

RECEIVED

MAY 01 2000

OSTI

PROJECT REPORT

Project Title: Theoretical Studies on Radiation-Induced Transformations in Nucleic Acid Bases

Project No.: DE-FG03-93ER61605

Award Amount: \$290,000

Project Period: 5/1993 - 5/1996

The work funded by the Department of Energy, Project No. DE-FG03-93ER61605, represents efforts in method development application studies in the area of *ab-initio* quantum chemistry. The following publications resulted:

- 1) H. Rostkowska, M.J. Nowak, L. Lapinski, M. Bretner, T. Kulikowski, A. Leś and L. Adamowicz, Infrared Spectra of 2-Thiocytosine and 5-Fluoro-2-Thiocytosine; Experimental and *Ab-Initio* Studies, *Spectrochim. Acta*, **49A**(4), 551 (1993).
- 2) H. Rostkowska, M.J. Nowak, L. Lapinski, M. Bretner, T. Kulikowski, A. Leś and L. Adamowicz, Theoretical and Matrix-Isolation Experimental Studies on 2-Thiocytosine and 5-Fluoro-2-Thiocytosine, *Biochimica et Biophysica Acta* **1172**, 239 (1993).
- 3) P. Piecuch, N. Oliphant and L. Adamowicz, A State-Selective Multireference Coupled-Cluster Theory Employing the Single-Reference Formalism, *J. Chem. Phys.* **99**(3), 1875 (1993).
- 4) Z. Slanina, A. Leś and L. Adamowicz, The Effects of Temperature on the Relative Stabilities of Five Complexes of 4-Hydroxypyridine and Water, *Thermochimica Acta* **224**, 13 (1993).
- 5) Z. Slanina, A. Leś and L. Adamowicz, Complexes of 2-Aminopyrimidine, 2-Hydroxypyrimidine and Their Tautomers With Water: Relative Thermodynamic Stabilities, *Thermochimica Acta* **228**, 1 (1993).
- 6) P.M. Kozlowski and L. Adamowicz, Equivalent Quantum Approach to Nuclei and Electrons in Molecules, *Chem. Rev.* **93**, 2007 (1993).
- 7) H. Vranken, J. Smets, G. Maes, L. Lapinski, M.J. Nowak, and L. Adamowicz, Infrared Spectra and Tautomerism of Isocytosine; An *Ab-Initio* and Matrix-Isolation Study, *Spectrochim. Acta*, **50A**(5), 875 (1994).
- 8) N.A. Oyler and L. Adamowicz, Electron Attachment to Uracil. Theoretical *Ab-Initio* Study, *J. Phys. Chem.* **97**, 11122 (1993).
- 9) A. Destexhe, J. Smets, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine or Isocytosine Tautomers 1. Pyridine and Pyrimidine Complexes with H₂O in Ar Matrices, *J. Phys. Chem.* **98**, 1506 (1994).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

