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1. ABSTRACT

The process of implementing a damage detection strategy
for aerospace, civil and mechanical engineering systems is
often referred to as structura/ hea/th monitoring. In this
paper, the structural health monitoring problem is cast in
the context of a statistical pattern recognition paradigm.
This pattern recognition process is composed of four
portions: 1.) Operational evaluation; 2.) Data acquisition &
cleansing; 3.) Feature selection & data compression, and
4,) Statistical modeldevelopmentfor feature classification.
This paper mainly focuses on the discussion of feature
extraction and classification issues using the fiber optic
strain gauge data obtained from t?wo different structural
conditions of a surface-effect fast patrol boat. The main
objective is to extract features and to construct a statistical
model that enables to distinguish the signals recorded
under the different structural conditions of the boat. The
feature extraction process began by looking at relatively
simple statistics of the signals and progressed to using the
residual errors from auto-regressive (AR) models fit to the
measured data as the damage-sensitive features. Data
normalization proved to be the most challenging portion of
this investigation. A novel approach to data normalization,
where the residual errors in the AR model are considered
to be an unmeasured input and an auto-regressive model
with exogenous inputs (ARX) is then fit to portions of the
data exhibiting similar waveforms, was successfully
applied to this problem. With this proposed procedure, a
clear distinction between the two different structural
conditions was achieved.

2. INTRODUCTION

Many aerospace, civil, and mechanical engineering
systems continue to be used despite aging and the
associated potential for damage accumulation. Therefore,
the ability to monitor the structural health of these systems
is becoming increasingly important from both economic
and life-safety viewpoints. Damage identification based
upon changes in dynamic response is one of the few
methods that monitor changes in the structure on a global
basis. The basic premise of vibration-based damage
detection is that changes in the physical properties, such
as reductions in stiffness resulting from the onset of cracks

or loosening of a connection, will cause changes in the
measured dynamic response of the structure.

This paper begins by posing the structural health-
monitoring problem in the context of a statistical pattern
recognition paradigm. This paradigm can be described as
a four-part process: 1.) operational evaluation, 2.) data
acquisition & cleansing, 3.) feature extraction & data
reduction, and 4.) statistical model development. In
particular, this paper focuses on Parts 3 and 4 of the
process. More detailed discussion of the statistical pattern
recognition paradigm can be found in Farrar et al, 2000.

3. DESCRIPTION OF EXPERIMENTAL DATA

Staff at Los Alamos National Laboratory (LANL) applied
some of the LANL pattern recognition techniques
developed for structural health monitoring to data obtained
from a surface-effect fast patrol boat shown in Figure 1.
The surface effect ship is a pre-series fast patrol boat built
by Kvaemer Mandal in Norway. Together with a research
team from the Norwegian Defense Research
Establishment (NDRE), the ship designers determined the
optimal sensor placement. The sensor installation and data
acquisition duflng sea trials was performed jointly by
NDRE and NRL. Fiber optic strain guage with Bragg
grating were used to measure the dynamic response of the
ship. The boat and the associated data acquisition are
summarized in Johnson et al. (2000).

Three strain time-histories obtained from two different
structural conditions were transmitted to the staff at Los
Alamos National Laboratory (LANL) from NRL. It was
explained that the first two signals, Signal 1 and Signal 2,
hereafter, were measured when the ship was in ‘Structural
Condition 1“ while Signal 3 was measured when the ship
was in “Structural Condition 2“. However, we were not told
which sensor these data came from. We were not informed
of any data cleansing or data normalization that was
performed prior to the transmission of these signals to
LANL. It is assumed that these data were acquired under
varying environmental and operational conditions.
Changing environmental conditions can include varying
sea states and thermal environments associated with the
water and air. Changing operational conditions include ship
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speed and the corresponding changes in engine
performance, mass associated with varying ship cargo, ice
buildup and fuel levels, and maneuvers the ship
undergoes. No measures of these environmental or
operational conditions were provided.

Given that the first two portions of the statistical pattern
recognition paradigm have mostly been completed, this
study focused on data normalization, feature extraction,
and statistical modeling for feature discrimination. The goal
of this investigation is to normalize these data and extract
the appropriate features such that we could clearly
discriminate Signal 3 from Signals 1 and 2. Also, we must
be able to show that the same procedure does not
discriminate Signal 1 from Signal 2. The following section
describes the procedures used to obtain these goals.

