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ABSTRACT

Microfabrication technology has been applied to
the development of a miniature, multi-channel gas
phase chemical laboratory that provides fast response,
small size, and enhanced versatility and chemical
discrimination. Each analysis channel includes a
sample preconcentrator followed by a gas
chromatographic separator and a chemically selective
surface acoustic wave detector array to achieve high
sensitivity and selectivity. The performance of the
components, individually and collectively, is
described.

1. INTRODUCTION

Numerous chemical detection scenarios, for
example, industrial process control and public safety
applications, impose challenging requirements on the
performance of chemical detection systems. These
applications require detection of trace levels of
specific target analytes in real-world environments
that may contain more than 1000-fold higher
concentrations of potentially interfering compounds.
In addition, rapid analysis, instrument portability, and
low rates of compound misidentification often are
- critically important. In an effort to address the
requirements of these applications, Sandia’s
pChemLab™ program has a goal to develop small
(palm-top computer sized), lightweight, and
autonomous systems that provide rapid (1 min),
sensitive, and selective detection of target analytes.
Although the pChemLab™ program includes gas and
liquid phase analysis systems [1], only the
performance of the gas phase components is described
herein.

Figure 1 shows the system design using multiple
analysis channels to provide enhanced chemical
discrimination and very low false alarm rates.
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‘Sensitive and highly selective detection is achieved

using a small adsorbent sample preconcentrator
connected to a gas chromatographic (GC) column that
feeds a low dead volume surface acoustic wave
(SAW) detector array. Commercially available batch
microfabrication processes are employed to produce
these three components, pictured in Fig.2. Among
the advantages of this approach are size and cost
minimization for individual devices. The design and
performance of the current component set is described
below.
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Fig. 1: Schematic of the gas-phase NChemLab™
system. The system incorporates Sandia designed and
fabricated concentration, separation, and detection
components (see Fig. 2) and commercially available
diaphragm pumps and miniature valves.

Fig. 2: Clockwise from above dime: microfabricated
sample preconcentrator; four-element, 380 MHz SAW
detector array, and 1 m long gas chromatograph
column.

2. PRECONCENTRATOR
The preconcentrator stage collects target analytes
from the air stream over an extended time and then
releases them in a rapid, concentrated pulse into the
GC column. The preconcentrator, in essence, is a
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microfabricated hotplate (see Figs.3 and 4).- A
chemically selective layer, typically a microporous
oxide, adsorbs the analytes from the environment.
After sufficient analyte has been collected, an
embedded Pt heater rapidly raises the temperature of
the preconcentrator to desorb the analytes.
Concentration enhancement factors of greater than
100 have been achieved after 40 s adsorption periods.
The desorption pulse width is typically 200 ms (full
width at half maximum).

The heater is fabricated on a 0.5 pm thick silicon
nitride (Si;N3) membrane suspended over a cavity
etched through a Si substrate. The 400 pm deep
cavity is produced using deep reactive ion etching
(DRIE) [2]. The low thermal mass and good thermal
isolation of the Si;N; membrane are critical for
quickly heating the. preconcentrator with a minimum
of electric power. As shown in Fig.5, the
microhotplate requires approximately 20 ms to reach a
steady-state temperature of 200°C. This steady-state
temperature is sustained by 105 mW of electrical
power. Thermal modeling has been used to optimize
the preconcentrator design [3].
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Fig. 3: Schematic cross section of the microhotplate
preconcentrator stage.
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Fig. 4: Scanning electron micrograph (SEM) of the
preconcentrator stage showing the micromachined

SiN membrane and Pt heater. Analyte adsorbing layer
is not shown.

3. GC COLUMN

A miniature GC column provides temporal
separation of the analytes and any interferants that
may be collected by the preconcentrator stage. A Si
DRIE process, similar to that used to fabricate the
preconcentrator, is employed to produce the GC
column [4]. Because of the exceptionally high aspect
ratio and anisotropy of the DRIE process, closely
spaced, narrow gas flow channels can be etched into
the Si substrate to a depth many times the channel
width. This approach affords good GC performance
in a small footprint while maintaining short transit
times through the column. A typical columnisa 1 m
long spiral with 40 - 100 pm wide channels separated
by 25 - 40 pm thick walls etched to a depth of 300 pm
or more (see Fig.2). It occupies a 1 - 1.5 cm” area.
The close-up of a channel cross-section in Fig. 6
illustrates the capability of the fabrication process.
After the channels are etched, the Si substrate is
thermally oxidized to produce a thin, glasslike layer
on the surface of the channels in order to facilitate
stationary phase deposition (see below).