- 10) L. Lapinski, M.J. Nowak, A. Leś and L. Adamowicz, *Ab Initio* Calculations of IR Spectra in Identification of Products of Matrix Isolation Photochemistry: Dewar Form of 4(3H)-Pyrimidinones, *J. Am. Chem. Soc.* **116**, 1461 (1994).
- 11) P. Piecuch and L. Adamowicz, State-Selective Multireference Coupled-Cluster Theory Employing the Single-Reference Formalism: Implementation and Application to the H₈ Model System, *J. Chem. Phys.* **100**(8), 1 (1994).
- 12) N.A. Oyler and L. Adamowicz, Theoretical *Ab-Initio* Calculations of the Electron Affinity of Thymine, *Chem. Phys. Lett.* **219**, 223 (1994).
- 13) A. Leś, L. Adamowicz, M.J. Nowak and L. Lapinski, Concerted Biprotic Tautomerism of 2-Hydroxypyridine, *J. Mol. Structure (Theochem.)* **312**, 157 (1994).
- 14) J. Smets, L. Adamowicz and G. Maes, Combined Matrix-Isolation FT-IR and *Ab-Initio* 6-31++G Study of H-bonding Complexes Between Water and Molecules Modeling Cytosine or Isocytosine, *J. Mol. Struct.* **322**, 113 (1994).
- 15) P. Piecuch and L. Adamowicz, Solving the Single-Reference Coupled-Cluster Equations Involving Highly Excited Clusters in Quasidegenerate Situations, *J. Chem. Phys.* **100**, 5857 (1994).
- 16) M.J. Nowak, A. Leś and L. Adamowicz, Application of *Ab-Initio* Quantum Mechanical Calculations to Assign Matrix-Isolation IR Spectra of Oxopyrimidines, in Trends in Physical Chemistry, published by the Council of Scientific Information, India, **4**, 137–168 (1994).
- 17) A. Mordzinski, K. Kownacki, A. Leś, N.A. Oyler, L. Adamowicz, F.W. Langkilde and R. Wilbrandt, Proton-Transferring Systems Studied by Vibrational Spectroscopy and Theoretical *Ab-Initio* Calculations: The S₀ and T₁ states of [2,2'-Bipyrdiine]-3,3'-diol, *J. Phys. Chem.* **98**, 5212 (1994).
- 18) P. Piecuch and L. Adamowicz, State-Selective Multi-Reference Coupled-Cluster Theory Using Multi-Configuration Self-Consistent-Field Orbitals. A Model Study on H₈, *Chem. Phys. Lett.* **221**, 121 (1994).
- 19) Z. Zhang and L. Adamowicz, Explicitly Correlated Gaussian Functions with r₁₂²ⁿ Factors for Calculations of the Ground State of the Helium Atom, *J. Comp. Chem.* **15**, 893 (1994).
- 20) G. Gutsev, A. Leś and L. Adamowicz, The Electronic and Geometrical Structure of Aluminum Fluoride Anions AlF_n⁻, n = 1-4, and Electron Affinity of Their Neutral Parents, *J. Chem. Phys.* **100**(12), 8925 (1994).
- 21) G.H. Roehrig, N.A. Oyler and L. Adamowicz, Can Electron Attachment Alter Tautomeric Equilibrium of Guanine? Theoretical *Ab Initio* Study, *Chem. Phys. Lett.* **225**, 265 (1994).
- 22) P. Piecuch and L. Adamowicz, Breaking Bonds with the State-Selective Multi-Reference Coupled-Cluster Method, *J. Chem. Phys.* **102**, 898 (1995).

23) L. Lapinski, M.J. Nowak, A. Leś and L. Adamowicz, Comparison of *Ab-Initio* HF/6-31G, HF/6-31++G and MP2/6-31G IR Spectra of 4-Pyrimidinone Tautomers with Matrix Isolation Spectra, *Vibrational Spectroscopy* **8**, 331 (1995).

24) A. Sobolewski and L. Adamowicz, *Ab-Initio* Characterization of Electronically Excited States in Highly Unsaturated Hydrocarbons, *J. Chem. Phys.* **102**, 394 (1995).

25) A. Sobolewski and L. Adamowicz, Theoretical Investigations of Proton Transfer Reaction in Hydrogen Bonded Complexes of Cytosine and Water, *J. Chem. Phys.* **102**, 5708 (1995).

26) V. Alexandrov, P. Piecuch and L. Adamowicz, State-Selective Multi-Reference Coupled-Cluster Theory Employing the Single-Reference Formalism: Application to An Excited State of H₈, *J. Chem. Phys.* **102**(8), 3301 (1995).

27) A. Sobolewski and L. Adamowicz, Theoretical Investigations of the Proton Transfer Reaction in Hydrogen-Bonded Complexes of Cytosine with HNO, *Chem. Phys. Lett.* **234**, 94 (1995).

28) A. Sobolewski and L. Adamowicz, Theoretical Investigations of the Proton Transfer Reaction in Hydrogen-Bonded Complexes of Cytosine with HNO, *Chem. Phys. Lett.* **234**, 94 (1995).

29) J. Smets, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine or Isocytosine Tautomers 2. 4-NH₂-Pyridine and 4-NH₂-Pyrimidine Complexes with H₂O in AR Matrices, *J. Phys. Chem.* **99**, 6387 (1995).