;... .——- . . .. .... ..———-,.——. .. —.;
~ $

Figure 1: A surface-effect fast patrol boat

4. FEATURE EXTRACTION& CLASSIFICATION

4.1 The Raw Time Series

First, the raw time series are plotted in Figure 2 to get
some intuitive feeling for the signals. A few observations
could be made based on this figure (1) All the signals
have “spiky” responses with an occasional large amplitude
strain measurement, (2) the amplitude of one signal is not
consistent with the amplitude of the other signals indicating
the need for data normalization, and (3) significant
“skewness” is found in Signal 2. To support some of these
observations, some basic statistics of the raw time series
are summarized in Table 1.

Table 1: Basic statistics of the raw time series amplitudes

Series Mean STD Skewness Kutiosis

Signal 1 3.7809 37.7433 -0.4811 6.0854

Signal 2 -0.8207 107.8089 -2.2310 12.6311

Signal 3 -0.7559 74.1260 -0.8134 11.9437

A close look of Table 1 further reveals important facts
regarding the data. The sample mean and standard
deviation (STD) of one time series are quite different from
those of the others signals. Therefore, it seems necessary

to conduct some form of data normalization or
standardization prior to any statistical model development.

To achieve our main objective, which is to group Signals 1
and 2 together and to separate Signal 3 from Signals 1 and
2, various signal analyses have been conducted. To name
a few, Fast Fourier Transformation (F~) analysis,
Statistical Control Chart Analysis using residual errors
obtained from AR models, Probability Density Estimation of
the residual errors, Bispectrum & Bicoherence Analysis,
and Time-Frequency Analysis using Spectrogram. It was
difficult to discern, either qualitatively or quantitatively, any
consistent difference beween Signals 1 and 2 (Structural
Condition 1) and Signal 3 (Structural Condition 2). The
visual inspection of some results often shows more
similarity between Signals 1 and 3 than between Signals 1
and 2. The conclusion from the aforementioned analyses
was that environmental conditions such as sea states or
operational conditions such as the boat speed were
making it impossible to distinguish behveen the two
structural states. The details of these analyses are
summarized in Sohn et al., 2000.
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Figure 2: The raw strain time series

4.2 AR-ARX Analysis

As shown in the previous examples, there is a noticeable
difference between Signals 1 and 2. It seems extremely
difficult to group Signals 1 and 2 together, and at the same
time separate Signal 3 from them. Therefore, a different
approach is tried. Here, the additional information that
Signals 1 and 2 are obtained from the same structural
condition of the system is utilized.

We first divide each signal into two parts. The first halves
of Signal 1 and Signal 2 are employed to generate the
“reference database”. The second halves of Signal 1 and
Signal 2 are later employed for false-positive studies. In
this example, signal “blocks” in the reference database are
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generated by further dividing the first haIves of Signal 1
and Signal 2 into smaller segments. These reference
signals are considered to be “the pool” of signals acquired
from the various operational conditions, but from a known
structural condition of the system. (In this example, Signals
1 and 2 are assumed to have been measured under
different operational conditions of the surface-effect fast
patrol boat. However, it is also known that these two
signals correspond to the same structural condition of the
system.) When a new signal is recorded (for example,
when Signal 3 is measured in this example), this signal is
divided into smaller segments, as done for the blocks in
the reference database. Then, the signals in the reference
database are examined to find a signal block ‘closest” to
the new signal block. Here, the matrix, which is defined as
the distance measure of two separate signal segments, is
subjective. The detailed formulation of the matrix used in
this study and the definition of the “closeness” will be
described later on.

This approach is based on the premise that if the new
signal block is obtained from the same operational
condition as one of the reference signal segments and
there has been no structural deterioration or damage to the
system, the dynamic characteristics of the new signal
should be similar to those of the reference signal based on
some measure of “similarity”. That is, if a time prediction
model, such as AR, Auto-Regressive and Moving-Average
(ARMA), or Auto-Regressive models with eXogenous
inputs (ARX), is constructed from the selected reference
waveform, this prediction model also should work for the
new signal if the signal is “close” to the original. For
example, if the second half of Signal 1 is assumed to be a
new blind-test signal, the prediction model obtained from
the first half of Signal 1 should reproduce the new signal
(the second half of Signal 1) reasonably well. On the other
hand, if the new signal is recorded under a structural
condition different from the conditions where reference
signals are obtained, the prediction model estimated from
even the “closest” waveform in the reference database
should not predict the new signal well. For instance,
because Signal 3 is measured under the different structural
condition of the system, the prediction model obtained from
either Signal 1 or Signal 2 would not predict Signal 3 well
even if “similat’ waveforms are analyzed. Therefore, the
residual errors of the “similat’ signals are defined as the
damage-sensitive features, and the change of the
probability distribution of these residual errors is monitored
to detect system anomaly.

