergence for very large

values of o,. This case corresponds to the condition in which the integral scale is of the same

or greater order of magnitude than the domain size we are looking at, A, = L,. It is intuitively

correct, since the domain of interest will exhibit very smooth change in hydraulic conductivity.

o, . o 3
As an example of such a bound, for p, =0.5, the convergence condition is hjﬂ:%(#) <1,

with p, >0.35. For example, if p, =0.5, the above convergence condition establishes that the
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Figure 20. Dependence of ||h,||2 on the parameter p, for exponential log conductivity two point
correlation function, two dimensional (2D) flow.
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Figure 21. Dependence of "hl "2 on the parameter p, for exponential log conductivity two point
correlation function, 2D flow.
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solution will be convergent if o, <3O(O.5)3 =3.75. Finally the relationship between the

parameter £ and ”th is shown in Figure 22. The dependence is also quadratic for large values

14 yLI
Pl ?

of £ (small values of p, < p,) and cubic for small values of &= and the convergence

condition changes for different values of p, .

If we compute || using a Gaussian two point correlation function, equation (53), we
can see the large impact of this correlation function's shape on the convergence of the

perturbation scheme. Figure 23 shows the dependence of ||h,|| on p,. A fitted relationship to

powers of pL does not seem suitable except at the limits p, -0 and p, >1 where such fitting

follows a trend (65) with » integer. Figure 23 shows a complex dependence of ||| on the length

parameters in the transition region p, =0.05< p, <1.0=p_,. For the limiting case p, <0.05,

the following convergence relationships are found

Jal __ 1 (1Y
=005 Al__1 f1 (682)
Py o, 145000( pr
2
p,=1.0 M:-l_ 1 (68b)

p,=50 M=L 1 (68¢)

Notice that convergence occurs for much larger values of o, than for the exponential case,

while keeping all the other parameters constant. For a Gaussian two point correlation function,

large values of the anisotropy ratio and/or vertical gradients will render a scheme with greater

convergence bounds than for the exponential case. For the case p, >1, the dependence is again
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3
cubic, e.g., for p, =1.0, %:2‘—0(%) , with p, >1. Figure 24 shows the dependence of ”hl " on

the parameter & for different values of p, .
Further analysis for higher head corrections should be performed before the dependence

of each one of the terms 4, i, &, ... on the parameters p,, p,, and & can be fully assessed.

However, the preliminary results for % support the findings of numerical Monte Carlo
techniques, where it has been found that Gaussian two point correlation functions converge faster
than the exponential model, e.g., Hassan et al. (1998). It also reinforces the idea that

perturbation schemes for stochastic flow should rely on the gradient of the log conductivity
fluctuation for their expansion. oy, is the small parameter needed in the perturbation analysis.
However the spatial pattern of the two point correlation is not captured by its value at the
maximum point, oy, . Additional computations are required to improve knowledge of the 'shape’
effect on convergence. Hassan et al. (1998) have also analyzed fractal conductivity fluctuation
distributions and have found that convergence is difficult to obtain for that case. The effect of

boundary conditions in two dimensional flow will be presented at a later date.

Since the perturbation expansion for the head and velocity is generally consistent (Deng
and Cushman, 1995; Hsu et al., 1996) (that is, terms of higher order 0(0'}) have been computed

and found to be of smaller magnitude as the order increases for parameter values ranging within
values of practical interest), some of the conclusions drawn in this paper for the two dimensional
case have been based on such consistency and computation of higher order will be performed in
the future to further test the outcome of the present research. This does not constitute a proof of
convergence but, as pointed out in the literature of perturbation methods, one should be satisfied

if the expansion is consistent as far as we have proceeded (Hinch, 1990). For the one
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Figure 22. Dependence of |44, on the parameter & = 2—2 for exponential log conductivity two
point correlation function, 2D flow.
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Figure 23. Dependence of ||, on the parameter p, for Gaussian log conductivity two point

correlation function, 2D flow.
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dimensional case this consistency is clear, and it is expected that for the two-dimensional case

terms of higher order will reinforce these findings. There are significant differences in
convergence between one- and two-dimensional flow. Convergence limits for o, in two
dimensions are greater than those for one dimension. The literature (e.g., Mizell et al. (1982))

suggest convergence for the three dimensional case should be close to the criterion for the two

dimensional case. For instance, observe the slopes of Fig. 2 of Mizell et al. (1982).

6.3. Summary

When constructing a macroscale model of the flow field from small scale data (the
upscaling problem) various length scales naturally appear in the analysis. We have taken a hard
look at this issue from a stochastic perturbation perspective. The goal was to provide a rigorous
setting for developing upscaled models.

When looking at steady flow in a heterogeneous medium the log-conductivity appears
naturally. Often the log-conductivity is represented by the sum of an average plus a stochastic

fluctuation. And to make the problem tractable, the log-conductivity fluctuation, f, about the

mean log-conductivity, In K, is assumed to have finite variance, 0'} . Historically, perturbation

schemes have involved the assumption that 0'} <1. We have shown that o, may not be the
most judicious choice of perturbation parameters for steady flow. Instead, we have examined the
variance of the gradient of the conductivity fluctuation, aéf , 1s a more appropriate choice. By

solving the problem with this parameter and studying the solution, we have found an even more

appropriate parameter.
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7.  The Significance of Porosity Variability to Chemical Transport
7.1. Introduction

It is well known that heterogeneity in natural porous formations controls the flow of
liquids and spreading of contaminants in the subsurface. This heterogeneity leads to a
nonhomogeneous velocity field that exhibits excitements or fluctuations on many scales. Much
of the physical heterogeneity of geologic formations is manifest in the hydraulic conductivity
and to a lesser extent in the medium porosity. It is known that conductivity may vary in space by
3-4 orders of magnitude, whereas the porosity changes by at most 1 order of magnitude.
Consequently, studies usually regard the conductivity variability as the main factor controlling
flow and transport processes in heterogeneous media, and consider the porosity as a deterministic
constant. The effect of the spatial variability of the medium porosity has been studied to a small
extent as compared to the conductivity variability. Lin (1997) considered transport in porous
media with variable porosity but constant volumetric seepage flow rate. He reported that
transport predictions using an average porosity are within 15% of those using a linear or slightly
nonlinear porosity function, but the discrepancy between the two cases becomes very substantial
when the porosity variability is strongly nonlinear. Although this disregards the conductivity
variability, it does show the importance of porosity. Shvidler (1985, 1993) studied purely
convective transport of nonreactive solutes in porous media with random porosity and
conductivity. However, he did not report on the significance of assuming a random porosity
rather than a deterministic porosity. Warren and Skiba (1964) and Naff (1978) considered the
variability in the porosity field and found it secondary relative to the effect of the conductivity
variability. However, these authors did not allow the porosity to be correlated to the

conductivity field which is to be expected in natural porous media. They also did not study its

132

M IR A A SN £ G5~ 2 RN S L T R A A RS SO M A= SRS SN o e MM i L O " NN fhg G A S R AR A




effect when combined with a random reactivity field. It should be mentioned that these aspects,
which we try to investigate here, were outside the scope of those studies. To the authors
knowledge, no one has studied the effect of correlations between geochemistry, porosity, and
conductivity.

In this study we use the Monte Carlo method to simulate flow and transport in random
conductivity, porosity, and geochemistry fields. The purpose is to investigate the effect of
porosity variability on contaminant transport in heterogeneous porous media. Conductivity,
porosity, and reactivity fields are generated from fractional Brownian motion (fBm) and
exponential distributions. In some cases we allow cross correlation between these fields. The
flow problem is solved over a two-dimensional horizontal cross section using a block-centered
finite difference scheme. The transport equation is solved by using a particle-tracking, random-
walk method. The solution of the transport equation is then averaged over sufficiently large
number of realizations to obtain the mean concentration. Results are presented in terms of
concentration contours and spatial moments of the mean plume. The nonlocal stochastic
transport theory of Deng et al. (1993) for the conservative case is modified to include a random
porosity that may be correlated to the conductivity, and the perturbation results are compared to

the case of deterministic porosity.