30) A. Sobolewski and L. Adamowicz, Theoretical Investigations of the Proton Transfer Reaction in the Hydrogen-Bonded Complexes of 2-Pyrimidinone with Water, *J. Phys. Chem.* **99**, 14277 (1995).

31) G.H. Roehrig, N.A. Oyler and L. Adamowicz, Electron Affinity of Adenine. Theoretical Study, *J. Phys. Chem.* **99**, 14285 (1995).

32) F. Buyl, J. Smets, G. Maes and L. Adamowicz, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine or Isocytosine Tautomers 3. Complexes of 4-OH-Pyridine and 3-OH-Pyridine with H₂O in Ar Matrices, *J. Phys. Chem.* **99**, 14967 (1995).

33) P. Borowicz, A. Grabowska, K. Kaczmarek, A. Leś and L. Adamowicz, Synthesis, Photophysics and Theoretical *Ab-Initio* Calculations of a Bizzwitterionic Compound Modeling the Phototautomer of Bipyridol-Diol, *Chem. Phys. Lett.* **239**, 282 (1995).

34) K.B. Ghose and L. Adamowicz, Use of Recursively Generated Intermediates in State-Selective Multi-reference Coupled-Cluster Method: A Numerical Example, *J. Chem. Phys.* **103**, 9324 (1995).

35) G.L. Gutsev and L. Adamowicz, The Structure of the CF₄⁻ Anion and the Electron Affinity of the CF₄ Molecule, *J. Chem. Phys.* **102**(23), 9309 (1995).

36) W.J. McCarthy, L. Lapinski, M.J. Nowak and L. Adamowicz, Anharmonic Contributions to the Inversion Vibration in 2-Aminopyrimidine, *J. Chem. Phys.* **103**, 656 (1995).

37) G. Gutsev, A. Sobolewski and L. Adamowicz, Theoretical Study on the Structure of Acetonitrile (CH_3CH) and its Anion ($\text{CH}_3\text{CH}-$), *Chem. Phys.* **196**, 1 (1995).

38) G.L. Gutsev and L. Adamowicz, Relationship Between the Dipole Moments and the Electron Affinities for Some Polar Organic Molecules, *Chem. Phys. Lett.* **235**, 377 (1995).

39) A. Sobolewski and L. Adamowicz, Photophysics of 2-hydroxypyridine: An *Ab-Initio* Study, *J. Phys. Chem.* **100**, 3933 (1996).

40) G.L. Gutsev and L. Adamowicz, The Electronic and Geometrical Structure of Dipole-Bound Anions Formed by Polar Molecules, *J. Phys. Chem.* **99**, 13412 (1995).

41) G.L. Gutsev and L. Adamowicz, The Valence and Dipole-Bound States of the Cyanomethide Ion, $\text{CH}_2\text{CN}-$, *Chem. Phys. Lett.* **246**, 245 (1995).

42) K.B. Ghose, P. Piecuch and L. Adamowicz, Improved Computational Strategy for the State-Selective Coupled-Cluster Theory with Semi-Internal Triexcited Clusters: Potential Energy Surface of HF Molecule, *J. Chem. Phys.* **103**, 9331 (1995).

43) J. Smets, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine and Isocytosine Tautomers. 5.1- CH_3 -Cytosine Complexes with H_2O in Ar Matrices, *J. Phys. Chem.* **100**, 6434 (1996).

44) K. Schoone, L. Houben, J. Smets, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR and *Ab-Initio* 6-31++G Study of 1- CH_3 -Adenine Tautomerism, *Spectrochimica Acta A* **52**, 383 (1996).

45) L. Lapinski, D. Prusinowska, M.J. Nowak, M. Bretner, K. Felczak, G. Maes and L. Adamowicz, Infrared Spectra of 6-azathiouracils: An Experimental Matrix Isolation and Theoretical *Ab-Initio* SCF/6-311G** Study, *Spectrochimica Acta* **52A**, 645 (1996).

46) K.B. Ghose, P. Piecuch, S. Pal and L. Adamowicz, State-Selective Multireference Coupled-Cluster Theory: In Pursuit of Property Calculation, *J. Chem. Phys.* **104**, 6582 (1996).