In general, a linear time prediction model can not capture
the dynamic characteristics of nonlinear time series well.
To overcome this problem, a “local” modeling approach is
employed. Instead of fitting a linear model to the entire
time series, the time series is divided into small segments
and a linear model is fit into each local region of the time
series. That is, although the local prediction model is
linear, the parameters of the linear model adapt to the data
in each region of the time series. The procedure is
described below in detail.

1

2

3

4

We decimate all three signals by a factor of four. This
decimation reduces the original sampling rate of the
signal, 44.88 Hz, to a lower rate, 11.22Hz. The
decimation process first filters the signal with an eighth-
order lowpass Chebyshev type I filter for better anti-
aliasing performance. (The cutoff frequency is set to be

(0.8/R) x (F. /2). Here, F. is the original sampling rate,

44.88Hz, and R is the decimation rate, 4.) Then, the
decimation process re-samples the resulting filtered
signal at the lower rate of 11.22Hz (Oppenheim and
Willsky, 1996). Each signal consists of 26980 points
with the duration of 601.1667 seconds and resulting in a
sampling rate of 44.88Hz (=26980/601.1667Hz). Thfs
sampling rate corresponds to the Nyquist frequency of
22.44Hz. Because the response is mainly observed in
the frequency range of O-5HZ, the signal is re-sampled
at every fourth point resulting in the Nyquist frequency of
5.61Hz.

Next, an individual signal is divided into two parts. The
first halves of Signal 1 and Signal 2 are employed to
generate the reference database. Because each signal
consists of 6745 (=26980/4) points after decimation, the
first half of the signal is now composed of 3372 points.
This 3372 point signal is further divided into smaller
overlapping segments. The length of a single segment
is set to be 1148. (The selection of this segment length
is described later.) Therefore, 2225 (=3372-1148+1)
overlapping segments are generated from the first half of
Signal 1 using a moving time window with 1148 time
points. In a similar manner, 2225 segments are obtained
from the first half of Signal 2. Therefore, the reference
database consists of a total of 4450 signal blocks.

We divide Signal 3 into two parts in the same fashion as
in Step 2 and assume either the first or second half of
Signal 3 as a new data set. In this example, the whole
procedure is demonstrated using the second half of
Signal 3. The second half of Signal 3 is further divided
into three segments. Note that each segment has the
same length of 1148 time points as all the reference
signal blocks.

For each segment of the new data, the reference signals
are looked up and the signal segment that is “closest” to
the newly obtained one is found. This procedure can be
interpreted as a normalization procedure that finds a
reference signal segment recorded under a similar
‘operational” or “environmental” condition as the newly
measured one. The ‘closeness” between two blocks is
measured in the following manner.

4.1 For each segment x(t) from the reference database,

construct an AR model with p auto-regressive terms.
In this example, an AR(30) is constructed and an
AR(p) model can be written as:
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x(t) = ~q$x(t – j] + W) (1)
/=1

This step is repeated for all 4450 segments in the
reference database.

Employing a new segment y(t) obtained from the

second half of Signal 3, repeat Step 4.1 (Again,
segment y(t) has the same length as segment x(t)):

y(t) = ~oti y(t - ~) + eY(t) (2)
/=1

Then, the signal segment x(t) closest to the new

signal block y(t) is defined as the one that

minimizes the difference of AR coefficients:

Difference = $(@I - @ti)2 (3)

was assumed that the strain measurements are
significantly affected by varying see states. Therefore, it
is necessary to separate the changes in the system
response caused by the varying structural conditions
from changes caused by varying see state. It is assumed
that the error between the measurement and the
prediction obtained by the AR model ( eX(t) in Equation