7.2. Flow and Transport Simulations with Spatially Varying Porosity

Measurements of horizontal distributions of a variety of soil properties, mineral deposits
and other environmental data indicate that they often have fractal character with statisstics
similar to a fBm (Burrough 1981; Turcotte, 1985 as quoted by Hewett, 1986). Hewett (1986)
considered a sequence of 2189 porosity values taken at intervals of 0.5 feet (0.3048 m) from a

porosity log in a well. The porosity varies between a minimum of 0.05 to a maximum of ~0.6.
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The rescaled range analysis applied to this sequence revealed a fractal character in the vertical
porosity distribution with H =0.85, where H is the so-called Hurst exponent. Hewett also
argued that in the absence of adequate information about the areal (two-dimensional horizontal)
distribution of properties, the value of H determined from well logs also applies to the areal
distribution. This may be justified by recognizing that the statistics of the spatial distribution of
sediments are determined by the statistics of the processes which formed them and that these
processes acted simultaneously over large area influenced by the same changes in weather and
climate (Hewett, 1986). It should be recognized that the two-dimensional fBm distribution of a
property has a fractal dimension D, which is related to the Hurst exponent D=3-H .

In the light of the above discussion, although the variation of porosity is much smaller
than that of the conductivity, the coupled effect of porosity, conductivity and reactivity may be
significant. Therefore it is important to investigate the influence of this variability on the
transport and spreading of contaminants in such media. Although the correlation between
porosity and conductivity has not yet been established by field measurements, one may expect
that some degree of correlation exist in certain geologic media. For example, Archie (1950)
suggested a positive correlation between the effective porosity and conductivity. Also, Doyen
(1988) found a positive correlation between porosity and conductivity for a certain type of
sandstone using laboratory measurements and an empirical formula based on the pore skeleton.
Gelhar et al. (1992) compiled conductivity, porosity, and dispersivity data from 59 different field
sites. Among these data, 28 porosity-conductivity pairs could be analyzed. A simple correlation
analysis indicates a correlation coefficient of —0.259. Removing the lowest four porosity values,
which seemed significantly different than the rest of the 28 pairs, and analyzing the remaining

pairs yields a coefficient of —0.539. Though not very strong, this empirical evidence show that
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porosity could be correlated to the conductivity. Since the type of correlation is not clearly
identified in the field, we examine both cases in this study. The scope of this study may be of
theoretical interest with the lack of field data needed to support any of the correlation models.
However, it indicates the need to consider the porosity variability and its correlation to the
conductivity in a more elaborate manner both theoretically and in field studies.

Consider the transport of a tracer under steady groundwater flow in a two-dimensional
horizontal cross section. The conductivity field is assumed to obey fBm or exponential statistics.
In each case, a spectral method (Voss, 1988) based on the fast Fourier transform (FFT) is used to
generate random realizations of the conductivity field. The method uses the spectral density in
conjunction with a random number generator to create a field in real space having the statistics of
the desired distribution. For a fBm process we use the band-pass-filtered spectrum (Hassan et

al., 1997):

03(D-3)

E2P-6 _ kzo-s:l ;32D

(69)

‘min

70)=17

where fis the fluctuating log-conductivity, In K (x)=F + f(x) is the expected value of the log-
conductivity field, a} is the log-conductivity variance, D is the fractal dimension of the two-

dimensional distribution which has a value between 2 and 3, k_, is the upper cutoff wave
number which is set proportional to the inverse of the measurements spacing or the grid size, and

k., is the lower cutoff number that is proportional to the inverse of the domain size. If an

min

ufa

isotropic exponential covariance of the form ff (u)=a}e' is used, the two-dimensional

spectrum (Mantoglou and Wilson, 1982) is
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—_ 0,22‘2
k)= S 70
1 (k) (1 77 (70)

where u is the spatial lag at which the correlation is estimated and A is the integral scale. For
more details regarding the properties of fBm and the random field generator used here, the reader
is referred to Hassan et al. (1997).

Assuming that the porous medium is incompressible, the Darcy scale steady flow

equation is
V-q(x)=V-[K(x)Vé(x)]=0 (71)
where q(x) is the specific discharge vector and ¢(x) is the hydraulic head. The flow velocity

or V is computed using Darcy's law, V, =—~K/nd¢/0ox,, where n is the effective porosity. To
proceed in the analysis we first discuss the role of the porosity variability in the solution to the
flow and transport equations. Since the flow equation (71) is written in terms of the specific
discharge q and solved for the hydraulic head 4, the porosity variability does not affect the
solution of (71) for the head field. It only plays a role in computing the velocity, sometimes
called the seepage velocity, which is obtained by dividing q by the porosity n. Therefore the
velocity field will be influenced by the variations in n. This influence depends on the covariance
structure of » and its cross correlation with the hydraulic conductivity. Unlike the flow equation,
‘the transport equations for both conservative and reactive chemicals explicitly involve n.

onC

=, +V(nCV)=V(nd-vC) (72)
%+?€+V-(nCV)=V-(nd-VC) (73)

With linear first-order kinetics, the exchange reactions can be described by
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%‘f:zc, (K,C-S5) (74)

where C is the liquid phase concentration, S is the sorbed concentration (defined as sorbed solute

mass per fluid volume), d is the velocity-dependent local dispersion tensor d, =¢,V, «; is the

local dispersivity, K, is the reaction rate coefficient, K, is the partition coefficient, which

controls the chemical exchange at the local scale, and ¥ is the magnitude of the velocity.

The solution of the flow and transport problems starts by solving the flow equation (71)
for the head field. The two-dimensional domain is divided into a uniform grid of square blocks
of length Ax, =Ax, =A. The values of the spatially varying parameters such as porosity,
conductivity, and distribution coefficient are assigned to the center of the block but are not
assumed uniform over the block. Interpolation is employed in the solution of the transport
equation as will be discussed later. We employ a five-point finite difference scheme to discretize
(71) over this uniform grid. The result of this discretization is a system of linear equations that
we directly solve by Gaussian elimination to obtain the head field. Darcy's law is then used to
compute the velocity components at midpoints between block centers. The interblock
conductivity-porosity ratio required to compute the seepage velocity is obtained by harmonic
averaging the two adjacent values of K/n. This ensures continuity of the head field and
conservation of mass across block boundaries (Aziz and Settari, 1979).

The transport equations in the conservative and reactive cases are solved by a random-
walk particle-tracking approach. This approach is computationally efficient because it does not
require a grid for the particle-tracking algorithm. It therefore requires little computer storage and
running time relative to finite element, finite difference, and method of characteristics models

(LaBolle et al., 1996). The reason being the fact that the random walk method does not require
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solving large systems of linear equations every time step as do the finite difference and the finite
element methods. Another advantage of the random walk method is that it does not suffer from
numerical dispersion. A disadvantage, however, is that the obtained concentration distribution is
not smooth and usually requires some smoothing. This problem is alleviated to some extent in
our Monte Carlo simulations by averaging the concentration over a large number of realizations.
We use 2500 particles in all simulations which were found sufficient for the mean concentration
and spatial moments we consider here. Any increase in the number of particles does not change
the results presented here. The initial areal solute pulse is represented by this number of particles

such that the total particles mass is equivalent to the injected mass,

f:m,. = InCde (75)

i=1 Q
where m; is the mass associated with particle 7, NP is the number of particles released, C, is the

concentration of the initial pulse and Q is the domain considered. Particles are then traced as
they move within the know velocity field. Therefore the solution of (72) or (73) for any time ¢

can be approximated as

nC(x,t)= 3 m[ X, (£).t|n[x-X,, ()] (76)

npeNP

where np=1,2,3,---,NP is the particle index, NP is the total number of particles used to

simulate the continuous solute mass, m(X,,p,t) is the mass associated with the npth particle that

is located at X, (¢) at time ¢ and was originally at X,,(0), and 7(x) is 2 mollifying function

that is used to smooth the concentration distribution. We choose 7 to be a box of size Ax, x Ax,

around each grid point and project all particles in this box to that grid point.
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For the conservative case, the random walk equation with the variability in the medium
porosity is (Tompson and Gelhar, 1990; Tompson, 1993; LaBolle et al., 1996)

1
X, =X, A4V (%,,0)+V-d[ V(x,,)]+=d[V(x,,)]- Vn+ At
5 +{V (o) -7V (5] L[V (5,)] v} -

+{2d[V(x.)]ad "z
where x is the particle location in space, At is the time step, and Z is a vector of normally
distributed random numbers of zero mean and unit variance. The spatial distribution of these
particles in the limit of small Af can be described by a probability density function that satisfies
a Fokker-Plank equation (Uffink, 1985; Kinzelbach and Ackerer, 1986) of a form similar to (72).
Here C, normalized between zero and one, plays the role of the probability density.