47) D. Prusinowska, L. Lapinski, M.J. Nowak and L. Adamowicz, Tautomerism, Phototautomerism and Infrared Spectra of Matrix-Isolated 2-Quinolinethione, *Spectrochimica Acta Part A* **51**, 1809 (1995).

48) G. Maes, J. Smets and L. Adamowicz, Combined Matrix-Isolation FT-IR and *Ab-Initio* 6-31++G** Studies on the Tautomerism and H-Bonding Properties of Nucleic Acid Bases and Simpler Model Molecules, Proceedings of the NATO-ASI on Low Temperature Molecular Spectroscopy, Edited by R. Fausto, Kluwer, Vol. **483**, 147-167 (1996).

49) A. Sobolewski and L. Adamowicz, Double-Proton-Transfer in [2,2'-Bipyridine]-3,3'-Diol: An *Ab-Initio* Study, *Chem. Phys. Lett.* **252**, 33 (1996).

50) J. Smets, W.J. McCarthy and L. Adamowicz, Dipole-Bound Electron Attachment of Uracil-Water Complex. Theoretical *Ab-Initio* Study, *J. Phys. Chem.* **100**, 14655 (1996).

51) J. Smets, W.J. McCarthy and L. Adamowicz, Water Molecules Enhances Dipole-Bound Electron Affinity of 1-Methyl-Cytosine, *Chem. Phys. Lett.* **256**, 360 (1996).

52) Y. Elkadi and L. Adamowicz, Dipole-Bound Anions of Ethylene Glycol Dimers. Theoretical *Ab-Initio* Study, *Chem. Phys. Lett.* **261**, 507 (1996).

53) L. Adamowicz and J.-P. Malrieu, Multi-Reference Self-Consistent Size-Extensive State-Selective Configuration Interaction, *J. Chem. Phys.* **105**, 9240 (1996).

54) L. Adamowicz, R. Caballol, J.-P. Malrieu and J. Meller, A General Bridge Between Configuration Interaction and Coupled-Cluster Methods: A Multistate Solution, *Chem. Phys. Lett.* **259**, 619 (1996).

55) L. Houben, K. Schoone, J. Smets, L. Adamowicz and G. Maes, Combined Matrix-Isolation FT-IR and *Ab-Initio* 6-31++G** Studies on Tautomeric Properties of Nucleic Acid Bases and Simpler Model Molecules, *J. Mol. Struct.* **410/411**, 397 (1997).

56) G. Maes, J. Smets, L. Adamowicz, W. McCarthy, M.K. Van Bael, L. Houben and K. Schoone, Correlations Between *Ab-Initio* and Experimental Data for Isolated H-Bonded Complexes of Water with Nitrogen Bases, *J. Mol. Struct.* **410/411**, 315 (1997).

57) J. Smets, L. Houben, K. Schoone, G. Maes and L. Adamowicz, Multiple-Site Proton Affinities of Methylated Nucleic Acid Bases, *Chem. Phys. Lett.* **262**, 789 (1996).

58) P. Borowicz, O. Faurskov-Nielsen, D.H. Christensen, L. Adamowicz, A. Leś and J. Waluk, Vibrational Spectroscopy of Hydroxy-Heterobiaryls. Low Frequency Modes of 2-(2-hydroxyphenyl)-3-pyridynol, *J. Mol. Struct.* **408/409**, 363 (1997).

59) Sobolewski and L. Adamowicz, An *Ab-Initio* Study of the Potential Energy Surface in the S₁ State of 2-Hydroxypyridine, *Chem. Phys.* **213**, 193 (1996).

60) M. Van Bael, K. Schoone, L. Houben, J. Smets, W. McCarthy, L. Adamowicz, M. Nowak and G. Maes, Matrix-Isolation FT-IR Studies and Theoretical Calculations of Hydrogen-bonded Complexes of Imidazole. Comparison Between Experimental Data and Different Theoretical Methods, *J. Phys. Chem.*, **101**, 2397 (1997).