(l)) is mainly caused by the unknown external input.
Based on this assumption, an ARX model (Auto-
Regressive model with eXogenous inputs) is employed
to reconstruct the input/output relationship between
eX(t) and x(t). (An ARX model is basically identical to

an ARMA (Auto-Regressive and Moving-Average) model
expect that the input to the ARX model is a known
external input rather than white noise.) That is,
considering the error term e,(t) an exogenous input to

the system, an ARX(a,b) model is fit to the data to
capture the input/output relationship between e,(t) and

x(t). The ARX model is defined as:

x(t) = ~a, x(t-i) +$p, eX(f-fl+eX(t) (4)
/.1

where &x(t)is the residual error after fitting the ARX(a,b)

model to the eX(t) and x(t) pair. The feature for the

classification of damage status will later be related to this
quantity, eX(t). ARX(5,5) is used in this example. Here,

the a and b values of the ARX model are set rather
arbitrarily. However, similar results are obtained for
different a and b values as long as the sum of a and b is
kept smaller than p (a + b< p ).

6 Next, an investigation is made to determine how well the
ARX(a,b) model estimated in Equation (4) reproduces
the input/output relationship of eY(t) and y(t):

sY(t)= y(t) - ~a, y(t - O -~pj eY(t- JO (5)/.1

where eY(t) is considered to be an approximation of the

system input estimated from Equation (2). Again, note

7

that the a, and ~, coefficients are associated with x(t)

and obtained from Equation (4). Therefore, if the ARX
model obtained from the reference signal block x(t)was

not a good representative of the newly obtained signal
segment y(t) and ey(t) pair, there would be a

significant change in the probability distribution of the
residual error, &y(t).

Finally the ratio of @sY)/cr(eX) is defined as the

damage-sensitive feature in this particular example.

Here, O(SY) and @X) are the estimated standard

deviations of sy(t)and sX(t), respectively. If the ratio of

a(&Y)/a(s,) becomes larger than some threshold value

h (>1);

dey) > h

(7(E.J
(6)

the system is considered to have undergone some
structural system changes. However, in order to
establish the threshold value, test data need to be
acquired under different operational conditions, and the
probability distribution of @y)/o(sX) first needs to be

estimated. Because the data sets provided are limited,
the construction of the threshold value based on a
rigorous statistical analysis is not achieved in this study.

4.3 Results

The first example is conducted using the first half
segments of Signals 1 and 2 as the reference database.
Here, the first half of Signal 3 and the second half
segments of Signals 1, 2 and 3 are employed as four
testing segments with 3372 time points. Figure 3 shows
the measured time series of the four testing segments and
the corresponding prediction estimated using the ARX
(5,5) models as prescribed in Section 4.2. In Figure 3, the
responses in the range of 100-120 seconds are enlarged
for better comparison. If the system has experienced a
change in structural condition, the standard deviation of
new data, @y) defined in Equation (6), is expected to

increase compared to the standard deviation of the
reference signal, @sX). For example, as shown in the first

row of Table 2, cr(ey) of the second half of Signal 1

increased about 57’% from that of the selected reference
signal blocks. (As mentioned earlier, each testing time
series consist of 3372 points and they are further divided
into 3 segments with 1148 points. CT(ey)and CY(eX)are

computed based on all the residuals obtained from these
three segments.)

A smaller increase in standard deviation, 26’ZO,is observed
for the second half of Signal 2. However, as expected, the
standard deviations of the first or second halves of Signal 3
significantly differ from those of the selected reference
signals. The standard deviations of the residual errors
increased by 126% and 128Y0, for the first and second
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halves of Signal 3, respectively. A similar analysis, using
the second half segments of Signals 1 and 2 as the
reference signals, is presented in the second row of Table
2. In this second example, the first half segments of
Signals 1, 2, and 3, and the second half of Signal 3 are
employed as testing data sets. Again, a larger value in the
Ova ratio is found for the residuals from Signal 3

than those from either Signal 1 or Signal 2.

Third, similar tests are repeated 20 times by randomly
drawing testing signal blocks from Signals 1, 2 and 3. For
the first 10 random tests, the first halves of Signals 1 and 2
are used as the reference signals, and 10 testing signal
blocks are sampled from each of the first half of Signal 3
and the second half segments of Signals 1, 2 and 3. That
is, 4 signal blocks are sampled from Signals 1, 2, and 3 for
an individual test. Each signal block consists with 1148
time points as done in the previous examples. Testing
blocks for the next 10 tests are collected from the first
halves of Signal 1,2 and 3, and the second half of Signal 3
because the second halves of Signals 1 and 2 are used as
the reference signals. To summarize, 20 blocks are
sampled from either the first or second half of Signal 1
depending on which portion of Signal 1 is used as part of
the reference database. In a similar way, 20 blocks are
drawn from Signal 2. Additional 40 blocks are collected
from Signal 3 (20 from the first half and another 20 from
the second half). The @Y)/cr(ex) ratios for these testing

blocks are summarized in Table 3. On average, the 20
testing blocks sampled from Signal 1 have @eY)/@eX)

value of 1.5187. The average value for the 20 signals from
Signal 2 is 1.4321. On the other hand, the 40 blocks
sampled from Signal 3 have much larger increases in
standard deviation. The average value is about 2.2808 (=
(2,1902+2.3713)/2).