For the reactive transport, the reversible reaction process described by (74) can be
handled in a manner similar to Hassan et al. (1997). They extended the approach of Kinzelbach
(1988) and Valocchi and Quinodoz (1988) for kinetic reactions with deterministic rate
coefficients and one-dimensional simulations to the case of randomly distributed reaction rates
and two-dimensional heterogeneous flow field. However, all the previous studies were
performed assuming constant porosity. Chemical reactions are included in the particle tracking
approach by assigning a state variable to each particle which indicates whether the particle
resides in the aqueous or sorbed phase. At the beginning of each time step, particles in the liquid
phase are moved in space according to the random walk equation, whereas particles sorbed to the
solid matrix are not allowed to move for the entire time step, provided that it is sufficiently
small. At the end of the time step the state of each particle is adjusted by employing a Bernoulli
trial and using the probability of phase transition as given by Parzen (1962). For more details the

reader is referred to Kinzelbach (1988), Valocchi and Quinodoz (1988), and Hassan et al. (1997).
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To extend the above procedure to the case of random porosity, the only change that needs
to be made is in the random-walk equation used to advect and diffuse the particles in the aqueous
phase. Equation (77), which has a term that accounts for the porosity variability, is used. The
concentration distribution at any time can be obtained using (76).

An important factor when using (77) is the computation of the velocity and dispersion
coefficient at the particles location. As pointed out by LaBolle et al. (1996), the accuracy of the
random walk method in terms of local mass conservation has been traded for computational
efficiency by specifying velocity and dispersion coefficients as block constants in previous
studies (e.g., Tompson and Gelhar, 1990; Tompson, 1993). LaBolle et al.'s (1996) results show
that this approach does not conserve local mass and may significantly affect solute transport
prediction. They also showed that in interpolation scheme to obtain particle velocities is
necessary. Their results indicate that the particle velocity in the advective term is not sensitive to

the interpolation scheme used, but in the dispersion term

Table 2. Input Parameters

Parameter Value

Fractal dimension of f D 2.2

Upper cutoff Fomax 2n

Lower cutoff kin 27/128

<In K> F 1.0

Initial concentration mass M 4.2 Kg.

Initial concentration box 6.0 x2.0 m*

Initial source location (x1, x2) (0.0, 0.0) m
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the velocity interpolation technique may affect the results. Schemes that employ bilinear
interpolation for velocities in the dispersion term conserve local mass and disagree with schemes
that use block-constant velocities. Consistent with these results our previous simulations
(Hassan et al.,, 1997) use bilinear interpolation for the velocity in both the advection and
dispersion terms of the random walk equation. We therefore use the same interpolation scheme
in this study to compute the particles velocities from the values obtained at the computational
nodes.

Monte Carlo simulations are used by repetitively solving the flow and transport equations
for a large number of conductivity, porosity, and reactivity realizations. Ensemble averaging is
then used to obtain the mean concentration plume and its spatial moments as they evolve in time.
The accuracy of the simulations and the convergence of the ensemble statistics have been
established and are discussed by Hassan et al. (1997). In the following section we present the

effect of the porosity variability for conservative tracers and then study the combined effect of

random K, and .

7.3. Conservative Chemicals

Monte Carlo experiments are performed with and without randomness in the porosity
using the conductivity distributions presented in the previous section. Table 2 lists the flow and
transport parameters that are kept unchanged throughout.

For the purely convective case, two experiments are performed. In the first experiment
the porosity is generated from a fBm distribution, n(x)=n.e™"), where n,; is the geometric

mean of porosity, w(x) is a fBm process with variance o2, and r is a scaling factor that is used

to guarantee that the porosity range is physically plausible (e.g., within the rage found in
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Hewett's sequence) and to adjust the variance of the porosity logarithm, o7, . Thus, for » =0.35

and 02 =0.15, of,=0.018. The value of r is chosen based on a number of numerical

simulations in which the random porosity is generated from the fBm model. In each simulation,
the parameter » is chosen based on a number of numerical simulations in which the random
porosity is generated from the fBm model. In each simulation, the parameter 7 is adjusted such
that the porosity values in any single realization are physically reasonable and within the range
mentioned before. Table 3 summarizes the results of these simulations for 600 realizations in
each case. The ranges of X and » in Table 3 are defined using the lowest and highest values in

the 600 realizations. The conductivity is independently generated from a fBm distribution with
variance 0'} =0.15 such that it is about one order of magnitude higher than the variance in the

natural logarithm of the porosity. The domain size is chosen as 64 m x 40 m with the longer side
aligned along the mean flow direction. The grid size is taken as 0.5 m, which proved to be
sufficient for the local and global mass balance (Hassan et al., 1997). The mean concentration
obtained with spatially varying porosity and conductivity is compared to the mean concentration
obtained by varying conductivity with fixed porosity. n(x)=n; =0.35.

Table 3. Porosity Range and Values of »

0'} A Range of K Range of r
0.15 1.0 0.55-12.5 0.21-0.62 0.37
0.5 1.0 0.13-37 0.22-0.64 0.22
1.0 1.0 0.5-124 0.24-0.59 0.13
0.15 5.0 0.23-24 0.17-0.60 0.3
0.5 5.0 0.03-117 0.19-0.67 0.15
1.0 5.0 0.02-659 0.21-0.65 0.10

Figure 25a shows the superimposed concentration contours for both cases plotted at 10,

25, 40, and 50 days after the tracer was released into the domain. There are small differences
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Figure 25a,b. Mean concentrations for purely convective transport with fBm conductivity and
porosity, and ¢} =0.15 and o, =0.018: (a) Monte Carlo simulation with spatially varying »

(solid) which is not correlated to K and with deterministic » (dashed), and (b) Monte Carlo
simulation with spatially varying n (solid) which is negatively correlated to X and with
deterministic n (dashed).
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between the two sets of concentration contours in this case. The spatial variability of » has little
effect on the plume dispersion when uncorrelated with X. However, in the second experiment

the result is different. Porosity is generated as before, but in addition it is also assumed to be
positively correlated to the conductivity field, n(x)=nGe'f(x), with 7=0.35, 07 =0.15 and

op,=0.018 as in the first experiment. The positive correlation between K and 7 is to be

expected since the coarse grained sediments such as sand and gravel tend to have higher
conductivity and effective porosity than fine sediments such as clays that have very small
effective porosity. This is also suggested by Archie (1950). Figure 25b compares the
concentration distributions for this case, to the one obtained with constant porosity. Clearly, the
variability of the porosity and its positive correlation to the hydraulic conductivity significantly
decrease the dispersion in the longitudinal direction. This result is more graphically illustrated

by comparing the mean-plume spatial moments. Define these spatial moments as

1 —
M;=— [ncCirx (78)

M, = ﬁ j ngCx? — M? (79)
5= (ﬁ [nsC (%, -0y de /M,.i’2 (80)
K=(5{1— [nC (%, -0’ dx] /M§ (81)

where M =] 2 nGde is the total mass of the solute, s is the skewness and x is the kurtosis.

Figure 26 shows the second longitudinal moments are significantly lower for »n positively

correlated with K, than they are for # uncorrelated with X or when 7 is a deterministic constant.
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Figure 26. Spatial moments for fBm conductivity and porosity; thick lines indicate convective-
dispersive transport, thin lines indicate purely convective transport.
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Also, the uncorrelated case yields higher longitudinal dispersion, but the same transverse
dispersion, as the case with » a deterministic constant. The significant decrease in dispersion
when 7 is positively correlated to X is due to the fact that the solution of the flow equation with
this type of correlation yields velocities with a smaller variance than when the porosity is
considered constant. This decreased velocity variance implies smaller velocity fluctuations,
which are the main factor driving dispersion and causing this decreased plume spreading.