61) L. Adamowicz and J.-P. Malrieu, Multi-Reference Self-Consistent Size-Extensive Configuration Interaction (CI) — A Bridge Between the Coupled-Cluster Method and the CI Method, in MODERN IDEAS IN COUPLED-CLUSTER METHODS, Recent Adv. Comput. Chan., R.J. Bartlett, Ed., World Scientific Publishing, 307–332 (1997).

62) W.J. McCarthy, J. Smets, L. Adamowicz, A.M. Plokhonichenko, E.D. Radchenko, G.G. Sheina and S.G. Stepanian, Competition Between H-Bonded and Stacked Dimers of Pyrimidine: IR and Theoretical *Ab-Initio* Study, *Mol. Phys.* **91**(3), 513 (1997).

63) M. Rostkowska, M.J. Nowak, L. Lapinski, D. Smith and L. Adamowicz, Molecular Structure and Infrared Spectra of 3,4-Dihydroxy-3-Cyclobutene-1,2-Dione: Experimental Matrix Isolation and Theoretical Hartree-Fock and Post Hartree-Fock Study, *Spectrochimica Acta* **A53**, 959 (1997).

64) J. Smets, A. Destexhe, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes Modeling Cytosine or Isocytosine Tautomers 4.. H-bonded Complexes of 1-CH₃-2-Pyrimidone and N,N,1-tri-CH₃-Cytosine with Water, *J. Phys. Chem.* **101**, 6583 (1997).

65) W.J. McCarthy, L. Lapinski, M.J. Nowak and L. Adamowicz, Out-of-Plane Vibrations of NH₂ in 2-Aminopyrimidine and Formamide, *J. Chem. Phys.* **108**(24), 10116 (1998).

66) K. Schoone, J. Smets, L. Houben, M.K. VanBael, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR Studies and Theoretical Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Adenine Tautomers. I. H-Bonding of Benzimidazoles with H₂O in Ar Matrices, *J. Phys. Chem.*, **102**, 8157 (1998).

67) J. Smets, W. McCarthy, G. Maes and L. Adamowicz, Correlations Between *Ab-Initio* and Experimental Data for 1:1 Hydrogen-Bonded Complexes of Pyridine and Imidazole Derivatives with Water, *J. Mol. Struct.* **476**, 27 (1999).

68) J. Smets, A. Destexhe, L. Adamowicz, and G. Maes, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine and Isocytosine Tautomers. 6. Experimental Observation of a Water-Induced Tautomeric Shift of 2-Hydroxypyrimidine and 5-Br-2-Hydroxypyrimidine in Ar Matrices, *J. Phys. Chem.*, **102**, 8157 (1998).

Papers Submitted for Publication:

1. K.B. Ghose, L. Adamowicz and S. Pal, The State Selective Multireference Coupled-Cluster Method. Some Recent Developments, *J. Chem. Phys.*, submitted.

Progress Report, DOE Grant DEFG0393ER61605, Theoretical Studies on Radiation-Induced Transformations in Nucleic Acid Bases.

Period Covered: May 1, 1994 - April 30, 1995 (All funds allocated for this budget period will be spent by April 30, 1995).

P.I.: Ludwik Adamowicz, Department of Chemistry, The University of Arizona, Tucson, AZ 85721

RECEIVED
MAR 12 1999

Since I submitted my last report at the end of January, 1993, our research effort funded by the above-mentioned grant has resulted in twenty-one [1-21] papers, ten of them already published or accepted for publication and eleven currently under review by the journals. Part of the funding was used to purchase an IBM RISC 6000 590 workstation, which has been very instrumental in performing some of the large scale *ab-initio* calculations relevant to the project. The following research developments have been accomplished:

1. UV-induced transformations of a number of nucleic base molecules and their analogues have been investigated. Of interest to us has been both of the internal structural transformations induced by promoting the molecules to excited electronic states and the excited state proton transfer reactions. The phenomenon of the proton migration induced by the UV-radiation has been studied in isolated base molecules and in complexes with water and in the base dimers. Attempts have been made to describe the dynamics of the proton transfer reactions on the excited state potential energy surfaces. This work has been described in Refs. 5,6,8,9 and 17.
2. Free electron release and its attachment to nucleic acid bases is one of the primary effects taking place in irradiated genetic material. It has been long believed that electron affinities of the nucleic acid bases are negative. Our calculations on thymine, uracil, guanine and adenine have demonstrated that due to sizable dipole moments of some of the base tautomers, excess electrons can attach to the bases forming stable dipole-bound states. The formation of these states, which is more effective for some tautomers than for the others, leads to significant shifts in the tautomeric equilibria and, in some cases, for example, adenine, to the appearance of noticeable amounts of rare tautomers in the mixture. The work on molecular anions has also covered investigations of some smaller model systems where the formation of the dipole-bond anionic states compete with formation of conventional "valence" anions. In order to verify our theoretical predictions regarding the electron affinities of nucleic acid bases, we have established a collaboration with the experimental group of Professor Schermann from the University of Paris, France. With the use of photoelectron

spectroscopy, this group recently measured the electron affinities of uracil and thymine and the results agree very well with our computed values. The work on the anions has been described in Refs. 1, 2, 11, 13, 15, 16, 20 and 21.

3. We have continued studies on the IR spectral characterizations of analogues and derivatives of the nucleic acid bases. With the use of harmonic frequency analysis and an effective method to account for anharmonicity developed by us, we have studied the spectra 4-pyrimidinone, 2-aminopyrimidine and 2-quinolinethione. This work has been carried on in collaboration with the matrix-isolation spectroscopy group of Dr. Nowak, of the Institute of Physics, The Polish Academy of Sciences. One aspect of this work which is particularly relevant to this project is UV-irradiation of the studied molecules and alternating the tautomeric equilibria. This effect was very instrumental in the identifying the spectra of different tautomers. The work has been described in Refs. 4, 12 and 18.

4. The dimerization of the nucleic bases constitutes an essential mechanism for the duplication of the genetic information. Our goal is to eventually study how the radiation affects the structure of the dimers. The complexity of this problem requires, however, that we study smaller model systems first before we turn to dimers. In the course of this study, extensive *ab-initio* calculations have been performed to determine isomeric structures of singly- and double-bonded complexes involving nucleic acid molecules and water molecules. We considered the following systems: 2-OH-pyridine and 2-OH-pyrimidine; 4-OH-pyridine and 4-OH-pyrimidine; 2-NH₂-pyridine and 2-NH₂-pyrimidine; 3-OH-pyridine and 3-OH-pyrimidine; adenine; 1-methyl-adenine; 3-methyl-adenine; 7-methyl-adenine and 9-methyl-adenine. The purpose of the calculations was to determine the relative thermodynamic stability of the complexes formed by the base molecules with water molecules attached at different H-bonding sides. The water complexation with the rare tautomers of the basis was also considered. Our theoretical work has been carried in collaboration with the IR matrix-isolation studies by the group of Professor G. Maes from the Catholic University of Leuven, Belgium. This work representing the first step in subsequent theoretical and spectral characterization of the base pair complexes has been described in Refs. 10 and 19.

5. We have continued our work on developing new *ab-initio* methodology to study electron excitations and molecular fragmentation processes. This work was centered on the theoretical formulation and numerical implementation of the state-selective multi-reference coupled-cluster method. The work has been described in Refs. 3 and 7.

6. Lastly, we wrote a review article entitled, "*Ab-Initio* Calculations of Biomolecules," which will be published in Proceedings of the CAM'94 Physics Meeting in Cancun, Mexico.

REFERENCES:

1. G. Gutsev, A. Leś and L. Adamowicz, The Electronic and Geometrical Structure of Aluminum Fluoride Anions, AlF_n^- $n = 1-4$, and Electron Affinities of Their Neutrals, *J. Chem. Phys.* **100**, 8925 (1994).
2. G.H. Roehrig, N.A. Oyler and L. Adamowicz, Can Electron Attachment Change Tautomeric Equilibrium of Guanine?, *Chem. Phys. Lett.* **225**, 265 (1994).
3. P. Piecuch and L. Adamowicz, Breaking Bonds with the State-Selective Multi-Reference Coupled-Cluster Method, *J. Chem. Phys.*, accepted for publication.
4. L. Lapinski, M.J. Nowak, A. Leś and L. Adamowicz, Comparison of *Ab-Initio* HF/6-31G**, HF/6-31 + + G** and MP2/6-31** IR Spectra of 4-Pyrimidinone Tautomers with Matrix Isolation Spectra, *Spectrochem. Acta*, accepted for publication.
5. A. Sobolewski and L. Adamowicz, *Ab-Initio* Characterization of Electronically Excited States in Highly Unsaturated Hydrocarbons, *J. Chem. Phys.*, accepted for publication.
6. A. Sobolewski and L. Adamowicz, Theoretical Investigations of Proton Transfer Reaction in Hydrogen Bonded Complexes of Cytosine and Water, *J. Chem. Phys.*, accepted for publication.
7. V. Alexandrov, P. Piecuch and L. Adamowicz, State-Selective Multi-Reference Coupled-Cluster Theory Employing the Single-Reference Formalism: Application to Excited States of H_8 , *J. Chem. Phys.*, accepted for publication.
8. A. Sobolewski and L. Adamowicz, Theoretical Investigations of the Excited-State Intra-molecular Proton Transfer Reaction in N-substituted-3-hydroxypyridinones, *Chem. Phys.*, accepted for publication.
9. A. Sobolewski and L. Adamowicz, Theoretical Investigations of the Proton Transfer Reaction in Hydrogen-Bonded Complexes of Cytosine with HNO , *Chem. Phys. Lett.*, accepted for publication.
10. J. Smets, L. Adamowicz and G. Maes, Matrix-Isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-Bonded Complexes of Molecules Modeling Cytosine or Isocytosine Tautomers 2. 4-NH₂-Pyridine and 4-NH₂-Pyrimidine Complexes with H_2O in AR Matrices, *J. Phys. Chem.*, submitted.
11. G. Gutsev and L. Adamowicz, Peculiarities in the Anion Potential Energy Surfaces. Why Electron Affinity Cannot Be Negative, *J. Chem. Phys.*, submitted.
12. W.J. McCarthy, L. Lapinski, M.J. Nowak and L. Adamowicz, Anharmonic Contributions to the Inversion Vibration in 2-Aminopyrimidine, *J. Chem. Phys.*, submitted.

13. G. Gutsev, A. Sobolewski and L. Adamowicz, Theoretical Study on the Structure of Acetonitrile (CH_3CH) and its Anion (CH_3CH^-), *J. Chem. Phys.*, submitted.
14. A. Leś and L. Adamowicz, *Ab-Initio* Calculations of Biomolecules. Proceedings of the CAM '94 Physics Meeting in Cancun, Mexico, submitted.
15. G.L. Gutsev and L. Adamowicz, Relationship Between the Dipole Moments and the Electron Affinities for Some Polar Organic Molecules, *Chem. Phys. Lett.*, submitted.
16. G.L. Gutsev and L. Adamowicz, The Structure of the CF_4^- Anion and the Electron Affinity of the CF_4 Molecule, *Chem. Phys.*, submitted.
17. A. Sobolewski and L. Adamowicz, Theoretical Investigations of the Proton Transfer Reaction in the Hydrogen-Bonded Complexes of 2-Pyrimidinone with Water, *J. Phys. Chem.*, submitted.
18. D. Prusinowska, L. Lapinski, M.J. Nowak and L. Adamowicz, Tautomerism, Phototautomerism and Infrared Spectra of Matrix-isolated 2-Quinolinethione, *Spectrochimica Acta*, submitted.
19. F. Buyl, J. Smets, G. Maes and L. Adamowicz, Matrix-isolation FT-IR Studies and *Ab-Initio* Calculations of Hydrogen-bonded Complexes of Molecules Modeling Cytosine and Isocytosine Tautomers. 3. Complexes of 4-OH-Pyridine and 3-OH-Pyridine with H_2O in Ar Matrices, *J. Phys. Chem.*, submitted.
20. G. Gutsev and L. Adamowicz, The Electronic and Geometrical Structures of Dipole-Bound Anions Formed by Polar Molecules, *J. Phys. Chem.*, submitted.
21. G.H. Roehrig, N. Oyler and L. Adamowicz, Electron Affinity of Adenine. Theoretical Study. *Chem. Phys. Lett.*, submitted.