In Figure 4, separation of Signal 3 from Signals 1 and 2 is
attempted by setting the threshold value in Equation (6) to
be 1,85. This threshold value (h=l .85) results in only 4
misclassifications out of 80 tested cases. That is, 95% of
the tested blocks are correctly assigned to their structural
conditions. Note that the threshold value employed here is
established rather in an ad hoc manner. When more test
data become available, the threshold value should be
established based on a more rigorous statistical approach.
However, it was shown that Signal 3 is somehow different
from either Signal 1 or Signal 2 employing the additional
information that Signals 1 and 2 are obtained from the
same structural condition. The same procedure also
shows that Signals 1 and 2 are similar. .The additional
studies with randomly selected testing signals showed no
false-positive indication of damage, and discriminate
Signal 3 frOm Signals 1 and 2 with a 95?10of success rate.
It should be noted that the separation of the two structural
conditions is conducted in a supervised learning mode
because the construction of the threshold value requires
the acquisition of data from both of structural conditions.

Table 2: Extracted feature standard deviation ratio of the
residual errors

Feature
Signal1 Signal2 Signal3

Ist 2nd Ist 2nd Ist 2nd

de. ) Ref? I 1.5667 Ref? \ 1.2609 2.2625 I 2.2811

de,) 1.5045 Ref? 1.3995 Ref? 2.6209 2.5827

t Signal segments with the “reference” notation are used as part
of the referen database.

Table 3: The average ratio of standard deviations for
randomly selected 20 signal blocks

CT(&y)/CT(&x)
Test #

Signal 1 Signal 2
Ist half of 2nd half of

~nal 3 anal 3

Mean 1.5187 1.4321 2.1902 2.3713
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Figure 3: Comparison of the measured vs. predicted
signals (zoomed)
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[t should be noted that a ptiori knowledge that Signal 1 and
2 came from the same structural state was necessary to
develop the discrimination procedure present. That is, the
discrimination procedure was developed in a supervised
learning mode. It should be pointed out that the procedure
developed has only been verified on a limited amount of
data. Ideally, it would be necessary to examine many time
records corresponding to a wide range of operational and

+ $
. +

h=l.85 1 environmental cases as well as different damage scenarios

0.s1 I
o 2 4 6 6 10 12 14 16 16 20

Test Number

Figure 4 Separation of Signal 3 from Signals 1 and 2 using
the ARX residual errors

5. SUMMARY

A vibration-based damage detection problem
context of statistical pattern recognition. A

is cast in the
paradigm of

statistical pattern recognition is described in four parts
operational evaluation, data acquisition & cleansing, data
reduction & feature extraction, and statistical modeling for
discrimination. This study has focused on the issues of
data nomalization, feature extraction, and statistical model
development. Three strain measurements obtained from a
surface-effect fast patrol boat was studied in this paper.
The structural condition was the same when Signals 1 and
2 were obtained but Signal 3 was recorded in a different
structural condition than when Signals 1 and 2 were
obtained.

Following the proposed local ARX technique, this study
successfully identifies features from the strain time
histories that distinguish Signal 3 from Signals 1 and 2.
The feature employed in this study, the standard deviation
ratio, showed a clear distinction between Signal 3 and
Signals 1 and 2. Also Signals 1 and 2 appeared to be
similar when compared through this feature. To validate
the proposed approach, 80 signal segments are randomly
sampled for damage classification. Out of 80 tested cases,
there were only 4 misclassifications. That is, 959’o of the
tested signal blocks are correctly assigned to their actual
structural conditions. Finally, out of 40 segments obtained
from Signals 1 and 2, there were only one false-positive
indications of damage and the rest of 39 cases are
correctly assigned to “Structural Condition 1.“

before one could state with confidence that the proposed
method is robust enough to be used in practice.
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