Should the porosity be negatively correlated to the conductivity, the results would have been
reversed. This can be easily seen if one substitutes n=ng,e” in Darcy's law to get,
V,= [K%G ]e(f ") (*%,) - Assuming a constant head gradient along the x, direction, J, and using a

first-order analysis yield the variance of the velocity fluctuations as

] [ A W
o: —{J b (ﬂ+—2fW+WW)+(£I_J —2J5,-1(f—w)5f—l ®

where ¢’ is the head fluctuation. The positive correlation between f and w leads to lower
velocity variance and vice versa. From Fig. 26 it can also be seen that the skewness of the mean
plume is significantly affected by the porosity variability and its correlation to X. When # is
positively correlated to X, the skewness almost vanishes. The kurtosis is slightly affected by the
porosity variability.

The same two experiments are performed for the convective-dispersive case. The
longitudinal and transverse horizontal dispersivities are taken as 0.5 and 0.05 m, respectively.
These values are chosen in the upper range of values as determined by Klotz et al. (1980). The
results are presented in terms of the spatial moments as shown in Fig. 26 with the thick lines. As
for the purely convective case, the second longitudinal moment and skewness (corresponding to

the correlated case) significantly differ from the other two cases. The longitudinal moments with
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random uncorrelated porosity and conductivity start to deviate from the deterministic porosity
case only at large times. It is also clear from Fig. 26 that though smaller than the purely
convective transport, the influence of the porosity variability in the convective-dispersive case is

significant.
These experiments are based on a 1 order of magnitude difference between 0'} and o}, .

We repeat the same experiments with 2 orders of magnitude difference between the two
variances. The results of this case, shown in the right panels of Figure _ , also reveal the
importance of porosity variability when correlated to the conductivity variability. As expected,
the effect is less than the previous case when there is only 1 order of magnitude difference
between the variances. However, even in this current case, the second moments for the
correlated case at 50 days are ~20-25% smaller than the deterministic porosity case.

Figure 27 is similar to Fig. 26, except the conductivity is exponential with integral scale,
A=3.0m. The simulation domain is ~21A x 13A and the grid resolution is kept at 6 points per
integral scale. The same conclusions can be drawn from Fig. 27 as Fig. 26, but with smaller
moments and skewness. Since the case of random » uncorrelated to the conductivity has little
effect on the plume evolution as compared to the correlated case, we restrict out attention to the
latter case in what follows.

We study the effect of porosity with different »— K correlation models. Perfect positive

and negative correlations are considered as well as imperfect correlations. Four correlation

models are studied in Fig. 28. These models are a perfect positive correlation, n(x) = nGe'f(‘), a

ositive correlation with noise, n(x)=n e?®) +¢&, a perfect negative correlation,
p G p g

n(x)= nGe"'f(’) , and a negative correlation with noise, n(x)= nGe"'f(") + &, where ¢ is a random
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Figure 27. Same as Figure 26 but for the exponential model
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Figure 28. Spatial moments for conservative transport in fBm and exponential conductivity
distributions using different »— K correlation models.
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number uniformly distributed between —0.05 and 0.05. For 0'; =1.0 and r = 0.1, the variance of

the porosity logarithm, o, , is 0.01 in the perfect correlation cases and is about 0.017 in the
imperfect correlation cases. The results of Fig. 28 indicate that the perfect and imperfect
correlations yield the same moments except for minor differences in the plume skewness and
kurtosis, especially with the fractal conductivity distribution. Therefore adding a noise to the
perfect correlation models does not significantly alter the results. The second transverse moment
is least influenced by the porosity variability and its correlation with the conductivity. As
alluded to earlier, the negative correlation models increase dispersion in the longitudinal
direction.

As reported by Hewett (1986), porosity variability in geologic media exhibit long range
correlations. We investigate the effect of the porosity integral scale A, relative to the
conductivity integral scale A, =A. Conductivity values are generated from the exponential

distribution with integral scale 1,. The same seed for the random number generator is used to

generate the porosity with correlation scale A,. The correlation structure between » and X is
maintained and the porosity correlation scale is allowed to be different from that of the

conductivity. Figure 29 compares two deterministic porosity cases, 1, =1.0 and 5.0 m and

three random cases with positive correlation to the conductivity, (4, =4,=1.0m),

(A% =1.0m, 4, =5.0m) and (4, =5.0m, 4,=1.0m). Changing 4, only slightly affects the
skewness of the plume. The longitudinal second moment is most influenced by the conductivity
integral scale.

The results presented for the conservative tracer indicate that porosity variability when

correlated to the conductivity significantly affects the plume dispersion, especially in the
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longitudinal direction. The effect is more significant for the case of mildly heterogeneous porous

media with porosity variance ~1 order of magnitude smaller than 0'} , such as encountered at

Cape Cod where o} =024 (Hess et al, 1992), and the Borden experiment, o =0.172
(Woodbury and Sudicky, 1991). These two sites are mildly heterogeneous, and if porosity
variations are considered with variance on the order of 0.1 0'} , the simulation results of these

sites can significantly differ from previous simulations with constant porosity.

7.4. Reactive Chemicals
Here we explore the interplay between randomness in the porosity and reactivity fields
when they are correlated to the conductivity field. Our aim is to examine the importance of the

randomness in the medium porosity relative to the randomness in the distribution coefficients,

K,. For simplicity we assume that K, is negatively correlated to the conductivity through

K,= Kfe("”‘f ), with K, a deterministic constant. The parameter 7, is used to control the
variance of InKX,. The porosity is assumed to be positively correlated to the conductivity with

ng =0.35. Higher values of f (x) imply higher porosity values and lower values of K,. This

means that porosity and the distribution coefficient are likely to be negatively correlated. This
assumption is realistic based on Karickhoff et al. (1979) who found a strong correlation between
K, and the organic carbon content of the sediments. We surmise this content increases as the

porosity of the sediments decreases and vice versa. Clay deposits, for instance, have a small
porosity but a very high organic carbon content and therefore provide a rich sorptive

environment for many chemicals passing through the system.

151




We consider the four cases: (1) K, and » both deterministic constant, (2) K, random and

n deterministic constant, (3) K, deterministic content and » random, and (4) both K, and n
random. Conductivity is generated from fBm and exponential models. Local scale dispersion is
considered as before. In the first set of experiments the geometric mean of K, and the
parameter 7, are set to 1.0 yielding oy, =07 =1.0, the porosity variance is o7, =0.01, and
the reaction rate K, is 0.1. Again, the values of the porosity are checked and found to be within
the range found in Hewett's sequence. Figure 30 displays the spatial moments for this case using
both heterogeneity models. As is apparent, the second longitudinal moment increases with X,
random and » deterministic and decreases but to a lesser extent for random » and deterministic

K,. When both are random, the second longitudinal moment is closer to that with only X

random. The second transverse moment exhibits the same behavior, but the skewness and

kurtosis are slightly affected by the randomness in the two parameters. It should, however, be

remembered that the variance in In» is 2 orders of magnitude smaller than InK,. In Figure 31

the same set of experiments is repeated with the only difference being the value of K¢S, which is

0.2. In this case the plume is slightly retarded (approximate retardation factor of 1.2), and

therefore the travel distance is larger than in Figure 30 where the retardation factor is ~2.0. The
results of Figure 31 show that K, and » have equal and opposite effects on the plume's second
moment. When both variabilities are considered, the moment is no different than when both
parameters are deterministic constant. When K is large and the plume is significantly retarded,

K, variability is more important than that of n. This is due to the fact that the plume has not

traveled far enough into the domain to sufficiently experience the porosity variability. Because

porosity variability is much smaller than that of the conductivity, the plume has to travel many
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integral scales of the porosity before it is affected. Also, because o}, K, = 10007, , the effect of

K, is more significant for such short travel distances. On the other hand, when KS =0.2, the
plume retardation is smaller, and the traveled distance is larger. In this case the plume has
experienced more of the porosity heterogeneity so that its effect is equivalent to that of K,

which has a much larger variance.