E 200} ) —
3] <)
£ 150}
g
g 100F —o— Measured
t __ Modeled
(=]

50
< r

0 2 1 1 1

0 10 20 30 40
Time [msec]

Fig. 5: Comparison of measured and modeled heating
rates of the microhotplate preconcentrator during
analyte desorption. The preconcentrator can be
ramped from room temperature to 200°C in 20 ms,
drawing 105 mW at steady state.
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Fig. 6: SEM of a cross-section of a spiral GC column
etched into Si using DRIE. The etch process results in
deep, smooth, vertical channels.

Closed channels are produced by anodically
bonding a Pyrex lid to the top surface of the Si
substrate [4]. Since the bonding process is carried out
at elevated temperatures, Pyrex is used because it
closely matches Si’s thermal expansion coefficient.
PEEK stubs are adhesively bonded to this lid to
provide gas interconnection.

After the channels are sealed, GC stationary
phase materials are deposited on the walls using
conventional polymer solution techniques as well as
sol-gel coating technology. The retention of the
analytes in the stationary phase produces a separation
in time of the analytes arriving at the array of acoustic
wave detectors. This temporal separation provides an
additional means of distinguishing analytes from one
another and from interferants, as shown in Fig. 7,
aiding in analyte identification.

As illustrated in Fig. 1, the pChemLab™ system
will have two gas analysis channels that incorporate
GC columns, each with a different stationary phase.
The two channels can be optimized for different
analytes, increasing the functional range of the unit.
The channels can also be optimized to provide two
analyses for an analyte, improving the reliability and
lowering the false alarm rate, as demonstrated in
Fig. 8. The stationary phase selection, in this case,
non-polar OV-1 versus polar Carbowax, reorders the
elution times of the components.
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Fig. 7: Microfabricated GC column elution times for
a mixture of dimethylmethylphosphonate (DMMP),
diethylhydrogenphosphonate (DEHP), methyl
salicylate, and benzene (B), toluene (T), and xylene
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Fig. 8: Elution times for two microfabricated GC

columns with different stationary phases (Carbowax
and OV1). Reordering of elution times in the two
channels provides confirmation of results.

4. SAW CHEMICAL SENSOR ARRAY

The use of SAW delay lines as sensitive
chemical mass sensors is well known [S]. The
pChemLab™ employs a 4-clement quartz array in
each gas analysis channel, as shown in Fig. 9. A
center input interdigitated transducer (IDT) launches a
SAW in both directions. Four smaller output IDTs,
two on either side of the input IDT, reconvert the
acoustic wave to an electric signal. Three of the SAW
delay lines are coated with different chemically
sorbent materials, each optimized for the analytes of
interest. The fourth delay line serves as a reference.
Delay lines operating between 100 MHz and
700 MHz have been designed and tested. Delay line
frequency is determined by the spacing between
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adjacent IDT fingers and the acoustic velocity in the
material.

Fig. 9: Schematic representation of a 4-element SAW
detector array.

The delay line frequency is a critical parameter in
the design and operation of the SAW sensor array.
When a delay line is configured in an oscillator
circuit, the sensitivity of the oscillator frequency, f, to
added surface mass density (mass/area) increases as
[5]. In addition, the size of the delay line decreases as
1/f. The net result is that the sensitivity to the total
mass of the analyte scales as f', which is a strong
argument for going to higher frequency. These trends
are illustrated in Fig. 10.
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Fig. 10: Sensitivity data for two SAW devices with
identical coatings when exposed to perchloroethylene
vapors. The higher frequency SAW is much smaller,
but exhibits a much larger response.

The attraction of higher frequency SAW sensors
is reduced somewhat by the difficulty associated with
packaging high frequency components. This problem
is minimized if all high frequency components,

f"mc_h_lding the SAW delay line, can be packaged in the

equivalent of a single multichip module with only DC
inputs and outputs [6]. A photograph of the multichip
array configuration of the SAW sensor is shown in
Fig. 11. A ST-quartz die forms the substrate for both
the four-element SAW delay line array (described
above) and the GaAs ICs. Circuit interconnections are
made by patterning metal paths directly onto the
quartz die. The ICs are connected to the quartz die by
wire bonding. This device is being used in the current
version of the pChemLab™.