When the exchange reactions between the liquid phase and the solid matrix are fast, the
effect of K, variability is more significant (Hu et al., 1995). We show in Figure 32 the same set
of experiments as in Figure 31, but with a much faster reaction rate, X, =10. Although the

plume has the same K as in Figure 31, the effect of K, variability is more apparent than that of

the porosity, especially for the second longitudinal moment. This, however, agrees with the

findings of Hu et al. (1995) that fast reactions enhance the effect of the randomness in the

distribution coefficient, X,. Figure 32 also indicates that the combined effect of the variability
in K, and n yields a result significantly different from that when only one field is random. It is
close to that of deterministic K, and n. Although the In» variance in these cases was taken 2
orders of magnitude smaller than the variance in In K, the effect of the porosity variability
seems significant.

We consider in Figure 33 a set of experiments with oy, =op,=0.01, o} =1.0,
K§ =1.0,and K, =0.1. Figure 33 shows that the randomness in the porosity field affects all

moments much more than does that of X,. However, the overall effect of K, and # on the

second transverse moment is small. Thus considering the variability in one parameter alone may
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overestimate or underestimate the moments. The combined effect of the random parameters may
lead to a completely different result than if the randomness in one parameter alone is considered.
These results indicate dispersion is markedly affected by the porosity variability,
especially in the longitudinal direction. Therefore the porosity should be considered as a random
space variable in the analysis of flow and transport problems in such media. Thus perturbation
theories should have » random. To this end, we extend Deng et al.'s (1993) stochastic transport

theory to include the variability in the medium porosity.

7.5. Nonlocal Conservative Transport

We start with Darcy's law at local scale

_x
q=-KL (83)

i
where g; is the specific discharge (flow per unit cross-sectional area) component in x; direction.
Following the lead of Deng et al. (1993), it is assumed that a conservative tracer is transported by
advection and dispersion under steady, incompressible groundwater flow in a two-dimensional
nondeformable porous medium of random conductivity and porosity. The Darcy scale transport

equation is

o(q,C
nQQ;M_i d,.j—a£ =0 (84)
o ov, ox| 'ox,

I

where d;; is a Darcy scale (local scale) dispersion tensor defined as

dy=d, =a.q
d, =dy, =ayq
dy =dy; =apq
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Figure 29. Spatial moments for conservative transport with exponential conductivity using
different correlations scales for porosity and conductivity.
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Figure 30. Spatial moments for reactive transport with fBm and exponential conductivity, n and
K, fields with X, =0.1 and K¢ =1.0.
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Figure 31. Same as Figure 30 but with K5 =0.2.
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Figure 32. Same as Figure 31 but with X, =10.0.
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Figure 33. Spatial moments for reactive transport in fBm and exponential conductivity, n and
K, fields with X, =0.1, K =1.0,and o}, =op, =0.01.
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where d;=0 for i#j, and o, a and a are the so-called local scale longitudinal,
transverse-horizontal and transverse-vertical dispersivities, respectively. It is also assumed that
the coordinate (Eulerian) system is aligned so that the steady mean flow is in x, direction,
g, =const, and g, =g, =0. In addition, the hydraulic conductivity is assumed to be a stationary

random field with known covariance structure. It is clear that the randomness in the porosity

field affects the transport equation. Decomposing the spatially varying parameters in the

transport equation into means and fluctuations about the means, n=n+n, ¢,=g,+¢q, and

C =C +c, one can write (84) as

_ \98(C+c) o ,_ _ &*(C+c)
(7 +n)T+5x7(q,.+q,.)(C+c)—di—axi2—=O (85)
which upon taking expectations becomes
— — - S
.ﬁ_£+q]£_di6f:_6qic_6nc (86)
ot ox; Ox; ox, Ot

I} 1

with the mean-removed equation

S0 -oc & _onc dgc 0C one_ oC_oge

—4g ——d. —_—g. — 87
o Ve e, o o, o o Yok o @7
Taking the space Fourier and the time Laplace transforms of (86) and (87)
A(@C® -G, )+ ikg,C* +dgC =~ dge_onc| (88)
o ox, ot
7wc® )+ ikgie” +djtes =| 2. 04 _,0C one | oC _dgc (89)
ot o o ot ox;, o,

In driving (89) we assumed that c(x, 0) =0. If we define the deterministic function B,

B (k,0) =[ a7 +ikg, +d 2]
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then (88) and (89) become

C° =B°AC, - B° |:_6q,.c _%] ©0)

ox, ot
ot =g | 2, 2 O e OC Oae ©1)

o ox ot ot Ox; Ox
Take inverse Fourier and Laplace transforms of (91) to obtain
C oC 08(gc) ogc @ e
C(X,f):—B*x’ n%_l_q’_ic_'__*_ (q'c)_aqzc+ (nc)_anc (92)
Lo o oy o, a o

Multiply the above equation by g, (x) , take expectations and neglect triplet flux terms to yield
— ’ —————~aC ————8C(y,z
cq;(x,t)= —_[ I[B(x—y,t—r) q;(x)g, (y)g(y,r) +q; (x)n(y)#:ldydr (93)
0 R? i
Similarly,

a(x,t) = —] I|:B (x-y,t-7)n(x)g; (y)gyii(y,r) + n(x)n(y)%}dydt (%4)

o R?

It is clear that these two equations exhibit nonlocality in both space and time. Taking the space-

Fourier and the time-Laplace transforms of (93) and (94), assuming a.q_j, n_q,., and nn are

stationary yields
3
_— 1 e 0% = =, A 0% _
gy =5 (i%C°) B° %, g4, |+(aC° = C, ) B * 4,1 (95)
— 1 \? — = — A =
cn =—(— [z‘k,.C"(B" % nq,)+(a)C"—C0)(B” * nn)] (96)
27 )

Substituting (95) and (96) into (90)
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3
C° = B’fiC, + B’ (L) [w((mf" —é’o)(Bo *, n_n—)
27
+ikC° (B" * fq")) +ik, ((af" - éo)(B" . cf_n) ©o7)
+ik,C, (B" * ﬁ))

Rearranging the above equation gives the final solution for the mean concentration as

3 — = = -
C° = {B"'l +(%J (k,.kj (B" * E)—%kia)(B" * q,.n)—(o2 (B" * nn))}
(98)

bt

This equation can be solved exactly in Fourier-Laplace space, and subsequently inverted to real
space to yield the mean concentrations for random conductivity and porosity. If the porosity is
considered deterministic, (98) reduces to Deng et al.'s (1993) result (equation (90)). Following
this latter study, the FFT is used to obtain numerical estimates of the mean concentrations in (38)
and hence the mean-plume spatial moments. Figure 34 compares the second spatial moments for
purely convective and convective dispersive transport cases obtained with random » positively
correlated to the conductivity, to the case of deterministic n. The effect of porosity variability is
very significant for the longitudinal moment and increases with time. The transverse moment is
slightly affected by the porosity variability which agrees with our Monte Carlo results presented
in the previous section.

These findings indicate the flow and transport analysis that is based on the assumption
that the porosity is a deterministic constant, may be misleading and can cause large errors. It
should be mentioned that the results presented herein cannot be generalized before a detailed

study using different covariance structures for the porosity variability and a sensitivity analysis
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Figure 34. Spatial moments for exponential conductivity and porosity; thick lines indicate
convective-dispersive transport, thin lines indicate purely convective transport.
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are performed. We present here the initial results that indicate the importance of porosity

variability and that its effect may be significant and continuously increasing with time.

7.6. Conclusions

The purpose of this paper was to address the significance of the spatial variability in the
porous mediums porosity to flow and transport in heterogeneous systems. Numerical
simulations were performed using the Monte Carlo method to solve the flow and transport
equations over heterogeneous conductivity, porosity, and reactivity fields generated with a
fractional Brownian or exponential spectrum. The realized concentrations are averaged to obtain
the mean concentration plume and results are presented in terms of concentration contours and/or
spatial moments. It was found that the spatial variability of the medium porosity has a
significant influence on the plume evolution when it is correlated to the conductivity field. To
the authors knowledge, this is the first observation of such an effect. Positive correlation leads to
decreased dispersion as a result of smaller variance in the fluctuating velocity, especially in the
longitudinal direction. Transverse dispersion is slightly affected by the porosity variability.
Negative correlation is shown to increase the plume spreading. The porosity variability has the
same effect in both purely convective and convective-dispersive models, but the purely
convective case is influenced more by the porosity variability than the convective-dispersive
case. For reactive transport in physically and chemically heterogeneous media, the porosity
variability, when added to the chemical heterogeneity, significantly affects the results. The

importance of the randomness in the porosity and the distribution coefficient depends to a great
extent on the variances of Inn and InK,. With K, more heterogeneous than n, porosity
variability has an equal and opposite effect on the plume dispersion as the distribution coefficient

for slow exchange reactions. When the reactions are fast, the K, variability affects dispersion
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more than does that of the porosity. When # is as heterogeneous as K, the effect of porosity
variability dominates the plume spreading. The numerical results suggest that it is important to
consider the spatial variability in the porosity of a porous medium and analyze the role its
covariance structure plays in flow and transport processes in such media. A first step in this
regard was taken where the nonlocal stochastic transport theory developed by Deng et al. (1993)
was modified to account for the porosity spatial variability and its cross correlation to the
hydraulic conductivity. Results of the modified stochastic theory supported the Monte Carlo
results and showed that longitudinal dispersion is significantly affected by the porosity
variability with the effect increasing as time increases. The importance of these findings and the
implications of the study for dispersion in real aquifers can be assessed when the cross

correlation between porosity and conductivity is established.
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8.  Higher-Order Eulerian Solutions to the Stochastic Chemical Transport Problem
8.1. Introduction

It is generally recognized that transport of conservative chemicals in the subsurface is to a
large extent dictated by the velocity profile of the water in which the chemical is dissolved. The
velocity of the water, in turn, is governed by natural geologic heterogeneity and boundary
conditions. Over the last two decades many stochastic approaches have been devised to study
this problem. There are essentially two reference frames adopted, eulerian and lagrangian (see,
Gelhar 1993; Cushman, 1990; 1997; Dagan, 1989). In the eulerian frame one fixes oneself in
space and watches the contaminant pass by. This is in contrast to the lagrangian frame wherein
the observer views the world while riding a contaminant particle. Most eulerian methods are a
modification of that set out by Gelhar and Axness (1983), and most lagrangian methods are
extensions of Simmons’ (1982) and Taylor’s (1921) work. The problem with classical eulerian
perturbation schemes is closure and the degree of accuracy of the closure (Dagan and Neuman,
1991; Hassan et al., 1998). It is generally known that eulerian closure schemes underestimate
higher-order moments (e.g., the forth-order eulerian moment for conservative tracers is 1/3 of
that in the lagrangian approach (Dagan and Neuman, 1991)). From a practical perspective the
eulerian approach can be used to study the effect of local-scale dispersion and nonlocal
macrodispersion. Further, the eulerian methods can be used to calculate not only the various
spatial moments, but also the mean concentration. The lagrangian approach on the other hand
can be used to calculate the spatial moments, and, with significant difficulty, the mean
concentration. In addition the influence of local dispersion on plume development is commonly
neglected in lagrangian method, which may lead to underestimation of the spatial moments,

especially in transverse directions (Cushman et al., 1996; Hu and Cushman, 1997), and further it
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may lead to serious errors in dilution (Kapoor and Gelhar, 1994 a,b). However, if analysis is
performed consistently, using either frame, results should be equivalent with the two approaches.
In this study we provide a recursive perturbation solution to the eulerian transport problem for a
conservative chemical in a random conductivity field. The method applied here overcomes the
closure weaknesses in classical eulerian approaches and provides a systematic closure approach
to any arbitrary order.

Recently second-order solutions have been developed to investigate the accuracy of the
first-order solution. Dagan (1994) developed a second-order correction for the second transverse
moment using the lagrangian approach in two dimensions. Although the transport closure was
second-order, the flow closure he employed was only first-order. His results suggested that the
second-order correction to the transport problem had little effect on the transverse moment.
Based on Dagan’s (1994) second-order correction to the transport problem and Deng and
Cushman’s (1995) second-order correction to the flow problem, Hsu et al. (1996) investigated
the combined effects of second-order corrections to both flow and transport on the second
transverse moment for a simplified case in two dimensions. Their results indicate the second-
order correction to the flow problem has a profound effect on transverse transport. These results,
however, are in stark contrast to the Monte Carlo results of Chin and Wang (1992) and Bellin et
al. (1992) wherein such an effect on transverse transport was not observed. Based on their

findings, Hsu et al. (1996) questioned the accuracy of the Monte Carlo simulations and suggested

these simulations may only be O(o%). Employing a classical eulerian perspective, Naff (1994)

developed consistent second-order corrections to both the flow and transport problems for a
special type of heterogeneity. His results suggested second-order corrections to both the flow

and transport problems may lead to a plume evolution with strongly non-Gaussian character at
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late time. He also showed that if the eulerian analysis is consistent with lagrangian, the fourth
moments obtained by eulerian and lagrangian methods are same.

In this study we would like to take advantage of the recursive perturbation method to

obtain the O(c) correction to the transport equation and apply Deng and Cushman’s (1995)

approach to get the O(a}) correction to the flow equation. These two corrections are combined

to investigate their influence on plume evolution. The results are then compared with those
obtained via a classical method (Deng et al., 1993) and Monte Carlo simulation (Hassan et al.,
1997). We begin by following Cushman and Hu (1997) and Deng and Cushman (1995), and

subsequently perform a detailed analysis of mean concentration.

8.2. The Closure Problem Induced by the Classical Eulerian Approach to Chemical Transport
Classically, a conservative chemical in a nondeformable porous medium of constant

porosity with constant local-scale dispersivities satisfies

2
HCEﬁC+V,.5C—d,.a(§
ot Ox. ox;

! ¥

=0 (99)

in an unbounded domain with diagonal local dispersion tensor. Geologic heterogeneity forces us

to consider the hydraulic conductivity to be a random space function, and this in turn implies that
both the Darcy velocity, V;, and solution concentration, C, are random space functions.

Following Gelhar and Axness’s [1983] pioneering work one now decomposes the concentration

and velocity into their means and fluctuations about the means:
C=C+c (1002)

V=V +v, (100b)

1
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For simplicity we assume V. =(V, 0,0) is constant, and then write the equations for the mean

I

concentration and its fluctuation as

— — - —
ﬁEEé’C_l_IZa"C_dio"Cz':_o"cv,. (101)
ot ox, ox; ox;
Fe=-|v, oC N dvec  dve (102)
ox, Ox; Ox

Several approaches can be followed to close (101) using (102) and the Green’s function for H.
Classically, this was done (Gelhar and Axness, 1983) with a spectral decomposition of a weakly
stationary process. Here, however, we follow Deng et al. (1993) using a more transparent
transform approach. With similar assumptions Deng et al.'s (1993) result reduces to Gelhar and
Axness's (1983).

Let G be the Green’s function for the deterministic operator # with G ¥ 0 as [x| > «

and initial data
HG =58(x,1) (103)

An implicit solution for ¢ is given by

’ oC(y,t') . ov,(y)e(y,r) av-(y)c(y,r')] ,
D=—[[Gx-y,t=t"v, i _2 dr' (104
c(x,£) OjRj (x—y,t r’){v(y) 2, + o o dydt'  (104)
with
G(x,t) = f[ exp [—(JC"—A‘;?‘—Q} (4nd t)™* (105)
k=1 k

To obtain the macroscale dispersive flux, ;j—c:(x, 1), multiply (104) by v;(x) and take expected

values to obtain
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c(x”)"f(x)=_]IG(x~y,t—t’) (X)v(Y)aC(y’) ov; (x)v (¥)e(3.r)

dr' (106
/] >, dydt’ (106)

If one next assumes the term involving the triplet correlation is small compared to that involving
the two-point correlation on RHS (106), and in addition if one assumes the velocity covariance is

weakly stationary, then one finally arrives at a convolution-Fickian macroscale flux

c(x,t)vj(x)=—'jj D,(x—y,t- t)Mdydt (107)

oR
where D;; has its obvious definition. If one further assumes the gradient of C varies slowly in

comparison to Dj; then one arrives at a quasi-Fickian flux:

), (X)~-D, (¢ )M (108)
with
D ()= j [ Dy (y.t 1) dyar' (109)

Either (107) or (108) may be used to close (101).