Fig. 11:  Multichip module version of SAW
microsensor array. The ST-quartz die size is 6.9 mm
x 86 mm. Each of the three GaAs ICs is
approximately 1 mm x 2 mm. Although the delay
lines and ICs operate at 510 MHz, this module
operates in a DC in/DC out mode.

One of the ICs contains an amplifier circuit that
drives the central IDT and forms an oscillator with the
reference SAW delay line. As analytes are sorbed
onto the chemically selective coatings on the 3 sensor
delay lines, the added mass produces an additional
phase shift in the SAW sensors relative to the
reference delay line. This phase shift is converted to a
DC voltage by phase comparator circuits on the ICs.
The delay lines and ICs pictured in Fig. 11 operate at
510 MHz yet the module requires only DC inputs and
provides DC outputs. The three GaAs ICs draw a
total of 90 mA at 2.5 Vdc. The output voltage noise
for this multichip module is approximately 60 pV, or
about 7 millidegrees of phase.

A fully monolithic approach that integrates the
SAW delay lines and the microelectronics onto a
single GaAs die is currently under development.
GaAs is an ideal material for this approach because it




is both piezoelectric and a semiconductor. A
photograph of the monolithic die is shown in Fig. 12.
Microelectronics equivalent to the 3 die in Fig. 11 is
located in the corners of the die in Figure 12. The 4
SAW delay lines are placed along the diagonal of the
die.

All three microfabricated components, the
preconcentrator, GC column, and the multichip SAW
detector module, have been assembled into a complete
system. An example of the system performance,
showing the temporal separation of target analytes and
the varied response of two sensors of a four-sensor
SAW detector array (reference and three coated
sensors), is given in Fig. 13. The strong hydrogen
bond of the acid coating (BSP3) provides selective
detection of the DMMP while ethyl cellulose provides
the largest response to methyl salicylate. The sample
used for generating this data contained 75 ppb of
DMMP, 1 ppm of methyl salicylate, and 74 ppm of
xylene, a volatile interferant. Because of the
selectivity of the preconcentrator, the xylene does not
interfere with the analysis even though the
concentration is almost 1000 times that for DMMP.

Fig. 12: Monolithic GaAs SAW Array. The large
central launch transducer and 4 output transducers can
be seen along the diagonal in the center of the die.
The circuitry is designed to operate at 700 MHz but
has only DC inputs and outputs. The die measures
4.5 mm by 4.5 mm.
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Fig. 13: SAW sensor array’s unique response to

mixture of DMMP and methyl salicylate after passing
through the preconcentrator and GC column. Sensor
array elements were coated with ethyl cellulose
(Etcell), and a H-bond acid modified polymer (BSP3)

[7].

6. PACKAGING AND ASSEMBLY

For assembly in the prototype pChemLab™ unit,
the components described above are mounted on a
novel printed circuit (PC) board that provides both the
electrical and fluidic interconnects (Fig. 14).
Embedded flow channels within the board and vias
through the board connect the microfabricated
components, mounted on either side of the board, a
valve and an inlet/outlet manifold. A single board
contains two gas analysis channels. The PC board
shown in Fig. 14 measures 8.5 cm by 5.3 cm. Other
PC boards in the prototype unit (Fig. 15) provide
temperature control, A/D conversion, and system level
functions. The prototype measures 20.5 cm long.
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Fig. 14: Assembled PC board containing two gas
analysis channels. The board provides both electrical
and fluidic interconnections. It measures 8.5 cm by

53 cm
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Fig. 15: View of the interior of the assembled
prototype pChemLab™ unit. The gas phase analysis
components are mounted on the bottom of the unit and
are not visible in this picture. The unit measures
20.5 cm long.

7. CONCLUSION

Trace level chemical detection has been
accomplished using microfabricated chemical analysis
components. A sample preconcentrator, a gas
chromatographic column, and a 4-element SAW
sensor array have been combined to detect target
analytes and interferants with low detection limits.
Pattern recognition algorithms applied to temporally
separated detector array responses provide highly
reliable identification of a number of analytes.
Integration of the detectors with drive and signal
conditioning electronics is being explored to improve
the performance of high frequency sensors and to
simplify packaging.
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