The reader should note a significant problem with (107) and (108): we do not, a priori,
know the error induced by neglecting the triplet flux. Dagan and Neuman (1991) and others
criticize the eulerian closure schemes presented. They argue that the truncated triplet term may
be of the same order as those retained and further that it will significantly influence the fourth
spatial moments. A numerical study by Hassan et al. (1998) shows that if In K''s variance is
small and InK''s correlation structure is chosen to be exponential, the neglected triplet term is
small in comparison to the retained terms. However, in the other cases, such as large variance

and/or power law InX correlation structure, this may not be true. In the next section we
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illustrate an alternative perturbation approach that does not rely on the balance for mean

concentration, and further does not require a closure scheme for the so-called "macro-scale

dispersive flux", cv;. That is, we believe there is no need to define a macroscale dispersive

flux, and in fact, such a definition clouds the picture of large scale transport.

8.3. A Systematic Real Space Closure Model for Chemical Transport

Again assume the validity of (99) locally, but do not decompose C into its mean and
fluctuation. The authors believe it is that decomposition that leads to the closure debate
associated the eulerian approach. Rather we decompose V; as before and introduce an infinite

series decomposition for C. Normally we set (Cushman and Hu, 1997)

C=>7C’ (110)
j=0
where C? satisfies the sure problem
HC’=0 (111)
subject to C° |’=0 =C,, where Cj is the initial data, and further assume
C’=0(c)) j=1 (112)

with (o, / V||)2 <1. For simplicity in exposition we further take /']~ O(1), so that our previous

assumption requires
ol <1 (113)
Equating terms of the same order in o, , we find the following recursive hierarchy in an infinite

spatial domain
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aC®

HC'= -V,
(114)
N-1
HCY =—v, o
with the initial condition C¥ , =0 (N=123;-).
=
Again letting G be the deterministic Green's function for H , we find
C°(x0) = [G(x—y,0)Cy(y)dy (115)
RJ
t 0 !
C'x0) == [ [6x-y,1-r 1) T ayar (116)
oR Yi
¢ N-1 1
c¥(x,f)=- j j G(x—y,t —t’)vi(y)%dt’ (117)
o R Yi

The system (115)-(117) is recursive and so a closed form solution for C N can be obtained in
terms of the initial data, the deterministic Green's function for H , and the stochastic velocity. It

is given for N =21 by

C"(x,0)=(-1)"

oo Y1 9G 5G
... G(X_Xl,t—t,) Il Xl_xl+l’tl_tl+l —(XN—XN+1,tN) (118)
6[ 6[ R:(A'[A) |:];l[ axje ( ) axz/

N
[H v, (Xl)} C,(x"dx! .- ds™dt - at™
I=1

In deriving (67) we have used the assumption -g% =0.
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From here we find the stochastic concentration to O(c) is

and its mean is

C(x,1) =

j G(x-y,0C, (y)dy+z(—1)

f ] I {o(x-xtr-)

k

Cxn)= [Gx-y:0Co(y)dy+ Y (1)

0 Rl(kﬂ)

]I [ {6&x-x",e-1)

xj,

+ Ay | OC
Za,(x lltl_tll):lak(xk_

_ga_G"(xz_xul tt_te+1):|_a_g_(xk_xk+l l‘k)

ﬁvﬂ (xl )} C, (x"“ )} dx'---dx*dt' ... dr*

Xk+l , tk)

H Vv (x )}C (X"”)} e dx®dt - drt
l—l

(119)

(120)

There are several important points to note in (120). First, to arrive at the mean concentration we

never need the mean balance law of the Gelhar and Axness's (1983) approach (we just use the

mean operator); secondly, we obtain the actual stochastic concentration so that given a

realization of the velocity field, one can use (119) in a Monte Carlo approach without solving the

CDE; third, we have included the effects of local dispersion; and fourth, the solution can be

implemented via fast Fourier Transform (FFT).
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8.4. Monte Carlo vs. Perturbation: Numerical Results

For comparison and to shed more light on the significance of flow and transport
corrections, we perform Monte Carlo simulations in two-dimensional horizontal domains and
compare ensemble mean concentrations and spatial moments from the two solutions. Monte
Carlo analysis is performed in a manner similar to Hassan et al. (1997, 1998). For completeness
we briefly review the numerical approach employed , and for more details the reader is referred
to Hassan et al. (1998).

Conductivity realizations are generated based on a Gaussian through an FFT-based
approach. A uniform mean head gradient is imposed on the domain along the x;-direction by
fixing the heads at the two boundaries normal to x;. The other two boundaries are assumed to be
impervious. The flow equation, subject to these boundary conditions, is solved via a finite
difference method which yields the head values at the grid points of the modeled domain.
Darcy’s law is then applied to obtain the pore velocities based on the generated conductivity, the
obtained head, and the assumed constant effective porosity. The transport equation is solved for
each individual realization using a random walk particle tracking approach discussed earlier.
The transport solutions are ensemble averaged to obtain the mean concentrations and the spatial
moments.

The FFT method developed by Deng et al. (1993), and subsequently elaborated on in
Deng and Cushman (1995) and Hu et al. (1995, 1997), is adapted here and used to obtain
numerical estimates of the mean concentrations given in Eq. (106). We compute the mean
concentrations and spatial moments using the deterministic solution, Cy, the first-order flow and

transport solution, Cpy, 13, the first-order flow and second-order transport, Cjy, ), the second-order
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flow and first-order transport solution, Cp, 13, the second-order flow and transport, Cfp, 23, and
the convolution Fickian solution, Cnr, of Deng et al. (1993).

Previous studies that deal with second-order solutions to the flow and transport problems
usually assume that the velocity distribution is Gaussian (e.g., Dagan, 1994; Deng and Cushman,
1995, 1998; Hsu et al., 1996), and as such the three-point velocity correlations are dropped from
the analysis. We present in this study the general solution that does not require the Gaussian
assumption. This leads to additional terms in the second-order solution. However, for simplicity

and to permit direct comparison between our results and previous studies we drop these terms in

our numerical computations. In our first case we set g7 = 0.4. Figure 35 shows four

comparisons of mean-concentration distributions. In each case, the Monte Carlo results (solid
contours) are superimposed on the theoretical solution (dashed-dotted contours) for two

dimensionless times. In the first panel of Fig. 35 we compare Monte Carlo results to the

deterministic solution, C,. Figure 35B compares Monte Carlo results to E[I,I]. The solution
with transport correction, 5[1 2] is presented in Fig. 35C, the solution with the corrections to the
flow, 5[2 1] is shown in Fig. 35D, and the correction to both flow and transport is in Fig. 35E.

For the purpose of comparison, the convolution Fickian result, C,, , is calculated and shown in
Fig. 35F. As can be seen from these comparisons, the deterministic solution significantly
underestimates the dispersion whereas the first-order solution leads to an increased dispersion as
compared to the Monte Carlo results. The convolution Fickian solution, on the other hand, leads
to a slightly more dispersed plume than the Monte Carlo results. The solution with transport
corrections gives the closest results to the Monte Carlo simulations. When the velocity
corrections are added, dispersion slightly changes in the longitudinal direction, but significantly

increases in the transverse direction. This is due to the significant increase of transverse velocity
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covariance, v,v, , resulting from the second-order correction to flow equation. However, the

second-order correction to flow will not significantly change E (Deng and Cushman, 1998).
These comparisons become more transparent using the spatial moments (Fig. 36). As expected,

the first spatial moment is not influenced by the order of the solution. The second longitudinal

moment shows that E[z 51 I8 consistent wit almost produces the Monte Carlo results. The first-

order solution, E[l 1] and the convolution Fickian solution lead to a higher second longitudinal

moment. This result is consistent with Hsu et al. (1996) and Bellin et al. (1992) where the
longitudinal second moment obtained using a Monte Carlo approach was significantly below the
predictions of first-order Lagrangian transport (advection only) theories. The second transverse
moment presented in Fig. 36 reveals a different picture. It indicates that the first-order and the

convolution Fickian solutions are the closest to the Monte Carlo results, whereas the second-

order solution, 5[2 2 leads to substantially higher moments. This result is also similar to the

findings of Hsu et al. (1996) whose second-order flow and advective transport solution give
significantly higher transverse moments than the Monte Carlo results. The Monte Carlo
simulations underestimate the second-order predictions of transverse moments to a greater extent
than do the first-order predictions (Hsu et al, 1996). The theoretical results for the skewness
show a pattern that is consistent with the Monte Carlo solution, though more negative. These
results also indicate that including the second-order flow correction reduces the magnitude of the
skewness, leading to closer results to the Monte Carlo simulations. Figure 37 is similar to Fig.
36, but with a log-conductivity variance of 1.0. Qualitatively, the results are similar to Fig. 36
and same conclusions can be drawn.

It should be noted that the above results are based on a specific form of the Gaussian covariance

function. Several previous studies of second-order corrections to flow and transport (Deng and
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Cushman, 1995; Dagan, 1994; Naff, 1994; Hsu et al., 1996) are also based on the Gaussian
covariance of log-conductivity. We next would like to investigate the influence of the second-
order corrections to spatial moments based on a different log-conductivity structure. The
conductivity model we choose here qualitatively behaves like the spectrum inferred from
measurements (Kapoor and Kitanidis, 1998). The two-dimensional version of the spectrum is

T 255 exp-£38) (121)

where £, is a characteristic length, which can be thought of as the correlation length. Figure 38

shows the spatial moments with for this log-conductivity structure and with &% of 1.0.

Comparing Fig. 38 with Fig. 37 we see no significant differences for the second moments.
However, the skewness results are different. Velocity corrections lead to a significant deviation
from Monte Carlo results. The plume is strongly negatively distributed at early time and
approaches the Monte Carlo results at late time.

It is important to note that our theoretical derivation does not assume any distribution for
the velocity field. We simplified the solution and dropped the three-point velocity correlation to
allow a direct comparison with the studies that have a Gaussian distribution assumption for the
triplet correlation terms (Hsu et al., 1996; Dagan, 1994; Naff, 1994). In a subsequent article we
intend to investigate the influence of this assumption on transport behavior. In this regard it was
shown in Bellin et al. (1992) that the velocity distribution is not necessarily Gaussian even if the
underlying conductivity distribution is. This is not a surprise since the transformation relating
the two is nonlinear.

The key question that arises from the previous results is why the solution with both flow

and transport corrections deviates more from Monte Carlo results than does the first-order
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solution, especially for the transverse moment. As mentioned earlier, the higher-order corrections
to the velocity covariance significantly increase transverse covariance, and slightly increase the
longitudinal. For example, Hsu et al. (1996) found that second-order flow corrections in two
dimensions increase longitudinal velocity variance by 8% whereas transverse velocity variance is
increased by 34%. Deng and Cushman (1995, 1998) reported even stronger effects for three-
dimension case. By increasing the transverse velocity variability through higher covariance
values, one would expect enhanced dispersion normal to mean flow direction. Numerical studies
also showed that the transverse covariance obtained through Monte Carlo is higher than that
predicted by first-order flow theories (Bellin et al., 1992; Chin and Wang, 1992; Hassan et al.,
1998). However, it can be seen from these studies that the deviations between Monte Carlo
results and the first-order predictions are not as large as predicted by the second-order theory.

For example, the Monte Carlo results of Hassan et al. (1998, Fig. 38) predict a transverse

velocity variance that is only 2% higher than the first-order prediction for 0'} = (.15 and about

14% higher for GJZ, = 0.95. In addition, the same study showed that the deviations of the first-

order prediction from the Monte Carlo solution diminish considerably after one conductivity

correlation length. In a similar study, Bellin et al. (1992, Fig. 39) reports a Monte Carlo estimate

of v,v,(0) that is about 10% higher than first-order prediction for o} = 0.8 and about 28%

higher for 0'} = 1.6. Therefore, it is clear that although the effects of second-order corrections to

the velocity covariance seem to be consistent with the fact the Monte Carlo predictions are
higher than the first-order results, these corrections increase the covariances to a much larger
extent than what is indicated by Monte Carlo simulations.

In order to clarify and elaborate on this aspect, we use our transport theory (both first-

and second-order) to predict mean-concentration spatial moments, but utilizing velocity
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covariances generated numerically by Monte Carlo simulations of the flow problem. The two-
dimensional velocity covariances are generated numerically for the Gaussian log-conductivity
distribution at the same two heterogeneity levels employed before. These covariances are used
in the transport solution instead of using the analytical velocity covariances. The results of this
case and the comparison with the Monte Carlo spatial moments are presented in Figure 39. The
results with the numerical velocity, labeled as C[MC, 1] and C[MC, 2], are for the first-order
transport model with numerical velocity covariance and the second-order transport model with
same covariances. It is clear that these new cases are very similar to the solutions without flow
corrections shown in Figures 36 and 37. The results in Figure 39 supports our argument that
second-order flow corrections contribute to the transverse velocity covariance. From these
results, one can conclude that either the second-order corrections are not sufficient, and even
higher corrections are needed. Or the Monte Carlo simulations are limited to an accuracy to

between first and second order. Future efforts should be devoted to explore the issue.

8.5. Summary
In this study we have presented systematic closures to the eulerian flow and transport problems

for conservative tracers in heterogeneous media. The transport solution is N™_order accurate in

o, , and it includes the effects of local-scale dispersion. General closed form expressions were

presented for the mean concentration to arbitrary order of o,. The solution combines the best

attributes of classical eulerian and lagrangian approaches to transport. A more detailed form of

mean concentration is derived to 03. The algorithm followed lays a path to general closure

schemes of arbitrary order, and overcomes the closure weakness of classical eulerian methods

(Dagan and Neuman, 1991). The analysis can be extended in a straight-
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Figure 35. Comparison between Monte Carlo solution (solid contours) and theoretical
predictions (dash-dotted contours) for (a) deterministic C, (b) first-order C, (c) first-order flow
and second-order transport C, (d) second-order flow and first-order transport C, (e) second-
order C, where o7 = 0.4, and (f) nonlocal prediction of C.
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Figure 37. Same as Figure 36 but for o7 =1.0.
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Figure 38. Same as Figure 37 but using the log conductivity spectrum of (53) instead of (51).

183




* £ 14 5 M %
am

14
1 :;"'
. &
¥ e
!-
= = .
o s s:
1
eh
i
1.
) L
3 5 16 15 M 1 s &M 8 2 48
Ity M

Figure 39. Comparison between Monte Carlo results and analytical moment solutions with
numerical velocity covariance.

184

y
B
]
it
1



forward fashion to handle linear reactions and to examine the concentration variance (dilution

problems).

Two spatial correlation structures of log hydraulic conductivity shown in (50) and (52)

were chosen for this study. The triplet velocity correlation is assumed to be zero. Based on

these assumptions we have the following conclusions:

1.

From the spatial moments in Figs. 36, 37 and 38, it appears Cyj,1j is comparable to Deng et
al's (1993) nonlocal theory. This shows the low-order method provided here is equivalent to
the nonlocal model.

Corrections to the transport equation do not significantly impact the second spatial moments.
Higher-order moments may be impacted but evaluating this impact is fraught with numerical
difficulties.

Corrections to flow equation may significantly affect the transport behavior. Second-order
corrections only significantly influence the second spatial moments in transverse directions,
not in longitudinal direction, which is consistent with previous studies (Hsu et al., 1996;
Dagan, 1994; Naff, 1994).

The skewness obtained by the Monte Carlo simulation is less negative than those obtained
via the perturbation methods. However, the influence of second-order correction to flow or
transport on skewness is not obvious, which may be attributed to the accuracy of the
numerical method applied in this study. In addition, the influence of corrections to skewness
also depends on the chosen conductivity structure.

The significant difference between the second transverse moments obtained through second-
order corrections and Monte Carlo simulation suggests that a more accurate Monte Carlo

simulator is needed or an analysis of the order of the Monte Carlo method. This point stems
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from the fact that transport solutions with velocity covariances generated via Monte Carlo

simulations agree very closely with transport solutions based on first-order flow models,

which in turn are close to Monte Carlo simulations.
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